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Abstract²High frequency oscillations (HFO) in stereo 

electroencephalographic (SEEG) signals have been recently the 

focus of attention as biomarkers that can have potential 

predictive power for the spatial location and possibly the timing 

of the onset of epileptic seizures.  In this work we present a case 

study where we compare two quantitative paradigms for 

automated detection of biomarkers, one based on spontaneous 

SEEG recordings of HFOs and the other using activity induced 

by direct electrical stimulation (relative Phase Clustering Index 

algorithm). We compare  the performance of these automated 

methods with manually detected HFO ripples by a trained EEG 

analyst and explore their potential diagnostic relevance.  Intra-

cranial recordings from patients undergoing pre-surgical 

evaluation are processed with a combination of morphological 

filtering and the analysis of the auto-correlation function. The 

results were compared to those obtained by visual inspection 

and to results from an active paradigm involving stimulation 

with 20 Hz trains of biphasic pulses. The quantity of HFOs, 
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correspond to the findings of a trained EEG analyst. The 

relative phase clustering index (rPCI) obtained using periodic 

stimulation appeared to be associated with the closeness to the 

seizure onset zone (SOZ) detected from ictal epochs. The HFO 

estimates were also indicative for the SOZ but with less 

specificity.     

I. INTRODUCTION 

Epilepsy is a dynamic neurological condition where 

apparently normal states are intermittently disrupted by 

pathological states called seizures [1, 2].  Most patients 

considered for surgical treatment have to undergo lengthy 

observations, sometimes for several weeks, in order to 

determine the origin of epileptic seizures, or the location of 

the seizure onset zone (SOZ). In addition to scalp EEG 

recordings, invasive intracranial recordings (SEEG) may be 

required. To increase the efficiency and to reduce the length 

of the pre-surgical diagnostics, protocols based on active 

sub-clinical provocative electrical stimulation   with various 

stimulation protocols and data analysis strategies were 

developed [3-5]. Another approach is based on  the detection 
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of spontaneous high frequency oscillations (HFO) generated 

from the neuronal tissue. HFO (ripples, fast ripples) are 

generally defined as oscillatory EEG components with 

frequencies in the range of 80-500Hz [6]. It is widely 

believed that their presence during the interictal periods can 

be indicative for the location of the SOZ [4, 7-11]. The 

mechanisms of HFO generation are a matter of current 

research [12]; their connection to the epileptic states has 

been proposed mainly based on recent animal models studies 

[13-15]. While in most cases the HFO detection has been 

based on visual inspection of filtered EEG traces [7] recently 

the automated detection of HFO has been addressed by 

increasing number of researchers [16-18] . Our contribution 
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The method we propose does not attempt to detect individual 

ripples in the signal but only to quantitatively assess their 

rate of occurrence. We do not use linear filtering since this  

may introduce spurious oscillatory components [16]. Our 

method is based on two novel techniques: (1) a modified 

Huang morphological signal decomposition [19-22]  and (2) 

the  computation of the autocorrelation function [23]. We 

compare the proposed method to the findings of visual 

inspection. In addition we compare the results with those  

obtained using the stimulation-based paradigm  to compute 

the relative Phase Clustering Index as we introduced 

previously [5].        

II. PATIENT DATA AND SIGNAL PROCESSING 

A. Patient and data acquisition 

The patient was recruited after informed consent to 

participate in this study. Scalp recordings EEG/CCTV failed 

to convincingly lateralize and/or localize the Seizure Onset 

Zone (SOZ);  thus intracranial seizure recordings with depth 

electrodes (obliquely inserted with computer assisted 

navigation)  were made in the Epilepsy Monitoring Unit 

(EMU) in our facility. The electrodes (Ad-Tech®, Racine, 

WI, USA) were implanted in the Free University Medical 

Centre Amsterdam. The implantation schemes were 

determined by a clinical neurophysiologist (DV and SC) 

according to previous diagnostic and clinical data. In Table 1 

the relevant clinical information and the neurophysiologic 

findings are summarized. 

 The signals from the implanted contacts were digitized and 

recorded with a 65-channel Schwarzer® amplifier 

(Schwarzer GmBH, Germany) coupled to a workstation with 

Harmonie® 6.2 EEG acquisition (Stellate systems, 

Montreal, Canada) software. We used a sampling rate of  
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Table I.  Patient Data 
Patient, 

Seizures 

type 

Imaging data 

 

Contacts close to SOZ, first two 

most prominent in the 17 

registered seizures 

Female, 

32 years 

old, PC 

 Evidence for left-sided 

mesial temporal 

sclerosis. 

MTHCL 1,AHTCL 1, IAIL 2-4, 

AML 1-2, IAPL 1-4, TPL 1-3, 

Table 1.  Information about the pre-implantation anatomical (MRI) findings 

and neurophysiologic localization (visual inspection of peri-ictal SEEG 

done by board-certified neurophysiologists SC and DV).  PC-partial 

complex.  

 

1kHz, the hardware filters were: low-pass 300Hz, low-pass 

0.016 Hz and no extra signal filtering was applied.  All 

recordings were done using a referential montage. The 

identification of the contacts closest to the SOZ was done on 

basis of visual inspection of the ictal transitions in 17 

registered seizures by a certified neurologist (SC).  

B. Visual HFO detection 

The visual detection of HFO or ripples was done by a trained 

neurophysiologist (MZ) who is experienced in segmenting 

ripples in large sets of SEEG data. Epochs of approximately 

30sec artifact-free SEEG were selected;  a high-pass linear 

FIR filter (80Hz) was used and the operator marked the 

beginning and duration of the ripples as events on the trace 

where the ripple was identified. All traces were considered 

independently and no multi-channel detections were made. 

Ripples shorter than 4 oscillation periods were discarded, 

also ripples closer than approximately two oscillatory 

periods were considered as one. To quantify the amount of 

HFOs in the visual detection, we estimated the total length 

of the detected ripples -T and the total amount of detected 

ripples - N for each individual SEEG trace.   

C. Huang decomposition and filtering 

We used the morphological decomposition of the signal 

known as Huang-Hilbert transform [19]. The method is 

based on decomposition of the signal into a hierarchy of 

components similar to those obtained from wavelet 

techniques but without using any pre-defined set of 

templates.  If )(tS is a SEEG trace in a finite time interval 

and sampled at certain frequency, then we denote as 

Maa NatM �1},,{  and 
mNtm �1},,{  DDD the sets of all 

local maxima and local minima correspondingly lying in the 

given time interval. From those two sets we use the cubic 

interpolation formula for the set of maxima, giving for each 

time point ba ttt �d  the interpolated function 
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Analogously for the minima we obtain an interpolated 

function )(tm . The next step is to define the decomposition 
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Figure 1. Illustration of a single step Huang transform. The upper plot 

shows the input signal (black trace) the interpolated curve over the local 

maxima (red trace), the interpolated curve over the local minima (green 

trace) and the average defined in equation (2) of the last two curves giving 

the slow component (blue trace). The bottom plot shows the filtered 

according to eq. (4) signal from one SEEG trace. The inset frame shows an 

individual ripple enlarged. The horizontal axes represent time in ms and the 

vertical the EEG measured signal in mV.  

 

Decomposition (2) can be continued recursively, now using 

the residuals R(t) as input obtaining thus slower and slower 

components of the signal as: 

,...2,1),()()( 11  �{ �� ktRtStR kkk
       (3) 

In this way we obtain a multi-scale representation of the 

signal. The last decomposition can be defined for example as 

the step N when the slow component )(tRN has no more 

than a given number of local extrema. We selected this 

number to be zero defining the last scale as the DC or 

monotonic trend of the signal.  Figure 1  shows an 

illustration of the Hung decomposition.  

From the Huang decomposition we can define local 

frequency as  � � 112)(
�� � a

k

a

kk tttZ  where ^ `a

kt  is the set of 

all local extrema of )(tSk and 
a

k

a

k ttt �d�1
. This definition 

allows to perform band-pass filtering on the Huang 

decomposition of a signal as:  
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In the subsequent analysis we used high-pass filtering in the 

range above 80Hz, > @ > @inf,80, maxmin  ZZ  . 

D. Autocorrelation analysis 

7R�H[WUDFW�ZKDW�ZH�FDOO�WKH��³ULSSOHQHVV´�RI�WKH�VLJQDO�ZH��

computed first  the autocorrelation function 

t
tStSAC )()()( WW �                 (5) 

Using Hilbert transform we can obtain the analytical 

extension of (5) as  
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Figure2. Top  frame. The left plot represents the total duration of epochs 

LGHQWLILHG�PDQXDOO\�DV�+)2¶V��KRUL]RQWDO�D[LV�LQ�PV��E\�WKH�FOLQLFDO�H[SHUW�

for each channel (indicated along the vertical axis). The right plot shows the 

output of the computed quantity (7), the total power of ripples in the filtered 

signals. The arrows represent the contacts closest to the ictal onset zone 

during transitions to seizure. The inserted frame is the scattered plot 

between the logarithms of the manual (horizontal axis) an the automated 

(vertical axis)  HFO quantifications.  Bottom frame. The complete scan of 

the rPCI quantity. On the vertical axis are  indicated the labels of the pairs 

of channels that were stimulated, typically all the neighboring contacts on 

each intracranial bundle. On the horizontal axis are the same channels-pairs 

in the same order  where rPCI was measured using bipolar montages. High 

values of rPCI are indicated on a pseudo-color plot. Highest rPCI values for 

each stimulation pair is found at the neighboring contact pairs. The green 

arrows point to the contact groups on the main diagonal  associated with the 

SOZ. Note that the stimulation  of ATHCL contacts elicits large  rPCI 

values on  MTHCL contacts, and vice-versa. Stimulation at AML elicits 

rPCI at MTHCL sites but not vice versa. This indicates the existence of 

functional bi- or unidirectional connections between the local circuits. 

 

The following quantity represents the estimation of  the total 

power of HFO above 80Hz��RU�WKH�³ULSSOHQHVV´�   
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E. Relative phase clustering index (rPCI) 

Our stimulation based technique has been introduced and 

explained in detail previously [3, 5]. Here we recall that it is 

based on periodic, stimulatLRQ�ZLWK�D�³FDUULHU�IUHTXHQF\´�RI�

20Hz bi-phasic pulses, 0.5mA, cyclically alternating the 

polarities of each following stimulus (200 stimuli in total). 

Performing discrete Fourier transformation on the evoked 

response )(,
tR

sc ,(c-channel, s stimulus, f-frequency, t-time)  

¦{
t

scift

t

sc

f tRe
N

Z )(
1 ,2, S             (8) 

We decompose the averaged evoked response complex 

amplitude as follows:  
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To quantify the phase clustering of the harmonic 

components and to cancel the linear response effect we do a 

pair-wise response addition leading to the following 

definition for the phase clustering index, or the PCI.  
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Finally we introduce the quantity the relative Phase 

Clustering Index, or rPCI, that is used in this work as a 

biomarker of  ³epileptogenic potential´ as: 

� � cc

ff

c
PCIPCIrPCI 1max �           (11) 

III. RESULTS   

We present in figure 2, top frame, the results from the 

manual and automated detection of HFO showing the 

comparison of the two methods. We see from the inserted 

frame that the  findings obtained by  visual detection 

expressed in the total ripple length, essentially match those 

obtained from the automated detection provided by the 

quantity (7). This correspondence is not strictly monotonic 

and shows some scatter, especially for the channels of low 

HFO presence. To quantify the relation,  we used the 

unidirectional non-linear association index 2
h measuring best 

functional fit between two measurement sets [24]. We found 

that 01.0;97.0),(;99.0),( 22 �|| pTWhWTh  for the whole set 

of values measured on each electrode pair. The high value in 

both directions indicates the existence of a monotonic 

functional map between the manual and the automated 

³ULSSOHQHVV´�HVWLPDWHV�� The distribution of rPCI values 

obtained by stimulating the set of electrode pairs and 

measured from the same set is presented as a 2D pseudo-

color intensity image on the bottom frame of figure 2.  To 

explore the correspondence between the two (manual and 

automated)  HFO and the rPCI measures to the clinically 
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relevant SOZ,  we used the findings provided  by certified 

neurologists (D.V. and S.C.) in Table I.  Those findings were 

based on a visual peri-ictal SEEG observation.  Accordingly, 

the bundles of arrows in the top and in the bottom frames 

represent the association of the HFO presence or the rPCI 

values  with the closeness to the SOZ . We see that while 

relatively higher presence of HFO is visible, this criteria 

alone is not sufficient to identify the SOZ.  HFO were 

present abundantly also in two traces at the right 

hippocampus (ATHCR1-2) in contrast to the rPCI measure 

which indicated high values only at those left implanted 

electrode bundles found as the closest to the SOZ (the green 

arrows on the bottom frame of figure 2). This corresponds 

more specifically  to the ictal  SOZ identification indicating 

seizures of exclusively left origin. We found no significant 

differences in the average length of the visually identified 

ripples among the EEG traces, all had an average length of 

approximately 100ms.  

IV. CONCLUSIONS AND DISCUSSION 

The robust quantification of HFOs presence, the clinical 

relevance of HFOs for the condition of epilepsy and the 

mechanisms underlying HFOs generation (and possibly their  

causal relation to seizure onsets) are three major challenges 

in the research related to HFO.  This study contributes to 

positively answering the first of the challenges and gives 

some hope for the second. Automated HFO detection has the 

advantage of high reproducibility and if proven the 

diagnostic value of HFO, the quantitative analysis can 

become a supplementary diagnostic tool for localization of 

the SOZ. Here we report also that methods using  the active 

stimulation  by means of which rPCI is estimated appear to  

have advantages compared to passive signal observation 

techniques.  
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