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Abstract

Dengue fever is a viral infection transmitted by the bite of female Aedes aegypti

mosquitoes. It is estimated that nearly 40% of the world’s population is now

at risk from Dengue in over 100 endemic countries including Malaysia. Several

studies in various countries in recent years have identified statistically significant

links between Dengue incidence and climatic factors. There has been relatively little

work on this issue in Malaysia, particularly on a national scale. This study attempts

to fill that gap. The primary research question is ‘to what extent can climate

variables be used to assist predictions of dengue fever incidence in Malaysia?’. The

study proposes a potential framework of modelling spatio-temporal variation in

dengue risk on a national scale in Malaysia using both climate and non-climate

information.

Early chapters set the scene by discussing Malaysia and Climate in Malaysia and

reviewing previous work on dengue fever and dengue fever in Malaysia. Subsequent

chapters focus on the analysis and modelling of annual dengue incidence rate (DIR)

for the twelve states of Peninsular Malaysia for the period 1991 to 2009 and monthly

DIR for the same states in the period 2001 to 2009.

Exploratory analyses are presented which suggest possible relationships between

annual and monthly DIR and climate and other factors. The variables that were

considered included annual trend, in year seasonal effects, population, population

density and lagged dengue incidence rate as well as climate factors such as average

rainfall and temperature, number of rainy days, ENSO and lagged values of these
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climate variables. Findings include evidence of an increasing annual trend in DIR

in all states of Malaysia and a strong in-year seasonal cycle in DIR with possible

differences in this cycle in different geographical regions of Malaysia. High popula-

tion density is found to be positively related to monthly DIR as is the DIR in the

immediately preceding months. Relationships between monthly DIR and climate

variables are generally quite weak, nevertheless some relationships may be able to

be usefully incorporated into predictive models. These include average tempera-

ture and rainfall, number of rainy days and ENSO. However lagged values of these

variables need to be considered for up to 6 months in the case of ENSO and from

1-3 months in the case of other variables.

These exploratory findings are then more formally investigated using a framework

where dengue counts are modelled using a negative binomial generalised linear

model (GLM) with a population offset. This is subsequently extended to a nega-

tive binomial generalised additive model (GAM) which is able to deal more flexibly

with non-linear relationships between the response and certain of the explanatory

variables. The model successfully accounts for the large amount of overdispersion

found in the observed dengue counts. Results indicated that there are statisti-

cally significant relationships with both climate and non-climate covariates using

this modelling framework. More specifically, smooth functions of year and month

differentiated by geographical areas of the country are significant in the model to

allow for seasonality and annual trend. Other significant covariates included were

mean rainfall at lag zero month and lag 3 months, mean temperature at lag zero

month and lag 1 month, number of rainy days at lag zero month and lag 3 months,

sea surface temperature at lag 6 months, interaction between mean temperature at

lag 1 month and sea surface temperature at lag 6 months, dengue incidence rate

at lag 3 months and population density.

Three final competing models were selected as potential candidates upon which

an early warning system for dengue in Malaysia might be able to be developed.

The model fits for the whole data set were compared using simulation experiments

to allow for both parameter and negative binomial model uncertainty and a single
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model preferred from the three models was identified. The ‘out of sample’ predictive

performance of this model was then compared and contrasted for different lead

times by fitting the model to the first 7 years of the 9 years monthly data set

covering 2001-2009 and then analysing predictions for the subsequent 2 years for

lead time of 3, 6 12 and 24 months. Again simulation experiments were conducted

to allow for both parameter and model uncertainty. Results were mixed. There

does seem to be predictive potential for lead times of up to six months from the

model in areas outside of the highly urbanised South Western states of Kuala

Lumpur and Selangor and such a model may therefore possibly be useful as a basis

for developing early warning systems for those areas. However, none of the models

developed work well for Kuala Lumpur and Selangor where there are clearly more

complex localised influences involved which need further study.

This study is one of the first to look at potential climatic influences on dengue

incidence on a nationwide scale in Malaysia. It is also one of the few studies

worldwide to explore the use of generalised additive models in the spatio-temporal

modelling of dengue incidence. Although, the results of the study show a mixed

picture, hopefully the framework developed will be able to be used as a starting

point to investigate further if climate information can valuably be incorporated in

an early warning system for dengue in Malaysia.
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Chapter 1

Introduction

This chapter introduces the key motivations behind this study and the primary

research aims which are addressed. The focus of the study is on exploring the rela-

tionship between climatic variables and the incidence of dengue fever in Malaysia

and also the potential for using any such relationships to assist in providing early

warning forecasts of dengue epidemics. The chapter starts by outlining the grow-

ing need to better understand the risk factors associated with dengue fever, both

globally and, more specifically, in the context of Malaysia. It then goes on to spec-

ify research aims for the remainder of the thesis and concludes by setting out a

structure for the subsequent chapters of the study.

1.1 Motivation

Dengue fever (DF) is a viral infection characterised by sudden high fever, severe

headache, rash, muscle and joint pains. The virus is transmitted by the bite of

female Aedes aegypti mosquitoes and infection rates of dengue can be as high as 90%

among those who have not been previously exposed to the virus (Gubler, 1998).

Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are more

serious (and potentially fatal) complications of the disease. Guzman and Kouri

18
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(2002) have reported that nearly 40% of the world’s population is now estimated to

be at risk from DF in over 100 endemic countries and 500,000 people are estimated

to be hospitalised every year with DHF.

The number of dengue cases in Malaysia continues to rise annually and DF is now

recognised as a significant public health problem in that country (Smith, 1957; Aziz

et al., 2012; Chew et al., 2012). Efforts to reduce the number of dengue cases is

now a high priority of various internal and external agencies in Malaysia, not least

the Malaysian Ministry of Health which has the main responsibility in addressing

the situation. Dengue fever was first reported in Malaysia by Skae (1902), followed

by dengue hemorrhagic fever and dengue shock syndrome epidemics in 1962 in

Penang, and dengue fever cases first became officially notifiable in 1971 (Rudnick

et al., 1965; Poovaneswari, 1993). Now in Malaysia it is the responsibility of all

medical practitioners to report every case of dengue fever to the nearest Local

Health Office within 24 hours from the time it was diagnosed (Narwani et al.,

2005). As the reporting systems have developed, and particularly since 1980, the

Malaysian Ministry of Health has recorded continual rising annual cases of dengue

to the extent that Ang et al. (2010) recently highlighted dengue fever as an urgent

major public health threat in the highly urbanised states of Selangor and Kuala

Lumpur.

In general, climate is known to have the potential to influence human health

through both direct and indirect mechanisms. The direct mechanisms include, for

example, episodes of heat or cold stress and extreme events (drought and flood),

while the indirect mechanisms include, for example, the impact of climate anomalies

on the risk of vector borne infectious diseases such as malaria and dengue through

changing environmental conditions for the vector (Connor et al., 2010). Accord-

ing to Gage et al. (2008), prediction of the relative impact of sustained climate

change for vector borne diseases is difficult and will require long-term studies that

need to look not only at the effects of climate change but also the contributions of

other agents of global change. That said, several studies worldwide have revealed

relationships between climatic variables and dengue fever and how these interact
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with other known risk factors such as socio-economic conditions. Such studies

have typically used statistical modelling methods of varying sophistication includ-

ing time-series analysis, multivariate regression, generalised linear models (GLM),

generalised linear mixed models (GLMM), generalised additive models (GAM) or

generalised additive mixed models (GAMM). Better understanding of how socio-

economic and climatic factors can affect the transmission of dengue fever may help

in developing early warning systems (EWS) for epidemics of dengue and so widen

the effectiveness of responsive measures (surveillance and prevention). Khun et al.

(2005) emphasised the importance of developing systems for early identification

for dengue epidemics to help health authorities in surveillance and prevention. To

be effective such EWS need to be able to target forecasts geographically within a

country into smaller areas such as districts, states or regions (Hu et al., 2012).

In Malaysia, the dengue incidence rate (DIR) in the country as a whole in recent

years has fluctuated from as low as 27.5 cases per 100,000 population in 1995

to the high level of 132.5 cases per 100,000 population in 2004 (Kumarasamy,

2006). Epidemics of dengue have occurred roughly every four years with major

outbreaks recorded in 1974, 1978, 1982 and 1990 (Lam, 1993b) and with a generally

similar pattern with increasing incidence since then. Significant work has been

introduced since the 1970s on prevention and control programmes to eliminate the

Aedes mosquitoes and larval breeding habitats and on public education and law

enforcement. However, there have been relatively few modelling studies on the

relationship between dengue and climatic and other risk factors in Malaysia as a

whole and even less work on the practical development of EWS. That background

provides the primary motivation for the work developed throughout the subsequent

chapters of this study.

One key challenge in pursuing that agenda is the availability of limited information

at the local geographical scale in Malaysia, for example models considered in Racloz

et al. (2012) were unable to sufficiently account for the spatio-temporal features of

the disease because of the limited geographical resolution of available covariates.

However, although there has been little work on dengue EWS in Malaysia, there
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has been more progress in the neighbour of Malaysia to the south. Dengue fever

in Singapore was first recognised as an important public health issue in the early

1960s and Aedes control programs have been in place since 1969. Forecasting mod-

els of dengue fever have also been developed in Singapore. Ma et al. (2008) carried

out a study to look at the association between socio-economic variables and dengue

incidence in Singapore for five years from 1998 to 2002 and identified significant as-

sociation between dengue cases and socio-economic or demographic variables, with

areas of higher proportion of disadvantaged residents having more dengue cases.

Another more recent study in Singapore used Poisson time series modelling includ-

ing climate factors such as rainfall and temperature up to 16 weeks or 4 months in

advance (Hii et al., 2012). Such studies could be the benchmark for encouraging

further research, such as that intended in this study, into the relationship between

dengue and climatic variables and other risk factors in Malaysia and the potential

for developing EWS for dengue based upon such relationships.

Having established that basic motivation, it is perhaps useful at this point to

provide more specific detail on some of the issues so far raised; firstly, in relation

to dengue on the world stage and, secondly, in the specific context of Malaysia.

As said previously, dengue fever is a vector borne viral infection transmitted by the

bite of female Aedes aegypti mosquitoes. The number of dengue cases has increased

dramatically around the world in recent years due to the absence of vaccines and

drugs (WHO, 2012b). The illness is caused by one of four strains of the dengue

virus (DENV-1 to DENV-4). All four strains leave multiple symptoms including

headache, rashes and increased body temperature. Infection and recovery from one

strain of the virus can lead to immunity from that particular strain and that issue

complicates the modelling of the disease because information on the serotype of

infections is rarely available on any wide scale.

Potential individual and ecological risk factors for the disease are varied including

both socio-economic and environmental conditions. On the socio-economic front

factors such as age, income, population density, sanitation, drainage and water sup-
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ply are potentially important. Amongst the environmental considerations, dengue

fever is strongly believed to be influenced by climate variability in temperature

and precipitation. One useful related measure is also what is commonly referred

to as the ‘El Niño Southern Oscillation’ (ENSO) which refers to variations in sea

surface temperature (SST) of the tropical eastern Pacific Ocean and in air surface

pressure in the tropical western Pacific. ENSO, or equivalently the Oceanic Niño

Index (ONI) has three different levels; El Niño, Neutral and La Niña. ONI is a

global set of anomalies, and is a useful tool to define patterns of climate change.

The most heavy and strong ENSO was reported to occur in the years 1997 to 1998.

This El Niño was associated with disasters such as drought, flooding and forest

fires around the world (Mark, 2005). Understanding links between ENSO and in-

fectious diseases, particularly those transmitted by insects such as dengue, could

provide improved long range forecasting of an epidemic or epizootic (Anyamba

et al., 2006). The extent to which ENSO can be linked to epidemics of dengue is

still not clear, but there are strong recommendations that it could be investigated in

future epidemic forecasting for public health preparedness (Mathuros et al., 2009).

Studies associating ENSO and other climatic variables to dengue are reviewed in

detail in a later chapter of this study; however it is worth making some brief pre-

liminary reference to a selection of some of those here. Studies in Singapore close

to Malaysia have been referenced earlier. Farther afield, in Venezuela, Aura and

Alfonso (2010) found a significant association between high dengue incidence and

lower values of ONI, but lower dengue incidence with higher value of ONI. Mean-

while, in Puerto Rico, Jury (2008) and Earnest et al. (2012b) concluded that the

variability of dengue cases was positively related to temperature but weakly as-

sociated with local rainfall and ENSO. Hurtado-Diaz et al. (2007) reported every

degree increase in SST leading to a 46% increase in dengue cases in San Andre’s

Tuxtla and 42% in Veracruz for 16 and 20 weeks respectively. Adriana et al.

(2012) used Poisson and Negative Binomial GLMs to investigate the effect of sea-

sonal factors and the relationship of climatic variables to dengue counts in Rio de

Janeiro in Brazil. The results indicated significant relationships with the minimum
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temperature and precipitation at lag one month before, with a 1 ◦C increase in

a month’s minimum temperature leading to a 45% increased in dengue cases in

the following month and a 10-millimeter increase in precipitation leading to a 6%

increase in dengue in the following month. Other research in the South East of

Brazil (Lowe et al., 2013) used Negative Binomial generalised linear mixed models

(GLMM) to relate monthly dengue incidence to climate and non-climate covari-

ates. Their results provided probabilistic predictions of future epidemics of dengue

several months ahead and the general modelling framework used could apply to

other areas of Brazil and other climate sensitive diseases.

One issue which these studies perhaps emphasise is that whilst there is broad agree-

ment that climatic factors do influence variability in dengue incidence, there is no

clear consensus as to the degree of such effects or indeed, in some cases, their di-

rection. How climate contributes to increase or decrease the incidence of vector

borne diseases in human populations will depend on local climatic conditions and

local non-climatic epidemiologic and ecologic factors (Patz and Olson, 2006). In

other words, effects are geographically dependent upon the region of the world

in question and are confounded with other non-climatic influences in ways which

are possibly also geographically specific. It is clear therefore that one cannot nec-

essarily transfer results from elsewhere in the world directly into the Malaysian

context. Rather there is a requirement to explore from scratch climatic and other

relationships with dengue in the specific Malaysian context if progress is to be made

towards developing dengue EWS in Malaysia.

Turning briefly to that Malaysian context (a topic which is picked up in more detail

in a subsequent chapter), there are factors which have been suggested globally as

encouraging dengue spread which particularly pertain in that country, such as rapid

and relatively unorganised urbanisation and high rates of population growth. The

rise in global commerce and tourism, global warming and changes in public health

policy could be important factors too (Gubler, 1998). Developing economies such as

Malaysia are also often criticised for poor construction planning which then causes

floods or droughts through failure to consider climate information adequately.
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Studies to assess the level of knowledge, attitude and practices in relation to dengue

in Malaysia have been conducted in 2003 and 2006 by Hairi et al. (2003) and

Wan Rozita et al. (2006). In such studies the aims are to evaluate dengue control

through increasing the health promotion activities and exposure of communities

to educational campaigns. Results obtained were mixed but generally not very

encouraging. Meanwhile, Shekhar and Huat (1992) have highlighted major weak-

nesses of current epidemiological research on dengue in Malaysia which include the

inadequacy of data and lack of sound statistical methods. They considered avail-

able data used so far to be too restricted, collected using methods that are not

clearly described, and which lack scientific validity. The public health sector at the

international level has recognised geographic information systems (GIS)1 as a new

technology which has an ability to change the health of societies and contribute

to public health policy investigation, development and execution. The WHO has

reported that GIS are potentially valuable tools in data compilation and presenta-

tion especially for environmental data linked to health services. In Malaysia, this

has been explored in relation to dengue by Shaharudin et al. (2002) with results

showing no significant difference in the geographical distribution of dengue cases

between 1999 and 2000.

As regards the few studies more directly relevant to this study, Lam (1993b) be-

lieved that it is possible to predict the severity of a dengue epidemic by the strain

of the circulating serotype, but Chew et al. (2012) makes it clear that the situation

in Malaysia is complex – although his study showed the predominance of dengue

virus in the capital city of Malaysia (Kuala Lumpur) was DENV-4, it was also

the case that all four dengue serotypes were in circulation. Ibrahim et al. (2011)

used five years data of dengue (2007-2011) to simulate a dynamic system to predict

the spread of dengue outbreak in Hulu Langat, Selangor, Malaysia and the results

showed that mean temperature, total amount of rainfall and the total of dengue

cases in the previous period were highly significant in predicting the possibility of

a dengue outbreak.

1http://www.gis.com/
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In summary, there has been relatively little work on systematic modelling of dengue

in relation to climatic and other risk factors across the whole of Malaysia. Key ques-

tions remain to be investigated — to what extent can relationships be established,

to what extent are there regional differences in such influences and to what extent

does any of this have the potential to be incorporated into developing EWS for

dengue epidemics in Malaysia? This is the background motivation for the work

described in the remainder of this study and in the next section this is laid out in

the form of more specific research aims.

1.2 Research Aims

Dengue incidence has been found to be statistically significantly linked to climatic

factors, such as ENSO, temperature and precipitation in various studies worldwide.

However, there has been only a limited amount of such work (both in the variables

considered and in geographical coverage) in the particular context of Malaysia.

The primary research question to be considered in this study is therefore ‘to what

extent can climate forecasts be used to assist in making predictions of dengue fever

incidence in Malaysia?’.

It is clear that to do this, the study will need to consider as much meteorological

data as is readily available in Malaysia as potential multiple covariates, such as

rainfall, temperature, humidity, number of days with rain, sea surface temperature

etc. and appropriate time lagged values of these variables. It will also need to allow

for non-climate factors such as population size and population density. To allow

for the dynamic epidemic behaviour temporally lagged values of reported dengue

incidence rates may need to be included. All of this will need to be considered at an

appropriately practical spatial and temporal resolution - e.g. district or state levels

and annual versus monthly. Previous studies (Racloz et al., 2012) have reported

the use of various level of spatial scale such as community, district, municipality or

city either at daily, monthly or annual collation times and how these may help in
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producing better and significant results. The intended study will also need to adopt

appropriate, contemporary statistical modelling frameworks based, for example, on

generalised linear models (GLM) or generalised additive models (GAM) for count

data on dengue cases. The data used in the study should be as comprehensive

as possible so as to accord with the aims expressed above. Depending upon the

results obtained in the study, then the most viable predictive models need to be

selected and validated both on training and out-of-sample data. The implications

of all of this is that if models with predictive validity for dengue in Malaysia can be

established based upon the data considered then results of this work can hopefully

guide decision makers in Malaysia at both national and local level in a better

understanding of factors significantly contributing to dengue across Malaysia, the

extent to which they may or may not be predicted and to develop appropriate

public health response strategies.

Narrowing that agenda to specifics and taking into account practical data limi-

tations (as will be discussed in subsequent chapters), the following are the key

associated questions intended to be addressed in this study:

• Based upon reasonably extensive data, are there significant relationships be-

tween local and global climate variables and the extent of dengue incidence

for the 12 states in Malaysia. What are these relationships, what temporal

lags are involved? To what extent are these effects state specific or common

to Malaysia as a whole? Are any such relationships changing over time or

space in Malaysia?

• How are these effects confounded by non-climatic factors - e.g. basic season-

ality in the disease incidence, demographic factors etc.?

• How can any significant relationships established in response to both of the

above bullet points be built into developing a practical realisable spatial-

temporal model to predict dengue incidence for future dengue incidence in

Malaysia and on what spatial and temporal resolution?
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• What is the predictive validity of any such model? What are the degrees of

uncertainty involved? Are these of any use in terms of targetting preventative

measures and public health response?

• Depending on the results of the above, what are the issues that relate to im-

proving the predictive validity of such models in Malaysia if that is possible?

1.3 Summary

This chapter has outlined the background and the motivation for the research

considered in the subsequent chapters of this study. Accordingly, the layout of

subsequent chapters is as follows. The next, Chapter 2, provides important infor-

mation about Malaysia and its profile in terms of geography, demography, poverty

and health and also about the climate system of that country and the sources of

climate data considered for use in this study. Chapter 3 then focusses on dengue

fever and its transmission both worldwide and in Malaysia, including further re-

view of studies relating to the relationship between climatic factors and other risk

factors relating to dengue and the sources of dengue data considered for use in

this study. Chapter 4 then outlines the exploratory data analysis, where each of

the monthly covariates available in Malaysia from the various data sources from

2001 to 2009 for twelve states in Malaysia were considered in relation to corre-

sponding dengue incidence. Chapter 5 then develops a model framework using the

most important covariates and lagged covariates informally identified in the previ-

ous chapter. This chapter attempts to identify and test, given the available data

sources and associated spatio-temporal resolution, the most appropriate probabil-

ity models for dengue counts in Malaysia, including selection of suitable climate

and other explanatory variables. Chapter 6 then focusses on the predictive power

of the possible models built in Chapter 5. In particular this chapter identifies

the discrepancies in predictive power of the Malaysia wide model within the more

urbanised states of Kuala Lumpur and Selangor. It analyses possible reasons for
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that and makes reference to the need to pursue more detailed data collection and

modelling at the more localised district level within these states. Finally, Chapter

7 summarises the conclusions, results, outputs and recommendations made from

the whole of this study.



Chapter 2

Malaysia and its climate

This chapter outlines key aspects of the geography, demography, socio-economic

and health profile of Malaysia which are relevant to subsequent chapters of this

study. The sources of cartographic and demographic data used in subsequent

chapters are also described. The chapter then goes on to discuss the climate of

Malaysia and explains the major seasonal variations in climate including the nature

of the monsoon cycle. The sources of climate data relevant to subsequent chapters

of this study are then described.

2.1 Introduction to Malaysia

Malaysia is a federal constitutional monarchy in Southeast Asia with a total land-

mass of 329,847 square kilometres, separated by the South China Sea into two

regions: Peninsular Malaysia (West) and East Malaysia. The country is situated

close to the equator between 1 ◦ to 7 ◦ north and 99 ◦ to 105 ◦ east, with Peninsular

Malaysia lying north of Singapore, south of Thailand and east of the Indonesian

Island of Sumatra, while East Malaysia is situated on the island of Borneo and

shares borders with Indonesia and Brunei (see Figure 2.11 which indicates the rela-

1http://www.globalsecurity.org/military/world/malaysia/maps.htm
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tive locations of Peninsular Malaysia (West) and East Malaysia and how Malaysia

shares land borders with Brunei, Indonesia and Thailand and maritime borders

with the Philippines, Singapore and Vietnam. The country is composed of high-

land, floodplain and coastal zones. In particular, the Titiwangsa mountain range

forms the backbone of Peninsular Malaysia, from southern Thailand running ap-

proximately south-southeast over a distance of 480 kilometres and separating the

eastern from the western part of that of Peninsular Malaysia. Surrounding these

central high regions are the coastal lowlands.

The country is administratively divided into thirteen states (Perlis, Penang, Kedah,

Perak, Selangor, Negeri Sembilan, Melaka, Johor, Pahang, Terengganu, Kelantan,

Sabah and Sarawak) and three federal territories (Kuala Lumpur, Labuan and Pu-

trajaya). This study will exclude Sabah and Sarawak and focus on the remaining

eleven states which comprise Peninsular Malaysia because dengue fever is of sig-

nificantly less concern in East Malaysia than in the west where the incidence rate

is much higher. Because of its unique urban characteristics, the territory of Kuala

Lumpur in Selangor will also be treated effectively as a ‘state’ on its own in sub-

sequent chapters separate from the rest of Selangor. Therefore, the eleven states

and the territory of Kuala Lumpur become a total of twelve ‘states’ (see Figure

2.2) considered in this study with the understanding that ‘Selangor’ in that context

refers to the area in Selangor state outside of the territory of Kuala Lumpur.

The history of the formation of current day Malaysia is somewhat complex. Origi-

nally there was a federal system comprising four of the current states of Peninsular

Malaysia, namely Pahang, Perak, Selangor and Negeri Sembilan. This system was

implemented by the British in 1895. In 1946, it was merged together with the Strait

Settlements first established in 1826 (Penang and Melaka) and with the non-malay

States comprising Johor, Terengganu, Kelantan, Kedah and Perlis to form an 11

states Malayan Union. This Malayan Union (current day Peninsular Malaysia)

was restructured as the Federation of Malaya in 1948 and achieved independence

as Malaysia on 31 August 1957. On 16 September 1963, Malaysia united with the

eastern region of Sabah, Sarawak and Singapore but in 1965 Singapore was re-
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Figure 2.1: Map of Peninsular Malaysia (left) and East Malaysia (right).
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moved from the federation so forming the 13 states Malaysia of today. The capital

city of Malaysia is Kuala Lumpur which is located in the center of Selangor state

in Peninsular Malaysia. The constitution of Malaysia declared Islam as the main

religion with protected freedom of religion to others. The heads of the Malaysian

government are the Prime Minister and the King (known as the Yang di-Pertuan

Agong) who is an elected monarch, being chosen by the hereditary rulers of the

Malay states every five years. Malaysia’s current Prime Minister is Najib Razak

and the King is Tuanku Alhaj Abdul Halim Mu’adzam Shah Ibni Almarhum Sultan

Badlishah.

2.1.1 Demographic, Socio-economic and Health Profile

The 2010 Population and Housing Census of Malaysia (known as Census 2010)

was the fifth decennial census to be conducted since the formation of Malaysia in

1963. The previous censuses were conducted in 1970, 1980, 1991 and 2000. Census

2010 revealed that the total population of Malaysia was 28.3 million, compared

with 23.3 million in 2000. The proportion of the population of Malaysia below

the age of 15 years decreased to 27.6% compared with 33.3% in 2000. In contrast,

the proportion of working age population (15 to 64 years) increased to 67.3% from

62.8%. The proportion of population aged 65 years and over also increased to 5.1%

as compared with 3.9% in 2000. Meanwhile, the median age increased from 23.6

years in 2000 to 26.2 years in 2010. The trend of these indicators is in line with the

global expected transition towards an aging population albeit in its early stages in

Malaysia. The state with the highest population growth rate for the period 2000-

2010 was Kuala Lumpur (17.8%), followed by Selangor (2.7%) and Melaka (2.6%).

Among the states which experienced lower growth rates were Terengganu (1.4%),

Perak (1.4%) and Perlis (1.2%).

The rapid development of Malaysia shows the proportion of urban population in-

creasing to 71.0% in 2010 compared with 62.0% in 2000. Apart from Kuala Lumpur

with a 100% urbanisation level, the other states with high level of urbanisation are
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Selangor and Penang with 91.4% and 90.8% respectively. States with lower levels

of urbanisation are Kelantan (42.4%), Pahang (50.5%) and Perlis (51.4%) (Wan

Abd Raof, 2010).

Malaysia as a whole is a multi-ethnic country. The total population was 28.3

million in 2010 — 91.8% Malaysian citizens and 8.2% non-citizens. Amongst the

citizens, the principal ethnic groups are Malay (Bumiputera), Chinese and Indian.

Other significant groups are the indigenous people of Sabah and Sarawak, includ-

ing Kadazan, Dusun, Bajau, Murut, Iban, Bidayuh and Melanau. In Peninsular

Malaysia, the conventional ethnic divisions of the population are Malay, Chinese,

Indian and Other. This ‘official’ classification was defined so as to reflect the popu-

lar conception of race. Malaysian citizens consist of the ethnic groups Bumiputera

(67.4%), Chinese (24.6%), Indians (7.3%) and Others (0.7%). Bumiputera have

experienced an increasing trend due to high fertility rates while Chinese and In-

dians have showed a decreasing trend due to low fertility rates (Wan Abd Raof,

2011).

Hirschman (1987) reports the meaning of a Malay as a person who was born locally,

habitually speaks Malay, follows Malay customs and professes Islam. Meanwhile,

the Chinese and Indian communities consist of descendants of immigrants from

China and the India subcontinent. Other is a open category for the small number

of Thais, Europeans and other people who do not fit into the three major cate-

gories. The Malaysian population has been a blend of varied cultures since early

times. About fifteen hundred years ago, Indians and Chinese entered as traders in

the Malay Kingdom. Their entry marked the arrival of gold and silks followed by

Hinduism and Buddhism. After a thousand years, principles of Islam also marked

their entry with Arab Traders in Melaka, followed with the arrival of Portuguese.

Although the Malaysia population encompasses several cultures, the old Malay cul-

ture is the most prominent, followed by Chinese and Indian influences (Abu Bakar,

1996).

The poverty line in Malaysia was defined in the 1970s after the Malaysian Gov-
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ernment brought an explicit poverty eradication principle into national policy. It

is based on assessments of the minimum consumption requirements of an average-

sized household for food, clothing, shelter and other non-food needs. Small differ-

ences exist in the definition of the poverty line between the three main regions of

Malaysia (Peninsular Malaysia, Sabah and Sarawak) in terms of mean household

size and cost of living but not for differences between rural and urban location.

These poverty lines were adjusted for inflation and changes in mean household

sizes from 1976 to 2004. However, this situation was revised again by the Malaysian

Economic Planning Unit (EPU) along with the United Nations Development Pro-

gramme (UNDP) and a new poverty line was defined based on each household and

averaged to each state and to rural or urban location together with cost of living,

household composition and size (Economy, 2010). A study by Muhamed and Haron

(2011) revealed the poverty eradication programmes have resulted in considerable

reduction of poverty, decreasing the income inequality alongside achieving rapid

economic growth especially in Johor. They reported that in Malaysia as a whole

the success of the poverty eradication programmes is evidenced by the sharp de-

cline in the incidence of poverty, which decreased from 52.4% in 1970 to 12.4% in

1992 and further decreased to 3.8% in 2009. Meanwhile, in Kelantan as one of the

states located in the North East of Peninsular Malaysia, the proportion of the poor

households in rural areas remains higher than that of urban poor. That said, a

greater portion of the urban households are vulnerable to poverty compared to the

rural households of that state (Siwar et al., 2013).

As in many countries, public health and associated health care services have high

priority at both local and national government levels in Malaysia. Within the

Malaysia Health Care System there are two sectors, public and private. The pub-

lic sector is divided into Federal Government and State-Local Government. The

Federal Government contains Ministry of Health, Armed Forces, Department of

Aborigines, Ministry of Home Affairs and Ministry of Education. While, for the

State-Local Government, there is Public Health and Prevention, Hospitals, Clinics,

Special Institutions, Maternal and Child Health, Nurse and Paramedic Education,
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Enforcement and Supervision and Licencing. Health care services consist of tax-

funded and government-run primary health care centres and hospitals, but there

are also fast-growing private services mainly located in physician clinics and hos-

pitals in urban areas. Meanwhile, public sector health services are administrated

by the Ministry of Health through its central, state and district offices.

In general terms, Malaysia shares similar major health risks with its neighbours

in the same region. Non-communicable diseases now account for most mortality

and morbidity but communicable diseases remain a significant concern (Jaafar

et al., 2013). According to the WHO (World Health Organisation) report on the

health profile of Malaysia2, the 10 highest causes of mortality in Malaysia in 2010

were as listed in Table 2.1, the top three being: coronary heart disease, stroke

and influenza/pneumonia. These top 10 causes accounted for 22.18% of the total

fatalities recorded.

Table 2.1: Malaysia top 10 causes of death.

Causes of Death Rate (Cases per 100,000) Rank (172 Countries)

Coronary Heart Disease 138.75 57

Stroke 75.81 114

Influenza and Pneumonia 65.08 68

Road Traffic Accidents 34.53 20

HIV/AIDS 23.15 57

Lung Disease 19.09 108

Diabetes Mellitus 18.99 128

Lung Cancers 17.93 74

Tuberculosis 17.82 76

Breast Cancer 15.83 100

The health risk from major infectious diseases in Malaysia, such as bacterial diar-

rhea, dengue fever and leptospirosis is classified as intermediate level. For example

in the WHO report mentioned above dengue is ranked 45th as a mortality cause.

2http://www.worldlifeexpectancy.com/country-health-profile/malaysia
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However, diseases listed in relation to mortality do not necessarily represent those

of most relevance in terms of morbidity and infectious diseases such as diarrhea

and dengue are very significant in the picture of the disease burden experienced by

the local population3.

2.1.2 Sources of Cartographic and Demographic data

This subsection describes the sources of the cartographic and demographic data

used in later chapters of this study.

Polygons of the twelve states (see Figure 2.2) together with their areas and the lat-

itude and longitude of their centroids (see Table 2.2) were identified from Malaysia

map shapefiles4. Recall that for the purposes of this study, only 12 of the 14 states

of Malaysia will be considered (i.e. those of Peninsular Malaysia and not including

Sabah and Sarawak). Also that the data used for the state of Selangor will exclude

the data for Kuala Lumpur which is treated as a separate state.

Figure 2.2: Map of the 12 states in the Peninsular of Malaysia.

3http://www.indexmundi.com/malaysia/major-infectious-diseases.html
4http://www.diva-gis.org/gdata
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The Department of Statistics Malaysia (DSM) is responsible for carrying out the

population and housing census once every 10 years, the last census being conducted

in 2010. The method used in this census is face to face interview and the informa-

tion collected includes the number of persons in households together with a wide

range of demographic, social and economic characteristics. For the purposes of this

study, estimated annual populations5 were used based on census 2000 and 2010 for

each state in the study area with numbers adjusted for under-enumeration, collated

from Department of Statistics Malaysia (see Table 2.2). Where monthly figures are

used these are obtained from simple linear interpolation from the relevant annual

estimates. Population density is taken as number of people in the state per unit

area of the state as defined by Hafiz et al. (2012).

Table 2.2: Distribution of area, latitude, longitude and population in Malaysia.

State Names Area (km2) Latitude Longitude Pop. 2000 Pop. 2010

Perlis 795 6.433 100.200 198,288 227,025

Kedah 9,425 6.116 100.366 1,571,077 1,890,098

Penang 1,031 5.416 100.333 1,231,209 1,520,143

Perak 21,005 4.583 101.083 1,973,368 2,258,428

Selangor 7,960 3.033 101.433 3,941,316 5,411,324

K.Lumpur 243 3.166 101.700 1,305,792 1,627,172

N.Sembilan 6,644 2.716 101.933 829,774 997,071

Melaka 1,652 2.200 102.250 605,239 788,706

Johor 18,987 1.466 103.750 2,584,997 3,233,434

Pahang 35,965 3.800 103.333 1,229,104 1,443,365

Terengganu 12,955 5.333 103.133 880,234 1,015,776

Kelantan 15,024 6.133 102.250 1,287,367 1,459,994

5http://www.statistics.gov.my/portal/index.php
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2.2 Climate in Malaysia

Climate and associated seasonality are important determinants in the incidence

of various diseases both worldwide and in Malaysia. Climate is a key variable in

managing the overall burden of health, especially for developing countries where

the ability to control climate-sensitive diseases is constrained. This situation will

affect most populations in the future and put the lives and well-being of billions

of humans at increased risk. To reduce it, the health sector needs to understand

and quantify the specific effects of climate variability and change both on the over-

all disease burden and on the opportunities and effectiveness in the public health

response. The aims are to ensure the future adaptation strategies and understand-

ing of the climate impact on the existing disease burden and current interventions.

This applies for air-borne diseases, such as asthma and other respiratory infections,

also for vector borne diseases such as dengue fever. The next effects of global cli-

mate change on such diseases are difficult to forecast. For example, an increase

in temperature may increase the formation of ground-level ozone, a pollutant with

well-established adverse effects on respiratory health, on the other hand an increase

in cold years with the absence of specific interventions, may encourage mosquito

population breeding and rising incidence of dengue, but at the same time an in-

crease in warm years with periods of drought will decrease the mosquito population

and reduce the incidence of dengue (Costello et al., 2009). Heat and heat waves

are also very likely to increase in severity and frequency with increasing global av-

erage temperatures (Tanggang et al., 2010). These conditions can be expected to

influence human health and well-being in proportion to the degree of heat stress.

Heat stress can cause mild cardiovascular problems to severe tissue damage and, in

extreme cases, death. These effects are concentrated among vulnerable groups of

people such as the elderly, the very young, the malnourished and those with pre-

existing respiratory and cardiovascular conditions. The impact of extreme heat on

the elderly takes on particular significance in light of the growing increase in the

elderly proportion of the population worldwide as we move towards 2050.
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It follows that climatic conditions imply health impacts — both direct and indirect.

In respect of dengue fever which is the particular focus of this study, simulation

model studies (e.g. Mary Ann, 2009) have considered total population and in-

teractions between climate variables and concluded that predicted climate change

will make the dengue problem more acute, especially if current control measures

concentrated on Aedes mosquito vectors prove to be ineffective. It is also possi-

ble that previous trends in incidence could reverse in certain locations. Dry spells

may favour transmission as they may disrupt normally running streams and leave

standing water during drought which could provide a suitable place for mosquito

breeding. Rowley and Graham (1968) have reported optimal temperature and

humidity levels for adult mosquito longevity and biting activity and went on to

determine the optimal temperature and relative humidity for tethered flight activ-

ity in female Aedes aegypti and the range for both factors for possible sustained

flight. In the future, hopefully the health sector will be able to adopt climate in-

formation as an effective tool in epidemic early warning systems for dengue. Then,

seasonal forecasts of temperature and rainfall, which are useful indicators of the

likely occurrence of dengue outbreaks, could be applied in the implementation of

a programme of heightened epidemic surveillance. Meanwhile, real-time tempera-

ture and rainfall estimates could be used to initiate selective interventions and to

support early detection of disease outbreaks.

All of the above implies it is important to understand the climate context in study-

ing a vector borne disease such as dengue in Malaysia and in developing any inter-

vention strategy and this is the topic of the subsequent sections of this chapter.

2.2.1 General Description of Climate

As said earlier, Malaysia is located near the equator and thus the climate is cate-

gorised as ‘tropical’. In summary, hot and humid throughout the year is the best

description of Malaysian weather with daytime temperature averaging 30◦C and

overall relative humidity level ranging between 70% and 90% (Wong et al., 2009).
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That said, the climates of Peninsular Malaysia and East Malaysia are somewhat dif-

ferent, with Peninsular Malaysia receiving weather predominantly from the main-

land while East Malaysia experiences maritime weather instead. There are two

monsoon seasons in Malaysia, firstly, the Southwest monsoon from late May to

September and secondly, the Northeast monsoon from November to March every

year. As the names suggest, the Southwest monsoon distributes more rainfall to

the west coast of Peninsular Malaysia, while the Northeast monsoon which comes

from the South China Sea and the North Pacific does the same on the east coast

of Peninsular Malaysia.

The mountain ranges throughout Malaysia also influence local climate separating

the weather into three zones: lowlands, highlands and coastal regions. Basically,

the coastal regions have a sunny climate, with temperatures ranging between 23◦C

and 32◦C, and rainfall ranging from 10 centimetres to 30 centimetres a month.

The average monthly temperature for lowlands areas ranges from 24.8◦C to 30.1◦C

while for highlands areas it ranges from 15.0◦C to 25.4◦C.

As said, climate in Malaysia is also characterised by two monsoon regimes. The

Northeast monsoon from November to March brings heavy rainfall, particularly to

the east coast states of Malaysia such as Kelantan, Terengganu, Pahang and Johor.

The Southwest monsoon, which is recorded from late May to September, normally

signifies relatively drier weather for the west coast states of Malaysia especially

Selangor, Perak and Kedah. However, with two major oceans surrounding — the

Pacific Ocean to the east and the Indian Ocean to the west — climate variability is

also influenced by conditions in both oceans (Tanggang and Bahari, 2002). Suhaila

et al. (2010a) has described the patterns and trends of five selected rainfall indices

in Peninsular Malaysia, based on daily rainfall data from 1975 to 2004. They

identified that the eastern areas of the Peninsular were strongly influenced by the

Northeast monsoon, while the Southwest monsoon had the greatest impact on the

western part of the Peninsular, particularly the Northwest.

The El Niño Southern Oscillation (ENSO) is an oceanic-atmospheric phenomenon
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which is characterised by sustained fluctuations between unusually warm and cold

conditions in the tropical Pacific Ocean. As ENSO cycles, the path of the Pacific

Jet Stream and other global climate drivers change causing variation in local tem-

perature and precipitation worldwide. The warm condition is referred to as El Niño

and the cold condition is referred to as La Niña. Among the various definitions for

El Niño, there are some common characteristics of El Niño such as an anomalous

warming of surface water, a warm southward-flowing current off the coast to Peru

and a duration of 12-18 months. La Niña could be characterised by having criteria

such as cooling of the surface water of the eastern and central Pacific Ocean, which

occurs somewhat less frequently than El Niño events but causes generally opposite

disruptions to global weather patterns. It tends to happen when the Pacific trade

winds blow more strongly than usual, pushing the sun-warmed surface water fur-

ther west and increasing the upward movement of cold water in the eastern regions

(Glantz, 2001).

Sea surface temperatures (SST) in the Pacific Ocean are monitored in regions

identified as Niño 1 to Niño 4 as shown in Figure 2.3. Each of these regions

provides different information about El Niño, La Niña, Neutral and ENSO. SST

anomalies are defined as deviations for a specified region from the averaged climate

for 1961 to 1990 (refer to World Meteorological Organisation, WMO).

Indonesia, Malaysia and most of the Philippines, are amongst the first areas to ex-

perience ENSO-related impacts. For example, sea surface temperatures anomalies

in the equatorial east Pacific Ocean increased significantly during July to October

2006 indicating the typical development of El Niño conditions. Positive Outgo-

ing Longwave Radiation (OLR) anomalies, indicative of severe drought conditions

were observed across all of Indonesia, Malaysia and most of the Philippines. This

dryness continued until the early part of 2007 (Anyamba et al., 2006). The El Niño

effect was also strongly felt in Southeast Asia in 1997. The prolonged drought

contributed to the development of forest fires and this, coupled with the existing

wind pattern, caused widespread haze over the Southeast Asia region.
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Figure 2.3: Map showing five regions (referred to as Niño 1, Niño 2, Niño 3, Niño 3.4

and Niño 4) in the Pacific identified as important locations for monitoring winds, sea

surface temperatures and rainfall activities, changes that may be associated to varying

degrees with El Niño process.

The relationships between Malaysian temperature and rainfall anomalies, sea sur-

face temperature and ENSO have been discussed in a study by Fredolin and Liew

(2004). Such relationships mean that ENSO can have considerable social, environ-

mental and economic impacts in Malaysia. A prolonged drought associated with

El Niño frequently causes severe water supply crises, disrupts agricultural activ-

ities and destroys rain fed crops besides creating environmental hazards such as

haze episodes and forest fires (Juneng and Tanggang, 2008). Ministry of Health

(Mohd Ismail, 2007) records show that there was an increase of complaints related

to conjunctivitis, bronchitis and asthma among the local population during the

haze episodes of 1990, 1991, 1994 and 1997 in Malaysia (Nicol, 1997 and Heil and

Goldammer, 2001).

2.2.2 Sources of climate data

Climate data are used in subsequent chapters of this study to investigate the ex-

istence of relationships with the incidence of dengue fever. The climatic factors

considered are monthly rainfall, number of rainy days and monthly mean temper-

ature over the nine year study period between 2001-2009.
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The monthly amount of rainfall was taken from Department of Irrigation and

Drainage Malaysia6 records and based on selected hydrology stations and their

locations as supplied. Data on observed monthly rainfall, number of rainy days

and monthly mean temperature were also obtained from the Malaysian Meteoro-

logical Department7 for each of the 108 months considered in subsequent chapters.

In addition precipitation ‘ncdf’ files were obtained from the NOAA Earth System

Research Laboratory website via downloading from the Global Precipitation Clima-

tology Project (GPCP) V2.1 which includes a monthly precipitation dataset from

1979 to present that combines observations and satellite precipitation data into

2.5 ◦ x 2.5 ◦ global grids (Adler et al., 2003). Monthly mean air temperature and

monthly mean relative humidity were also downloaded from the National Center for

Environmental Prediction (NCEP) and National Center for Atmospheric Research

(NCAR) Reanalysis datasets which use a state-of-the-art analysis/forecast system

to perform data assimilation using past data from 1948 to the present (Kalnay

et al., 1996). Further, three datasets were extracted for the period from January

2001 to December 2009 using R software (R Core Team, 2010) considering the

latitude and longitude of study areas in Malaysia.

Niño 4 is an index used to measure the strength of El Niño and La Niña events

relevant to Indonesia, Malaysia and the Philippines and is defined as the departure

in monthly sea surface temperature from its long-term mean averaged over the Niño

4 region. The Niño 4 region is in the central Pacific, straddling the dateline and it

goes from 160 East to 150 West, and from 5 South to 5 North. The time series of

the Niño 4 index was obtained from the Climate Prediction Center (CPC)8 for the

nine year period of the study.

6http://www.water.gov.my/
7http://www.met.gov.my
8http://www.cpc.ncep.noaa.gov/data/indices/



2.3. Summary 44

2.3 Summary

This chapter has introduced a geographic, demographic, socio-economic and cli-

matic profile of Malaysia. Sources of related data for the period 2001-2009 on a

monthly basis which will be used in the subsequent chapters of this study (carto-

graphic, demographic and climatic) have also been described.



Chapter 3

Dengue Fever and Dengue Fever

in Malaysia

This chapter describes the aetiology and transmission of dengue fever and dis-

cusses the distribution of the disease and recent trends in that both globally and in

Malaysia. The sources of dengue data for Malaysia used in subsequent chapters of

the study are then described. In order to provide the context for the exploratory

analysis and modelling in later chapters, the chapter then goes on to discuss the

potential impact of climatic factors such as temperature and rainfall on the inci-

dence of dengue and reviews the previous research which has been conducted on

such relationships both worldwide and, in particular, in Malaysia.

3.1 Dengue Fever and its transmission

The origins of the word dengue are not clear, but one theory is that it came from

the Swahili phrase ‘Ka-dinga pepo’, meaning ‘cramp-like seizure caused by an evil

spirit’. The Spanish word ‘dengue’ meaning fastidious or careful could describe the

gait of a person suffering the bone pain of dengue fever. The use of the Spanish

word may be linked to the similar-sounding Swahili. Slaves in the West Indies

45
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who contracted dengue were said to have the posture and gait of a dandy and the

disease was known as ‘Dandy Fever’. The first recorded case of dengue fever can be

found in a Chinese medical encyclopedia from the Jin Dynasty which referred to

the water poison associated with flying insects. Dengue epidemics occurred for the

first time almost simultaneously in Asia, Africa and North America around 1780s,

shortly after the identification and naming of the disease in 1779. However, the

first confirmed case reported dates from 1789 by Benjamin Rush, who named the

disease ‘breakbone fever’ because of the symptoms of myalgia and arthralgia. The

viral etiology and the transmission by mosquitoes were only discovered in the 20th

century.

As discussed briefly in Chapter 1, dengue is caused by infection from one of the

four serotypes of dengue virus (DENV) which are known as DENV-1, DENV-

2, DENV-3 or DENV-4 (and collectively as flavivirus). It is transmitted by the

bite of the female Aedes aegypti mosquito, which at the same time also spreads

the chikungunya and yellow fever viruses (to a lesser extent flavivirus can also

be transmitted by Aedes albopictus and Aedes polynesiensis mosquitoes). The

Aedes aegypti mosquito is small in size measuring around 4 to 7 millimetres and

is usually a dark colour with typical white markings on the legs and in the form

of a lyre on the thorax. Female mosquitoes are larger than male mosquitoes,

and can be differentiated by small palps tipped with silver or white scales. The

mosquitoes generally acquire the virus while feeding on the blood of an infected

person. The biting activity occurs in the early morning or late afternoon/evening

although mosquitoes may feed throughout the day e.g. in darkened interiors and

during overcast weather. The mosquitoes become infected by the blood meal from

a viraemic person and became infective after an incubation period of 10 days to

12 days. After the mosquito is infected, it may transmit dengue by taking a blood

meal or by simply probing the skin of a susceptible person. After the virus has

incubated an infected mosquito is capable of transmitting the virus for the rest of

its life; but, at the same time, the life expectancy of the adult mosquito also clearly

has a considerable infuence on incubation period completion. The virus circulates
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in the blood of infected humans for another 2 to 7 days, at approximately the same

time they have a fever. Aedes mosquitoes may acquire the virus when they feed on

an individual during this period. Hence, infected humans are the main carriers and

multipliers of the virus, and serve as a source of the virus for uninfected mosquitoes.

Repeated infections with different serotypes of dengue can lead to the serious com-

plication referred to as dengue hemorrhagic fever which can prove fatal. Early

symptoms of dengue hemorrhagic fever are similar to those of dengue, but after

several days the patient become irritable, restless and sweaty. Monath (1994) pre-

sented evidence that the risk of sequential infections and consequently an incidence

of dengue hemorrhagic fever has risen progressively starting with Asian areas and

continuing to the Americas. Ibrahim et al. (2007) revealed the severity of dengue

risks could be based on three criteria from blood samples; platelet count (PLT),

haematocrit (HCT) and either aspartate aminotransferase (AST) level or alanine

aminotransferase (ALT) level. Dengue severity has also been related to the two

factors of obesity and dengue virus type II (DENV-2) (Natchaporn et al., 2006).

Aedes mosquitoes prefer to breed in water-filled receptacles, close to human habi-

tation. Gubler and Rosen (1976) found that Aedes aegypti larvae thrive in artificial

containers that contain water, such as in discarded tyres, buckets, paddling pools

and blocked rain gutters. Strickman and Kittayapong (2003) chose Chachoengsao

Province, Thailand to count all containers in 10 houses per month which contain

mosquito larvae and pupae. They measured the wings of female Aedes aegypti and

the number of pupae with size of emerging females in these containers. Because

Aedes aegypti are container-breeders, container management is one of the best ap-

proaches to reducing their breeding places. Unused containers should be eliminated

and containers which remain open due to frequent usage should be subjected to

proper larviciding treatment to prevent Aedes from laying their eggs.

Control of dengue transmission and its incidence worldwide is a complex question

involving effective surveillance, emergency response, mosquito control and effective

use of both vaccines and anti-viral drugs when, and if, they become available. Many
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of the issues involved are similar to those for any infectious disease and stress

the importance of implementing effective intervention and early identification of

epidemics to control the disease and reduce morbidity (Khun et al., 2005). However,

there are also specific issues associated with dengue. Currently, dengue vaccine

development is complicated because to incorporate all four virus sero-types into

a single formulation and get approval of such a vaccine will require time — there

is currently no ‘magic bullet’. Hence, the key to preventing dengue transmission

now is reduction of the population of its principal vector Aedes aegypti (Ooi and

Gubler, 2008). Dengue vector control relies mostly on how larval populations of the

mosquito vector are managed (eliminating container habitats or using insecticides).

Examples of such schemes include: the attempted ‘eradication’ of Aedes aegypti in

Brazil during the 1930s which followed a highly organised programme of surveillance

and larval control; also a variety of larval control programs with more modest goals

since which have resulted in some reduction of dengue transmission in Australia,

Indonesia, Thailand and Brazil (Tren and Bate, 2001; Strickman and Kittayapong,

2003; Kusriastuti and Sutomo, 2005).

Carbajo et al. (2001) used the past history of dengue spread in Argentina to produce

a risk map of dengue in order to assist in planning prevention strategies and gain

a better understanding about the transmission dynamics in areas which are at the

southern geographical distribution limit of the vector. They considered four factors

in building the thematic maps which were population density, the entrance of the

virus, the conditions of the vector and extrinsic incubation period. The results

concluded that the maximum risk of dengue transmission is in the northern and

north-eastern part of Argentina year-round and in the central regions during the

summer. Similar risk map studies have been carried out in other parts of the world.

Monath (1994) is a strong reference for more discussion about dengue, the virus

introduction and spreading methods.
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3.2 Dengue Fever worldwide

Dengue has primarily emerged as a major world health problem because of changes

in human demography and behaviour, as well as unchecked populations of, and in-

creased exposure to, Aedes aegypti mosquitoes which spread the virus. Later virus-

specific serotype factors then influence the epidemiology of dengue. According to

Gubler (2002), dengue fever became distributed worldwide in the tropics during the

18th and 19th centuries when the shipping industry and commerce were expanding.

At that time, the principal mosquito vector, Aedes aegypti, and the viruses respon-

sible for dengue fever were spread via sailing ships because the mosquitoes used

the stored water on the ships as a breeding site and maintained the transmission

cycle. Both the mosquito and the virus were introduced when such a ship called at

a port but because of the slow mode of transportation, epidemics were infrequent,

with intervals of 10 to 40 years.

The frequency of dengue fever epidemics has steadily increased worldwide in recent

years and endemic transmission has been established over a geographically expand-

ing range of places. Monath (1994) has discussed the specific countries or places

that dengue appear most at risk and the reasons for this. Countries or areas where

dengue incidence or risk of dengue has been reported can also be viewed on the

website of International Travel and Health Interactive Map1 prepared by WHO.

Figure 3.1 outlines the key areas at risk in 2010.

Gubler (1998) highlighted that about 2.5 billion people or 40% of the worlds popu-

lation live in areas with high risk of dengue transmission. Dengue fever has become

a reemergent disease endemic to most of the tropical and sub-tropical regions of the

world, with frequent and cyclical epidemics. Nowadays, dengue has spread to more

than 100 countries in Asia, the Pacific, the Americas, Africa and the Caribbean.

The most important factor recognised is unplanned urbanisation which is believed

to have the largest impact on disease amplification for individual countries, whereas

travel is believed to have the largest impact on global spread. Community knowl-

1http://apps.who.int/ithmap/
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Figure 3.1: Countries at risk of dengue in 2010.

edge and practice concerning the disease is also important. COMBI (Communica-

tion for Behavioral Impact) is a strategic approach to control diseases all over the

world. Reports from India, Kenya and Bangladesh evidence that COMBI had been

used to control Tuberculosis (TB), Lymphatic filiariass in Zanzibar, Nepal and Sri

Lanka and leprosy in Mozambique (WHO, 2012a). COMBI has also been effective

in controlling dengue for example in improving environmental sanitation. A study

in the sub-urban residential areas of Taman Desa Kolej, Nilai, Negeri Sembilan,

Malaysia, Rozita et al. (2013) concluded that COMBI activities were really effec-

tive in helping control dengue cases and produced significant change to opinion,

knowledge and practices about dengue among the residents. Parks et al. (2004)

wrote a report about the importance of social mobilisation and communication to

sustainable dengue prevention and control emphasising key features obtained from

12 national case studies of dengue-related social mobilisation and communication

initiatives. Most of the case studies were originally commissioned to illustrate

key points in a WHO guide on planning social mobilisation and communication
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for dengue prevention and control. The report expressed the hope that social

mobilisation and communication would continue alongside improvement of public

health infrastructure, epidemiological and entomological surveillance, effective clin-

ical management and emergency preparedness. Mosquito control is known as the

only good alternative to prevent dengue epidemic influenced by human behaviour

and climatic conditions. To maintain this situation, constant effort is needed to

be combined with some expensive methods of control. However, the successes of

prevention and control are very rarely reported because of the continuous rein-

troduction of virus or vector from outside and sometimes because of the growing

resistance of mosquito populations to insecticides.

Dengue hemorrhagic fever has also steadily increased. For example, the first out-

break of dengue hemorrhagic fever in Singapore occurred in the 1960s, and since

then this epidemic has recurred annually and become a primary disease for the ur-

ban human population i.e. in areas of the highest population density (Chan et al.,

1971). The lack of existing theoretical models involving social and demographic

factors encouraged Hales et al. (2002) to develop a model based on vapour pressure

(measure of humidity) to assess the geographical limits of dengue fever transmis-

sion. They found that the current geographical limits of dengue fever transmission

can be modelled with 89% accuracy on the basis of long-term average vapour pres-

sure. They also estimated that future climate change could expose some 5 to 6

billion people to risk of dengue transmission in the longer term.

Changes in the global epidemiology of dengue fever have been observed in recent

years for North and South America as well as in the Pacific region and in Southeast

Asia. This may be due to climatic changes and to the failure in controlling the

mosquito vector but changes in social factors are also important. For example in

the 1940s large dengue outbreaks were documented in the United States reaching

places as far north as Boston, but today, the situation has changed significantly

and outbreaks are rare despite the fact that suitable climate and mosquito vectors

and susceptible human hosts are all still present in the continental United States

and dengue viruses are frequently reintroduced by infected travellers. Studies on
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the US-Mexico border have suggested that the restriction of transmission is due to

the limitation of contact between human hosts and mosquito vectors that comes

with low housing density and the use of air conditioning and screens2. There has

been an increase in the number of travellers worldwide, including to tropical areas.

Schwartz (2002) report that in the period 1995 to 2002, 149 cases among Israeli

travellers were acquired in Thailand mostly from four locations; Ko-Phangan, Ko-

Samui, Ko-Tao and Ko-Phi Phi. In South America, Lowe (2010) have reported

on trends in monthly dengue counts and epidemic cycles in micro-regions of Brazil

in the period 2001-2009. Successive epidemics of dengue have been occurring in

Brazil since 1986 and almost three million cases of dengue fever and 2,229 cases

of dengue hemorrhagic fever had already been recorded by 2002. The introduction

of the three serotypes in circulation (DENV-1, DENV-2 and DENV-3) has always

started in Rio de Janeiro. Approximately 47,370 and 89,394 cases of dengue due

to DENV-1 were recorded in 1986 and 1987 respectively, corresponding to a risk

rate of 34.5 and 64.63 cases per 100,000 population. The two following years were

characterised by low occurrence of dengue fever. However, the introduction of

DENV-2 in 1990 was also followed by an epidemic reaching close to the magnitude

of previous epidemics (27.29 and 71.1 cases per 100,000 population in 1991 and 1992

respectively). From 1994 onwards, the transmission rapidly progressed to many

Brazilian cities and this wave of epidemics remained constant for four consecutive

years, reaching a peak in 1998 (326.4 cases per 100,000 population). It is very clear

that the decline of this latest epidemic did not attain the inter-epidemic levels of

the two previous waves, when the risk varied from 1.13 cases per 100,000 population

in 1988 to 4.87 cases per 100,000 population in 1993, as the rate always remained

greater than 127 cases per 100,000 population. The fourth wave began in 2001,

shortly after the DENV-3 was detected, and was characterised by increased rates

of both dengue fever and dengue hemorrhagic fever, considerably higher than the

total accumulated over the entire previous decade (Teixeira et al., 2006). Aura

and Alfonso (2010) has reported on similar trends for one region of Venezuela for

2http://www.cdc.gov/dengue/entomologyEcology/climate.html
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the period 2001 to year 2008. In other work in South America based in Brasilia,

Belem, Fortaleza and Boa Vista, Favier et al. (2006) have investigated methods

for determining the reproductive number for dengue early in any epidemic taking

into account incubations both in the vectors and in the host. The results indicated

higher estimates of the reproductive number than that suggested in previous work.

Turning to Australia, dengue transmission is currently restricted to the Queensland

area, where Aedes is established. The most likely factor influencing the distribution

of dengue in that country is the increase of dengue activity in the Asian and Pacific

areas which could increase the rates of virus importation especially by travellers.

Interestingly, Russell et al. (2009) cites Australia in stressing the need for pro-

jections of future dengue spread to consider carefully local historical, cultural and

demographic data. They quote evidence that the dengue vector and viruses arrived

in Australia before European settlement with visitors to Northern Australia from

Malaysia and Indonesia, however the semi-nomadic way of life of the indigenous

population at that time was not conducive to the establishment of Aedes aegypti

and the disease.

In an Indian context, Singh et al. (2005) reported on clinical and laboratory data

for 185 cases of both dengue fever and dengue hemorrhagic fever collected from Lok

Nayak Hospital of New Delhi in 2003. After analysis, 2.7% of the mortality rate

was recorded in an outbreak that started in September, reached a high peak in the

next two following months and lasted until December of the same year. Suggestions

were made to strengthen the vector control measures including disposal of water

containers and improving sanitation.

In Southeast Asia generally one of most current issues in surveillance for dengue is

a lack of uniformity in the case definitions used (Ooi and Gubler, 2008). The latter

reported that different Asian countries classify dengue fever differently and hence

there are variations in the numbers of dengue cases that are included in surveillance

reports amongst countries adopting different criteria for classifying dengue cases.

They also reported that a confusion between dengue fever and dengue hemorrhagic



3.2. Dengue Fever worldwide 54

fever existed sometimes in dengue fever surveillance. Results by Chuang et al.

(2010) showed that the distribution of the onset-to-confirmation time for the posi-

tive cases was also different. The same paper proposed a dynamic statistical model

to estimate the daily number of new cases and the daily cumulative number of

infected cases and demonstrated that the daily new cases and cumulative epidemic

curves estimated by the proposed method have a lower bias than the values esti-

mated solely based on the available daily-confirmed cases. During years of normal

transmission in Thailand cases are seen in the rainy season which is from July to

November, but during outbreak years in 1998 and 2002, maximum cases occurred

during the dry season from December to June. Mammen et al. (2008) examined

data on dengue infection and mosquito density within Thai villages to determine

the spatial and temporal dimensions of dengue transmission. Results showed sig-

nificant spatial and geographical clustering in dengue transmission within a study

area which was a rural area of Thailand where dengue was hyper-endemic. A thir-

teen month study with a total of 271 samples from patients suspected of having

dengue infections were selected from clinics and hospital in Brunei. Brunei is lo-

cated on Borneo Island bordered by the Malaysian States of Sarawak to the west

and Sabah to the east. Through three phases of testing procedures, 45 people sus-

pected positive for dengue-specific were investigated and overall the predominant

infected serotype was DENV-2 followed by DENV-1 (Osman et al., 2007).

In Cambodia, the continuing contribution of dengue fever to the hospitalisation and

deaths in hospitals of infants and small children has been associated with delays in

presentation for medical attention, diagnosis and appropriate care. It is important

to identify the reasons that influence these delays, in order to develop appropriate

interventions to re-address the impact of dengue. Sokrin and Lenore (2007) used

ethnographic data which was collected in two villages in the eastern province of

Kampong Cham, Cambodia in 2004. Interviews were conducted with mothers

whose children had been infected with suspected dengue fever, or who had been

sick for other reasons, in 2003 and 2004. The results concluded that women selected

a therapeutic option based on perceptions of the severity of the child’s condition,
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confidence in the particular modality, service or practitioner, and affordability of

the therapy. While they knew what type of health care was required, poverty in

combination with limited availability and perceptions of the poor quality of care

at village health centers and public referral hospitals deterred them from doing so.

Women initially used home remedies, then sought advice from public and private

providers, shifting from one sector to another in a pragmatic response to the child’s

illness. The lack of availability of the financial resources for poor people and their

continuing lack of confidence in the care provided by government centre resulted in

a combination of a delay in help seeking and inappropriate treatment of the child’s

illness.

Elsewhere in the world, Ashford et al. (2003) reported the first outbreak of dengue

fever with DENV-4 virus which occurred between January and June 1995 in Palau,

an island nation with 32,000 inhabitants in the Western Pacific. They established

active surveillance at the national hospital and private clinics, reviewed available

clinical records and conducted serologic and entomologic surveys to determine the

magnitude of the outbreak and risk factors to guide control strategies in that coun-

try. Over the duration of study, they found 817 patients with acute febrile illness

with body or joint aches and one of the following signs: either headache, rash,

nausea, vomiting or hemorrhagic manifestations, presented to health facilities in

Palau. Potential vectors included the introduced mosquito species Aedes aegypti

and Aedes albopictus as well as the native species Aedes hensilli. A public education

campaign, improved solid waste disposal, continued monitoring of febrile illness,

early detection and diagnosis of potential dengue fever outbreaks and programmes

of mosquito control were suggested in order to decrease dengue outbreak.

In the Middle East, Khormi and Kumar (2011) conducted a study in Jeddah County

in Saudi Arabia to model areas at risk of dengue fever, based on the spatial rela-

tionship between dengue fever cases and different socio-economic parameters. High

resolution satellite images were used to classify neighbourhoods based on width of

streets, roof area of house and density of houses. Geographically Weighted Regres-

sion (GWR) was then used to relate dengue cases to neighbourhood classification,
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population size and density and other socio-economic factors. Strong positive as-

sociations were found between dengue cases and some of these factors e.g. overall

prevalence among Saudis was higher than non-Saudis especially and there are sig-

nificant differences in age groups for adults between the ages of 16 and 60 years.

In another paper relating to the same place, a study by Khormi et al. (2011) used

GIS with the aim of improving the monitoring and surveillance of the Aedes vec-

tor. Five years of data were used to produce spatio-temporally maps of dengue

risk. Monthly hotspots were mainly concentrated in central Jeddah districts but

the pattern was found to change considerably with time. The paper proposed fol-

lowing the monthly dengue fever pattern to facilitate the allocation of resources for

the treatment of the disease, preventing its prevalence and monitoring its vector.

On the general front worldwide, mosquito control is known as the single most

effective intervention to prevent dengue epidemics. To maintain this situation,

constant effort is needed. However, the successes of prevention and control are

very rarely reported because of the continuous reintroduction of virus or vector from

outside and sometimes because of the growing resistance of mosquito populations

to insecticides. At the same time, climate variability and global warming are other

factors which may favour epidemics of dengue. In one effort in a Claris EC project

(Degallier et al., 2010) developed a model for the transmission of dengue to serve as

a tool for estimating the risk of epidemics under different climatic change scenarios

so that it could be used as an early warning system with meteorological forecasts

as inputs — a topic which is taken up in more detail in subsequent sections of this

chapter.

3.3 Dengue Fever in Malaysia

Most early cases of dengue fever that were recorded in Malaysia came from Penang;

however, the first nationwide outbreak started in Kuala Lumpur. Since then,

dengue has become a major public health problem in Malaysia. Shekhar and Huat
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(1992) reported that dengue has been endemic in Malaysia since the 1960’s and

a major issue from 1973 onwards. Upward trends in dengue incidence from 1988

are reported by Narwani et al. (2005). Most recently the states with the high-

est DIR (per 100,000 population) were Selangor, Kuala Lumpur, Penang, Perak

and Negeri Sembilan (Mohd Ismail et al., 2007, 2009). Most of the increase in

dengue morbidity and mortality has proceeded in parallel with the rapid economic

development, expansion of urban areas and corresponding increases in population

density in different locations. Dengue is one of the most common mosquito-borne

diseases in Malaysia, so Ministry of Health Malaysia maintains a current dengue

report on its homepage3 which is updated weekly. The next subsection discusses

the distribution of dengue cases across Malaysia, subsequent subsections consider

surveillance and control of dengue in Malaysia and the sources of dengue data used

in later chapters of this study.

3.3.1 Distribution of dengue in Malaysia

The earliest reported case of dengue fever in Malaysia occurred in 1902 when it

reached Penang from Singapore and was identified as being the DENV-1 serotype

(Skae, 1902). The first case confirmed as dengue-cased haemorrhagic fever was

reported in 1962 in Georgetown City, also in Penang.

The first wider scale reports of the disease in Malaysia were prepared by Rudnick

et al. (1965), but the disease was observed only sporadically until 1973 where the

first major outbreak of dengue fever and dengue hemorrhagic fever occurred in

Malaysia with a total of 1,487 cases. Of these, 969 cases were dengue hemorrhagic

fever with a fatality rate of 5.6 cases per 100,000 population. The main epidemic

focus was in Johor and DENV-3 was identified as the prevalent serotype. Another

major epidemic, again focussed in Johor, occurred in the subsequent year with a

total of 2,200 cases and 104 deaths reported. The next major outbreak was in 1982

with 3,005 cases notified of which 28.4% were cases of dengue hemorrhagic fever.

3http://www.moh.gov.my/
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There were 35 reported deaths. The majority of these cases were in young adults

and children, and mortality was often the result of multiple-organ failure, a typical

feature of dengue hemorrhagic fever. In the next decade, a fairly low incidence rate

was reported with an average of about 500-900 cases of dengue fever and dengue

hemorrhagic fever reported each year with peaks in 1987 and 1989. A study by

Lam (1993b) found that during the decade of 1973 to 1982 there were a total of

12,077 dengue cases with a case fatality rate of 3.38%. In the following decade

of 1983 to 1992, the number of reported cases increased to 26,361 but the case

fatality rate dropped to 0.55%. This increase was attributed to the rising economy,

rapid industrialisation and urban migration at that time, with the reduction in the

fatality rate thought to be due to better response of patients seeking early medical

treatment as well as better case management.

The Department of Medical Microbiology at the University of Malaya was des-

ignated as a WHO Reference Center for Dengue Fever and Dengue Hemorrhagic

Fever in 1982 and since then countrywide epidemiological surveillance for dengue

has been conducted in close collaboration with the Malaysian Ministry of Health.

By 1993, Poovaneswari (1993) reported dengue to be endemic in Malaysia, espe-

cially in the major towns with an overall median incidence for dengue fever and

dengue hemorrhagic fever of 27.49 cases per 100,000 population. All of the 12

states in Malaysia were reported as being affected; although the majority of cases

were confined to the highly populated states such as Kuala Lumpur, Johor and

Penang. Subsequently the number of dengue fever and dengue hemorrhagic fever

cases in Malaysia has continued to increase with the dengue incidence rate increas-

ing four times in 8 years from 27.5 cases per 100,000 population in 1990 to 123.4

cases per 100,000 population in 1998 when the highest peak yet seen was recorded.

In that year, 27,381 cases were recorded nationally (Abu Bakar and Shafee, 2002),

the outbreak affected the whole country but was particularly serious in Terengganu

State — 1,907 confirmed dengue fever cases and 153 confirmed dengue hemorrhagic

fever cases were recorded by the Vector Borne Diseases Control Unit, Terengganu

State Health Department. They found the dengue outbreak peaked in Terengganu
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around August to October 1998 and declined in February 1999. Nor Azimi (2000)

has reported that the national case fatality rate was 0.3% in 1998.

The high rate in 1998 fell for the year 2000 to 31.99 cases per 100,000 population

but has since risen again and nowadays, dengue is a leading cause of severe illness

and hospitalisation in Malaysia and a serious public health issue. According to

the 2008 ‘Health Facts’ issued by the Malaysian Ministry of Health, the incidence

rate of dengue and DHF was 167.76 and 10.16 cases per 100 000 population with

a mortality rate of 0.02 and 0.38 respectively (Ministry, 2008). A study by Mia

et al. (2013) found that during the period 2000 to 2010, the number of dengue cases

and number of deaths increased on average by 14% and 8% per year respectively.

The proportion of the Malaysian adult population exposed to the dengue virus was

examined in research by Muhammad Azami et al. (2011). The results indicated 916

or 91.60% positive for dengue out of 1,000 people, with 541 female and 375 male

dengue seropositive. The conclusions were that there were similar sero-prevalence

rates between urban and rural samples, implying dengue has spread beyond the

urban areas in Malaysia and is now confirmed as being endemic across the whole of

the country. The most abundant strain of the disease in the country has changed

over time, for instance, DENV-2 was the predominant strain in 1989-1991 (Chee

and Abu Bakar, 2003) and was replaced by DENV-3 from 1991 onwards (George,

1992). Most recently, the Malaysian Ministry of Health (Ministry, 2014) reports

the total number of dengue cases Malaysia in 2014 as the highest ever, standing at

108,698 (see Figure 3.2). Interesting, whilst the number of dengue cases in Malaysia

almost tripled from 2013 to 2014, neighbouring Thailand and the Philippines saw

decreases in total dengue in that period.

Examination of the historical outbreak data suggests that a major dengue fever

and dengue hemorrhagic fever outbreak occurs in Malaysia in an irregular cyclical

pattern of every few years. Little is known about the reasons for such cycles. More

is known about the cycle within any particular year which corresponds to relatively

lower levels during the period from January to April when incidence begins to rise

reaching a peak in July or August and then declining. This annual cycle may well
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relate to the monsoon seasons discussed in the previous chapter i.e. the Northeast

monsoon and Southwest monsoon. Storage of water during the dry season from

January to April and the drizzling rainfall before the heavy monsoons arriving

would create suitable breeding places for the disease vector.

Various studies have looked into risk factors and clinical outcomes for dengue in

Malaysia. The lack of much previous discussion about the application of serological

techniques to dengue diagnose, encouraged Smith (1957) to perform an early study

looking at clinical and epidemiological considerations related to dengue outbreak.

Much more recently, Seng et al. (2005) went through a geostatistical modelling,

analysis and mapping approach in Johor state to understand better the correla-

tion between dengue fever prevalence, population distribution and meteorological

factors, also the characteristics of the space-time clusters. By mapping the spa-

tial variation of dengue incidence using geostatistical analysis and space-time scan

statistics, they found a strong positive spatial association between dengue fever

prevalence and population distribution. However, the assumption that dengue

prevalence must be higher when population density is higher was contradicted by

their results possibly due to the positive impact noted in an earlier paper by Chee

and Abu Bakar (2003) from dengue control and prevention programmes in high

population density areas. Seng et al. (2005) also concluded that accumulation

of rainfall over 10 to 14 days is quite enough to support the mosquito’s breed-

ing cycle and the dengue virus incubation period. Narwani et al. (2005) looked

at the relationship between dengue serology results and observed symptoms and

socio-demographic and clinical variables. The study aimed to determine the char-

acteristics of dengue fever and dengue hemorrhagic fever in Malaysia in the years

between 1998 and 2003. The results showed significant differences in dengue fever

and dengue hemorrhagic fever incidence between age groups and also relationships

with systolic blood pressure. Associations were also found between the type of

dengue and geographical area; whilst for symptoms the only associations found

with any of the factors studied was in severity of joint pain. Mohamad Ismail et al.

(2011) performed a small retrospective study from year 2000 to 2004 to look at the
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dengue infection among pregnant women. They focused on maternal presentation,

complications of patient and fetus and pregnancy outcomes. Out of 16 cases, three

cases died from dengue shock syndrome, one case dropped out because of an abor-

tion and four cases disappeared during the study period. Amongst the remaining

8 cases, four babies arrived by premature birth, three babies went to intensive care

unit and another one was recorded as an early neonatal death. Pouliot et al. (2010)

reviewed 30 published studies in assessing the impact of dengue infection during

pregnancy on birth outcomes. The results indicated an increase in cesarean deliv-

eries and pre-eclampsia in women who have dengue infection during pregnancy. An

increase in low birth weight among infants born compared to non-infected women

was also found in the study. Aziz et al. (2011) carried out an investigation to iden-

tify the contribution of a range of environmental parameters to dengue outbreaks.

They found ten environmental parameters which influence the dengue transmis-

sion and distribution such as housing types, land surface temperature, elevation,

soil moisture, humidity, rainfall, temperature, population density, greenness and

land use. There have been several other studies looking at how climatic variability

may impact epidemics of dengue and these are picked up in a later section of this

chapter.

3.3.2 Surveillance and control

The Malaysian government has identified dengue control as a national priority.

Until now, there is still no effective vaccine or specific treatment for dengue fever

and current control methods (e.g; larviciding, space spraying insecticides or ‘fog-

ging’, public education, legally enforced breeding site reduction) have not stopped

the spread of the disease, so there is an urgent need to evaluate promising new

technologies in Malaysia at the moment.

The primary goal of public health surveillance in relation to dengue is to monitor

transmission of the disease in the community so as to guide an effective program

to prevent future occurrence and spread. It is also to identify the cost-effectiveness
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of public health prevention programmes and estimate the burden of dengue for

the community. Such efforts should help authorities to monitor dengue cases more

accurately and hopefully gain early predictions of epidemics using established risk

factors. As in most of the tropical countries around the world, dengue places a

heavy burden on public health systems in Malaysia given that surveillance and

emergency response is inevitably constrained by lack of the infrastructure and

functional support systems.

As discussed earlier, there are currently no specific medications to treat dengue

and there is no vaccine commercially available against dengue today. Prevention is

therefore the only step to reduce the risk of dengue infection in Malaysia. Several

approaches are available; either mosquito control (larval control or adult mosquito

control) or by reducing mosquito biting especially during daylight hours. Many

studies have considered control of dengue outbreaks in Malaysia such as anti-larval

and anti-adult measures, health education and legal enforcement, but dengue still

continues to be major problem. Environmental factors such as rainfall, temper-

ature, living conditions, domestic waste management and population distribution

and demographic structure are important in identifying the mosquito survival and

reproduction.

Lam (1993a) considered requirements to reduce the incidence rate of dengue to less

than 6 cases per 100,000 population and the case fatality rate to 0.04%. Yap et al.

(1994) discussed necessary future planning in terms of vector control approaches

such as source reduction, environmental management, larviciding and adulticid-

ing. Poovaneswari (1993) discussed methods in prevention and control of dengue

in Malaysia such as anti-larval activities (house inspection, the use of larvicide,

Enforcement of the ‘Destruction of Disease-Bearing Insects Act’ of 1975, anti adult

activities fogging), health education activities and community participation. Teng

and Singh (2001) identified there are four major sources of Aedes breeding in-

cluding construction sites, solid-waste dumps, open spaces and factories. Teng and

Singh (2001) reported on ways in which surveillance methods have been upgraded to

strengthen dengue control in Malaysia. These included reprioritising Aedes surveil-
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lance aimed at new breeding sites, strengthening information system for effective

disease surveillance and response, changing insecticide fogging formulation, legisla-

tive changes for heavier penalties and strengthening community participation and

collaboration as well as clinical efforts to reduce case fatality. Meanwhile, the Min-

istry of Health Malaysia has clarified favourable areas for mosquito breeding such

as; in construction sites, rubbish dumping sites, parks, vacant land, cemeteries and

public infrastructure areas.

Egg traps are a safe, economical and environmentally friendly method for the

surveillance of mosquito populations first introduced in the United States. Their

sensitivity is such that they can efficiently estimate the population of Aedes even

when that is low. A decade ago, egg traps become a popular tool to catch

mosquitoes in Malaysia. Dhang et al. (2005) conducted a study to determine the

distribution and abundance of Aedes aegypti and Aedes albopictus in two urban res-

idential areas and settlement areas in Selangor state. They found both mosquitoes

appeared in both places, but Aedes aegypti was definitely the most found dengue

vector. Chen et al. (2006) followed this study up by using egg traps in the same

state as previously but with the addition of Kuala Lumpur as a new location. The

results were similar and reinforced the conclusions that Aedes aegypti was found

at a higher frequency than Aedes albopictus. The next egg trap implementation

reported in surveillance of the dengue vector (Rozilawati et al., 2007) was for two

selected urban and sub-urban areas in Penang state for a 14 months period. The

main dengue vector found was Aedes albopictus in this case. Wan Norafikah et al.

(2009) used egg traps on the University of Malaya campus in Kuala Lumpur. Re-

sults showed a correlation between the mean number of larvae per egg trap of

Aedes albopictus and rainfall meaning that the most populous dengue vector in the

university campus was most likely to be Aedes albopictus.

Narwani et al. (2005) reported on dengue in Kota Bharu one of the districts in

the state of Kelantan with a sharply increasing trend in dengue cases going from

an incidence of 8.5 cases per l00,000 population in 1988 to 88.6 cases per 100,000

population in 2003. Overall there were 4,476 dengue fever cases and 240 dengue
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hemorrhagic fever cases in these six years. Overall, the monthly peak season of

recorded dengue was in January and the lowest recorded dengue was in May. Nar-

wani et al. (2005) also went on to look at requirements of an effective prevention

and control programme to provide early warning of dengue epidemics in the state.

They concluded that virologic surveillance should be considered an important ele-

ment in any such system. Dengue virus transmission must be monitored to identify

which serotypes are present, their distribution and the type of illnesses associated

with each. Juni et al. (2015) in a study of the outbreak of dengue in the rural

population of Negeri Sembilan has recently reported on the risk behaviours which

need to be addressed in programmes for the control and prevention of dengue.

As regards education programmes more generally, the Ministry of Health in Malaysia

has applied variety of mass media interventions and community-based actions to

prevent and control dengue fever in the past with mixed results. Of particular

note is a study conducted by Suhaili et al. (2004) to plan and implement social

mobilisation (also known as Communication-for-Behavioural-Impact or COMBI as

mentioned earlier in this chapter) in Johor Bahru District of Johor state in 2001.

Johor state is located at the Southern end of Peninsular Malaysia and shares a

common boundary with Pahang and Melaka to the North. The state’s capital city

is Johor Bahru, the second largest city in Malaysia after Kuala Lumpur. This

study was supported by WHO in recognition of the difficulties faced by Malaysia

in prevention and control of dengue fever. The approach produced positive be-

havioural results and because of that the COMBI methodology was adopted as

the national method for social mobilisation and communication to help in control-

ling dengue in Malaysia. A similar kind of study was carried out in 2002 in rural

areas of Kuala Kangsar District in the State of Perak. A survey on 200 people

was conducted to assess the level of knowledges, attitudes and practices in rela-

tion to dengue. Two thirds of those surveyed reported having received information

on dengue coming from television and radio and most of them were supportive in

trying to control Aedes populations. There was a significant association between

knowledge of dengue and attitude toward Aedes control. However, it was also
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found that even good knowledge about the disease is not guaranteed to lead to

good practice because of extant traditions in community life (Hairi et al., 2003).

In summary, considerable work has been done on prevention and control of dengue

in Malaysia, however, it remains a complex and problematic task beset by both

simple issues, such as a delay in fogging activities or the presence of an abandoned

housing project contributing to potential mosquito breeding sites, or more complex

ones such as inadequate public compliance in combative measures. The Ministry of

Health in Malaysia continues to strive in supporting strategies to combat dengue,

in constant monitoring of their implementation and in emphasis on the importance

of future preventive and control activities to move dengue down the scale of the

major public health problems in Malaysia.

3.3.3 Sources of dengue data

As discussed in Chapter 2, this study is concerned with dengue incidence in twelve

‘states’ of Peninsular Malaysia (as defined in 2.2). Research ethics approval for this

study was granted by the National Medical Research Register4, Ministry of Health

Malaysia5. Monthly numbers of dengue cases used in subsequent chapters of this

study are those for the period of nine years from January 2001 to end December

2009 for each of these twelve areas obtained from the Ministry of Health Malaysia6

(Narwani et al. 2005). The dengue cases referred to are the total of confirmed

dengue fever cases and confirmed dengue hemorrhagic fever cases in each of the

months concerned. Some more detailed dengue data at district (county) level is

also available through the website of the State Health Department of Selangor7

(available online from 2009 upwards Rosnah et al., 2009).

4https://www.nmrr.gov.my/fwbLoginPage.jsp
5http://www.moh.gov.my/
6http://www.moh.gov.my/
7http://www.jknselangor.moh.gov.my/index.php?lang=ms
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3.4 Climate and dengue

Climatic conditions and climate change affect people, plants and animals. It is

common knowledge that scientists are working towards better understandings of

future climate change and how the effects will vary by region and over time and

on the observed changes that are already occurring. Such effects amongst many

include sea level rise, shrinking glaciers, changes in the range and distribution

(biodiversity) of plants and animals, trees blooming earlier, lengthening of growing

seasons, ice on rivers and lakes freezing later and breaking up earlier, and thawing

of permafrost.

Amongst such considerations it is clear that human health can, in part, be affected

directly and indirectly by climatic conditions and climate change e.g. through

extreme periods of heat and cold, storms, and through the dynamics of climate-

sensitive diseases such as those identified by Inter-Govermental Panel on Climate

Change (IPCC) (IPCC, 2014). In order to manage this climate sensitivity more

effective working relationships between the health sector and the providers of cli-

mate data and information are required. In short, climate is an important variable

in managing the overall burden of disease, especially in developing countries where

the ability to control climate-sensitive diseases is constrained. To reduce its ad-

verse effects, the public health sector must understand and quantify the specific

effects of climate variability and change both on the overall disease burden and on

opportunities and effectiveness in the public health response. This applies to future

adaptation strategies to understand fully the impact of the climate on the existing

disease burden and current interventions so that the public health sector can use

climate information effectively in epidemic early warning systems. This provides

new challenges for the health sector which historically has not usually been en-

gaged in climate and environmental monitoring. Acquiring and using this type of

information successfully depends on developing partnerships between health prac-

titioners and the gatherers and providers of climate and environmental information

such as National Meteorological Services (Rogers et al., 2008).
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As suggested in earlier sections, dengue is very much a climate sensitive disease.

The virus is transmitted by Aedes mosquitoes whose prevalence is highly sensitive

to environmental conditions. Climatic factors such as temperature, precipitation

and humidity may be critical to mosquito survival, reproduction and development

which thus affects mosquito presence and abundance e.g. higher temperatures

reduce the time required for the virus to replicate and disseminate in the mosquito.

The next two subsections consider global and Malaysian perspectives in respect of

the relationship between climatic factors and dengue.

3.4.1 Global perspective

The global epidemiology and transmission dynamics of certain vector-borne dis-

eases, such as malaria and dengue have changed considerably since the middle of

the 20th century. Some of that is undoubtedly in response to global climate change.

Malaria is, of course, generally spread by the Anopheles mosquito, rather than

the Aedes which is the vector in the dengue case; but, nevertheless studies on the

relation between climatic factors and malaria do have some relevance for dengue

as some similar issues and involved. It is therefore useful to briefly review some of

the work in this area on malaria before moving on to that specifically concerned

with dengue. Loevinsohn (1994) in a study looking at malaria epidemics in Rwanda

found that changes in malaria incidence were associated with temperature and rain-

fall and had responded to the steady increase in temperature in Rwanda over the

period 1961 to 1990 has experienced before. Ebi et al. (2005) developed a model of

future climate suitability for stable malaria transmission using geographic distribu-

tions of malaria for 16 projections of climate in 2100. Preliminary results showed

that the changes in temperature and precipitation could transform the geographic

distribution of malaria in Zimbabwe. The highlands becoming more suitable for

transmission, while the low veld and areas with low precipitation showed varying

degrees of change, depending on the climate sensitivity and greenhouse gas emission
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stabilisation scenarios incorporated in the general circulation model used. A study

by Martens et al. (1995) looked at mathematical modelling of the effect of anthro-

pogenic global climate change and associated projections of long term changes in

temperature and precipitation on mosquito and parasite characteristics and their

potential impact on malaria risk. The simulation results indicated a widespread

increase in transmission potential of the malaria mosquito population and an ex-

tension of the areas conducive to malaria transmission. Scenarios involving a global

mean temperature increase of several degrees in the year 2100 increased the epi-

demic potential of the mosquito population in tropical regions two-fold and more

than 100-fold in temperate zones. Other work (e.g. Ghebreyesus et al., 2009) has

looked at how seasonal forecasts of temperature and rainfall, which are useful in-

dicators of the likely occurrence of malaria outbreaks, can be used to implement a

programme of heightened epidemic surveillance; while real-time temperature and

rainfall estimates could be used to start selective interventions and to support early

detection of disease outbreaks.

Turning to work specifically related to dengue, the effects of climate change on

the distribution of that disease have become an area of increasing research inter-

est over recent decades due to the significant increase in the global incidence of

dengue (Gubler, 2002). As regards the global picture, Patz et al. (1998) looked at

climate data from 1931 to 1980 to investigate the potential added risk posed by

global climate change on dengue transmission. They performed simulations linking

temperature output from three climate general circulation models (GCMs) to re-

lationships concerning dengue vector potential for transmission. The three models

predicted an average projected temperature elevation of 1.16 ◦C in the year 2050

and the simulations indicated that under such conditions even reduced numbers

of mosquitoes could maintain the same level of endemicity of the disease in areas

where the dengue virus was present leading to increased epidemic potential even if

control programmes on Aedes populations had some success.

Hopp and Foley (2003) also attempted to look at climatic relationships to the

dengue vector at the global scale. A numerical model was developed to simulate
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the response of Aedes to climatic variations and to examine how modelled mosquito

populations may be related to dengue and dengue hemorrhagic fever cases world-

wide. They found that global scale variations in climate could induce large vari-

ations in modelled Aedes populations which are historically strongly correlated to

reported dengue and dengue hemorrhagic fever cases. Data for 240 months be-

tween 1978 and 1997 from 73 provinces in Thailand were considered in identifying

the effects of climatic factors such as rainfall, temperature and relative humidity

on the occurrence of dengue. Degallier et al. (2010) has developed a general model

for the transmission potential of dengue and used this to forecast the risk under

different climate change scenarios. The paper suggests that such a model might be

incoporated into an early warning system with meteorological forecasts as inputs.

Another worldwide issue was highlighted by WHO who reported that the 1997/98

El Niño might have been the cause of the dengue fever epidemics in many tropical

countries. This is because of the interaction between the atmosphere and the

ocean, the warm El Niño and the cold La Niña phases of the ENSO engender

significant temperature and precipitation anomalies around the world. Gagnon

et al. (2001) presents the results of a correlation analysis of past ENSO events with

dengue epidemics across the Indonesian archipelago and Northern South America.

The analysis showed correlation between El Niño and dengue epidemics in French

Guiana and Indonesia and to a lesser extent in Colombia and Surinam. These

regions experience significantly warmer temperatures and less rainfall during El

Niño years. Public health officials could therefore possibly benefit from El Niño

forecasts and they should emphasise control activities such as insecticide sprayings

and media campaigns concerning the potential breeding sites of dengue mosquitoes

during these years.

Turning to more geographically focussed studies, there has been various work on

dengue and climate in South America. In Cuba, Puerto Rico and Southeastern

Brazil the last decade has seen some increases in rainfall during the dry season.

These have contributed to the year round permanence of the mosquito population.

Even vegetated watersheds now flood under intensifying rains throughout the dry
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season, enhancing the risk of outbreaks of dengue throughout the year. Also a

greater mosquito abundance at the beginning of the rains leads to higher subsequent

growth in the population and hence more likelihood of epidemics. As a result,

the South American continent is experiencing an increase in dengue with greater

mortality from the more severe hemorrhagic cases. Greater incidence has not only

been seen in traditional dengue affected regions, but warmer and moister seasons

in neighbouring regions have caused dengue to spread there too. The historical

once-a-year prevention campaigns for dengue have needed to be replaced by year-

round vigilance. Research by Aura and Alfonso (2010) on the potential associations

between climatic variation and dengue cases in Western Venezuela presents analyses

based on an 8 year period from 2001 to 2008. The results indicated a significantly

higher dengue incidence with lower values of ONI (El Niño periods) and lower

dengue incidence with higher values of ONI (La Niña periods). The models are

expected to be useful to anticipate and mitigate dengue incidence rate through the

implementation of mosquito eradication and determination of the optimum time

for fogging activity. Lowe (2010) used generalised linear mixed models (GLMM) to

look at the relationship between monthly dengue incidence and a range of climatic

and socio-economic variables in microregions of South East Brazil for the period

2001 to 2007. Significant relationships were found with temperature and rainfall

lagged by 1-3 months and with ENSO lagged by 6 months. The model estimated

on the 2001-2007 data was then tested for predictive validity by using it to make

probabilistic predictions for 2008 and comparing these to the observed data in that

year. The results showed that an epidemic alert was successfully issued for 94% of

the 54 microregions that recorded high dengue incidence rates in South East Brazil

during the peak dengue season of February to April 2008. Using data collected in

household surveys in 2001 and 2002 in the city of Goiania in central Brazil, Siqueira

et al. (2008) used generalised additive models (GAM) to generate smoothed risk

maps for dengue adjusted for socio-demographic, climatic and temporal covariates.

They found significant spatial heterogeneity in dengue risk across different areas of

the same city.
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In the Carribean, Gharbil et al. (2011) has looked at the impact of temperature

and other climate measures on dengue incidence on the island of Guadalupe using

a Seasonal Autoregressive Integrated Moving Average (SARIMA) model applied

to data from 2000 to 2006. The model fitted was then used to forecast dengue

incidence rate from year 2007 onwards compared to observed data using three dif-

ferent approaches; one year-ahead, three months-ahead and one month-ahead. The

three months-ahead approach proved the most suitable forecasting model to adopt

for effective operational public health response. Three variables were detected as

having positive significant influence; average temperature at lag 11 weeks, relative

humidity at lag 7 weeks and minimum temperature at lag 5 weeks. This result

makes sense as temperature was believed to influence the dengue outbreaks fore-

casts more than using humidity and rainfall. Global warming should increase the

range of the mosquito and reduce the size of larva and adults. Smaller adults must

feed more frequently to develop their eggs. So warmer temperatures boost the

incidence of double feeding and thus increase the likelihood of transmission. The

time the virus must spend incubating inside the mosquito is shortened at higher

temperatures, and this can mean a potential higher transmission rate of disease.

The main problem in countering this in Guadalupe is inadequate utility services

meaning residents must store water in jars and tanks and these are the preferred

breeding grounds for Aedes. The increase in air travel is another factor, with in-

fected fliers acting as sources for the virus. Close by on the Island of San Juan in

Puerto Rico, Schreiber (2001) has used data for 1988 to 1993 to investigate rela-

tionships between dengue incidence and hydrological flow in order to identify and

quantify the specific climate conditions and the associated lag periods which de-

termine disease variations. They concluded the mean seasonal variation in dengue

has a strong relationship with mean seasonal climate variation, but that drainage

is also an important factor. They also assessed the ability of the models developed

to predict dengue incidence and managed to develop an early warning model to

predict increases dengue incidence with a three week lead time.

Moving to Asia, Lu et al. (2009) investigated the impact of weather variability on
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the transmission of dengue fever in Guangzhou, China with the aim of proposing

early public health responses that would help to minimise morbidity and mortality.

Poisson time series models were fitted to monthly notified cases of dengue fever and

weather variables for six years from 2001 to 2006. Results showed that the best

predictive model for dengue incidence was one that included minimum temperature

and minimum humidity both lagged by one month and also wind velocity. Autore-

gressive integrated moving average (ARIMA) models were used by Wu et al. (2007)

to evaluate the impacts of weather variability on the occurrence of dengue fever

in a major metropolitan city, Kaohsiung, in Southern Taiwan. This study found

somewhat surprisingly that the incidence of dengue fever was negatively associated

with monthly temperature and an inverse association was also found with relative

humidity.

In Thailand, Thammapalo et al. (2005) developed models for dengue incidence in-

cluding trend, cyclic effects and climatic factors. Results showed that an increase

in temperature was associated with a rise in the incidence of dengue hemorrhagic

fever in nine provinces, and an increase in rainfall was associated with a decreased

incidence of dengue hemorrhagic fever in seven provinces. The overall picture was

that dengue hemorrhagic fever incidence was negatively associated with extra rain-

fall in the Southern region, but positively associated with elevated temperatures

in the Central and Northern regions. Mathuros et al. (2009) used global ENSO

records, dengue surveillance data and local meteorological data from two geograph-

ically diverse regions in Thailand to assess the temporal relationship between El

Niño and the occurrence of dengue epidemics, then constructed Poisson autore-

gressive models for incidences of dengue cases. The result revealed that at time lag

of between 1 and 11 months the strength of El Niño was a significant predictor for

occurrences of dengue epidemics.

Althouse et al. (2011) applied linear and generalised linear statistical models to

predict incidence of dengue in Bangkok and Singapore based upon climatic and

other covariates. Best fitting models for each of the two places differed in some of

the covariates selected and also in the size of effects. Loh and Song (2001) looked at



3.4. Climate and dengue 74

clusters of dengue cases in Singapore for the years 2000 and 2001 where a cluster was

defined as: at least two cases located within 200 metres of each other with dates of

the onset of symptoms within three weeks of each other. They identified 102 clusters

and used non-linear regression to relate cluster size with various entomological and

climatic covariates. They found significant positive relationships with the detected

number of mosquito habitats in the vicinity and the average amount of rainfall one

week before the cluster period.

So the overall picture on dengue and climate is a complex one. There is consensus

that climatic variations have strong influence on dengue incidence, but more mixed

results from different regions of the world on the relative importance of ENSO,

rainfall, temperature or humidity and associated time lags. The next section looks

at the relatively small amount of research that has been carried out on these issues

specifically related to Malaysia.

3.4.2 Malaysia perspective

Although some of the work on climate and dengue described in the previous section

in neighbouring countries in South East Asia is pertinent to Malaysia, there are

few studies on this issue specifically in Malaysia. Indeed that is exactly one of the

main motivations for the work throughout this study.

The relationships between dengue hemorrhagic fever and rainfall were examined by

using dengue hemorrhagic cases, precipitation and temperature data from the states

of Selangor and Johor during the period of 1973 until 1977. In that investigation,

Aiken et al. (1980) found an increase in dengue hemorrhagic fever cases following

the March to May wet season and the size of the increase was positively related

to the size of the moisture surplus. Besides that, an apparent lack of association

between dengue hemorrhagic fever cases and rainfall appeared during the second

wet season which is between September and November every year.

Terengganu is one of the states in East Malaysia. This state experiences flooding
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every year, during the Northeast monsoon which occurs from November to March

and brings heavy rainfall. Nor Azimi (2000) described a pattern of dengue in

this state which is somewhat different from other states in Malaysia. Before 1997,

the dengue situation in Terengganu was under control with annual dengue cases

fairly low with the highest number in 1992 at only 214. But, in 1997 and 1998

the dengue situation in Terengganu changed greatly as described earlier in this

chapter. A large number of dengue cases have been reported since then. The

number of dengue deaths has also increased even though the case fatality rate of

7.14% in 1997 was reduced to 2.25% in 1998.

Wan Fairos et al. (2010) studied relationships between DF and DHF cases and

climatic and other variables in Malaysia using daily data for the period July 2006

to December 2008 and found that daily temperature and wind speed significantly

influence the incidence of dengue fever after a lag of some 3 weeks, but that humid-

ity has a weaker relationship. Choy et al. (2011) looked at dengue cases collected

from the Seremban District Health Office and the Ministry of Health in Malaysian

and conducted interviews with 15 key informants or experts on climate change

and public health. Relative humidity and rainfall data were obtained from the

Meteorological Department and the Department of Irrigation and Drainage. A

positive significant relationship was found between mean maximum temperature

and relative humidity to the number of dengue cases. For precipitation, the results

were more mixed with data from only two out of the four rainfall stations showing

a significant relationship to the local dengue cases. In a data mining approach,

Abu Bakar et al. (2011) have developed predictive models for dengue outbreak

detection using multiple rule-based classifiers based on environmental data.

Mazrura et al. (2010) found positive associations between climate variability and

the Aedes population in a study carried out in 2009 in the Ledang District of Johor

State to assess community vulnerability to dengue and to promote COMBI (as

mentioned earlier in this chapter) as a methodology for encouraging community

responses in controlling dengue. Trends on Aedes population, dengue cases and

community surveys at pre and post-interventions, the processes for dengue control
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activities were analysed. Other similar reports on COMBI activity and programmes

can be found in the following papers: Suhaili et al. (2004); Rozhan et al. (2006);

Rozita et al. (2013); Azmawati et al. (2013).

3.5 Summary

This chapter has discussed dengue fever and the mechanisms for its transmission

and then reviewed the burden of dengue, its geographical distribution and asso-

ciated trends both in the world in general and in Malaysia in particular. Issues

concerned with surveillance and control of the disease were also considered. The

sources and extent of the Malaysian dengue data used in subsequent chapters was

also explained. The chapter then went on to consider the relationship between

climate and dengue globally and in Malaysia and previous associated studies were

reviewed.

With this background the next chapter goes on to explore the question of climate,

dengue and Malaysia in more depth beginning to focus down on the key research

aims of this study as introduced in Chapter 1.



Chapter 4

Exploratory data analysis

This chapter is concerned with preliminary exploratory analyses of the datasets

collated for this study so as to inform the statistical modelling of the dengue in-

cidence rate (DIR) in subsequent chapters. The chapter begins by describing the

structure of the collated datasets and the variables included and clarifying any as-

sociated definitions and provisos. Subsequent sections then proceed to summarise

trends and possible relationships in that data, starting with annual trends in DIR

and the intra-annual cycle and then moving on to look at relationships between

DIR and demographic and climatic factors.

4.1 Description of collated datasets

The sources of data for this study have already been described in Chapter 2 (demo-

graphic and meteorological data) and in Chapter 3 (dengue data), for convenience

they are also summarised in Table 4.2. Two datasets collated from these sources

are used in the remainder of this study.

The first is simply used for background context and not for the main modelling,

it comprises annual numbers of dengue cases for the period 1991 to 2009 for each

of the 12 states of Peninsular Malaysia as defined in Table 2.2 along with the to-

77
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tal population of those states. The second, and main modelling dataset refers to

monthly dengue cases during the 108 month period between January 2001 and

December 2009 for each of the 12 states of Peninsular Malaysia (reliable monthly

figures for all states are not available for earlier years). So the structure of that

dataset is therefore a spatio-temporal series of 108× 12 = 1296 records with each

record containing the following basic variables; state, latitude and longitude of

state capital, land area of state, year, month, total monthly number of confirmed

DF and DHF cases, estimated state population pertaining to the year (as projected

by the Department of Statistics Malaysia), population density of state, maximum,

minimum and average monthly rainfall, maximum, minimum and average monthly

temperature, monthly number of rainy days and Niño 4 average sea surface tem-

perature (SST) pertaining to the month. A number of derived variables were then

added to each record. First, values of the climatic variables at various preceding

monthly lags. Second, the Dengue incidence rate (DIR) where this is defined (Hafiz

et al., 2012) as the number of new confirmed cases of DF and DHF, yst, diagnosed

in state s (s = 1, . . . , 12) in month t, (t = 1, . . . , 108) divided by the total esti-

mated population of the state psj (in 100,000s) for the year j (j = 1, . . . , 9) in

which month t falls. So the DIR is the monthly incidence per 100,000 persons at

risk i.e.

DIR =
yst
psj
× 100, 000 (4.1)

In some of the subsequent discussion in this chapter, annual rather than monthly

DIR is used, which is simply the same calculation with the monthly cases replaced

by the annual cases for the whole year in question. Third, the region of Malaysia

to which the state belongs where this is defined on the basis of sub-divisions of

Malaysia used in various previous studies which reflect broad regional differences

in demography and climate in the country and where the twelve states are divided

into four regions referred to subsequently in this study as ‘North East’, ‘South

East’, ‘North West’ and ‘South West’ (see Table 4.1).

The names used only roughly correspond to the geography they imply. North
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Table 4.1: The division of the states in Malaysia.

North East South East North West South West

Pahang N.Sembilan Perlis Perak

Terengganu Melaka Penang Selangor

Kelantan Johor Kedah K.Lumpur

East refers to most of the East of Peninsular Malaysia and includes the states of

Kelantan, Terengganu and Pahang; the South East region consists of the states

of Johor, Melaka and Negeri Sembilan which are actually located more in the

South of the Peninsular; North West refers to the Northern part of Peninsular

Malaysia which contains Kedah, Penang and Perlis. Finally, the South West region

includes the capital of Malaysia, Kuala Lumpur along with Selangor and Perak.

The inclusion of a regional grouping of states in Malaysia as a potential impact

factor for dengue incidence follows the findings of Johansson et al. (2009b) in Puerto

Rico and also those in previous work by Wan Fairos et al. (2010) in Malaysia.

Various caveats and limitations could be raised in relation to the collated datasets

described above, but two merit particular comment. First, under-reporting cases of

dengue is a potential problem in Malaysia as elsewhere in the world. The problem

has decreased in recent years with the introduction of new technologies; however,

it remains an issue in less developed countries which still employ the old style of

recording dengue data and that includes Malaysia. It has been suggested that to

avoid under-reporting cases in modelling dengue, the collated dengue data should

come from multiple sources and at different levels such as at the national, regional

and state levels (Donald et al., 2012). The data collation should also be broken

down by the setting from which the case is reported, classification of severity and

the patients age (Yara et al., 2011). Lowe (2010) discusses similar issues in relation

to the Brazillian Health System including collecting all details on each patient

(basic demographic data, dates of symptom onset, case classification etc.) directly

into the computer systems ‘on the spot’. Unfortunately, little of this can be assured

in the Malaysian context and the potential for under-reporting in the datasets used
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subsequently in this study needs to acknowledge.

Second the spatial resolution of the data (i.e. the State) is not ideal. It would be

useful to obtain dengue cases by district within State for the whole of Malaysia as

this would help in explaining and understanding the situation in the specific areas

where particular epidemics have been reported, for example in different districts of

higher population density areas such as Kuala Lumpur (Mohd Ismail et al., 2009).

However, national coverage at the district level is simply not reliably available for

anything other than the most recent few years due to complications and inconsis-

tencies in data handling at the district level. In addition, accurate population data

at district level is hard to obtain. Hence, for the time period of this study, the

State level is the only realistic spatial resolution at which to analyse dengue across

the whole of Peninsular Malaysia.

4.2 Patterns in Dengue Incidence

The total population of Malaysia has doubled over the last 30 years rising from 13.7

million in 1980 to 28.3 million at the end of 2009. However, the upward trend has

moderated considerably during the nine year primary period of this study from

2001-2009 as indicated in Figure 4.1 which derives from Malaysian Government

population estimates and shows only a slight upward trend in population estimates

for the four regions of Malaysia during these years. What is also clear from this

diagram is the marked difference between the population in the South West region

as compared to the other three regions for the 108 months. This demographic

pattern needs to be borne in mind as a backdrop when looking at trends in dengue

incidence subsequently in this section.



4.2. Patterns in Dengue Incidence 81

T
ab

le
4.

2:
S

o
u

rc
e

a
n

d
o
ri

gi
n

a
l

re
so

lu
ti

o
n

o
f

d
a
ta

se
t.

D
at

a
S
p
at

ia
l

re
so

lu
ti

on
T

em
p

or
al

re
so

lu
ti

on
S
ou

rc
e

D
en

gu
e

ca
se

s
S
ta

te
M

on
th

ly
co

u
n
t

N
M

R
R

h
tt

p
:/

/w
w

w
.n

m
rr

.g
ov

.m
y
/

A
re

a
S
ta

te
N

on
e

D
S
M

h
tt

p
:/

/w
w

w
.s

ta
ti

st
ic

s.
go

v
.m

y
/p

or
ta

l/
in

d
ex

.p
h
p

P
op

u
la

ti
on

S
ta

te
Y

ea
rl

y
es

ti
m

at
e

D
S
M

h
tt

p
:/

/w
w

w
.s

ta
ti

st
ic

s.
go

v
.m

y
/p

or
ta

l/
in

d
ex

.p
h
p

R
ai

n
fa

ll
S
ta

te
M

on
th

ly
ob

se
rv

ed
D

ID
M

h
tt

p
:/

/w
w

w
.w

at
er

.g
ov

.m
y
/

N
u
m

b
er

of
ra

in
y

d
ay

s
S
ta

te
M

on
th

ly
ob

se
rv

ed
D

ID
M

h
tt

p
:/

/w
w

w
.w

at
er

.g
ov

.m
y
/

T
em

p
er

at
u
re

S
ta

te
M

on
th

ly
ob

se
rv

ed
M

M
D

h
tt

p
:/

/w
w

w
.m

et
.g

ov
.m

y
/

P
re

ci
p
it

at
io

n
2.

5
◦

x
2.

5
◦

gr
id

M
on

th
ly

m
ea

n
E

S
R

L
h
tt

p
:/

/w
w

w
.e

sr
l.
n
oa

a.
go

v
/p

sd
/d

at
a/

gr
id

d
ed

/

T
em

p
er

at
u
re

2.
5
◦

x
2.

5
◦

gr
id

M
on

th
ly

m
ea

n
E

S
R

L
h
tt

p
:/

/w
w

w
.e

sr
l.
n
oa

a.
go

v
/p

sd
/d

at
a/

gr
id

d
ed

/

H
u
m

id
it

y
2.

5
◦

x
2.

5
◦

gr
id

M
on

th
ly

m
ea

n
E

S
R

L
h
tt

p
:/

/w
w

w
.e

sr
l.
n
oa

a.
go

v
/p

sd
/d

at
a/

gr
id

d
ed

/

O
ce

an
ic

N
iñ
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Figure 4.1: Annual population estimates for the four regions of Malaysia from 2001 to

2009.
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4.2.1 Annual Patterns in Dengue Incidence

Turning more directly to dengue incidence, the annual dataset demonstrates the

overall trend (see Figure 4.2) in annual DIR over the nineteen years from 1991 to

2009 across all of the twelve states of Peninsular Malaysia. Also included in this

diagram is superimposed loess or localised regression smoother (e.g see Cleveland

et al. (1992) and Cleveland and Devlin (1998)). During this period a total of 406,359

confirmed dengue fever cases were recorded, the highest peak of 46,703 cases being

in 2008. Clearly, there are peaks and troughs in DIR over this period with a sharp

drop in 2000 but the general pattern is one of an increasing trend over the 19 year

period as reinforced by the superimposed localised regression (loess) scatter plot

smoother. There may be some support for the proposition that epidemics occur

roughly every four years (Lam, 1993b) as there were increases in dengue counts in

1998, less so in 2002 and then in 2007 relative to other years.

The different regions of Malaysia are susceptible to different climatic conditions

and the geographical characteristics of the regions differ. Hence, it is useful to look

at the patterns in DIR within regions (North East, South East, North West, South

West) to identify potential variations between these regions. The increasing trend

in annual DIR noted earlier is evident in each of the four regions of Malaysia taken

separately, as shown in Figure 4.3. However, the value DIR in the South West

region is significantly higher compared to the other regions, peaking in the year

2008 at over 350 cases per 100,000 populations compared to the North West,

South East and North East which had DIR values below 200 cases per 100,000

populations in every year. This point is reinforced by superimposing the trends for

the four regions on top of each other as in Figure 4.4.

It is evident from this figure is that there are both similarities and differences in the

pattern of peaks and troughs in the four regions over these 19 years. For example,

the increase in DIR in 1998 and the drop in 2000 is evident in all of the regions,

whereas the rise in 2002 in the South West is not so evident in the other regions and
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Figure 4.2: Annual DIR per 100,000 population for the 12 states of Peninsular Malaysia

from 1991-2009.
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Figure 4.3: Annual DIR per 100,000 population for the four regions (a) North East, (b)

South East, (c) North West and (d) South West of Malaysia from 1991-2009.
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Figure 4.4: Annual DIR per 100,000 population for main regions of Malaysia considered

in this study.
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rises in 2007 in the North East and North West precede those in the South West and

South East which occur in 2008. Some of these regional differences may result from

differences in the strength of monsoon behaviour in the regions over these years. As

discussed in Chapter 2, the Northeast monsoon and the Southwest monsoon have

big impacts on climate in Malaysia, the two inter-monsoon seasons also marginally

contribute to events throughout Malaysia (Soman and Slingo, 1997). Actual total

numbers of dengue cases and the average annual DIR for the four regions for all

of the 19 years is given in Table 4.3 which again emphasises the high levels in the

South West which recorded 244,241 over the period and an average DIR of 180.75

cases per 100,000 whereas the other regions show broadly similar and much lower

figures.

Table 4.3: Total number of dengue cases and average DIR in each region from 1991-2009

for Malaysia.

Region Total Dengue Average DIR

North East 53,357 78.67

South East 64,542 80.17

North West 44,219 69.90

South West 244,241 180.75

The regional picture discussed above can be further refined by looking at DIR

trends in the period 1991-2009 within the individual states of each of the four

regions, as shown in Figures 4.5, 4.6, 4.7 and 4.8.

First, it is noticeable that all states within all regions show an overall increasing

trend over the 19 years. As to year by year patterns within the period, broadly

speaking there is a lot of similarity in the patterns in the different states within

a region, but, as might be expected, there is less similarity in patterns in states

in different regions. Within that overall picture various differences between states

within the same region can be noted.

In particular, in the North East, Kelantan did not experience the 1998 peaks



4.2. Patterns in Dengue Incidence 88

1991 1996 2001 2006

0
50

15
0

25
0

(a)

Year

A
nn

ua
l D

IR
 p

er
 1

00
,0

00

DIR
Loess DIR

1991 1996 2001 2006
0

50
15

0
25

0

(b)

Year

A
nn

ua
l D

IR
 p

er
 1

00
,0

00 DIR
Loess DIR

1991 1996 2001 2006

50
10

0
20

0

(c)

Year

A
nn

ua
l D

IR
 p

er
 1

00
,0

00 DIR
Loess DIR

Figure 4.5: Annual DIR per 100,000 population for 3 states (a) Kelantan, (b) Tereng-

ganu and (c) Pahang in the North East region from 1991 to 2009 for Malaysia.
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Figure 4.6: Annual DIR per 100,000 population for 3 states (a) Perlis, (b) Penang and

(c) Kedah in the North West region from 1991 to 2009 for Malaysia.
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Figure 4.7: Annual DIR per 100,000 population for 3 states (a) Negeri Sembilan, (b)

Melaka and (c) Johor in the South East region from 1991 to 2009 for Malaysia.
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Figure 4.8: Annual DIR per 100,000 population for 3 states (a) Perak, (b) Selangor and

(c) Kuala Lumpur in the South West region from 1991 to 2009 for Malaysia.
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recorded in Terengganu and Pahang. Whereas, in the North West, rates in Perlis

are generally higher than those in Penang and Kedah and the 1998 peak in Kedah

is not seen in Perlis and Penang. Meanwhile, in the South East little major dif-

ference is evident between the three states of Negeri Sembilan, Melaka and Johor.

Finally, in the South West, the very high levels in Kuala Lumpur and the strikingly

different pattern in Selangor when compared with Perak and Kuala Lumpur are

worthy of note. Meanwhile, just focusing on the most recent years from 2001-2009,

Table 4.4 gives the state with the highest annual DIR in each of those years and

shows Penang in North West for 2001 then followed by Kuala Lumpur in South

West for the next six years from 2002 to 2007 but then replaced with Selangor also

in the South West for 2008 and 2009.

Table 4.4: State with highest annual DIR from 2001-2009.

Year State Region DIR

2001 Penang North West 171.08

2002 K.Lumpur South West 456.01

2003 K.Lumpur South West 374.82

2004 K.Lumpur South West 411.25

2005 K.Lumpur South West 364.99

2006 K.Lumpur South West 493.92

2007 K.Lumpur South West 463.66

2008 Selangor South West 419.28

2009 Selangor South West 360.57

The reasons for these various inter-regional and intra-regional differences between

states are undoubtedly complex, but as well as the monsoon/climate influences

mentioned earlier, differential demographic changes may also be important.

For example, some states have experienced higher population growth rates and

associated uncontrolled urbanisation resulting in the kinds of poor housing and

inadequate water supply which then encourages ideal vector habitats to increase

in those areas (Emilie et al., 2011).
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4.2.2 Monthly Patterns in Dengue Incidence

Seasonal patterns in incidence rate are common in all vector-borne diseases due to

the life-cycles of the vector and their dependence on the local climate for breeding

areas, sufficient temperature etc. (see Johansson et al. 2009b). It is therefore

important to explore seasonal patterns in monthly dengue incidence rate.

The monthly dataset described earlier covering the period from 2001 to 2009 can

be used to look at seasonal patterns in monthly DIR in Peninsular Malaysia. The

overall picture averaged over the 12 states and over the nine years is shown in

Figure 4.9 which shows that there are two months in the year in which DIR peaks,

January and July.
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Figure 4.9: Average monthly DIR values for Malaysia 2001-2009.
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This might be a result of the monsoon seasons — the Southwest monsoon occurs

between the months of May to September and the Northeast monsoon occurs be-

tween November and March (with then latter carrying more rain). The two peak

seasonal periods occur roughly in the central month of each monsoon season, in

line with previous reports of the relationship between the monsoon occurrences and

higher values of DIR in Malaysia (Soman and Slingo, 1997).

Given potential regional geographical and climatic differences it is also useful to

look at the picture separated by the four regions used previously in this chapter.

Figure 4.10 shows monthly DIR per 100,000 population for these four regions over

the 108 month period. The most obvious aspect of this plot is the generally higher

level of monthly DIR in the South West (noted earlier in annual DIR patterns)

but it is difficult to extract meaningful differences in the overall seasonal pattern

from this plot which confounds both trends over years as well as cycle within years.

More informative perhaps, is the average monthly DIR in each region over the nine

years as shown in Figure 4.11 which displays the pattern from June through to

May in the subsequent year.

Meanwhile, Table 4.5 provides the total number of dengue cases and the maximum

recorded monthly DIR for each region over the corresponding period. The main

point from Table 4.5 is the simple observation (similar to that noted earlier when

looking at annual DIR) of the high numbers and high maximum monthly rate in

the South West region when compared to lower (and roughly equal) figures in the

other three regions.

Figure 4.11 similarly indicates the notable difference between the South West and

the other regions in that monthly DIR remains consistently high throughout the

year. However, this figure also shows some similar features in the seasonal cycle in

the North East, South East and South West with an annual peak in January and

another in July; the latter being more pronounced in the North East, less evident in

the South West and even less so in the South East. This pattern is to be expected

due to the similar impact of the South West Monsoon on these three regions. This
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Figure 4.10: Monthly DIR per 100,000 population for North East, South East, North

West and South West of Malaysia from 2001 to 2009.

Table 4.5: Notified total of dengue and maximum monthly DIR of main regions in

Malaysia from 2001-2009.

Region Total Dengue Max DIR

North East 39,282 35.60

South East 46,779 39.93

North West 35,024 32.27

South West 187,919 52.35
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Figure 4.11: The mean annual cycle of monthly DIR per 100,000 population for (a)

North East, (b) South East, (c) North West and (d) South West of Malaysia from 2001

to 2009.
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monsoon mainly affects the states with a Western coastline and which applies to

various parts of the North West, South East and South West regions. The South

East region has a particularly high DIR value in July compared to January due to

the Eastern coastline in the state of Johor and the impact of the Northeast mon-

soon. As mentioned before, the climate of Malaysia is described by two monsoon

seasons and two inter-monsoon seasons. The Southwest monsoon season occurs

from May to September while the Northeast monsoon season is from November to

March. During the Northeast monsoon it is the exposed areas in the Eastern part

of Malaysia which receive heavy rainfall while the Southwest monsoon impacts the

Western part of Malaysia as described in Suhaila et al. (2010a). Since monsoons

bring heavy rainfall to the local regions this may have strong influences on the

seasonal cycle in DIR (Oki and Musiake, 1994; Aiken et al., 1980). Increases in

dengue after heavy rainfall particularly occur in urban areas where static rainwater

provides mosquitoes with suitable breeding conditions. Warmer temperatures can

also affect the transmission of the dengue virus as this allows the mosquitoes vec-

tor to survive and reach maturity early than expected (Muhammad Azami et al.,

2011). Interestingly, the annual cycle in the North West looks rather different to

that in the other three regions with peak monthly DIR occurring in November and

then to a lesser degree in May/June. Suhaila et al. (2010b) found that during the

Southwest monsoon season the North West region records high levels of rainfall,

but the existence of the Titiwangsa Range blocks the Northeast monsoon from

strongly affecting the North West region.

It is also useful to look at seasonal cycles within the individual states comprising

each of the four regions. The average DIR in each month for 2001-2009 in the states

is shown in Figures 4.12, 4.13, 4.14 and 4.15. There is clearly a fair amount of local

variation here, but just commenting on some of the most noticeable differences: in

the North East the mean monthly cycle in Kelantan and Terengganu is broadly

similar and somewhat different to that in Pahang; in the North West the mean

monthly cycle in Perlis stands out as different to that in Penang and Kedah in

having no evident January peak; in the South East the January peak is evident
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Figure 4.12: The mean monthly cycle of DIR per 100,000 population for 3 states; (a)

Kelantan, (b) Terengganu and (c) Pahang in the North East region in Malaysia from

2001 to 2009.
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in all the three states of N.Sembilan, Melaka and Johor, whereas the behaviour at

other times of the year differs somewhat in these states; finally, in the South West

Perak and Selangor behave relatively differently to Kuala Lumpur in that the July

peak is much more marked in the latter case.
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Figure 4.13: The mean monthly cycle of DIR per 100,000 population for 3 states; (a)

Perlis, (b) Penang and (c) Kedah in the North West region in Malaysia from 2001 to

2009.
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Figure 4.14: The mean monthly cycle of DIR per 100,000 population for 3 states; (a)

N.Sembilan, (b) Melaka and (c) Johor in the South East region in Malaysia from 2001

to 2009.
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Figure 4.15: The mean monthly cycle of DIR per 100,000 population for 3 states; (a)

Perak, (b) Selangor and (c) Kuala Lumpur in the South West region in Malaysia from

2001 to 2009.
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4.3 Dengue Incidence and Demographic Data

General trends in population growth in Malaysia have already been touched in the

introduction to Section 4.2. The 2010 Population and Housing Census of Malaysia

(Census 2010) was the fifth decennial census to be conducted since the formation of

Malaysia in 1963 (previous censuses being conducted in 1970, 1980, 1991 and 2000)

and revealed that the total population of Malaysia was 28.3 million, compared with

23.3 million in 2000. This gives an average annual population growth rate of 2.0%

for the period 2000-20101. The increasing trend in DIR over this period has already

been discussed and it is of note that this is particularly marked in those states in

the South West of the country (such as Kuala Lumpur) where the main urban

areas of Malaysia are located and where there is a higher population density. The

effect of high population density on the incidence of dengue fever has been noted

in several studies. In Brazil, it was reported that 70% of the individuals in urban

populations in the country had previously contracted dengue fever, implying posi-

tive correlation between DIR and population density (Siqueira et al., 2005); whilst,

Gubler (2002) has commented more generally on the role of population growth,

increased urbanisation and improved transportation systems as contributors to the

increased global incidence of dengue fever. It is also undoubtedly the case that in

many developing countries population density acts as a surrogate measure for poor

living conditions and social inequalities which are also well known risk factors for

dengue (Guzman and Kouri, 2002; Mondini and Chiaravalloti, 2007; Stefan et al.,

2008). That said, the relationship between DIR and population density is not nec-

essarily straightforward. Improvements in water supply and vector control may

also be associated with increased population density and these will help in control

and prevention of dengue transmission. Wolf et al. (2011) have reported that areas

having high population density with adequate water supply do not experience se-

vere dengue outbreaks compared to rural areas where there is high risk of dengue

due to lack of piped water supply and thus more mosquito breeding sites in water

1http://www.statistics.gov.my/portal/index.php
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storage containers.

Figure 4.16 shows the relationship between the logarithm of monthly DIR and

population density in the 12 states of Malaysia for the 108 months period from

2001-2009. As expected, this plot demonstrates high levels of variability; but,

nevertheless, there is some clear evidence of higher DIR being associated with

those states with very high population density.
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Figure 4.16: Relationship between log monthly DIR and population density for 12 states

of Malaysia 2001-2009

Another way in which demographics (both population and population density)

may indirectly influence DIR arises from the infectious nature of the disease -

higher populations provide more hosts for the virus and higher population densities

provide for higher chances of transmission. One way to capture this infectious effect

is to look at DIR in relation to DIR in the immediately preceding months. Figure

4.17 shows the relationship between the logarithm of monthly DIR and that lagged

by one, two and three months in the 12 states of Malaysia for the 108 months period

from 2001-2009. There is some evidence of the positive relationship in each case

and it is particularly of interest that this extends to DIR lagged by 3 months, since

this relationship could be practically useful in developing predictive DIR models in
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subsequent chapters as opposed to shorter lags where data would not be available

in a practical setting.

4.4 Dengue Incidence and Climate Data

As discussed in Chapter 3, studies on the relationship between weather, climate

and dengue have attracted serious attention from scientists throughout the world.

As mentioned earlier in this chapter, the monsoon seasons play a major role in

the Malaysian context (Suhaila et al., 2010b). The pattern has a large effect on

rainfall, and is one of the main contributors in dengue epidemics in some regions

of Malaysia as highlighted by Aiken et al. (1980). This section explores the rela-

tionship between observed monthly DIR in Malaysia and climatic factors such as

rainfall, temperature, humidity, number of rainy days and ENSO.

Figure 4.18 shows the relationship between the logarithm of monthly DIR and

average monthly rainfall and its lagged values in the 12 states of Malaysia for the

period 2001-2009. There appears little relationship in current and lag 1 month

(possibly slightly negative) but more of a positive relationship at lags of 2 and

particularly 3 months. This aligns with the findings of Souza et al. (2010) which

reported positive correlation between the building infestation rate and number of

dengue cases and rainfall.

Figure 4.19 shows the corresponding picture with respect to number of rainy days

in the month which is potentially useful alternative measure to average rainfall

(amount versus intensity). Little relationship is apparent except perhaps at lag

3 where there is perhaps some suggestion of a negative trend. The relationship

between the logarithm of monthly DIR and average monthly temperature and

its lagged values in the 12 states of Malaysia for the period 2001-2009 is shown

in Figure 4.20. Again there is high variability but some indication of positive

associations with lagged temperature at 1, 2 and 3 months. The corresponding

picture with regard to humidity is shown in Figure 4.21. Here there is little evidence
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Figure 4.17: Relationship between log monthly DIR for 12 states of Malaysia 2001-2009

and (a) log monthly DIR lag 1 Month, (b) log monthly DIR lag 2 Months, (c) log monthly

DIR lag 3 Months.
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Figure 4.18: Relationship between log monthly DIR for 12 states of Malaysia 2001-2009

and (a) Rainfall Current Month, (b) Rainfall Lag 1 Month, (c) Rainfall Lag 2 Months

and (d) Rainfall Lag 3 Months.
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Figure 4.19: Relationship between log monthly DIR for 12 states of Malaysia 2001-2009

and (a) Number of Rainy Days Current Month, (b) Number of Rainy Days Lag 1 Month,

(c) Number of Rainy Days Lag 2 Months and (d) Number of Rainy Days Lag 3 Months.
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Figure 4.20: Relationship between log monthly DIR for 12 states of Malaysia 2001-2009

and (a) Temperature Current Month, (b) Temperature Lag 1 Month, (c) Temperature

Lag 2 Months and (d) Temperature Lag 3 Months.
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of any relationship with humidity either in the current month or in the preceding

three months.
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Figure 4.21: Relationship between log monthly DIR for 12 states of Malaysia 2001-2009

and (a) Humidity Current Month, (b) Humidity Lag 1 Month, (c) Humidity Lag 2 Months

and (d) Humidity Lag 3 Months.

Previous sections of this chapter have identified strong regional differences in sea-

sonal patterns of DIR in Malaysia and so it is perhaps useful to investigate some

of the relationships with climate variables at a regional level. Figure 4.22 shows

scatter plots of the logarithm of monthly DIR and average rainfall in the same

month for the four different regions of Malaysia from 2001 to 2009. Very little

convincing relationship is apparent in any of the regions. The corresponding pic-

ture for average rainfall lagged by 3 months is shown in Figure 4.23 and here some

positive association is apparent in both the South East and particularly the South
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West regions.
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Figure 4.22: Relationship between log monthly DIR and average rainfall in same month

for (a) North East, (b) South East, (c) North West and (d) South West of Malaysia from

2001 to 2009.

When regional level relationships between log monthly DIR and numbers of rainy

days in the month are investigated (see Figures 4.24 and 4.25) the only suggested

relationships are with rainy days lagged by 3 months and particularly in the South

West.

Regional level relationships between monthly DIR and temperature in the same

month and in previous 3 months are shown in Figures 4.26 and 4.27. A negative

relationship with temperature in the same month and in previous 3 months is

perhaps evident in the North East region, but otherwise relationships are weak.

Some of the complexity of potential interactions in the above relationships between
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Figure 4.23: Relationship between log monthly DIR and average rainfall 3 months previ-

ously for (a) North East, (b) South East, (c) North West and (d) South West of Malaysia

from 2001 to 2009.
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Figure 4.24: Relationship between log monthly DIR and number of rainy days in same

month for (a) North East, (b) South East, (c) North West and (d) South West of Malaysia

from 2001 to 2009.
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Figure 4.25: Relationship between log monthly DIR and number of rainy days 3 months

previously for (a) North East, (b) South East, (c) North West and (d) South West of

Malaysia from 2001 to 2009.
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Figure 4.26: Relationship between log monthly DIR and average temperature in same

month for (a) North East, (b) South East, (c) North West and (d) South West of Malaysia

from 2001 to 2009.
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Figure 4.27: Relationship between log monthly DIR and average temperature 3 months

previously for (a) North East, (b) South East, (c) North West and (d) South West of

Malaysia from 2001 to 2009.
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climate variables and DIR is perhaps illustrated in Figure 4.28 which shows the

mean annual cycle over 2001-2009 of monthly DIR, average rainfall and temperature

together with number of rainy days for the South West region for the period January

2001 to December 2009. DIR peaks in February (Figure 4.28-a), while rainfall

peaks 3 months earlier in November (Figure 4.28-b) along with the highest number

of rainy days (Figure 4.28-c); then, temperature peaks in May (Figure 4.28-d).
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Figure 4.28: Mean annual cycle of (a) log monthly DIR, (b) Average Rainfall, (c) Aver-

age Temperature (d) No. of Rainy Days in South West of Malaysia from 2001 to 2009.

Finally in this section, we turn to possible relationships between ENSO and dengue

incidence in Malaysia. As discussed in Chapter 2, ENSO influences inter-annual

climate variability with warm El Niño and cold La Niña phases engendering sig-

nificant temperature and precipitation anomalies around the world. Both events

are sometimes described as very weak, weak, moderate, strong and very strong,
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depending on their impacts (Glantz, 2001). Other classifications (Webster and

Palmer, 1997) focus on the magnitude of ENSO parameters, such as SST devia-

tions or the geographical area covered by the pool of warm water in the Pacific.

Very strong events can result in temperatures up to 3.5 ◦C above average in the

eastern Pacific, with localised warming of up to 9 ◦C.

Consequence of ENSO for dengue transmission and for related infectious diseases

are an area of current research and could perhaps become an important contributor

to the development of Early Warning Systems (EWS) for dengue in countries such

as Malaysia. Epidemics of dengue fever in many tropical countries have potential

links with climatic anomalies associated with ENSO (Kovats et al., 1999). Analyses

of the relationship of DIR to ENSO and local weather present challenges. Several

studies have looked at associations between dengue epidemics and ENSO, such as

Johansson et al. (2009a), which reported time-series analyses for Puerto Rico, Mex-

ico and Thailand, and found no systematic association between dengue outbreaks

and ENSO; whereas Gagnon et al. (2001) highlighted that there is a statistically

significant correlation between El Niño and dengue epidemics in French Guiana

and Indonesia where these regions experience statistically significant warmer tem-

perature and less amount of rainfall in El Niño years.

Turning to the current study, a time series of the Oceanic Niño Index (ONI),

defined as the 3-month running mean of SST anomalies in the Niño 4 region in the

central Pacific was obtained from the NOAA Climate Prediction Center (CPC)2

from 2001 to 2009 and the behaviour for this is illustrated in Figures 4.29. Using

this index, the CPC defined ENSO events are when SST anomalies are ≥ +0.5 for

five consecutive months for warm (El Niño) and ≤ −0.5 for cold (La Niña). SST

anomalies are weak ≤ ±0.5, moderate ≥ ±0.5 and strong event for ≤ −1.0 and

≥ 1.0.

Relating this to dengue DIR in Malaysia, Figure 4.30 shows a weak positive re-

lationship between the logarithm of monthly DIR and ENSO at different lags for

2http://www.esrl.noaa.gov/psd/gcoswgsp/Timeseries/Nino4/
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Figure 4.29: Standardised anomalies of SST (Niño 4 Index) (3 months-running mean)

(Jan 2001-Dec 2009).

the 12 states of Peninsular Malaysia over the 9 years from 2001-2009. Visually

these plots look very similar, but actually the strongest relationship (i.e. sample

correlation) occurs at the longest lag (i.e. 6 months).

4.5 Summary

This chapter has presented exploratory analyses of possible relationships between

annual and monthly DIR and climate and other factors that can be more formally

used in model building in subsequent chapters. The variables that were considered

included annual trend, in year seasonal effects, population, population density and

lagged dengue incidence rate as well as climate factors such as average rainfall

and temperature, number of rainy days, ENSO and lagged values of these climate

variables.

The analyses presented have deliberately been informal based upon simple scatter

plots with superimposed smooth fits in some cases. We have not reported correla-
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Figure 4.30: Relationship between log monthly DIR and Niño 4 at different lags in the

12 states of Peninsular Malaysia from 2001 to 2009.
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tion coefficients or any formal tests of relationships because the object was simply

to suggest relationships that might need to be incorporated into more formal statis-

tical models in subsequent chapters. The key findings to emerge from the analyses

presented are:

• There is some evidence of an increasing annual trend in DIR in all states of

Malaysia

• There is a strong in-year seasonal cycle in DIR and that differences in this

cycle may need to be allowed for in different broad geographical regions of

Malaysia and possibly in different states

• High population density is positively related to monthly DIR as is DIR in

the previous month

• Relationships between monthly DIR and climate variables are generally quite

weak; nevertheless some relationships may be able to be usefully incorporated

into predictive models. These include average temperature and rainfall, num-

ber of rainy days and ENSO. However lagged values of these variables need

to be considered up to 6 months in the case of ENSO and from 1-3 months

in the case of other variables.

In summary, DIR in Malaysia is potentially associated with country wide trend,

regional seasonal cycle, population, population density, dengue incidence in pre-

ceding months, lagged average temperature, average rainfall, number of rainy days

and ENSO.

In the next chapter, a framework will be proposed to model spatio-temporal vari-

ations in DIR which can incorporate and more formally assess the relative impact

of such factors.



Chapter 5

Model Development

The aim of this chapter is to determine an appropriate modelling framework for

monthly dengue incidence in Malaysia and using that framework then develop

suitable spatio-temporal statistical models by testing and selecting appropriate

explanatory variables from the potential associations identified and described in the

preceding chapter. The data set used throughout this chapter will that involving

monthly dengue counts for the 12 states of Peninsular Malaysia for the period

2001-2009 as described in Chapter 4.

5.1 Modelling Frameworks

The general approach adopted in this chapter follows that used in a number of other

recent ecological modelling studies on dengue and is based on the generalised linear

model (GLM) (Nelder and Wedderburn, 1972) and variations thereof. Examples

of such studies where dengue count data has been modelled by using the GLM

framework include those by Zuur et al. (2009), Hashizume et al. (2012), Krisada

and Lily (2013), Lowe et al. (2013) and Cabrera (2013).

The rapid growth to the use of GLM in a variety of fields is due to its flexibility

which allows the inclusion of an extensive set of distributions belonging to the

121
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exponential family. The GLM is a development of the linear model to accomodate

both non-gaussian response distributions and transformations for non-linearity in

the systematic model component. In a GLM, there are independent observations

(y1, . . . , yn) on a response, where the distribution of yi is in the exponential family

with parameters θi and φ and with functions a(φ), b(θi), c(yi, φ) chosen to be

appropriate for the particular data i.e.:

p(yi; θi, φ) = exp

[
(yθi − b(θi))

a(φ)
+ c(y, φ)

]
In order to complete the GLM specification, we have explanatory variables (pre-

dictors), xi = (xi1, . . . , xip) (could be quantitative or categorical, transformations

of predictors, or polynomial terms) whose values may influence the distribution of

the response yi through a linear predictor; ηi = β0+β1xi1+β2xi2+ . . .+βpxip which

affects the mean of the response via a known, smooth and invertible ‘link function’

g(·) so that g(µi) = ηi = β0 + β1xi1 + β2xi2 + . . . + βpxip function. Note the link

function g(·) does not transform yi, but rather its mean µi (e.g. a gaussian linear

model with response log yi is not the same as a GLM with normal error and a log

link). For a full account of the theory and application of GLMs, see McCullagh

and Nelder (1989).

The GLM specification is loose enough to encompass a wide class of models use-

ful in statistical practice, but tight enough to allow the development of a unified

methodology of parameter estimation (model fitting) and associated inference (at

least approximate inference) based on general likelihood methodology. Suppose

(y1, . . . , yn) are data from a GLM, so the distribution of yi is in the exponential

family with parameter θi and φ, with unknown functions ai(φ), b(θi), c(yi, φ) and

with link function g(µi) = ηi = β0 + β1xi1 + . . .+ βpxip. Further assume a(φ) = aφ

for some constant s (not much of a restriction in practical modelling). Then the

likelihood is:

L(θ1, . . . , θn;φ) =
n∏
i=1

exp

[
(yiθi − b(θi))

aφ
+ c(yi, φ)

]
(5.1)
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So the log-likelihood is:

`(θ1, . . . , θn;φ) =
n∑
i=1

[
(yiθi − b(θi))

aφ
+ c(yi, φ)

]
(5.2)

To obtain MLEs for (β0, . . . , βp) we need to solve the system of simultaneous equa-

tions:

∂`(θ1, . . . , θn;φ)

∂βj
=

n∑
i=1

∂`i
∂βj

= 0 for j = 0, . . . , p (5.3)

where `i = (yiθi−b(θi))
aφ

+ c(yi, φ). By using the chain rule:

∂`i
∂βj

=
∂`i
∂θi
× ∂θi
∂µi
× ∂µi
∂ηi
× ∂ηi
∂βj

(5.4)

Then, since for the exponential family µi = b′(θi), we have:

∂`i
∂θi

=
(yi − b′(θi))

aiφ
=

(yi − µi)
aφ

(5.5)

with ∂µi
∂θi

= b′′(θi) and since this depends on µi via b′(θi), we can write ∂µi
∂θi

= v(µi)

(often called the variance function of the model) or ∂θi
∂µi

= 1
v(µi)

.

Also, since g(µi) = ηi = β0 + β1xi1 + . . .+ βpxip

∂ηi
∂µi

= g′(µi) or ∂µi
∂ηi

= 1
g′(µi)

and ∂ηi
∂βj

= xij (where xi0 is taken to be 1). So, putting this all together, the MLEs

equations reduce to:

n∑
i=1

(yi − µi)xij
aφv(µi)g′(µi)

= 0 for j = 0, . . . , p (5.6)

Equation 5.6 is a set of equations for β = (β0, . . . , βp), since β determines the

value of µi for i = 1, . . . , n. Note that since φ 6= 0, the solution β̂ in Equation

5.6 does not depend on knowledge of φ. Although the equation definitely depends

on the specific model, a general numerical iterative solution can be derived via a

Newton-Raphson approach which (after manipulation) gives the rth iteration as

β̂(r) = (X′W(r−1)X)−1X′W(r−1)z(r−1) where:
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• X is the n× (p+ 1) ‘design matrix’ which (as in the normal theory linear model)

has row vectors (1, xi1, . . . , xip).

• z(r−1) = (z1, . . . , zn) is a so called working vector with elements:

zi = ηi + (yi − µi)
∂ηi
∂µi

(5.7)

evaluated at β(r−1) and at the data values.

• W(r−1) is a diagonal weighting matrix with ith diagonal element:

wii =
1

av(µi)

(
∂µi
∂ηi

)2

(5.8)

evaluated at β(r−1) and at the data values.

At each stage, this looks similar to Gaussian least squares regression of the response

vector z on the explanatory matrix X, except this regression is ‘weighted’ by the

diagonal elements of W. Therefore, the model fitting method is often referred

to as iterative re-weighted least squares (IRLS). IRLS algorithms are available in

standard statistical computing software such as R (R Core Team, 2010). R provides

a flexible implementation of the GLM framework in the function glm (Chambers

and Hastie, 1992). Note also that with a normal error and identity link these GLM

expressions for parameter estimates essentially collapse to the usual non-iterative

results for the normal theory linear model.

Standard errors for estimates then follow from the standard general likelihood

approach which gives:

var[β̂] = φ(X′WX)−1 (5.9)

with W being evaluated at the final iteration of the parameter fitting process. We

then obtain confidence intervals and associated hypothesis tests from βi−β̂i√
var(β̂i)

being

approximately distributed as N(0, 1). If the scale parameter φ is unknown it must

be estimated to obtain the previous results and one such estimate is given by:

φ̂ =
1

(n− p− 1)

n∑
i=1

(yi − µ̂i)2

v(µ̂i)
(5.10)
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where µ̂i = g−1(x′iβ̂) is the predicted mean value of the ith response i.e. that

predicted at explanatory variable values xi = (1, xi1, . . . , xip)
′ (Note that this is not

the only estimate of φ which can be used). Using φ̂ we have v̂ar(β̂) = φ̂(X′WX)−1

and βi−β̂i√
v̂ar(β̂i)

is then approximately distributed as tn−p−1. Note that with a normal

error and identity link these GLM expressions for parameter standard errors and

confidence intervals essentially collapse to the usual results for the normal theory

linear model.

In testing goodness-of-fit GLM M , the general likelihood ratio statistic ∧ = LM

LMs

(where Ms is the saturated model) is given by:

∧ =
exp

∑n
i=1

[
(yiθ̂i−b(θ̂i))

aφ
+ c(yi, φ)

]
exp

∑n
i=1

[
(yiθ̃i−b(θ̃i))

aφ
+ c(yi, φ)

]
= exp

n∑
i=1

[(
yi(θ̂i − θ̃i)− b(θ̂i) + b(θ̃i)

)
/aφ
]

(5.11)

where θ̂i denote MLEs estimates under the model M and θ̃i denote MLEs estimates

under the saturated model Ms (i.e the model in which µ̂i = yi). So, the log

likelihood ratio statistic is:

−2 log∧ = 2
n∑
i=1

[(
yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)

)
/φ
]

(5.12)

Thus in the case when a = 1 (true for all models we will be concerned with)

−2 log∧ can be written as DM

φ
where:

DM = 2
n∑
i=1

[
yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)

]
(5.13)

DM is known as the deviance of the model M and DM

φ
is known as the scaled

deviance. Note DM depends on the data y and the estimated parameters β̂ in the

linear predictor but it does not depend on φ. General likelihood theory tells us that

the scaled deviance −2 log∧ has an asymptotic χ2
n−p−1 distribution with expected

value n − p − 1 under the hypothesis that there is no significance difference in fit
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between the model M and the saturated model Ms (Note that here p is the number

of explanatory variables so the number of parameters is p+ 1).

It follows that when φ is known, the goodness-of-fit of a GLM can be assessed by

comparing the value of the scaled deviance of the model to the χ2
n−p−1 distribution

(the scaled deviance should roughly equal to n − p − 1 for an edequate model).

Note where φ is unknown the above suggests that a sensible estimate of φ is given

by φ̂ = DM

n−p−1 since this will ‘make the model fit’ (an alternative estimate for φ

to that suggested previously). A test of differences in fit between nested GLM

models, M1 and M2 with ai(φ) = φ and numbers of parameters p1 + 1 < p2 + 1 is

also based on log-likelihood ratios. In this case, the relevant log-likelihood statistic

is the difference in scaled deviances i.e
DM1

−DM2

φ
. General likelihood theory states

that if φ is known, this difference is approximately χ2
p2−p1 distributed if there is

no difference in model fit. On the other hand, if φ is unknown, it will need to

be replaced by an estimate and the ‘best’ such estimate is clearly associated with

the model with the more parameters i.e. φ̂ =
DM1

n−p2−1 . So we thus plug in φ̂ for

φ and we then slightly modify the likelihood ratio statistic for comparing M1 and

M2 to :
(DM1

−DM2)
/(p2−p1)

DM2
/(n−p2−1) . This for a GLM, has an approximate Fp2−p1,n−p2−1

distribution under no difference in model fit. We can also (more crudely) compare

the fit of two models M1, M2 by comparing their Aikaike Information Criterion

(AIC) values which penalises their fits by the number of parameters used (Akaike,

1973; Sakamoto et al., 1988) i.e. compare
DM1

φ
+ 2(p1 + 1) and

DM2

φ
+ 2(p2 + 1)

where the lower AIC is better. The Bayesian Schwartz Information Criteria (BIC),

defined as in Equation 5.14 below (Schwartz, 1978) is an alternative comparison

criterion between models which penalises for the number of parameters in the

model. Similiar to AIC, the lower the BIC value, the better the model is.

BIC = −2`(µ̂; y) + p log(n) (5.14)

Another commonly used descriptive measure of model fit is the pseudo-R2 value

which simply compares the log-likelihood from the null model (contains only an
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intercept) to the log-likelihood from the fitted model (Breslow, 1996) i.e.

R2 = 1− DM

DMnull

(5.15)

R2 values closer to 1 implying that the model is a better fit to the data. An adjusted

pseudo-R2
a can also be defined which adjusts for the number of explanatory variables

in the model where:

R2
a =

n− 1

n− p− 1
R2 (5.16)

where n is the number of data points, and p is the number of covariates in the

model.

Prediction of values from a GLM is similar to that used for the normal theory

linear model. Prediction of a response y by its fitted value (predicted mean value),

so ŷi = µ̂i. However, in a GLM the mean µi is actually a function of the linear

predictor, ηi. Therefore, the prediction for the response at explanatory variable

values xi = (1, xi1, . . . , xip)
′ is ŷi = g−1

(
x′iβ̂
)

. It may be shown that the variance

of a GLM fitted value ŷi is given by var[ŷi] = hiivar[yi] = σ2
i where hii is the ith

diagonal element of the matrix : H = W
1
2 X(X′WX)−1X′W

1
2 which is the GLM

equivalent of the normal theory linear model ‘hat matrix’ H = X(X′X)−1X′. Recall

that for a GLM, var[yi] = σ2
i = aiφv(µi), where v() is the variable function which

we can estimate by using σ̂2
i = aiφ̂v(µ̂i). Finally, the estimated variance of ŷi as

var[ŷi] = hiiσ̂
2
i is obtained.

As for the Gaussian linear model, residuals form the basis for model checking for

the GLM. However, various other different kinds of residuals can be defined for

a GLM as well as the ‘raw’ residuals ε̂
(p)
i = (yi − ŷi). In particular, the Pearson

residuals are the standardised version of the raw residuals and derived as:

ε̂
(p)
i =

ε̂i√
v̂ar[εi]

=
(yi − ŷi)√

[(1− hii)σ̂2
i ]

(5.17)

where the expression for v̂ar[εi] follows from earlier one for var[ŷi]. A further

alternative is the deviance residuals which can be described as the square root of
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an individual observation’s contribution to the deviance with the sign of (yi − ŷi)

attached i.e.: sgn(yi − ŷi)
√
Di where Di = 2

[
yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)

]
with θ̂i

and θ̃i referring to estimated values under the model and the saturated model

respectively, or more particularly the associated standardised deviance residuals:

ε̂
(d)
i =

sgn(yi − ŷi)
√
Di√

(1− hii)
(5.18)

There are other possible types of residuals, but the Pearson and standardised de-

viance residuals tend to be the most useful for model diagnostic purposes and

should approximately follow an N(0, 1) distribution if the distributional assump-

tions in the original GLM are valid. In particular standardised deviance residuals

pin-point any observations that give a disproportionately large contribution to the

deviance (leverage and influence).

So turning to the modelling of observed dengue counts, yi, the particular version

of the GLM that may perhaps be considered first is a Poisson GLM with a log link

and a population offset which can be written as:

yi ∼ P [µi] = P [piρi] i = 1, . . . , n (5.19)

log µi = log pi + log ρi = log pi + β0 +

p∑
j=1

βjxji

where P [µi] denotes the Poisson distribution with probability mass function:

p(yi;µi) =
exp−µiµyii

yi!
yi = 0, 1, 2, . . . (5.20)

and where ρi denotes dengue incidence rate, xji, j = 1, . . . , p, are suitably chosen

covariates and log pi is an offset included to account for the different (known)

population sizes in each area i.

However, there are well known possible problems with using such a Poisson GLM

to model disease counts, a key issue being overdispersion. Overdispersion is the

commonly encountered situation where the variance of observed counts exceeds

the mean whereas the Poisson distribution implies equality of mean and variance.
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Inappropriate use of the Poisson assumption when overdispersion is present may

underestimate the standard errors and overstate the significance of the model pa-

rameters and consequently, give misleading inference about these parameters.

We could change the model to accommodate overdispersion by switching to a nega-

tive binomial model (Simon et al., 2003). A negative binomial GLM is also suitable

for modelling count data, but does not assume the mean is equal to the variance. It

can be considered as a generalisation of the Poisson GLM since it has the same mean

structure but an extra parameter to model the overdispersion (Breslow, 1984). The

negative binomial is a common choice in modelling disease counts in epidemiolog-

ical applications, Richard and John (2007) similarly advocated use of the negative

binomial distribution in criminology applications when there is evidence of overdis-

persion. Research by Osgood (2000) has also suggested using a negative binomial

distribution in such circumstances. Some studies have also adopted the negative

binomial GLM in modelling dengue counts such as Simões et al. (2013), Markon

(2014) and Ahmed et al. (2015).

Accordingly, the previous Poisson model becomes:

yi ∼ NB[µi, θ] = NB[piρi, θ] i = 1, . . . , n (5.21)

log µi = log pi + log ρi = log pi + β0 +

p∑
j=1

βjxji

where NB[µi, θ] denotes the negative binomial distribution with probability mass

function:

p(yi;µi, θ) =
Γ(yi + θ)

Γ(θ)yi!

µyii θ
θ

(µi + θ)yi+θ
(5.22)

where µi is the mean and θ is the scale parameter. The variance of this distribution

is given by µi +
µ2i
θ

, hence θ can be used to accommodate overdispersion.

However as seen in Chapter 4, there are possibilities of non-linear relations with

explanatory variables in modelling dengue incidence rate (e.g annual trends and

seasonal cycles). Therefore this study will extend the negative binomial GLM to

that of a negative binomial generalised additive model (GAM). The GAM (Hastie
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and Tibshirani, 1990) extends the GLM by allowing the linear predictor to include

unknown smooth non-parametric functions of one or more of the explanatory vari-

ables (e.g. β0+f1(xi1)+ . . .+fp(xip)). The GAM model can be fitted by iteratively

fitting weighted additive models by localised regression or smoothing splines in a

analogous way as the iteratively weighted least squares procedure relates to ordi-

nary least squares (Simon, 2006). The main strength in GAM is the ability to deal

with highly non-linear and non-monotonic relationships between the response and

the set of explanatory variables (Hastie and Tibshirani, 1986). The ability of GAM

to handle non-linear data structures has encouraged its use in ecological models

such as those that will be developed for dengue later in this chapter (e.g. Thomas

and Neil, 1991 and Cheong et al., 2013).

Algorithms to fit GAM are available in off-the-shelf statistical software, such as R

(R Core Team, 2010). Cubic splines or Thin Plate Splines are commonly used to

estimate the smooth functions. Two techniques may be used to estimate associ-

ated smoothing parameters (Craven and Wahba, 1979 and Wahba, 1990) namely

generalised cross validation (GCV) or Un-Biased Risk Estimation (UBRE) which

are defined as follows:

GCV = n
DM

n− edf
(5.23)

UBRE =
DM

n
+ 2θ

edf

n− θ
(5.24)

where n is the number of observations, DM is the deviance of the model, θ is the

scale parameter and edf is the effective degrees of freedom of the model. The func-

tion gam in the mgcv package in R, handles the basic fitting of GAM models (Hastie

and Tibshirani, 1986) using an easy to use model specification interface where

smooth functions can be used on their own or mixed with parametric functions as

shown in the following expressions.

s(a) + s(b) + s(c) (5.25a)

a+ s(b) + c (5.25b)
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Expression 5.25a has smooth functions for all three of its continuous explanatory

variables a, b and c using the smoother (s), while expression 5.25b fits parametric

terms for a and c and a non-parametric smooth function for b.

So, when and if required in subsequent sections of this chapter, we may extend the

previously suggested negative binomial model for dengue incidence to:

yi ∼ NB[µi, θ] = NB[piρi, θ] i = 1, . . . , n (5.26)

log µi = log pi + log ρi = log pi + β0 +

q1∑
j=1

βjxji +

q2∑
j=1

fj(xji)

where the previous p is now q1 + q2 and fj(xji) are unknown smooth functions of

a subset of the explanatory variables.

5.2 Covariate Selection

The exploratory analyses in Chapter 4 have suggested dengue incidence in Malaysia

may be related to factors such as population, population density, sea surface tem-

perature (referred to as Niño 4), average rainfall and temperature, and number

of rainy days as well as an annual seasonal cycle in dengue counts and influences

of monsoon and regional or state differences. These then are the set of variables

that will be further investigated more formally in this section using the modelling

frameworks introduced in the previous section. The objective is to select a spe-

cific ‘best subset’ of covariates from those discussed in Chapter 4. This is not a

straightforward automatic process. The volume of data implies that model coeffi-

cients will often be formally statistically significant as a result of the sheer number

of observations rather than because of more substantive reasons. Multicollinearity

between variables will also be present. The role of ENSO may be obscured either

by a local climate heterogeneity, insufficient data or randomly coincident outbreaks

as discussed by Johansson et al. (2009a). It will be important to explore time lags

for the climate variables as highlighted by Cuadras and Fortiana (2002), for exam-

ple where heavy rainfall in a preceding month may cause an increased supply of
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standing water sources, mosquito breeding sites which then in the following months

increase the dengue fever risk. Interactions between some variables may also be im-

portant, particularly climatic variables, due to the coupled nature of the dynamical

processes involved. Non-linear relationships may also need to be investigated.

So a very large number of models will need to be compared and the final variable se-

lection will need to balance parsimony and pragmatism with formal considerations

of coefficient significance, AIC and automatic stepwise procedures. The approach

adopted in this section will be to focus on the negative binomial model introduced

in the previous section. This is because this framework will protect against the

likely presence of overdispersion whilst being more computationally efficient than

the GAM for the purposes of variable selection. Once variables have been selected

in this section then the issue of overdispersion and use of smooth functions for

some variables will be followed up in the subsequent section. So if yst denotes the

observed dengue counts for state s (s = 1, . . . , 12) and month t (t = 1, . . . , 108)

(recall there are 12 states and 108 monthly observations) then considering these

counts to be negative binomial distributed we will use a GLM of the general form:

yst ∼ NegBin(µst = pstρst, θ)

log µst = log(pst) + log(ρst) = log(pst) + α +

p∑
j=1

βjxji (5.27)

where the expected number of dengue cases, µst, are given by the population pst

multiplied by the unknown relative dengue risk, ρst for a given state, s and month,

t. Models involving all available explanatory variables and subsets of them were

explored. These included climate covariates rainfall, number of rainy days, temper-

ature, sea surface temperature (SST) and lagged values of these variables from the

current month up to lag of 6 months. Then the population offset and population

density as well as a general global trend and factors to represent monthly seasonal

effects and regional, state or monsoon influences. Non-linearity in some of the re-

lationships was explored by inclusion of low order polynomial terms in the relevant

variable. Interactions between relevant variables were also tested. Finally lagged

values of the logarithm of DIR were included to allow for the dynamic nature of
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the disease.

A very large number of models was compared to determine the final variable se-

lection which is listed in Table 5.1. There, for the sake of clarity the general βjxjst

terms in the Model 5.27 have been broken down into three groups. First, the se-

lected climate terms, βjxjst, which are respectively average rainfall in the same

month and at a lag of 3 months, number of rainy days in the same month and at a

lag of 3 months, average temperature in the same month and lag 1 month, sea sur-

face temperature lag 6 months and interaction between temperature lag 1 month

and sea surface temperature lag 6 months. Second, terms γjzjst (j = 1, . . . , n)

which relate to population density, year (for global trend), a factor month (for

seasonal cycle) and log dengue incidence rate lagged 3 months. Finally, a factor

δr′(s) representing a regional effect with r′(s) being an indicator function mapping

each state, s into one of the four regions.

Specific inference concerning the various influences of the variables selected is fol-

lowed up in detail in the next section, but some brief summary comments are useful

at this point. This overall increase is superimposed on an annual seasonal cycle

which sees DIR peaks in January and July. DIR is higher in the areas where there

is a higher population density. This was particularly marked in those areas in the

South West of the country where the main urban areas of Malaysia are located

(Kuala Lumpur and Selangor states). However, in line with the views of Muham-

mad Azami et al. (2011), it is not the case that dengue in Malaysia is mainly

restricted to urban areas - where there are similar seroprevalence rates between

urban and rural areas dengue is present in both.

The variable selection indicated that geographical differences can be adequately

captured without significant loss of detail by grouping the twelve states into the

four broad regions of North East, South East, North West and South West. That

said the state factor did have some residual explanatory power as did the monsoon

factor and these factors will be further investigated in the subsequent section. The

effects of the climate variables broadly reflect those found in other dengue studies,
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but the interaction between ENSO and average temperature is an interesting and

unexpected finding.

5.3 Model Comparison and Development

Having determined a base set of selected variables in the previous section, this

section is concerned with comparing and developing models for dengue incidence

in Malaysia using these variables along with the modelling frameworks described

in Section 5.1.

We start by formally considering overdispersion. Variable selection in the previous

section was carried out using a negative binomial formulation as opposed to a

Poisson on the basis that overdispersion was likely and therefore potentially needed

to be allowed for in variable selection. Having selected the variables it is now

appropriate to formally establish that overdispersion is indeed present and that it

is necessary to continue with the negative binomial formulation rather than be able

to adopt the simpler Poisson case. In order to do that we fitted a Poisson GLM

using the full set of covariates identified in Table 5.1. Table 5.2 shows a summary

of statistics of model fit in terms of likelihood L, deviance, D, Aikaike Information

Criteria (AIC) and Bayesian Information Criteria (BIC) between a Poisson GLM

using these variables and a negative binomial GLM. The value of the negative log

likelihood, L of the Poisson GLM is 7 times higher than negative binomial GLM,

whilst deviance scores are 64 times higher and AIC and BIC values also 7 times

higher. These results clearly indicate very strong evidence to adopt a negative

binomial formulation as opposed to Poisson in modelling DIR in Malaysia.

Having established the need for a negative binomial formulation as opposed to a

Poisson, Table 5.3 provides detailed estimation results for the negative binomial

model using the covariates in Table 5.1. Note that for conciseness the numerous

factor effects for month and region are not reported in this table. The baseline in

this model (included in the intercept) is the North East region and the month of
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Table 5.2: Likelihood statistic (L), degrees of freedom (n − p), Deviance (D), Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) for models with

similar subsets of covariates fitted using Poisson and negative binomial GLMs.

Statistics Test Poisson Negative Binomial

L -49117.26 -7463.944

n− p 1282 1281

D 89632.34 1381.785

AIC 98266.53 14959.89

BIC 98349.13 15042.49

January the regional and monthly effects (not reported) then adjust this intercept

but the other effects remain the same relative to the intercept.

Having justified and established a baseline negative binomial GLM for dengue in-

cidence in Malaysia, the next step in model development is to investigate whether

this model can be improved by moving to the negative binomial GAM framework

introduced in Section 5.1. For example, the exploratory analyses in Chapter 4

indicated the seasonal cycle in dengue to be far from simple and possibly region

specific, suggesting that it may be preferable to represent this by a non-parametric

region specific smooth function, rather than by a monthly factor (Aziz et al., 2012).

Accordingly the previous negative binomial GLM was extended to a negative bino-

mial GAM with the dengue incidence rate ρst modelled as in Equation 5.28, with

other aspects of the model remaining as for the negative binomial GLM i.e. the

observed dengue counts, yst, for state s (s = 1, . . . , 12) and month t (t = 1, . . . , 108)

are assumed to follow a negative binomial distribution with mean value µst = pstρst

and scale parameter θ, where pst is the known population offset.

log ρst = α +
∑7

j βjxjst + β67x6stx7st + γ1z1st + γ2z2st + γ3z3st

+fr′(s) (z4st) + δr′(s) (5.28)

The GAM Model 5.28 is essentially the same as the negative binomial GLM except

that the seasonal cycle is now represented by a smooth function of calendar month
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with the interaction between this and region.
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Figure 5.1: (a) Residuals vs. fitted plot, (b) Absolute value of Residuals vs. fitted plot,

(c) Residuals vs. Theoretical Quantiles plot and (d) Frequency vs. Residuals plot.

Figure 5.1 shows four plots of residuals from Model 5.28. Figures 5.1(a) and (b)

show little evidence of non-constant variance. Figure 5.1(c) shows the upper tail

deviates somewhat from the straight line but Figure 5.1(d) shows the expected bell

shape, given that the deviance residuals should be normally distributed. Overall

these residuals are broadly acceptable. Figure 5.2 shows the smooth function for

the seasonal cycle for each region (as fitted within the model using the UBRE

criterion). The cycles are somewhat different in each of the regions, but each shows

clear cyclic behaviour with two peak points broadly falling in July and January

each year.

Table 5.4 compares the fits of the previous negative binomial GLM and the GAM.
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Figure 5.2: Smooth annual cycle functions of four regions in Malaysia; upper row from

left to right are North East and North West region, and lower row from left to right are

South East and South West region. In each panel, the solid line is the estimate, and the

dashed line is the confidence interval.

Table 5.4: Comparing the negative binomial GLM and GAM: ANOVA results.

Model Resid. Df LogLik Diff Resid. Df Deviance Pr(>ChiSq)

GLM 1274.0 -7463.944

GAM 1253.6 -7398.473 20.439 130.94 2.2e-16
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The likelihood ratio test confirms that there is a significant difference in fit with

the GAM fitting better.

It is interesting to explore the contribution of climatic variables in the GAM model

with that of the non-climatic variables. According two sub-models were defined as

follows:

log ρst = α +
7∑
j

βjxjst + β6x6stβ7x7st (5.29a)

log ρst = α + γ1z1st + γ2z2st + γ3z3st + fr′(s) (z4st) + δr′(s) (5.29b)

The climate Model 5.29a only includes the climate covariates; xjst with j = 1, . . . , 7

which are rainfall in the same month and lag 3 months, number of rainy days in the

same month and lag 3 months, temperatures in the same month and lag 1 month

and ONI lag 6 months together with interaction of climate covariates, β67x6stx7st

(ONI lag 6 months and temperature lag 1 month). On the other hand, the non-

climate Model 5.29b comprises just the non-climate variables i.e. z1st as population

density, z2st as year (considered 2001 to 2009), DIR lag 3 months z3st, region specific

smooth functions of month fr′(s) (z4st) and the region factor δr′(s).

Table 5.5 compares the fit of the climate model, the non-climate model and full

combined model. The results show that by including climate covariates alone the

model fit explains 0.4% of the deviance, whereas the non-climate covariates alone

explain 8.7% of the deviance, the full model combining the two sets of covariates

results in an additional 5% of the deviance being explained. This implies that

although the climate effects are significant in the dengue model their explanatory

power is relatively weak in the absence of the other non-climate influences.

The parameter estimates, standard errors and p-values for the parametric terms

in the full model are presented in Table 5.6. Note that, for conciseness the factor

effects for region are not reported in this table but the baseline in this model (in-

cluded in the intercept) is the North East region the regional effects (not reported)

then adjust this intercept but the other effects remain the same relative to the

intercept.
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Table 5.5: Deviance, pseudo-R2
D, number of parameter(p), degrees of freedom (n − p),

AIC and BIC for models with different subsets of covariates fitted using the negative

binomial GAM.

Model Deviance R2
D p n− p AIC BIC

Climate model 1441.435 0.0046 9 1287 16518.72 16565.19

Non-Climate model 1322.690 0.0866 7 1289 14922.42 15060.84

Combined model 1250.843 0.1362 15 1281 14869.82 15057.94

As may be seen from Table 5.6 the mean rainfall 3 months previously (β2) has

a positive relationship with DIR, but mean rainfall in the same month (β1) has a

negative relationship with DIR. This could possibly be because more rainfall earlier

in the year could encourage mosquito development, while heavy rainfall in the same

month could wash out mosquito breeding places and lower dengue transmission (Hii

et al., 2012).

The number of rainy days both 3 months previously (β4) and in the same month (β3)

and temperature in the same month (β5) all have a positive relationship with DIR,

while temperature at lag 1 month (β6) and sea surface temperature (SST) 6 months

previously (β7) have a negative relationship. However, the latter must be seen in

conjunction with the interaction between sea surface temperature (SST) 6 months

previously and lag 1 month temperature (β67) which has a positive relationship

with DIR. The population density (γ1), global trend (γ2) and DIR at lag 3 months

(γ3) all have a positive relationship with DIR. Also recall that this model also

includes the factor reflecting region and the smooth function of month (by region)

and these terms allow the baseline of the model to vary depending on which region

and calendar month is of interest.

Further refinements to the GAM Model 5.28 were then extensively explored. This

included replacing the parametric climate terms with smooth functions, however

this did not improve the fit of the model for any of these variables. Also replacing

the global trend term with a region specific smooth function which did improve
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the fit. Then experimenting with replacing the region specific seasonal cycles with

similar terms but split not by the four regions but rather by a two level monsoon

factor delineating states primarily affected by one or other of the two monsoons.

Also replacing region specific cycles with similar terms but split by a 12 level states

factor delineating all the separate states rather than simply four regions. These

latter changes did produce some interesting results, so we now proceed to consider

and compare three refined GAM models as follows:

log ρst = α +
7∑
j

βjxjst + β67x6stx7st + γ1z1st + fr′(s) (z2st) + γ3z3st

+ fr′(s) (z4st) + δr′(s) (5.30a)

log ρst = α +
7∑
j

βjxjst + β67x6stx7st + γ1z1st + fr′(s) (z2st) + γ3z3st

+ fm′(s) (z4st) + δr′(s) (5.30b)

log ρst = α +
7∑
j

βjxjst + β67x6stx7st + γ1z1st + fr′(s) (z2st) + γ3z3st

+ fs (z4st) + δr′(s) (5.30c)

where m′(s) denotes a function mapping states to monsoon type. Table 5.7 presents

summary statistics of the fits of Models 5.30a (A), 5.30b (B) and 5.30c (C). Model A

presents the lowest AIC, but more comprehensive analyses of the overall fit of these

three models will be reserved until the next chapter; here we simply concentrate

on reporting the results of parameter estimates and associated smooth functions.

Figure 5.3 shows the smooth functions of month by region and smooth function of

year by region for Model A. The first four plots shows the peak months of each

region (similar to that in the earlier Figure 5.2) while the other four plots show the

trend of DIR over years which highlights the epidemics of dengue in 2002 and 2008.

Figure 5.4 shows smooth functions for Model B i.e. a smooth function of month

by monsoon area (the Northeast monsoon area is a combination of the North East

and South East regions and the Southwest monsoon area is a combination of the

North West and South West regions). Both plots have a similar shape and show
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Table 5.7: The deviance (D), log-likelihood, Akaike Information Criterion (AIC),

Bayesian Information Criterion (BIC) and Un-Biased Risk Estimator (UBRE) for Model

A, Model B and Model C conditioned by region, monsoon and state respectively using neg-

ative binomial GAM.

Model Deviance LogLik AIC BIC UBRE

Model A (by region) 1374.425 -6859.32 13833.42 14132.49 0.2174

Model B (by monsoon) 1153.703 -6879.90 13850.52 14087.34 0.0160

Model C (by state) 1249.592 -6838.15 13856.68 14237.55 0.1683

the two monsoon areas having similar DIR peaks in January and July. Figure 5.4

also shows the smooth functions for global trend in each of the four regions which

are broadly similar to their equivalent in Figure 5.3 revealing some differences in

the global trend of DIR between the regions particularly in the North West region

where an epidemics of DIR started in 2004 some two years later than in the other

three regions.

Finally, Figure 5.5 shows the smooth functions of month and year for Model C i.e.

for month for each of the 12 states and for year for each of the four regions. Tables

5.8, 5.9 and 5.10 give the parameter estimates, standard errors and p-values for the

parametric terms in each of Models A, B and C respectively.

In order to facilitate comparison between the estimated coefficients in the differ-

ent models, Figure 5.6 graphically presents coefficient values and associated 95%

confidence intervals for the most significant parameters in Models A, B and C. It

is notable that the direction of effects for all coefficients in the three models is

broadly similar. Average rainfall in the current month has a negative relationship

on DIR (biting behaviour of mosquitoes?) whereas that 3 months previously has a

positive relationship (mosquito breeding?). Number of rainy days (a surrogate for

rainfall intensity) has a negative relationship with DIR at 3 month lag (‘washing’

of mosquito larvae?) and a positive relationship with DIR in the current month

(more intensive biting in dry periods?). Temperature in the current month shows
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Figure 5.4: Smooth functions in Model B. Upper row from left to right are monsoon

Southwest and Northeast for smooth function of month (by monsoon) followed by North

East for smooth function of year (by region). Lower row from left to right are North West,

South East and Sourelationship with th West for smooth function of year (by region). In

each panel, the solid line is the estimate, and the dashed line is the confidence interval.
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a significant positive relationship to DIR (biting behaviour of mosquitoes?). As

might be expected, DIR at lag 3 months previously has a significant positive re-

lationship with DIR (epidemic nature of the disease) as does population density

(infectious nature of the disease). Note that certain model coefficients are not in-

cluded in Figure 5.6 because formally the estimated values, treated individually,

are not significantly different from zero. This is the case for temperature one month

previously, sea surface temperature (SST) 6 months previously and the interaction

term between sea surface temperature 6 months previously and lag 1 month tem-

perature. However, the lack of individual significance for each of these terms does

not necessarily imply a lack of significance for their combined effect (multicollinear-

ity) and so these terms are retained in all three models on the basis that each has

emerged as important in some of the previous exploratory and model selection

analyses that have been reported in this chapter.

5.4 Summary

This chapter has introduced a range of modelling frameworks for dengue counts,

used the negative binomial GLM from this framework to select a subset of ‘best’

covariates from those explored in Chapter 4 and demonstrated that an equivalent

Poisson model is inappropriate because of overdispersion. The chapter has then

gone on to further develop the negative binomial GLM by extending it to a range of

three negative binomial generalised additive models (GAMs) reporting associated

results and comparisons. In the process, it has revealed a considerable amount of

useful information about dengue incidence in Malaysia.

The explanatory variables selected were mean rainfall at lag zero and at lag 3

months, mean temperature at lag zero and lag 1 month, number of rainy day at

lag zero and lag 3 months, sea surface temperature (SST) lag 6 months, dengue

incidence rate (DIR) lag 3 months and interaction between temperature lag 1 month

and sea surface temperature lag 6 months. Other covariates which are statistically
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a

Coefficient Values (and 95% CI’s)

Rainfall:Model A

Rainfall:Model B

Rainfall:Model C

Rainfall Lag3:Model A

Rainfall Lag3:Model B

Rainfall Lag3:Model C

−2e−04 0e+00 2e−04 4e−04

b

Coefficient Values (and 95% CI’s)

DIR Lag3:Model A

DIR Lag3:Model B

DIR Lag3:Model C

Rainy Days:Model A

Rainy Days:Model B

Rainy Days:Model C

Rainy Days Lag3:Model A

Rainy Days Lag3:Model B

Rainy Days Lag3:Model C

−0.01 0.00 0.01 0.02

c

Coefficient Values (and 95% CI’s)

Temperature:Model A

Temperature:Model B

Temperature:Model C

0.05 0.10 0.15 0.20

d

Coefficient Values (and 95% CI’s)

Population Density:Model A

Population Density:Model B

Population Density:Model C

0.00006 0.00008 0.00010 0.00012

Figure 5.6: Comparison of most significant coefficients (a) Rainfall and Rainfall Lag 3,

(b) Rainy Days, Rainy Day Lag 3 and DIR Lag 3, (c) Temperature and (d) Population

Density for Model A, Model B and Model C with estimates error bars represent 95%

confidence intervals around the respective mean values.

significant are population, population density, year, month, monsoon area, state

and region. It was established that climate information alone does not account

for a large proportion of the overall variation in DIR of Malaysia, however, spatio-

temporal climate information does significantly account for some of this variability.
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The three final models selected for the dengue incidence rate were:

log ρst = α +
7∑
j

βjxjst + β67x6stx7st + γ1z1st + fr′(s) (z2st) + γ3z3st

+ fr′(s) (z4st) + δr′(s) (5.31a)

log ρst = α +
7∑
j

βjxjst + β67x6stx7st + γ1z1st + fr′(s) (z2st) + γ3z3st

+ fm′(s) (z4st) + δr′(s) (5.31b)

log ρst = α +
7∑
j

βjxjst + β67x6stx7st + γ1z1st + fr′(s) (z2st) + γ3z3st

+ fs (z4st) + δr′(s) (5.31c)

These three models now need to be investigated further to ascertain their predictive

power and hence the scope for using them in developing an early warning system

for future dengue epidemics in Malaysia. In order to do that, predictions from these

models for future ‘out of sample’ data need to be fully assessed. In the next chapter

this will be investigated by fitting each of the models to ‘training data’ from 2001

to 2007 and then comparing and contrasting predictions of DIR on out-of-sample

‘test data’ for 2008 to 2009.



Chapter 6

Model Testing

Although there has been some recent progress in vaccine development for dengue

and other innovations focussed on dengue vector control such as the gene-based

sterile insect technique by using the RIDL technology and Wolbachia-infected Aedes

aegypti (Lee et al., 2015); it remains the case that for the foreseeable future good

predictive models for dengue outbreaks are of key importance in practical dengue

prevention in Malaysia. Amongst the many studies on dengue in Malaysia, very

few have focussed on predicting future dengue incidence for the purposes of ‘early

warning’ of outbreaks. The only recent relevant work is by Chen and Chang (2013)

who report on a predictive tool for dengue outbreaks several weeks in advance of the

occurrence based on a moving approximate entropy algorithm applied to the DIR

time series. Mohamad Mohsin et al. (2013) investigated associated performance

reporting a reasonable balance between the detection rate and the false alarm rate

of this model, but the scope for applying such techniques on a wide geographical

scale is limited. It is against this background that it is important to establish the

extent to which the models developed in Chapter 5 can provide future predictions

of dengue incidence that are of practical use at a national scale in Malaysia.

Following the extensive comparative analyses in Chapter 5, three potential statis-

tical models for monthly dengue incidence in Peninsular Malaysia (Models A, B

154
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and C) were formulated for further investigation. These models were developed on

the full 108 month data set described in Chapter 4. The three models included

the same selected climate variables (and associated lags), population density, and a

factor allowing for the four geographical regions (and global time trend therein) of

Peninsular Malaysia which were delineated in Chapter 5. The difference between

the three models was in how the annual seasonal dengue cycle was handled in each

i.e. whether this varied according to geographical region, or by monsoon area, or by

individual states. Estimates of coefficient values (and standard errors), and of asso-

ciated smooth functions (and confidence envelopes) were fully reported in Chapter

5, however no detailed consideration was given there to comparing and contrasting

the overall fit of the three models, nor to attempting to evaluate formally their

‘predictive skill’ with regard to dengue incidence.

According, this chapter focusses on these issues in more depth. The chapter pro-

ceeds by first contrasting the fit of the three models to the full 108 month data set

through formal significance tests, time series plots, analysis of root mean square

error and consideration of confidence intervals for fitted values including both pa-

rameter uncertainty and uncertainty arising from the negative binomial random

element of the models. It then moves on to look at how well the best fitting of the

three models performs when predicting ‘out of sample’ dengue incidence. For that

purpose the original data set is divided into two - the first part for model fitting

and the second part for testing out of sample predictive validity. Such analyses

allow identification of viable prediction lead time and of areas of the country where

predictions are weakest. Subsequently, predictions in the weakest areas are inves-

tigated in more depth using geographical subsets of the data. Such analyses of out

of sample predictions are an important consideration given that a key aim of this

study is to investigate the potential to develop early warning systems for future

dengue epidemics in Malaysia. However, it should be emphasised that while out of

sample analyses in this chapter are valuable pointers, they constitute only a partial

evaluation of ‘true predictive skill’ in the sense that values of the explanatory vari-

ables driving the model are not simultaneously being predicted which, obviously,
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they would also have to be in the context of implementing a practical early warning

system for dengue in Malaysia. We return to further discussion of the latter issue in

the Chapter 7, but in this chapter it should be understood that when ‘predictions’

are referred to then these are out of sample fitted values assuming the explanatory

variable values are known - they are not ‘true predictions’ in the broader sense.

6.1 Model Testing — Comparison of overall fit

This section discusses overall model fit and associated analyses of fitted values for

the full 108 month data set from 2001-2009 for Model A, Model B and Model C as

specified in Equations 5.30a, 5.30b and 5.30c in Chapter 5. To be clear, these three

models differ only in the way that the annual dengue seasonal cycle is represented -

Model A has a seasonal cycle represented by a smooth function of month by region,

while Model B replaces that with a smooth function of month by monsoon area

and Model C replaces it with a smooth function of month by state. So the three

models are essentially nested Model A is nested within Model C and Model B is

nested within Model A.

Summary statistics of overall fit of these three models to the full 108 month data

set were reported in Table 5.7, but not formally compared there. Key aspects of

those summaries are reproduced in Table 6.1 along with information on the effective

degrees of freedom associated with each of the models.

Using the information in Table 6.1 we can carry out straightforward likelihood ratio

tests of differences in fit between the three models. Comparing Model A and Model

B gives a likelihood ratio statistic of 2 × (6879 − 6859) to be referred to χ2(12)

under the null hypothesis of no difference in overall fit between the two models

which gives a p-value of < .0001 and so indicates a highly significant difference

in fit in favour of Model A. A similar comparison between Model A and Model C

gives a likelihood ratio statistic of 2× (6859− 6838) to be referred to χ2(45) which

gives a p-value of > 0.123 and so indicates no significant difference in fit between
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Table 6.1: Log-likelihood (LogLik), Akaike Information Criterion (AIC) and effective

degrees of freedom (EDF) for Model A, Model B and Model C for overall fit to the full

108 month data set

Model LogLik AIC EDF

Model A (by region) -6859 13833 57

Model B (by monsoon) -6879 13851 45

Model C (by state) -6838 13857 90

Models A and C.

The broad conclusion that the overall fit of Model A dominates that of Model

B and is similar to that of Model C is reinforced by visual inspection of Figure

6.1 which shows a time series plot of fitted monthly DIR versus observed values

for Peninsular Malaysia for all three models from 2001-2009. Note that here the

monthly DIR values for Peninsular Malaysia in this plot are appropriately averaged

from the corresponding state level fits derived from the model, however the root

mean square error (RMSE) values reported are derived from the individual versus

state monthly predictions. The plot shows little substantive difference between the

pattern of fitted versus observed value for the whole of Malaysia from any of the

three models - none of them is clearly better than any other. The RMSE values of

Model A and Model C are about the same and both somewhat better than those

for Model B.

If we then look at analyses of residuals from the overall fit of the three models to

the full 108 month data set as shown in Figures 6.2, 6.3 and 6.4 we see a similar

comparative picture. The Q-Q plots of standardised deviance residuals for Models

A and C are broadly similar - there is some deviation from the 45% line, but this is

not extreme indicating that both models fit acceptably and there is little discernible

difference between them. However, the plot for Model B exhibits marked deviation

from the 45% line suggesting that this model fits less well than A or C.
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Figure 6.1: Monthly DIR fitted values for 2001-2009 for Peninsular Malaysia for Models

A, B and C and associated root mean square error (RMSE) of constituent fitted values

for each month and for each state.

Figure 6.2: Q-Q plot of standardised deviance residuals for Model A for each state and

month from 2001 to 2009.
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Figure 6.3: Q-Q plot of standardised deviance residuals for Model B for each state and

month from 2001 to 2009.

Figure 6.4: Q-Q plot of standardised deviance residuals for Model C for each state and

month from 2001 to 2009.
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The above analyses of model fit for the full 108 month data set strongly suggest that

Model A should be the preferred model - there is only a marginal and statistically

insignificant difference in fit between it and that of Model C, it is more parsimonious

that Model C, and it is markedly better than Model B. For those reasons, we

concentrate in the remainder of this section on Model A and investigate further

the specification of this model. Fitted versus observed DIR values from this model

for the whole of Peninsular Malaysia (at individual state level) are presented in

Figure 6.5 along with the root mean square error. Admittedly these fits are well

spread for higher monthly DIR values (as might be expected the more extreme

values are more difficult to reproduce from the model), but the differences between

fitted and observed do appear to be reasonably symmetrically positive and negative

and the overall root mean square error of around 8 cases per 100,000 population is

acceptable.

Figure 6.5: Fitted versus observed values of monthly DIR from Model A for each state

and each month for 2001-2009 and associated RMSE.

An additional way to look at the overall fit and specification of this preferred

Model A is to consider the estimated uncertainty in the fitted values and how the
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envelopes generated from that compare with the observed DIR values. Here there

are two sources of uncertainty - that arising from uncertainty in the parameter

estimates in the model (which determine fitted mean values from the model), but

also that from the additional negative binomial component of the model that might

be expected in the responses about those means. Adopting the common parlance

from the normal theory linear regression literature we might respectively refer to

these as ‘confidence intervals’ and ‘prediction intervals’ for the fitted values.

In the case of Model A which is a complex semi-parametric model involving a neg-

ative binomial response, a log link for the mean, and a mixture of smooth functions

and parametric terms in the mean specification, the theoretical determination of

such confidence and prediction errors is not straightforward. It can, however, be

addressed through appropriate simulation experiments. To look at parameter un-

certainty we take the fitted means for each state and month on the log scale and

simulate 1000 Gaussian values around each of those with zero mean and standard

deviation equal to their estimated standard deviations (the latter are readily avail-

able from the model fitting). We then exponentiate these simulations so obtaining

an empirical distribution for model means incorporating parameter uncertainty,

from which we may extract quantiles as required. To look at the additional neg-

ative binomial uncertainty that might be expected around these predicted means,

we then generate an additional 1000 simulations for each of these from a negative

binomial distribution with that mean and the associated dispersion parameter es-

timated for Model A from the fit (recall the mean and variance of the negative

binomial are µ and µ2

θ
and note that the estimate for θ for Model A here is 4.63).

The associated results for Peninsular Malaysian as a whole are presented in Fig-

ures 6.6 and 6.7 (note the simulations involved here are performed at the level of

the individual model predictions for each state and then averaged to Peninsular

Malaysia as a whole). The key point here is that with the exception of an extreme

DIR peak in mid 2002, the 95% Model A prediction envelopes do encompass the

observed values. Yes the prediction intervals are wide in some cases, but overall

the specification of Model A (random and systematic components) does seem to
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be appropriate.

Figure 6.6: Monthly DIR fitted values for 2001-2009 for Peninsular Malaysia for Model

A and associated simulated 95% CIs for mean values for each month and for each state.

That said, it is not necessarily the case that Model A performs equally well across

the whole of Peninsular Malaysia. This model is regional specific and therefore it is

reasonable to look at analyses of fitted values broken down to averages within each

of the constituent four regions, rather than Peninsular Malaysia as a whole. In most

of these regions the fits are similar and reasonably acceptable in terms of RMSE,

as typified by those in the North East and shown in terms of fitted versus observed

values in Figure 6.8. The South West region is, however, somewhat different - the

equivalent plot is given in Figure 6.9 and gives an RMSE which is approximately

double that in the other regions. So there may be potential issues here in terms

of how well Model A might be able to perform in terms of practical predictions

of monthly DIR in the South West Region despite the fact that fitted values in

this region do seem to remain within simulated 95% negative binomial prediction

bounds as indicated in Figure 6.10. This issue, amongst others, is pursued further

in looking at ‘out of sample’ predictions from Model A in the subsequent section.
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Figure 6.7: Monthly DIR fitted values for 2001-2009 for Peninsular Malaysia for Model

A and associated simulated 95% prediction intervals for each month and for each state.

Figure 6.8: Fitted versus observed values of monthly DIR from Model A for each state

and each month for North East region for 2001-2009 and associated RMSE.
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Figure 6.9: Fitted versus observed values of monthly DIR from Model A for each state

and each month for South West region for 2001-2009 and associated RMSE.

Figure 6.10: Monthly DIR fitted values for 2001-2009 for South West region for Model

A and associated simulated 95% prediction intervals for each month and for each state.
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6.2 Model Testing — Out of sample predictions

The previous section comprehensively analysed the fit of Models A, B and C to the

full 108 month data set covering 2001-2009 and concluded that Model A was the

preferred model, although possible issues were also raised about the performance

of this model in the South West region of Malaysia in particular. This section

therefore focusses on the performance of Model A in more detail. More specifically

we look at out of sample fits from this model, by splitting the 108 month data set

into two periods - the first period being used to fit the model and the second used

to evaluate predictions from that model. As said earlier in this chapter, this is not

a complete evaluation of the predictive validity of the model (because the values of

the explanatory variables are not simultaneously being predicted), nevertheless it

does provide a strong indication of the ability of the model to predict future DIR

and over what lead times. In practical terms future predictions of monthly DIR

beyond two years (24 months) are of little interest. Accordingly the analyses in

this section use the data set up to December 2007 to fit the model (so six and a

half years of data given that six months are lost due to the lagged variables in the

model) and then we consider out of sample predictions for the two year subsequent

period (Jan 2008 - Dec 2009).

We start by looking at such out of sample monthly DIR predictions for the whole

of Malaysia (averaged over all states) for Model A as shown in Figure 6.11 which

also indicates the simulated prediction envelope (this is based upon the simulation

scheme described in the previous section of this chapter and incorporates both

parameter uncertainty from fitting the model to data from 2001-2007 and also

that from the negative binomial response using the associated estimated dispersion

parameter, which for Model A during 2001-2007 is 4.72).

Clearly, DIR predictions from the model (and the associated prediction intervals)

degrade the further into the future we consider. Beyond a 12 month lead time

these begin to break down becoming somewhat uninformative during that period

(and even misleading towards the end of the period). We can look at this more
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Figure 6.11: Monthly DIR out of sample predicted values for 2008-2009 for Peninsular

Malaysia for Model A and associated simulated 95% prediction intervals for each month

and for each state.

specifically by considering out of sample predictions versus observed values for each

month and state for the whole of Peninsular Malaysia for lead times of 3, 6, 12 and

24 months along with associated RMSE as shown in Figure 6.12. This indicates

that the 3 and 6 month lead time predictions may be acceptable, beyond that the

RMSE becomes much larger.

Given this overall picture, it is sensible to look at the same analyses within each of

the four regions of Peninsular Malaysia. The results which emerge from that are

broadly similar for the North East, North West and South East areas as typified by

those shown for the North East region in Figures 6.13 and 6.14. The suggestion is

that model DIR predictions for the future six months may be acceptable - beyond

that they begin to break down.

However, the situation in the South West region is somewhat different as shown in

Figures 6.15 and 6.16.
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Figure 6.12: Out of sample predicted values for 2008-2009 for each month and for each

state versus observed values for Peninsular Malaysia for Model A and associated RSME

values for lead times of 3, 6, 12, and 24 months.
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Figure 6.13: Monthly DIR out of sample predicted values for 2008-2009 for North East

region for Model A and associated simulated 95% prediction intervals for each month and

for each state.

Here, although the prediction intervals do broadly incorporate the observed values,

we see the RMSE of out of sample predictions from the preferred Model A dramat-

ically increase beyond a 3 month lead time in contrast to that in the other three

regions where both 3 and 6 month lead times have an acceptable RMSE.

6.3 Model Testing — Out of sample predictions

(Kuala Lumpur/Selangor)

Given the conclusions of previous sections in this chapter, we focus in this section

on the out of sample predictions from the preferred Model A for the South West

region of Peninsular Malaysia as compared with those in the other regions. Looking

at the RMSE in each of the three states in this region it is clear that it is the states

of Kuala Lumpur and Selangor which exhibit distinct differences from the rest of
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Figure 6.14: Out of sample predicted values for 2008-2009 for each month and for each

state versus observed values for North East Malaysia for Model A and associated RSME

values for lead times of 3, 6, 12, and 24 months.
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Figure 6.15: Monthly DIR out of sample predicted values for 2008-2009 for South West

region for Model A and associated simulated 95% prediction intervals for each month and

for each state.

Malaysia. Hence in this section we consider splitting the data set into two, one

which just contains Kuala Lumpur and Selangor and the other which contains the

rest of Peninsular Malaysia. We fit Model A separately to each of these using data

up to December 2007 to fit each model (so, as before, six and a half years of data

given that six months are lost due to the lagged variables in the model) and then

we consider out of sample predictions for the two year subsequent period (Jan 2008

- Dec 2009). Note that the form of Model A for the fitting to Peninsular Malaysia

without Kuala Lumpur and Selangor remains as previously; however, neither the

region factor nor separate regional seasonal cycles are necessary when Model A is

fitted to the data set which contains just Kuala Lumpur and Selangor because there

is only one region involved so the linear predictor (using the notation introduced

previously) in that case is just:

log ρst = α +
7∑
j

βjxjst + β67x6stx7st + γ1z1st + f (z2st) + γ3z3st + f (z4st) .(6.1)
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Figure 6.16: Out of sample predicted values for 2008-2009 for each month and for each

state versus observed values for South West Malaysia for Model A and associated RSME

values for lead times of 3, 6, 12, and 24 months.
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First we look at out of sample predictions for the case of the whole of Peninsular

Malaysia without Kuala Lumpur and Selangor as shown in Figures 6.17 and 6.18.

Figure 6.17: Monthly DIR out of sample predicted values for 2008-2009 for Peninsular

Malaysia without the states of Kuala Lumpur and Selangor for Model A and associated

simulated 95% prediction intervals for each month and for each state.

Both of these figures are broadly similar to the equivalent plots from Model A for

the whole of Peninsular Malaysia including Kuala Lumpur and Selangor shown

in Figures 6.11 and 6.12 in the previous section. As there, the DIR predictions

from the model (and the associated prediction intervals) degrade the further into

the future we consider. Looking at the predictions and RMSE for lead times of 3,

6, 12 and 24 months in Figure 6.18 indicates that the 3 and 6 month lead time

predictions may be acceptable and indeed the RMSE are improved in those cases

from those seen in 6.12. So excluding Kuala Lumpur and Selangor has improved

the fit of Model A and the associated out of sample predictions for the other states

of Peninsular Malaysia.

Turning to out of sample predictions for the case of data from just Kuala Lumpur

and Selangor, the predictions for different lead times and the associated RMSE are
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Figure 6.18: Out of sample predicted values for 2008-2009 for each month and for each

state versus observed values for Peninsular Malaysia without the states of Kuala Lumpur

and Selangor for Model A and associated RSME values for lead times of 3, 6, 12, and

24 months.
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shown in Figure 6.19.

Figure 6.19: Out of sample predicted values for 2008-2009 for each month and for each

state versus observed values for Peninsular Malaysia without the states of Kuala Lumpur

and Selangor for Model A and associated RSME values for lead times of 3, 6, 12, and

24 months.

Even though now Model A is just fitted to these two states in producing these

plots, the out of sample predictions for Kuala Lumpur and Selangor still perform

badly. The RMSE dramatically increases beyond a 3 month lead time in contrast

to the equivalent results obtained for the other ten states. If one looks at estimates

for the parametric terms for this model (i.e. Model A fitted to data from 2001-

2007 for just Kuala Lumpur and Selangor) it is immediately apparent that there

are significant differences in these two states as opposed to the rest of Peninsular

Malaysia. The only significant parametric covariates are population density and

DIR lagged by 3 months all the climate covariates are insignificant. The non-
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parametric term for yearly trend is significant but that for seasonal cycle is not.

From this and the RMSE results discussed earlier in this section and earlier sections,

it is evident that the kind of models we have developed in Chapter 5 simply do not

work well for Kuala Lumpur and Selangor. Clearly, there are other more complex

factors involved here and the climate signal seems to have very little influence. This

supports the conclusions of Hafiz et al. (2012) concerning the special circumstances

pertaining to dengue incidence in these highly urbanised areas. Aziz et al. (2012)

reported that mean monthly rainfall in Kuala Lumpur did not seem to influence the

pattern of dengue cases. Cheong et al. (2013) also tested the effects of minimum

temperature, bi-weekly accumulated rainfall and wind speed on dengue cases in

Selangor and Kuala Lumpur from 2008 to 2010 indicated that temperature and

rainfall have complex influences on dengue transmission in high population density

areas such as Kuala Lumpur (clustering versus dispersion). Such results are also

supported by Hafiz et al. (2012) who produced risk maps indicating patchy high

risk for dengue in Kuala Lumpur and parts of the surrounding districts, Gombak

and Petaling (Selangor state). Another consideration is that of higher misreporting

of dengue cases in these highly urbanised areas which do experience higher numbers

of dengue cases than elsewhere in Peninsular Malaysia. Clinicians should report all

dengue cases to the Health Office, but there are some cases that may be reported

in the wrong month as noted in studies by Earnest et al. (2012a). Up to year 2000,

most dengue cases were reported accurately in the working and school-age groups

(Aziz et al., 2014) but the increase in urbanisation is recognised as a confusing

factor in Malaysia (Seng et al., 2005). At the same time, the framework for the

e-Dengue teleconsultation system built by Setyono et al. (2011) allows patients

to express early concern about the disease and perform teleconsultation via the

Internet or mobile phone rather than proceed through more traditional routes so

adding to uncertainties in notified cases.
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6.4 Summary

The results from this chapter show a mixed picture. On the one hand, there does

seem to be some predictive potential for lead times of up to six months in the

models we have developed outside of Kuala Lumpur and Selangor. On the basis

of the parsimony principle and the comparative analyses presented in this chapter,

Model A is preferred over either Model B or Model C. Model C seems to add little

to predictive accuracy, despite being state based rather than region based. Model

A is therefore proposed as a potentially useful models for developing early warning

systems. These results are broadly in line with views expressed by Wan Fairos

et al. (2010).

However, on the other hand, the analyses in this chapter strongly indicate that

none of these models work well for the highly urbanised states of Kuala Lumpur

and Selangor where the climate signal seems to have little importance and there are

clearly more complex influences involved. The latter issue will be further discussed

in the next and concluding Chapter 7.



Chapter 7

Summary and Conclusions

In this final chapter, the main findings of the study are summarised. The limitations

of the study and various important remaining issues, including possible directions

for future work, are then discussed.

7.1 Main findings

The main contribution of this study is in identifying the extent to which current

nationally available data in Malaysia forms a basis for potentially developing statis-

tical models to predict future (e.g. three to six month) spatio-temporal variations

in dengue incidence risk for Malaysia. The main direction of the study was to de-

velop a ‘best’ model for dengue incidence at a national scale based upon routinely

available data which combined climatic and non-climatic factors and then to eval-

uate to what extent predictions from such a model are able to reflect what actually

did occur. To the best of the author’s knowledge, this is the first study that has

looked at these issues in Malaysia at a national level including climate information

in modelling spatio-temporal variations for dengue incidence and considering a long

period (January 2001 to December 2009) on a monthly basis with due regard to

regional, monsoon area and state specific issues.

177
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The study involved two data sets; one containing annual data of dengue cases and

related crude demographic explanatory variables from 1991 to 2009 (only used to

analyse global trends in DIR) and, more substantially, a second in which the mod-

elling focussed on monthly data of dengue cases and related explanatory variables

from January 2001 to December 2009 (108 months) and associated possible cli-

mate and demographic covariates (the key data set used for the modelling of DIR

in Chapters 5 and 6). In the modelling, the twelve states of Peninsular Malaysia

were divided into four regions based on geographical location; North East, South

East, North West and South West. The North East region refers to the East of the

Malaysia including the states of Kelantan, Terengganu and Pahang, the South East

region consists of the states of Johor, Melaka and Negeri Sembilan located in the

South of Malaysia. The North West refers to the North part of Malaysia containing

Kedah, Penang and Perlis meanwhile the South West region includes the capital

of Malaysia, Kuala Lumpur as the Centre of the Country, along with Selangor and

Perak. As established in the exploratory analyses in Chapter 4, the highest monthly

dengue incidence rates from 2001 to 2009 were recorded in Penang (2001), Kuala

Lumpur (2002 to 2007) and Selangor (2008 and 2009). Kuala Lumpur and Selan-

gor (South West region) are confirmed to be the states with the most significantly

high DIR patterns after 2001. The South West region shows a significant difference

in DIR patterns compared to the other three regions for the 108 months and this

is discussed further subsequently in this section. Meanwhile, the overall results in

other areas of Peninsular Malaysia indicate that significant (if weak) relationships

exist between DIR and climatic variables (and their lags) and that these may be

able to be exploited in developing predictive early warning systems in association

with relevant weather/climate forecasts.

Exploratory data analyses in Chapter 4 showed that there is some evidence of an

increasing annual trend in DIR in all states of Malaysia. There is also a strong

in-year seasonal cycle in DIR and differences in this cycle may need to be allowed

for in different broad geographical regions of Malaysia and possibly in different

states. High population density is positively related to monthly DIR as is DIR in
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immediately preceding months. Relationships between monthly DIR and climate

variables and lagged values of these are generally weaker, although significant in

some cases. In summary the analyses in Chapter 4 concluded that DIR in Malaysia

is potentially associated with country wide trend, regional seasonal cycle, popu-

lation, population density, dengue incidence in preceding months, lagged average

temperature, average rainfall, number of rainy days and ENSO.

In Chapter 5 a negative binomial GLM was used to select a subset of ‘best’ co-

variates from those explored in Chapter 4. The explanatory variables selected

were mean rainfall current and lag 3 months, mean temperature current and lag

1 month, number of rainy day current and lag 3 months, sea surface temperature

(SST) lag 6 months, dengue incidence rate (DIR) lag 3 months and interaction

between temperature lag 1 month and sea surface temperature lag 6 months. Pop-

ulation, population density, year, month, monsoon area, state and region. It was

demonstrated that a equivalent Poisson formulation of the final model selected was

inappropriate because of overdispersion. The negative binomial GLM was then

extended to a range of negative binomial generalised additive models (GAMs) and

associated results and comparisons were reported. Using these models it was es-

tablished that climate information alone does not account for a large proportion

of the overall variation in DIR of Malaysia, however, spatio-temporal climate in-

formation does significantly account for some of this variability. The influence of

monsoon area and regional differences were important. It was found that for the

most part geographical differences can be adequately captured without significant

loss of detail by grouping the twelve states into the four broad regions mentioned

earlier, however there is some evidence of more localised state effects particular in

the South West of the country where the main urban areas of Malaysia are located

(Kuala Lumpur and Selangor). The smooth functions for seasonal cycle differ in

detail between regions but all see DIR peaks in July and January each year. Global

trend in DIR in Malaysia also differs in detail in different regions, but in general

there is significant upward trend. Chapter 5 ends by identifying three negative

binomial GAM models that may be useful in predicting monthly DIR at a national
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level in Malaysia. The key differences between these three models was in whether

the smooth function in the model representing the seasonal cycle was region specific

(Model A), or monsoon area specific (Model B), or state specific (Model C).

The three Models A, B and C then became the focus for further investigation

in Chapter 6. Here the fit of the three models to the full 108 month data set

were analysed in detail including the use of simulation experiments to take both

parameter and negative binomial model uncertainty into account. Model A was

found to be the preferred model. This model was then fitted to first 78 months

of the data set up until December 2007, and then ‘out of sample’ predictions for

the subsequent 2 years from January 2008 to December 2009 were analysed and

compared again using simulation experiments to allow for both parameter and

negative binomial model uncertainty. Different lead times for predictions of 3, 6,

12 and 24 months were considered. The results indicated that model A did provide

acceptable out of sample predictions for lead times of up to six months in areas

other than the highly urbanised areas of Kuala Lumpur and Selangor in the South

West of the country. Subsequent analyses split the data set into that pertaining to

Kuala Lumpur and Selangor and that relating to the rest of Peninsular Malaysia

and repeated the ‘out of sample’ analyses with Model A being fitted separately

to each of those data sets. This improved results for the states other than Kuala

Lumpur and Selangor, but did not help in those latter states where predictions

remained poor. The overall conclusions from Chapter 6 were that there does seem

to be some predictive potential for up to six months lead time from Model A in

areas outside of Kuala Lumpur and Selangor. However, on the other hand, this

preferred model evidently does not work well for Kuala Lumpur and Selangor where

there are clearly more complex influences involved. There are a large number of

patchy densely populated urban centres in Kuala Lumpur and Selangor and the

lack of data collation relative to these intra-state localised conditions make DIR

predictions very difficult compared to the rest of Malaysia.
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7.2 Limitations of the study

One clear set of limitations of this study is the gaps in the dengue data that are

available on a national scale and for a long enough time period in Malaysia. First,

there are questions concerning the quality of data and of how well the national

surveillance systems are operating - how reliable and consistent they are both over

time and in different geographical areas. It is likely that the data used are subject to

under-reporting and mis-reporting problems. Second, the lack of dengue data based

on different age groups, given that there are documented relationships between age

and dengue incidence. Third, the lack of serotype data, given that the pattern

of serotype circulation is critical in understanding dengue epidemics. Finally, the

absence of long-term dengue data at localised district level within each state. The

state is just too low a level of spatial resolution to resolve the complex interacting

factors which determine variations in DIR. Put simply, Malaysia does not have

publicly available information systems in place to provide for full-scale analysis of

the impact of climate and weather on dengue transmission. Both the Ministry

of Health (MOH) and the Malaysian Meteorological Department (MMD) do not

have accessible databases of sufficient detail, reliability, geographical coverage and

longevity.

There are also limitations relating to the kinds of statistical models that have

been used in the study. The lack of localised data has meant there has been

little alternative to adopting quite high level ecological models. We believe that

the GAMs used are the best that could have done with the available data and

do demonstrate some potential for use in developing early warning systems for

dengue, at least outside of Kuala Lumpur and Selangor. However, it has to be

acknowledged that they remain essentially descriptive models rather than process

models and as such can only ever provide limited information in the face of the

complexity and dynamics of the vectors and hosts involved in dengue transmission.
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7.3 Scope for future work

As indicated in the previous section, the scope for further work of the nature

described in this study is severely limited by the availability of better data. The

databases of certain government departments in Malaysia are not available for pub-

lic access and research access is dogged by long delays and high levels of bureau-

cracy. A priority for researchers to better understand the influence of climate and

other factors on dengue transmission in Malaysia is the establishment by govern-

ment agencies of easily accessible linked databases of past and current information

on dengue, climate and socio-economic conditions.

That said, there is some immediate further work that could be conducted:

• Clearly, more investigation needs to be carried out in Kuala Lumpur and Se-

langor to identify reasons for the models’ failure to predict in these urbanised

areas. It may be possible to ‘downscale’ the climate information in these spe-

cific areas and obtain sub-state district dengue data for a long enough period

to throw more light on the issues involved.

• Further work could also be done on identifying different climate zones in

Malaysia and using these in the models as a replacement to the rather crude

divisions of state, region and monsoon area used in this study. One issue

there is obtaining a better understanding of whether the severity of monsoons

has any impact on DIR in the different regions and, if so, whether and how

this might be linked to the interaction between sea surface temperature and

atmospheric temperature as a determinant of the severity of the monsoons

that Malaysia is subjected to.

• Another area is investigating to what extent DIR predictions from the models

developed in this study remain valid when the observed climate data in the

models is replaced with relevant seasonal forecast data. What lead times can

be achieved and what levels of confidence can be placed in the associated
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predictions? The lags in the climatic covariates in the models raise the pos-

sibility of developing forecasts of monthly DIR up to 6 months in advance of

the month in question if suitable seasonal forecasts can be obtained from the

relevant government agencies. This ties in well with the results obtained in

Chapter 6 which indicated acceptable out of sample predictions from Model

A for lead time of up to six months in areas outside of Kuala Lumpur and

Selangor. If six month seasonal forecasts of the climate variables were avail-

able then the only model variable that would prevent rolling six month ahead

dengue forecasts for all areas outside of Kuala Lumpur and Selangor would

be the DIR lagged by 3 months which would be unavailable for months 4,

5 and 6 of the forecast. However, it is possible that forecast values of DIR

in the first three months could be used as a surrogate for that variable in

deriving the forecasts for months 4, 5 and 6. Clearly this is all dependent

on the availability of regular timely seasonal climate forecasts and the there

would need to be further study to evaluate the accuracy of such a forecasting

approach.

• Finally, given that one finding of this study is that climate information alone

does not account for a large proportion of the overall variation in DIR of

Malaysia, there is further scope for investigating more detailed socio-economic

factors and population movement, rather than the simple demographics of

population and population density used in this study.

7.4 Summary

This study has highlighted the potential for incorporating climate information into

a spatio-temporal dengue epidemic early warning system for Malaysia. The co-

variates used and their interaction in the modelling framework developed is a new

development in dengue modelling in Malaysia and provides a potential groundwork

for future models to be developed. Despite the limitations of the model and the
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difficulties involved in developing the best predicting dengue incidence model, it is

hoped that this spatio-temporal dengue prediction model is a step towards the de-

velopment of a useful decision making tool for the Malaysian health services. The

potential models developed could be extended to the district level of each state

so that they are able to provide more localised predictions. Hopefully, the frame-

work developed will be used as a starting point to investigate further if climate

information can valuable be incorporated in an early warning system for dengue

in Malaysia and that the results produced in this study will assist researchers

interested in dengue from other fields (public health, clinicians, geographers, envi-

ronmental scientists etc.).
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