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Abstract 

The function and type of mooring and/or foundation system are determined by a 

number of factors including: cost, site characteristics, expected environmental 

loading and environmental or legislative constraints. The design of the device and its 

mode of operation will also influence the decision making process. It is the role of 

DTOcean Work Package 4 to produce a decision making tool which has the 

capability to assess a range of technologies for the design and selection of mooring 

and foundation systems for marine renewable energy (MRE) device arrays. In this 

first deliverable report, criteria are introduced which can be used to appraise 

technologies and approaches relevant to MRE devices. Existing mooring and 

foundation technologies used in the offshore industry are summarised with examples 

given of MRE device deployments. A general overview of the design tools which are 

currently used for mooring and foundation design in the offshore and MRE industries 

is provided, along with a list of the capabilities of several commercially available 

software packages. 

 

  



Deliverable 4.1 - A comprehensive assessment of the  
applicability of available and proposed offshore mooring and foundation technologies and design 

tools for array applications 

  

5 

Doc: DTO_WP4_ECD_D4.1 
Rev: 2.0 
Date: 27.01.2014 

Table of Contents 

1. Introduction ....................................................................................................... 8 

2. Mooring and Foundation Selection and Assessment Criteria .................... 11 

2.1. Function and Cost .......................................................................................... 12 

2.2. Installation and Decommissioning ................................................................ 14 

2.3. Site ................................................................................................................... 15 

2.4. Durability ......................................................................................................... 17 

3. Technologies................................................................................................... 23 

3.1. Moorings ......................................................................................................... 25 

3.2. Foundations .................................................................................................... 32 

3.3. Arrays .............................................................................................................. 39 

4. Design Tools ................................................................................................... 42 

4.1. Moorings ......................................................................................................... 43 

4.2. Anchors and Foundations ............................................................................. 49 

5. Summary ......................................................................................................... 54 

6. References ...................................................................................................... 55 

Appendix A1 .......................................................................................................... 60 

Appendix A2 .......................................................................................................... 61 

Appendix B1 .......................................................................................................... 63 

Appendix B2 .......................................................................................................... 64 

Appendix C ............................................................................................................ 65 

  



Deliverable 4.1 - A comprehensive assessment of the  
applicability of available and proposed offshore mooring and foundation technologies and design 

tools for array applications 

  

6 

Doc: DTO_WP4_ECD_D4.1 
Rev: 2.0 
Date: 27.01.2014 

Figures Index 

Figure 1: Artist’s impressions of MRE arrays………………………………………… 8 
Figure 2: Steps in mooring and foundation assessment……………………………. 9 
Figure 3: Steps in mooring and foundation design………………………………….. 11 
Figure 4: Example day rates for an anchor handling tug…………………….……. 15 
Figure 5: Typical offshore platform examples…………………….………………... 23 
Figure 6: Floating wind turbine concepts for deep water locations………….…… 24 
Figure 7: Example WEC devices……………………………………………….…… 25 
Figure 8: Schematic of possible mooring arrangements for a single MRE device 26 
Figure 9: Offshore mooring system examples……………………………………… 28 
Figure 10: Examples of mooring components……………………………………… 30 
Figure 11: Load-extension behaviour of a new Nylon mooring rope sample 
subjected to 10 cycles of bedding-in…………………………………………………. 

 
32 

Figure 12: Schematic of possible foundation arrangements for MRE devices…… 33 
Figure 13: Piled foundation examples…………………………………………..……. 34 
Figure 14: Pin pile foundation configurations…………………………………..……. 36 
Figure 15: Tidal turbine gravity base foundations……………………………….…... 37 
Figure 16: Anchor examples……………………………………………………….….. 39 
Figure 17: Schematic of proposed array layouts……………………………………. 40 
Figure 18: Example design tool applications………………………………………... 42 
Figure 19: Vessel and structure modelled in Simo…………………………………. 45 
Figure 20: Examples of risers and moorings that can be modelled with 
Riflex/Mimosa……………………………………………………………………………. 

 
45 

Figure 21:  Example of ABAQUS. This shows radial pressure following the 
insertion of a pile………………………………………………………………………... 

 
50 

Figure 22: Screenshot of Pile-D software showing properties of a pile installed 
within a mixed material soil…………………………………………………………….. 

 
51 

Figure 23: Vryhof Anchor Ultimate Handling Capacity chart……………………….. 61 
Figure 24: Vryhof Anchor drag and penetration chart………………………………. 62 



Deliverable 4.1 - A comprehensive assessment of the  
applicability of available and proposed offshore mooring and foundation technologies and design 

tools for array applications 

  

7 

Doc: DTO_WP4_ECD_D4.1 
Rev: 2.0 
Date: 27.01.2014 

Tables Index 

Table 1: Approximate costs of foundations and moorings in relation to 
installation, operations and maintenance (O&M) costs…………………………….. 

 
13 

Table 2: Possible factors affecting installation costs……………………………….. 14 
Table 3: EIA baseline survey considerations for wave and tidal energy projects.. 16 
Table 4: Typical mooring and foundation system analysis stages………………... 18 
Table 5: Analysis approaches for mooring and foundation systems and 
specified factors of safety (FOS) from the API RP 2SK guidelines....................... 

 
20 

Table 6: Safety levels as defined by the DNV-OSS-213: Certification of Tidal 
and Wave Energy Converters guidelines ………………........................................ 

 
21 

Table 7: Features of common mooring types……………...................................... 27 
Table 8: Selected properties of steel and several synthetic fibre materials……… 31 
Table 9a: Features of common foundation types……………................................ 34 
Table 9b: Features of common anchor types…………................................……... 35 
Table 10: Anchor design, installation and operational aspects …………………… 38 
Table 11: Input parameters typically required by mooring system 
software………………………………………………………………………………….. 

 
46 

Table 12: Typical frequency dependent hydrodynamic parameters calculated by 
potential theory codes…………………………………………………………………. 

 
46 

Table 13: Existing Guidelines which may be relevant to mooring systems of 
MRE devices…………………………………………………………………………… 

 
48 

Table 14: Design areas which would be typically documented for design 
certification………………………………………………………………………………. 

 
49 

Table 15a: Existing offshore guidelines which may be relevant to the mooring of 
MRE devices…………………………………………………………………………… 

 
63 

Table 15b: Existing offshore guidelines which may be relevant to the mooring of 
MRE devices…………………………………………………………………………… 

 
64 

Table 16: Linear wave interaction analysis tools……………………………………. 65 
Table 17a: Moored system analysis tools……………………….…………………... 66 
Table 17b: Moored system analysis tools……………………….…………………... 67 
Table 18: Foundation geotechnical analysis tools………………….………………. 68 

 

 

 

 

 

  



Deliverable 4.1 - A comprehensive assessment of the  
applicability of available and proposed offshore mooring and foundation technologies and design 

tools for array applications 

  

8 

Doc: DTO_WP4_ECD_D4.1 
Rev: 2.0 
Date: 27.01.2014 

1. Introduction 

The purpose of a mooring and foundation system is to provide offshore equipment 

with a means of station-keeping that is sufficiently robust to resist environmental 

loading (e.g. tidal, wind, wave, current and ice), impact and operational procedures. 

Although the station-keeping of vessels and offshore equipment has been carried out 

for centuries, marine renewable energy (MRE) devices represent a relatively recent 

field of application with specific requirements and challenges. In December 2013 the 

Research Councils UK Energy Programme Strategy Fellowship identified the 

development of cost effective MRE foundations and support structures for deep 

water as a ‘High-level Research Challenge’: 

“…moorings and seabed structures require design optimisation to improve durability 

and robustness and reduce costs, particularly for deep water tidal; and …improved 

station-keeping technologies.”  

 

   

Figure 1: Artist’s impressions of MRE arrays: (left) Wave Star wave energy 

converter, (middle) ScottishPower Renewables Sound of Islay 10MW tidal turbine 

array, (right) Uppsala University wave power plant 

To date a number of wave and tidal energy technologies have been trialled offshore 

to establish proof of concept, with funding competitions such as the Saltire Prize 

established to incentivise the MRE industry. Of the concepts which have so far 

reached the stage of full-scale prototype testing at sea (Technology Readiness 

Levels 7-8) most are either single devices or small arrays (<10 devices). In order for 

the MRE industry to reach commercial viability, large scale deployments comprising 

many tens or hundreds of devices are required (Figure 1).  

http://wavestarenergy.com/
http://www.scottishpowerrenewables.com/
http://www.el.angstrom.uu.se/forskningsprojekt/WavePower/Lysekilsprojektet_E.html
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Figure 2: Steps in mooring and foundation assessment. Considerations specific to 

moorings (dark green) and foundations (light green) are shown. Note: the 

abbreviation ‘CC’ refers to Consequence Criteria (see Section 2.4). 

Providing robust and economical mooring and foundation systems for a large 

number of array devices over the lifetime of the project will be a significant challenge 

to the MRE industry. Previous published assessments of mooring or foundation 

options have assessed station-keeping options for generic devices (e.g. [1]), 

reflecting the state of the industry and variety of possible MRE device designs. 
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Studies focused on particular technologies (e.g. [2]) provide valuable insight into the 

decision making process of device developers.   

MRE mooring and foundation assessment comprises several steps as illustrated in 

Figure 2. The criteria for mooring or foundation assessment will depend on the 

starting point of the design process and the level of information provided. For 

example, a preliminary study may be conducted in which the MRE device has been 

selected and several site options exist which are dependent on the feasibility and 

cost of the mooring or foundation. Alternatively the complete MRE system and site 

may have already been defined and the selection of mooring or foundation 

components is required. In the following sections it is assumed that the device and 

site are prescribed based on the scenarios defined in WP1 of this project. In Section 

2 several mooring and foundation selection criteria are discussed, followed in 

Section 3 by technologies which have been used in the offshore industry and those 

which have already been used for MRE devices. Numerical tools used in the design 

of mooring and foundation systems are reported in Section 4. The purpose of this 

document is not only to report on what has already been used for MRE systems, but 

also to consider the applicability of other offshore mooring and foundation 

technologies as well as novel designs, with emphasis placed on their suitability for 

MRE device arrays.  
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2. Mooring and Foundation Selection and Assessment Criteria  

In order to select the most suitable mooring and foundation system, general 

selection criteria are used in the first instance before more detailed assessments and 

analysis are carried out. A general approach to design based on these criteria is 

shown in Figure 3. 

 

Figure 3: Steps in mooring and foundation design. Considerations specific to 

moorings (dark green) and foundations (light green) and common requirements 

(hatched) are shown. 
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The design and certification of offshore structures is usually carried out in 

accordance with guidelines and procedures defined by certification agencies such as 

Det Norske Veritas, Bureau Veritas, the American Petroleum Institute and 

International Standards Organisation. For insurance underwriting, certification is 

required to provide evidence that the device has been designed in terms of reliability, 

survivability and risk control during the lifetime of the device (including installation, 

operation and decommissioning). In the context of MRE devices it is highly likely that 

certain criteria will have greater importance than others and indeed conflicting 

requirements will necessitate compromise. For example it would be unwise to use 

sub-standard, low-cost components in order to keep capital costs down and 

subsequently comprise device reliability and safety. In this Section several mooring 

and foundation assessment criteria are introduced in the context of MRE devices.  

2.1. Function and Cost 

The function and capital cost of the foundation system will impact the feasibility of 

certain choices and may preclude particular systems. For example, the ISSC report 

Ocean, Wind and Wave Energy Utilization [3], categorised tidal turbine support 

structures into six different types: pile mounted, moored, tethered, guyed tower, 

telescopic and sheath system. It is unlikely that a tidal turbine mounted on a sheath 

system would be attached to the seabed with a drag embedment anchor. Similarly 

there are several functions that a wave energy converter mooring system can 

provide (i.e. for station-keeping only or an integral part of the power take-off system: 

PTO). Station-keeping is necessary in order to maintain device position within 

acceptable limits for optimal device performance (in operating conditions) as well as 

preventing damage or impact with other array devices and water users (in extreme 

conditions). The ability to permit device weather-veining may also be required. The 

Poseidon Floating Power Plant uses a turret system for this purpose which is also 

used on floating production, storage and offloading (FPSO) vessels.  
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By current estimates moorings and foundations represent a significant proportion of 

the overall capital cost of a project and must therefore be within the scope of the 

project development budget. With array configurations comprising tens or hundreds 

of devices (utility level installations) certain costs are likely to be scalable. The 2012 

Technology Innovation Needs Assessment (TINA): Marine Energy Summary Report 

[4] estimated that mooring and foundation systems account for approximately 10% of 

the total cost of energy (Table 1). In this report moorings are classified as flexible line 

elements linking the MRE device with a fixed attachment point on the seabed, 

defined as a foundation (comprising foundation structures and anchoring systems).  

Particular MRE devices, such as bottom mounted tidal energy turbines do not 

require a mooring system and instead the support structure is directly attached to the 

foundation.  

 Cost of Energy  

(Wave, Tidal) 

Foundations and moorings 10%, 10% 

Installation 10%, 35% 

O&M 25%, 15% 

Table 1: Approximate costs of foundations and moorings in relation to installation, 

operations and maintenance (O&M) costs [4] 

Both function and cost are therefore mutually dependent criteria, as summarised in 

the 2013 report Ocean Energy: Cost of Energy and Cost Reduction Opportunities 

produced by the SIOCEAN project [5]: 

“Installation of floating tidal devices has different requirements to those with 

foundations. Replacing a foundation with a set of moorings raises a number of 

design challenges but allows deeper water, higher resource areas to be accessed. 

Installation of floating tidal devices or platforms should be significantly cheaper than 

installation of bottom mounted devices. Equally, installation of floating wave devices 

is significantly cheaper than installation of bottom-mounted devices.” 
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2.2. Installation and Decommissioning  

The installation requirements of different foundation and mooring systems also have 

a key role to play in the decision making process, including the design of the system 

and the ease of installation and decommissioning.  

Factor Considerations 

Environmental 

and 

geographical 

factors 

 

 Probability of occurrence of a weather window with accessible 

conditions (significant impact on cost) 

 Distance and route to site during installation and demobilisation 

(fuel costs, transit time).  

 Utilisation of single or multiple ports. Road/rail transportation. 

 Access Space (between arrays, shared connection points). The risk 

of impact or entanglement may determine vessel requirements. 

Equipment 

factors 

 Vessel capabilities. Operating water depth, wave height and wave 

period, tidal current, vessel manoeuvrability, on-board equipment 

such as cranes and winches, ability to wait on station, i.e. crew 

accommodation.  

 Vessel availability. Typically dependent on season. 

 Vessel cost. Dependent on season and availability. 

 Access and waiting costs (due to adverse weather conditions) 

Generic or specialised vessels. 

 Availability and cost of auxiliary equipment, (i.e. is it best to charter 

or buy?) 

Logistical 

factors 

 Size of devices and scale of deployment (i.e. single device or 

arrays) 

 Expected installation duration and extent of contingency measures  

 Availability and cost of operations personnel, vessel crew and other 

specialists (i.e. dive teams, ROV operators)  

 Support Infrastructure (i.e. proximity of ports, dockside cranes) 

 Port dockside charges (berthing, cranes) 

 Insurance costs  

Table 2: Possible factors affecting installation costs [6] 

The decision making process will also be guided by the costs associated with crew, 

equipment, vessels (e.g. Figure 4) and availability of each of these elements for the 

expected duration of transportation, installation, decommissioning and maintenance 

procedures. The time required to complete these procedures will also be influenced 
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by the complexity of each operation. The unavailability of jack-up barges led MCT to 

alter the design of foundation system for the SeaGen tidal turbine (Section 3.2). The 

factors affecting installation costs are highlighted in Table 2. 

 

Figure 4: Example day rates for an anchor handling tug (December 2008 to April 

2011) [7] 

2.3. Site  

Information obtained from a site assessment will inform the design of the mooring or 

foundation system and the selection of components. Assuming that a site has been 

selected, a preliminary study will be conducted to determine the site bathymetry, 

seabed type and environmental conditions. If the site has not be used previously, 

this information will have to be collated by the device developer, through the use of 

navigational charts, wave and current measurements, sonar and marine life surveys 

and resource modelling. The specialist nature of these studies may necessitate 

subcontracting the work out to companies or research institutes. Constraints to 

development (e.g. zoning restrictions, environmental impact and navigational issues) 

will have been identified at the consenting stage. The spatial distribution of mooring 

and foundation points for wave and tidal energy devices will be determined by the 

array layout and the need to provide access space between the devices (i.e. for 

operations and maintenance activities) and to avoid equipment damage or 
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entanglement (with other mooring lines, water users or wildlife). A more detailed site 

investigation will then be conducted to assess soil properties, perhaps requiring core 

samples to be analysed.  

It is crucial that the project has a minimal environmental impact to the site and 

marine species which inhabit it. The Protocols for the Equitable Assessment of 

Marine Energy Converters (EquiMar) document [8] outlines approaches for 

Environmental Impact Assessment (EIA) and Strategic Environmental Assessment 

(SEA). Other methodologies including Environmental Risk Assessment (ERA) and 

Life Cycle Assessment (LCA) are also discussed. Typically a site assessment will 

include a baseline study to determine environmental and socio-economic systems 

present in the site (e.g. Table 3) in order to predict possible impacts as well as 

providing a reference for future monitoring activities. Ideally at the end of the project 

lifetime all equipment should be removed and no trace of operations should remain 

at the site [9]. However, partial decommissioning may be acceptable if full 

decommissioning is impractical (e.g. cutting through pile structures at seabed level). 

The Wave Hub Decommissioning Programme document includes several 

decommissioning options which are relevant to MRE deployments [10].  

 Designated sites 

 Coastal sedimentary processes 

 Geology, hydrology and 

hydrogeology 

 Benthic ecology 

 Fish and shellfish 

 Commercial fisheries 

 Marine mammals 

 Birds 

 Terrestrial habitats and ecology 

 Marine uses: navigation, fisheries, 
cultural heritage, recreation and 
access 

 Visual landscape and seascape 

 Noise and vibration 

 Cumulative and in-combination 
aspects  

Table 3: EIA baseline survey considerations for wave and tidal energy projects 

(content from [8]) 
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2.4. Durability 

Over the lifetime of the installation the mooring or foundation system must be able to 

withstand complex loading conditions to prevent overloading or fatigue of: electrical 

transmission cables and hydraulic hoses, connecting hardware, connection points, 

mooring line components, anchors or foundations. The failure of critical components 

(i.e. mooring line failure or anchor pull-out) could result in damage of the MRE device 

and lead to revenue being lost due to operational downtime. For this reason critical 

failure analysis must be conducted at the design stage. The term durability 

accommodates both holding capacity and reliability. Both of these aspects are 

required throughout the deployment, which could be at least 20 years. Hence all 

components must be designed so that they are functional for this period with 

sufficient allowances for wear, corrosion or changes to material properties. To 

ensure the continued functionality of components preventative maintenance must 

also be planned (e.g. bio-fouling, scour and corrosion protection). 

Offshore station-keeping systems are scrutinised using guidance documents 

produced by certification agencies, such as the widely used API Recommended 

Practice 2SK [11] and DNV-OS-E301 Position Mooring [12] guidelines. Although 

compiled for the offshore oil and gas industry, the approaches to structural mooring 

system analysis outlined in these documents are a useful source of general 

guidance for the design and analysis of mooring systems. Therefore certain aspects 

may be relevant for MRE device developers. In addition compliance to the rules and 

practices defined by Lloyds Register (e.g. [13]) may be necessary, although again 

most of the framework for certification has been developed for the oil and gas 

industry. In Table 4 criteria which are likely to be analysed as part of mooring and 

foundation system assessment are listed. For brevity, aspects of analysis which are 

part of the site assessment process including geotechnical (i.e. soil and rock 

properties) and marine process considerations (i.e. scour and erosion) are not listed.  
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Category Analysis 
type 

Scope Method 

Mooring 
strength   

Static Pretension of the system, 
mooring geometry, 
device draft 

Geometric approximations based 
on static parameters 

Quasi-static  Maximum line tensions 
and mooring geometry 
and stiffness based on 
expected offsets 

Load calculation at several 
fairlead position offsets (device 
and mooring dynamics 
neglected) 
 

Dynamic Maximum line tensions 
and mooring geometry of 
the moored system 
subjected to external 
loading 

Inclusion of inertia, stiffness, 
damping and fluid excitation 
force terms. Frequency domain, 
time domain and combined 
methods exist 

Fatigue Calculation of fatigue 
damage through cyclic 
loading 

Failure probability analysis (i.e. 
rainflow counting methods), S-N 
curves, finite element analysis, 
fracture mechanics 

Modal Axial and transverse 
mode shape and 
resonance analysis  

Non-linear time domain analysis 

Foundations Static and 
Dynamic 

Drag embedment Analytical techniques to 
determine: tripping and 
penetration, stability and holding 
capacity 

Suction Analytical and finite element 
techniques to determine: holding 
capacity, penetration depth, 
adhesion factor, bearing 
capacity, underpressure, soil 
plug heave 

Driven pile Geotechnical and structural 
strength analysis to determine: 
pile loads, penetration 

Gravity anchor Analytical and finite element 
techniques to determine: bearing 
and lateral loading capacities as 
well as foundation settlement 

Plate anchor  Analytical and finite element 
techniques to determine: holding 
capacity, penetration depth and 
keying  

Table 4: Typical mooring and foundation system analysis stages. Recommended 

analysis stages are reported in detail in offshore guidance documents such as API RP 

2SK [11], DNV-OS-E301 [12], and SP-2209-OCN [14]  
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The DNV-OS-E301 Position Mooring [12] guidelines load cases are defined by three 

limit state criteria (ultimate limit state, accident limit state and fatigue limit state) 

based on load category, return period and two consequence classes (CC) which 

describe the outcome of mooring system failure: 

 Class 1: “Where mooring system failure is unlikely to lead to unacceptable 

consequences such as loss of life, collision with an adjacent platform, uncontrolled 

outflow of oil or gas, capsize or sinking” and  

 Class 2: “Where mooring system failure may well lead to unacceptable 

consequences of these types.”   

 

An additional, serviceability limit state (SLS) is used in the DNV-OS-J103 Design of 

Floating Wind Turbine Structures [15]. In this guidance, which arguably has more 

relevance for floating MRE devices, the loads applied to the structure, foundation 

and mooring system may arise from several sources including: permanent, variable, 

environmental, accidental, deformation and abnormal wind turbine loads. In the DNV 

mooring guidelines partial factors are applied to the minimum breaking strength 

(MBS) of mooring line components to account for statistical variations of 

characteristic material strength. For dynamic analysis, the mean and dynamic 

response components of the maximum line tension are considered. In this context 

factors of safety (FOS) are defined as ratio of load bearing capacity of the 

component to maximum applied load. Although direct comparison between the API 

[11] and DNV [12] approaches is not possible, applying a partial safety factor of 0.95 

to the characteristic MBS of a component and assuming that the mean tension 

component is 20% (hence the dynamic component is 80%) then the DNV approach 

will give an overall FOS of around 1.5 for the ultimate limit state (intact) case, which 

is 10% lower than specified by the API guideline. Clearly the design of an 

economical mooring system favours the specification of lower FOS components and 

accumulated offshore experience and research is required in this area. 
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Previously, the factors of safety specified for synthetic ropes were considerably 

higher, but as a result of accumulated offshore experience and testing (particular 

polyester ropes, e.g. [16]) over the last ten years, the factors listed in Table 5 are 

inclusive for synthetic ropes, steel wire and chain. Despite this experience, the 

Lloyds Register rules still state factors of safety for synthetic ropes which are 20% 

higher than those specified in the API guidelines. 

The likely consequence of mooring system failure for a MRE device will be comparatively 

less severe than for the types of large offshore equipment covered by existing offshore 

guidelines such as [12]. Possible consequences include: the leakage of internal fluids, 

beaching or collision of devices/other marine craft or species. Therefore it could be 

argued that the FOS specified in existing offshore guidelines are unnecessarily 

onerous, with the associated costs having a significant impact on the overall cost of 

the project. Recently it has been suggested that guidelines produced for other 

Category Analysis type Scope Equivalent or 
specified FOS 

Intact Damaged 

Mooring 
lines 

Quasi-static  Maximum line tensions based 
on expected offsets  

2.0 
(1.79)  
 

1.43 
(1.16) 

Dynamic  Maximum line tensions of a 
moored system subjected to 
external loading  

1.67 1.25  

Fatigue Damage in tension-tension, 
bending-tension and free 
bending fatigue modes 

N/A N/A 

Foundations Dynamic Drag anchor (permanent) 1.5 1.0 

Suction/Driven pile and 
Gravity anchor (permanent) 

1.6 
(lateral) 
2.0 
(axial) 

1.2 
(lateral) 
1.5 (axial) 

Plate anchor (permanent) 2.0 1.5 

Table 5: Analysis approaches for mooring and foundation systems and specified 

factors of safety (FOS) from the API RP 2SK guidelines [11]. Equivalent quasi-

static factors of safety from the DNV-OS-E301 Position Mooring guidelines [12] 

are listed in parentheses for the quasi-static case 
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offshore equipment which are only manned for short intervals during their operational 

lifetime (e.g. fish farms) may have more relevance [18]. Clearly the use of 

commercially available mooring system components is still largely unproven due to a 

lack of long-term deployments. Whilst only a small number of MRE mooring system 

failures have occurred to-date, the catastrophic mooring system failures of Oceanlinx 

in May 2010 [19] and the Wavedragon prototype in January 2004 [20] resulted in 

significant damage to both devices. It is therefore unsurprising that conservative, 

high factors of safety are currently used given the uncertainties regarding the long-

term performance and durability of mooring components for this new application.  

 

Safety Level Definition 

Low Where failure implies low risk of human injury and minor 
environmental and economic consequences. 

Normal For temporary conditions where failure implies risk of human injury, 
significant environmental pollution or high economic, asset damage or 
political consequences. This level normally aims for a risk of less than 
10-4 per year of a major single accident, which corresponds to a major 
incident happening on average less than once every 10,000 
installation years. This level equates to the experience level from 
major representative industries and activities. 

High  For operating conditions where failure implies high risk of human 
injury, significant environmental pollution or very high economic or 
political consequences. 

Table 6: Safety levels as defined by the DNV-OSS-213: Certification of Tidal and 

Wave Energy Converters guidelines [17] 

 

One way to reduce factors of safety may be to incorporate redundancy into the 

system, such as the use of safety lines around critical components or multiple mooring 

lines which are capable of keeping the device on station after line failure. This is 

especially important for device designs which use a single line for mooring (i.e. 

between the float and power take-off system). A balance must be struck between the 

specification of a mooring system which is over-engineered (and hence not 

commercially viable for large scale deployments) and one which is not fit-for-purpose 

in terms of capability and reliability. Guidance for MRE devices currently exists, for 
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example the DNV/Carbon Trust Guidelines on design and operation of wave energy 

converters [21] and DNV Certification of Tidal and Wave Energy Converters [17]. 

However, despite new safety classes being defined in both [17,21] (see Table 6), 

most of the guidance for moorings and foundations (such as load coefficients) is 

based on existing DNV offshore standard and recommended practices (e.g. [12], see 

Appendices B1 and B2). It is likely that developments in the MRE industry (e.g. the 

forthcoming International Electrotechnical Commission TC114 guidelines [22]) and 

accumulated offshore experience will shape future guidance and lead to more 

applicable factors of safety for components.  
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3. Technologies 

The development of offshore mooring systems and foundations is linked to the trend 

of oil and gas exploration in increasing water depths, necessitating a departure from 

fixed to floating structures (Figure 5). Whilst the majority of offshore wind turbines 

installed to-date are supported by monopile or jacket structures, floating designs for 

deep water sites have been successfully trialled for example the Hywind and 

WindFloat concepts. In Figure 6, a selection of floating wind turbine concepts 

suitable for deep water applications is presented. The spar concept moored by 

catenary or taut mooring lines uses ballast at the bottom of the spar for stability. 

Tension leg platforms (TLP) achieve stability through the use of tendons and the 

buoyancy in the platform. Hybrid concepts such as the tension leg spar (TLS) can be 

used to obtain the advantages of both spar and TLP concepts [23]. 

 

Figure 5: Typical offshore platform examples, U.S. Minerals Management Service 

The offshore oil and gas industry has considerable experience in the design and 

construction of platforms for deep and very deep water sites. Coastal engineering 

has focused on the design of fixed structures for use in shallow water regions. The 

design objectives of the offshore wind energy and MRE industries differ with 

concepts likely to be placed in intermediate water depths (shallow to deep). In the 

offshore oil and gas industry, cost has a lower priority compared to other aspects 

http://www.statoil.com/en/technologyinnovation/newenergy/renewablepowerproduction/offshore/hywind/pages/hywindputtingwindpowertothetest.aspx
http://www.principlepowerinc.com/products/windfloat.html
http://www.atp.nist.gov/eao/grc04-863/chapt4.htm
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such as time scale, reliability and safety [23]. Although much useful knowledge can 

be gained from the experience of existing offshore industries, the design methods 

used may need to be modified for the MRE industry in order to avoid mooring and 

foundation systems and support structures which are over-engineered and costly or, 

at the other extreme, unreliable.  

 

Figure 6: Floating wind turbine concepts for deep water locations (image source: 

[23])  

MRE devices which are small compared to the incident wave length will dynamically 

respond to wave loading (first-order and second-order) as well as the combined 

effects of wind and currents. As a result, there is usually strong coupling between the 

device and mooring system responses [24,25] and potentially large, resonant 

motions can occur. Unlike existing offshore equipment which is designed to avoid 

such responses, wave energy converters (WECs) tend to be designed to maximize 

power extraction under such conditions in one or more modes of motion. Therefore 

the mooring and anchoring systems of WECs have to be sufficiently durable (in 
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terms of fatigue and capacity) to sustain cyclic loading and significant peak loads. 

Assuming that they are suitably durable for this new application, the use of 

commercially available components is a logical first step for MRE device developers. 

In part, this can be fulfilled with well-developed relationships with trusted supply 

chain companies.  

3.1. Moorings 

   

  

Figure 7: Example WEC devices (top left) Bluewater BlueTEC floating platform and 

(top right) Poseidon Floating Power platform. (bottom left) Pelamis Wave Power P2 

wave energy converter and (bottom right) Carnegie Wave Energy CETO wave 

energy converter 

MRE mooring systems can be divided into three categories; passive, active and 

reactive. The main function of a passive mooring system is to provide station-

keeping only. These systems tend to be used for large floating platforms which 

support multiple MRE devices (e.g. Figure 7). In addition to providing station-

http://www.bluewater.com/new-energy/bluetec/
http://www.floatingpowerplant.com/
http://www.pelamiswave.com/
http://www.carnegiewave.com/
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keeping, the response of active mooring systems has a significant influence on the 

dynamic response of the moored device, to the extent that both responses are 

coupled and hence affect the power output of the device. Many of the proposed 

wave energy converter designs fit into this category, including the Pelamis Wave 

Power’s P2 device (Figure 7). In the case of a reactive system the mooring is an 

integral part of the system, perhaps linking the floating part of a wave energy 

converter (WEC) to the power take-off (e.g. Carnegie Wave Energy’s CETO device 

and [26]).  

 

Figure 8: Schematic of possible mooring arrangements for a single MRE device: 

(from left) taut-moored systems with single and multiple lines, basic catenary system, 

catenary system with auxiliary surface buoy and lazy-wave system with subsea 

floater and sinker. The combined use of synthetic ropes and chains (blue and black 

lines respectively) may be feasible 

Whilst several variants exist (as illustrated in Figure 8, with advantages and 

disadvantages listed in Table 7); broadly there are two geometries which are 

relevant to MRE devices, catenary and taut mooring systems. In this section a 

summary of mooring types is given and for more detailed assessment the reader is 

directed to published literature (e.g. [1]).  
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Type Configuration Advantages Disadvantages 

Taut  Single line 1) Can provide a direct link 
between the floating part and 
PTO system 
2) Few components (cost and 
reliability implications) 

1) No redundancy is provided in 
the case of line failure 
2) Not suitable for large tidal 
ranges (unless the floating part 
can be submerged) 
3) Anchors and foundations that 
can be loaded vertically are 
required 

Multiple lines 1) Redundancy is provided 
2) Allows the specification of 
lower capacity components 
than a single taut line system 
as tensions are shared 
3) Mooring system footprint is 
usually smaller than for 
catenary systems 
4) Horizontal restoring forces 
tend to be higher than for 
catenary systems 

1) A significant tidal range may 
necessitate a large mooring 
footprint (unless the floating part 
can be submerged) 
2) Anchors and foundations that 
can be loaded vertically are 
required 
3) More components (cost and 
reliability implications) 

Catenary  Single line 1) The compliance that is 
provided the by mooring 
geometry may mean lower 
peak loads than a taught 
system 
2) Suitable for large tidal range 
sites   
3) A wider range of anchor and 
foundation options are suitable 
4) Few components (cost and 
reliability implications) 

1) No redundancy is provided in 
the case of line failure 
2) The floating part of the device 
may be capable of large horizontal 
motions which could have 
clearance implications for device 
arrays 

Multiple lines 1) Redundancy is provided 
2) Allows the specification of 
lower capacity components 
than a single taut line system 
as tensions are shared 

1) More components (cost and 
reliability implications) 
2) Risk of line entanglement with 
adjacent devices in arrays 

With surface 
buoy 

1) Horizontal peak loads lower 
than normal catenary and taut-
mooring systems 

1) More components (cost and 
reliability implications) 
2) Surface buoy will be subjected 
to wind and current loading 

Lazy-wave  1) Horizontal peak loads lower 
than normal catenary and taut-
mooring systems 

1) More components (cost and 
reliability implications) 
2) Surface buoy will be subjected 
to wind and current loading 

Table 7: Features of common mooring types 

 



Deliverable 4.1 - A comprehensive assessment of the  
applicability of available and proposed offshore mooring and foundation technologies and design 

tools for array applications 

  

28 

Doc: DTO_WP4_ECD_D4.1 
Rev: 2.0 
Date: 27.01.2014 

Both catenary and taut moored systems are widely used in the offshore industry, 

particularly for floating production storage and offloading (FPSO), floating production 

storage (FPS) facilities (Figure 9) as well as Single Point mooring and Reservoir 

(SPAR) and Catenary Anchor Leg Mooring (CALM) structures. Other categories of 

moorings include: Single Anchor Leg Mooring (SALM), Articulated Loading Column 

(ALC) and Fixed Tower Mooring systems. In terms of device scale, geometry and 

mass, the CALM buoy [27] has perhaps the closest similarities with large buoy-like 

MRE devices. The majority of CALM buoys have been used for tanker loading in 

coastal locations (i.e. moored in water depths ranging from 20-160 metres). More 

recently deep water oil exploration has necessitated use in much deeper water 

depths [27]. 

   

Figure 9: Offshore mooring system examples (left) Buffalo Venture FPSO with 

single point (taut) mooring and turret system. (right) Schematic of the Liuhua 11-1 

semi-submersible platform and shuttle tanker moored with catenary lines  

Catenary mooring systems comprise single or multiple lines with a catenary 

geometry to provide the necessary horizontal and vertical restoring forces to keep a 

device on station whilst allowing for changes in the water depth due to tidal 

variations. For MRE devices the compliance of a catenary system allows motions in 

several degrees-of-freedom (DoF) for power generation. The horizontal compliance 

of a catenary mooring system can be increased by ‘lazy-wave’ system which 

includes float and sinker components attached to the line. It is necessary at the 

http://www.offshore-technology.com/
http://www.worldoil.com/
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design stage to determine what level of compliance is required to achieve the 

permissible magnitude of mooring tensions and device displacements. A system 

which is excessively compliant may allow large device motions in the desired 

degree(s)-of-freedom (i.e. heave for a WEC point absorber) but increase the risk of 

collision with adjacent devices or water users. Although it is possible to use steel 

components (wires and chains) for the entire length of the line, alternative materials 

(i.e. synthetic ropes) could be used for the mid or upper sections of the line to reduce 

the cost and weight of mooring system. ‘Rider’ or ‘ground’ chains are used for the 

lower sections to provide tension to the line whilst transferring loads horizontally to 

the anchor or foundation. 

Taut-mooring systems provide a much stiffer connection between the device and 

seabed, with compliance only provided by the axial properties of the mooring 

components, such as synthetic ropes. Ropes constructed from polyester [16] have 

been successfully used for platforms located in deep and ultra-deep water locations. 

Because both horizontal and vertical restoring forces are provided by this type of 

mooring system, foundations and anchors must be specified which can operate 

under both loading directions (usually drag embedment type anchors are not 

suitable). Unless a large mooring footprint is specified, the limited compliance of a 

taut-moored system may mean that the device becomes submerged during large 

amplitude waves or in locations with high tidal ranges. Full or partial submersion of 

the device is not an issue for some designs (i.e. Carnegie Wave Energy’s CETO 

device) and may be a way of limiting device displacements in large amplitude waves 

[28]. 
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Figure 10: Examples of mooring components: (top left) Dawson stud link mooring 

chain, (top right) Bridon Diamond Blue wire rope and (bottom) Bridon Superline 

polyester rope. 

Examples of commonly used mooring components are shown in Figure 10. 

Economic considerations for typical components are reported in the EquiMar 

deliverable D7.3.2 Consideration of the cost implications for mooring MEC devices 

[8]. Although these components provide bending flexibility along their length, the 

axial stiffness of steel components is considerably higher than alternative materials 

(Table 8). Ropes constructed from synthetic materials such as polyester, aramid, 

nylon and high-modulus polyethylene have been used successfully for the last two 

decades in the offshore industry for vessel mooring, towing and equipment station-

keeping. One of the most common rope types is parallel stranded polyester as 

illustrated in Figure 10. Extensive testing regimes conducted as part of Joint Industry 

http://www.dawson-group.com/
http://www.bridon.com/
http://www.bridon.com/
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Projects have been used to qualify the performance of synthetic fibre ropes and 

enabled the development of fatigue curves (e.g. [16,30]) which have been 

subsequently adopted by certification agencies.  

Material Density 

(g/cm3) 

Melting 

/charring 

point (°C) 

Moisture 

(%) 

Modulus 

(N/tex, 

GPa) 

Tenacity 

(mN/tex) 

Strength 

(MPa) 

Break 

extension 

(%) 

Steel 

HMPE  

Aramid 

Polyester 

Polypropylene 

Nylon 6 

7.85 

0.97 

1.45 

1.38 

0.91 

1.14 

1600 

150 

500 

258 

165 

218 

0 

0 

1-7 

<1 

0 

5 

20, 160 

100, 100 

60, 90 

11, 15 

7, 6 

7, 8 

330 

3500 

2000 

820 

620 

840 

2600 

3400 

2900 

1130 

560 

960 

2 (yields) 

3.5 

3.5 

12 

20 

20 

Table 8: Selected properties of steel and several synthetic fibre materials. HMPE 

stands for high modulus polyethylene. Further information regarding these values 

(particularly for nylon) can be found in [29].  

Fibre ropes have particular advantages compared to steel components, including low 

cost and mass (per unit length) and load-extension properties that can be harnessed 

to reduce peak loadings [30]. It is feasible that utilisation of these materials could 

reduce the cost of energy of MRE mooring systems.  Unlike steel components, 

materials such as polyester, nylon and elastomers have non-linear load-extension 

properties [31] that are time-dependent [32]. Changes to the compliance of these 

materials are possible over the lifetime of the component and this should be factored 

into the design. For example, after manufacture the initial loading of certain synthetic 

ropes results in permanent extension (Figure 11) and this should be accounted for in 

the design of mooring systems. Through extensive research over the last 20 years, 

the fatigue, durability and stiffness of polyester is well understood. Nylon ropes which 

are 2-3 times more compliant than polyester, could be suitable for MRE mooring 

systems [30]. Recently completed and on-going research (see Appendix A1 and 

[32]) is being conducted to establish the long-term durability and stiffness properties 
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of nylon ropes in the context of the highly dynamic loading of MRE mooring systems. 

As part of a maintenance plan, component inspection should be carried out (e.g. 

DNV-RP-E304 Damage Assessment of Fibre Ropes for Offshore Mooring [33] and 

[34]). Relevant procedures for the design and usage of mooring system components 

include DNV-OS-E301 Position Mooring [12], API Recommended Practice 2SM [35] 

for synthetic ropes, DNV-OS-E302 Offshore Mooring Chain [36], DNV-OS-E304 

Offshore Mooring Steel Wire Ropes [37]. Further guidance documents are listed in 

Appendices B1 and B2. 

 
 

Figure 11: Load-extension behaviour of a new nylon mooring rope sample subjected 

to 10 cycles of bedding-in (tests reported in [32]). Stages of rope behaviour are 

labelled 

3.2. Foundations 

MRE foundation systems can be categorised in several ways, such as whether they 

are temporary (or easily removable) or permanent (requiring significant effort to 

remove). The relative advantages and disadvantages of each type are listed in 

Tables 9a and 9b. An alternative classification is if they form part of a support 

Creep 

Permanent elongation 

Recovery 
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structure, with pile foundations, gravity based structures and suction piles fitting into 

this category. Foundations can also provide a means of attachment between the 

seabed and mooring line(s). The main types of foundation are illustrated 

schematically in Figure 12.  

 

Figure 12: Schematic of possible foundation arrangements for MRE devices: (from 

left) piled foundation, gravity based structure, suction pile or caisson and several 

anchor types (fluke, pin pile, gravity and plate). 

Piled foundations comprise singular (monopile) or multiple steel tubes or rods which 

are driven or hammered into the seabed after site preparation (such as clearing). 

Jack-up barges are commonly used for this type of installation. An alternative 

procedure is to use pre-fabricated concrete monopiles. These piles are hollow into 

which drilling machinery is placed, thereby allowing simultaneous drilling and 

installation. At certain sites (e.g. Barrow offshore wind farm) the gap between the pile 

and surrounding rock is filled with grout. For sites with high sediment transport, scour 

protection measures are also installed in order to retain foundation integrity.  For 

wind turbine structures, the supporting tower is joined to a transition piece which is 

grouted onto the pile.  
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Figure 13: Piled foundation examples (left) MCT Seaflow monopile foundation 

system and (right) OpenHydro piled foundation system 

Type Advantages Disadvantages 

Piled 1) Enables high axial loads to be 
transmitted through sediments to 
load bearing rock or soils 
2) Can be installed in a wide 
range of seabed types  
3) Well-established, simple 
technology 
 

1) Requires considerable equipment, 
expertise and time for installation. 
Installation costs are therefore high 
2) Full decommissioning not possible 
3) Scour protection measures may be 
required 
4) Not suitable for deep water 
locations (+30m depth) 
5) Installation noise 

Gravity based 
structures 

1) Simple installation/recovery 
procedures are possible (i.e. float-
out to site and lower to seabed). 
Installation costs tend to be low 
2) Suitable for rock and thin 
sediment sites 
3) Provides a stable structure for 
direct attachment of device  

1) Lateral load resistance low 
compared to other foundation types 
and dependent on the seabed slope 
2) Size limited by transportation and 
lifting equipment 
3) May require the installation of pin 
piles 
4) Construction costs are high 

Suction piles or 
caissons 

1) Inexpensive installation (float-
out may be feasible) 
2) Easy to remove and possibility 
of re-use 
3) Applicable for a wide range of 
water depths 
4) Noise during installation low 
compared to piling 

1) Holding capacity in layered seabed 
types is unclear 
2) Construction costs may be high 
3) Large capacity lifting equipment 
may be required 
4) Detailed site data required 
 

Table 9a: Features of common foundation types 

 

http://www.marineturbines.com/
http://www.openhydro.com/
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Type Advantages Disadvantages 

Anchors:  
 

Fluke 1) Well-established technology; 
a wide range of sizes and types 
are available 
2) High holding capacities are 
possible 
3) Can re-set in the event of 
pull-out 
4) Relatively easy to recover 

1) Not suitable for vertical loading 
and only suitable for certain seabed 
types 
2) Holding capacity dependent on 
seabed continuity (e.g. scour may 
cause breakout) 
3) Requires significant mooring 
footprint 
4) Possibility of dragging and 
subsequent unequal mooring 
system loading 
5) Possibility of inaccurate 
placement during anchor setting 

Plate/ 
Vertical load 
anchor 
(VLA) 

1) High capacity for resisting 
vertical and lateral loads 
2) Possibility of anchor dragging 
eliminated 
3) High holding-capacity-to-
weight ratio than other anchor 
types 
4) Relatively lightweight for 
handling 
5) Accurate placement possible, 
no anchor setting required 

1) Soil properties required for 
critical moorings 
2) Recovery not possible 
3) May be subject to fatigue or 
abrasion 
4) Installation limitations with water 
depth (i.e. for hammer-driven, 
screw and vibration operations) 

Pile 1) High vertical lateral loading 
capacities possible 
2) Anchor dragging and setting 
not required 
3) Enables small mooring 
footprint 
4) Attachment point can be at 
seabed level 

1) Requires special equipment to 
install and recover 
2) High quality site data is required 
3) Has zero holding capacity once 
pull-out starts to occur 

Gravity 1) Suitable for rock and thin 
sediment sites 
2) Vertical force component can 
be large 
3) Construction materials are 
usually economical and readily 
available  
4) Can be used as a sinker in 
combination with drag 
embedment anchors 

1) Size limited by transportation 
and lifting equipment 
2) Lateral load resistance low 
compared to other anchor types 
and dependent on seabed slope 
3) Can be an obstruction in shallow 
waters 

Table 9b: Features of common anchor types 
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Since the first large scale deployments of wind turbines, the design of piles and 

transition pieces has been modified after issues were detected on the Horns Rev 1 

array in 2009. As a result, a DNV joint industry project in 2010 established a method 

to improve axial load calculations. The Marine Current Turbine Seaflow system in 

Strangford Narrows uses a steel monopile foundation of a similar scale (2.1m 

diameter) to offshore wind turbine developments (diameters typically ranging 

between 3.5-6.0m) to support two turbines (Figure 13). The first OpenHydro 

deployment at the European Marine Energy Centre (EMEC) used two smaller 

diameter piles to support a frame structure.  

  

Figure 14: Pin pile foundation configurations (left) Alstom/TGL 1MW turbine (image 

source: [38]) and (right) Lifting of the MCT SeaGen quadrapod foundation  

Gravity Based Structures rely on the vertical forces imparted on the seabed due to 

the mass of the structure (Figure 14). The rational for this design is ease of 

installation and recovery, usually requiring no driving or grouting operations. The 

second generation of OpenHydro turbines utilise a custom-made Tryskell installation 

barge to float the structure out to the site and lower it to the seabed. The Atlantis 

AK1000™ tidal turbine was installed at EMEC using a similar approach (Figure 15). 

Steel pin piles (1m diameter) have also been used to restrain steel jacket structures 

for platforms, offshore wind turbines and MRE devices. A quadrapod, pinned 

foundation was developed for the SeaGen system due to a lack of jack-up 

installation barges (Figure 14).   

http://www.henryabram.co.uk/
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Figure 15: Tidal turbine gravity base foundations (left) Atlantis AK1000™ (image 

source: [38]) and (right) an array of OpenHydro turbines  

Suction piles or caissons have been used extensively as foundations for GBS, TLP 

and jacket structures (e.g. the Draupner oil platform) in locations with sediment. The 

upturned bucket-like structure of a suction pile is imbedded into the sediment either 

through external force or by pumping water out of the inside of the pile, with design 

guidance in the DNV guideline DNV-RP-E303 Geotechnical design and installation 

of suction anchors in clay [39]. Three types of system exist; active systems (reliant 

on continuous pumping), sealed top (the negative pressure inside the pile resists 

pull-out) and open top (which is reliant on the contact friction of the surrounding 

sediment). As far as the authors are aware, this type of foundation has not yet been 

attempted for MRE devices.  

 

There is a diverse range of anchor technologies which are available (Table 10) and 

the selection is largely dependent on the seabed conditions as well as the required 

holding capacity and load direction. The holding capacity of conventional fluke 

anchors (e.g. Danforth, Bruce anchors, Vryhof Stevpris) is dependent on anchor 

weight, fluke area, embedment depth and seabed soil type (usually medium to firm 

soils), see Appendix A2. Although readily deployable and recoverable, they are not 

capable of vertical loading (the Danforth type in Figure 16 has a maximum loading 

angle of 30° from the horizontal).  

http://www.openhydro.com/
http://www.tiedown.com/amarinem.html
http://www.bruceanchor.co.uk/
http://www.vryhof.com/products/anchors/stevpris_mk5.html
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Anchor 

Type 

Operation Applications Installation Example 

Procedures 

Fluke Flukes of anchor are 
buried in the sediment 

Designed for 
horizontal loads (or 
very shallow angles) 

Catenary 
moorings with 
‘rider’ or ground 
chains in 
sediment 
locations 

Propellant/explosive 
embedment 

Drag embedment 

DNV-RP-E301: 
Design and 
installation of fluke 
anchors in clay 
[40] 

Plate/ 
Vertical 
load 
anchor 
(VLA) 

Plate is buried deep in 
sediment and capable 
of holding vertical and 
horizontal loads 

Sediment 
locations 

Propellant/explosive 
embedment 

Suction embedment 
plate anchor (SEPLA 
by InterMoor) 

Self-embedment 
(OMNI-Max) 

DNV-RP-E302: 
Design and 
installation of plate 
anchors in clay 
[41] 

Pile Steel members driven 
into sediment and rock 
after drilling. Grouting 
may be applied as with 
monopiles 

Sediment/rock 
locations 

Pin 

Screw 

Jetting 

API RP 2A-WSD 

R2010  Planning, 

Designing and 

Constructing Fixed 

Offshore Platforms 

– Working Stress 

Design [42] 

 

Gravity ‘Dead’ weight with 
large holding capacity 

Sediment/rock 
locations 

Lowered into position DNV-OS-J103 
Design of Floating 
Wind Turbine 
Structures [15] 

Table 10: Anchor design, installation and operational aspects 

In the case of a vertical load being applied and the entire mooring line is lifted, 

dislodgement of the anchor may occur leading to partial (or total in the case of single 

line systems) loss of the mooring system. Pile anchors provide lateral and vertical 

holding capacity, the magnitude of which is dependent on pile diameter and soil 

strength (typically for firm or hard soil types). They are used as a connection point for 

tension leg platform (TLP) tendons and installation often requires the use of a drilling 

rig or template. Piles can either be driven or screwed into screw or rock. Gravity 

http://www.intermoor.com/services-5/mooring-services-6/sepla-offshore-anchors-166
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anchors, as with GBS systems are reliant on the mass of anchor (usually made from 

concrete or rock and/or steel), as well as properties of the soil (friction and shear 

strength) for lateral loading. Clump weight anchors fit into this category. 

 

Figure 16: Anchor examples (left) 1.1 Tonne Danforth fluke anchor prior to 

deployment with the South West Mooring Test Facility (SWMTF, [43]), (right) 

vertically loaded Delmar OMNI-Max anchor 

3.3. Arrays 

In order to share infrastructure and also to take advantage of the influence of 

hydrodynamic interactions on power production [44,45], close separation distances 

between MRE devices positioned in arrays (tens of metres) have been proposed. 

The close proximity between devices means that particular considerations must be 

made regarding the siting of devices as well as the design of mooring, electrical and 

hydraulic infrastructure (e.g. Figure 18). One such factor is the permitted level of 

mooring system compliance. This is an important consideration to reduce the risk of 

mooring line entanglement and device collisions and to allow suitable clearances 

between the devices for vessel access during installation, maintenance and 

decommissioning procedures. The separation distance specified in the DNV-OS-

E301 Position Mooring guidelines [12] between offshore accommodation units and 

fixed equipment is necessarily large for the application, but not relevant for MRE 

devices which are typically unmanned during operation. An alternative and arguably 

more suitable approach suggested in the DNV-OS-J103 Design of Floating Wind 

http://www.delmarus.com/site.php
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Turbine Structures guideline [15] is to base the separation distance on maximum 

possible surge or sway displacements during normal operation and if the failure of 

one mooring line occurs (assuming that the mooring system has built-in 

redundancy). 

  

 

Figure 17: Schematic of proposed array layouts comprising (top left) seven and (top 

right) nine buoys with interconnecting lines (red) and shared connection points (black 

dots) [21]. (bottom) Wave energy array with Karratu mooring system [47] 

Shared mooring system infrastructure (i.e. common anchoring points and/or device 

interconnections) have been suggested as a way of reducing capital costs and to 

reduce the number and difficulty of installation/decommissioning operations for MRE 

devices (Figure 17 and [46-49]). Such benefits are clearly scalable to large MRE 

arrays. This concept is not entirely new, with array-type moorings and shared anchor 

points used for aquaculture systems. With the exception of MRE devices attached to 

a common structure (e.g. Wave Star Energy’s Wave Star system and MCT SeaGen), 

no arrays have been deployed comprising shared mooring or anchoring systems. 
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However, proposed designs include the Karratu (meaning ‘square’ in Basque) 

system developed by Tecnalia [47]. This concept comprises a network of ropes and 

cables arranged in square cells the vertices of which are supported by buoys. This 

network, sitting 5-10m below the water surface is catenary moored to the seabed 

and provides an intermediate mooring system for point absorbers positioned within 

the cells.  
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4. Design Tools 

Numerical models provide designers and operators a platform to simulate the 

conditions of an offshore situation without having to carry out difficult and expensive 

operations.  In terms of mooring and foundation systems it is essential to undertake 

modelling of the system in order to understand how it will react before it is deployed 

and to ensure that the best design is used.  With a numerical model, conditions 

which would be unrealistic to test using laboratory methods (for example testing how 

a particular mooring system would react to a 100 year storm) can be simulated in a 

fast and cost effective way. 

There are many commercially available tools on the market each with different 

capabilities, requirements and costs.  From simple programmes which can model 

just one part of a system right up to CFD simulations of arrays of devices.  Many 

models can be run using standard personal computer equipment however greater 

computing power such as computer clusters is often required for more complex 

models.  For the most demanding models and CFD supercomputers may be needed 

to run the simulations. 

        

Figure 18: Example design tool applications (left) Array of eight buoys constructed 

with WAMIT software and (right) CFD simulation of a tidal turbine using Ansys 

Mooring and foundation numerical tools designed for the shipping, oil and gas and 

offshore construction industries have many qualities that can be used in the 

modelling of MRE devices. 

http://www.wamit.com/structures.htm
http://www.ansys-blog.com/fh-tidal-power-and-turbine-design/
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4.1. Moorings 

It is possible to conduct detailed analysis of moored offshore structures using several 

commercial available tools.  The body of the structure, mooring lines, risers and 

other components can be modelled and the simulations can be run to conduct static, 

quasi-static or dynamic analysis of a system.  The hydrostatic responses and 

hydrodynamic interactions of multiple devices can be simulated by software such as 

WAMIT, AQWA, WADAM and Seasam HydroD. This software cannot directly 

simulate mooring or power take-off systems. Analysis of the mooring lines, chains 

and components can be done by software including: Orcaflex, Optimoor, Deeplines, 

DIODORE, ARIANE7, Sesam DeepC and AQWA Suite.  

Some common features found with the linear analysis and mooring analysis tools 

include: 

 Boundary Element Modelling solutions 

 Hydrostatic modelling of a variety of bodies 

 Diffraction and radiation of single or multiple bodies 

 Frequency domain solutions of linear or non-linear responses 

 Time domain solutions of linear or non-linear responses 

 Hydrodynamics of bodies  

 Simulation of mooring system 

 Static analysis of mooring system 

 Quasi-static and dynamic simulations of mooring system (taut and catenary) 

 Simulation of DP vessels 

 Finite Element Method models with 3 or 6 DoF. 

Although widely used in the design of offshore equipment, it is not possible to model 

all of the distinct features of MRE devices using existing mooring system software. 

Qualities such as power take-off systems are not covered by the majority of currently 

available tools. ‘Wave-to-Wire’ models such as WaveDyn by GL-Garrad Hassan and 
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ACHIL-3D by Ecole Centrale de Nantes have been developed to simulate the 

dynamic response of WECs. WaveDyn is designed to be standard software tool for 

the design of WECs, it is loaded with modules to model the hydrodynamics of WEC 

devices, the power-take-off, the structural dynamics and the mooring system.  It has 

been subjected to validation studies specifically for WECs (e.g. [50]). 

Orcaflex (latest version: 9.7) is a widely used software package for a number of 

modelling applications [51].  It can be used to undertake time domain analysis of 

different types of mooring systems, vessel objects and buoy objects.  Software 

packages such as the latest release of Orcaflex are capable of accounting for the 

spatial variability of device of hydrodynamic interactions across devices arrays, 

hydrodynamic parameters are used based on array BEM simulations, hydrostatic 

and potential theory loads are calculated from diffraction/radiation programs (e.g. 

WAMIT) and then fed into Orcaflex for analysis. In terms of mooring system design 

such interactions should definitely be accounted for because device displacements 

and mooring loads are likely to differ from individual devices.  Also a plug in module 

to account for power take-off could potentially be used with this. 

Marintek have developed a number of tools which can undertake detailed analysis of 

offshore vessels, structures and buoys: 

 Simo: is wave-induced analysis in time domain accounting the retardations 

based on a Boundary Element Method (BEM). 

 Riflex: For time domain analysis of mooring lines, risers and umbilical lines. 

 Simo-Riflex: Can do time domain analysis of coupled floating bodies, 

including floating and fixed wind turbines, tidal turbines and WECs. 

 SIMA: is the new commercial version of the MARINTEK software including 

Simo-Riflex. 

 Mimosa: is for mooring lines.  It can calculate wave-frequency, low-frequency 

motions and tensions. 
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Simo, Riflex and Mimosa are also available as part of DNVs Sesam DeepC package 

which, similar to Orcaflex and AQWA, can carry out time domain coupled analysis of 

moored structures as well as fixed bodies. 

  

Figure 19: Vessel and structure modelled in Simo (left), screenshot showing 

analysis of flexible object with Riflex (right) 

 

Figure 20: Examples of risers and moorings that can be modelled with 

Riflex/Mimosa. 
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Some of the tools listed in Appendix C are stand-alone and can calculate the 

dynamic response of a moored body based on its physical attributes (geometry, 

dimensions, mass, inertia etc.), mooring system, site characteristics and 

environmental conditions. Other software requires hydrodynamic parameters to be 

specified in order to function (e.g. Table 11). Hydrodynamic parameters can be 

quantified by physical testing and/or using numerical codes based on potential 

theory (e.g. Table 12).  

Contact parameters Body/vessel motion characteristics  

Mooring line geometry Environmental loading 

Mooring line component properties Site characteristics 

Table 11: Input parameters typically required by mooring system software 

Potential theory codes are used to solve the velocity potential around a defined 

geometry caused by the radiation and diffraction of an incident wave-field. Boundary 

element methods (BEMs) are used to integrate the flow-field over the immersed 

surface of the geometry. In this approach it is assumed that the fluid is ideal (inviscid, 

incompressible and irrotational) and that the first and second order linear wave 

forces resulting from small amplitude waves lead to small device motions. Hence the 

variation of calculated hydrodynamic parameters with varying device position (i.e. 

draft) is not accounted for. Commercially available tools include: WAMIT, 

AQUAPLUS, AQUADYN, HYDROSTAR, AQWA Diffraction and DIFFRAC. 

Excitation forces and phases (1st and 2nd 
order) 

Added mass coefficients 

Mean drift forces and moments Radiation damping coefficients 

Response amplitude operators Pressure and fluid velocities 

Table 12: Typical frequency dependent hydrodynamic parameters calculated by 

potential theory codes 

These parameters are frequency dependent and can be used to solve the equation 

of motion in the frequency domain, provided the incident waves are harmonic. In 

order to account for irregular waves superposition is used. It is possible to include a 
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basic representation of the mooring system in some potential theory codes (i.e. with 

a user-defined stiffness matrix). 

Time domain analysis is necessary for non-linear system responses, where the 

equation of motion is solved at each time step. This allows coupled analysis to be 

carried out where one or more sub-systems are non-linear (i.e. PTO, mooring 

system and the performance of devices in arrays).   The responses of the bodies that 

are modelled by software such as Orcaflex are the result of boundary element 

methods and as such this method may not provide accurate response predictions for 

large and non-linear or resonant motions within an array. 

More complex hydrodynamics, wave breaking, sloshing, run-up, non-linear storm 

waves, large amplitudes (i.e. resonant responses, viscous effects due to large 

velocities) require advanced methods as the flow is no longer irrotational. Viscous 

effects can either be accounted for in linear models (i.e. the addition of viscous drag 

or damping using the Morison equation, or non-linear Froude-Krylov forces on the 

instantaneous immersed surface) or using CFD to solve the Reynolds-Average 

Navier-Stokes (RANS) equation. Smoothed particle hydrodynamics (SPH) is a 

relatively new application of CFD which is a mesh-free method of modelling the flow 

by dividing the fluid into discreet particles [52].  This enables the prediction of 

variables such as velocity, direction of flow, pressure and energy and can be used to 

model fluids in complex situations where traditional grid-based CFD simulations 

cannot.   
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There are a number of standards and guidelines issued by various classification and 

standards bodies which apply significantly to the design of marine renewable energy 

devices, listed in Table 13 are some of the legislation which is most relevant to the 

modelling of mooring systems for MRE devices.  Relevant design areas for design 

certification purposes are listed in Table 14.  A more complete list of standards is 

attached in Appendices B1 and B2. 

Standard Year Issuing Organisation 

Marine energy – Wave, tidal and other water current 
converters - Part 10: The assessment of mooring 
system for marine energy converters (MECs) 

2003 IEC 

Position Mooring: DNV-OS-E301 2010 DNV 

Environmental Conditions and Environmental Loads: 
DNV-RP-C205 

2010 DNV 

Design of Floating Wind Turbine Structures: DNV-OS-
J103 

2013 DNV 

Certification of Tidal and Wave Energy Converters: 
DNV-OSS-213 

2012 DNV 

Guidelines on design and operation of wave energy 
converters 

2005 DNV/Carbon Trust 

Classification of Mooring Systems for Permanent 
Offshore Units. NR 493 DT R02 E 

2012 Bureau Veritas 

Rules for the Classification of Offshore Loading and 
Offloading Buoys NR 494 DT R02 E 

2006 Bureau Veritas 

Petroleum and natural gas industries -- Specific 
requirements for offshore structures -- Part 7: Station 
keeping systems for floating offshore structures and 
mobile offshore units: ISO19901-7:2013 

2013 ISO 

Table 13: Existing Guidelines which may be relevant to mooring systems of MRE 

devices  
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4.2. Anchors and Foundations 

There are a number of general geotechnical software packages available 

commercially.  There are designed to undertake 2-dimensional or 3-dimensional 

analysis of geotechnical structures.  Some common features include: 

 Finite Element Analysis based models of structures and surroundings 

 Geometry of structures, soils, fluids and materials,  

 Intersections and meshing of structures, 

 Multiple layers of different soils/materials 

 Cyclic loading analysis 

 Linear and non-linear elasticity 

 Stress and strain analysis  

Standardised anchor selection tools do not appear to exist, instead it is based on 

experience and the soil specification at the site (i.e. which is obtain from samples 

collected at the required depth; costs are associated with this and data is often not in 

the public domain).  

 Line and anchor pattern  Position and weight of buoyancy 

elements and weight elements 

 Type and weight and dimension 

of all line segments 

 Windlass, winch and stopper design 

 Characteristic line strength  Mooring line tensions in ULS and ALS 

limit states 

 Anchor type, size, weight and 

material specification 

 Fatigue calculations of mooring line 

segments and accessories 

 Arrangement of fairleads and 

anchor points/pretensions 

 Strength calculations of anchors, 

windlass components and fairleads 

 Position and weight of buoyancy 

elements and weight elements 

 Corrosion allowance. 

Table 14: Design areas which would be typically documented for design 

certification according to the DNV-OSS-213 Certification of Tidal and Wave 

Energy Converters guidelines [17] 
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Efforts were made to develop an anchor penetration tool to determine holding 

capacity, this was in the form of a joint industry project that was a continuation of the 

DIGIN program developed by DNV however due to reliability issues, not all of the 

data has been released to users. 

 
Figure 21: Example of ABAQUS. This shows radial pressure following the insertion 

of a pile. 

Foundation tools are mainly based around Finite Element Analysis (FEA) although 

some models, particularly those undertaking slope stability analyses, use Limit 

Equilibrium Analysis (e.g. SLIDE, SLOPE/W).  FEA generates a mesh over a domain 

and breaks it down in to a number of smaller elements. It can be used to model the 

solution to a complex problem (for example installing a pile in a multi-layer seabed). 

Some of the commercially available software packages that can undertake 

geotechnical analysis are: 

ABAQUS:  This has been used widely for geotechnical analysis for a range of 

foundation technologies, including Gravity Based Structures [53], piled foundations 

[54] and suction caissons.  It is able to analyse a model in both the time and 

frequency domain.  There is the ABAQUS/AQUA module designed for offshore 

applications. It includes features for jackets and risers, bottom bending structures 

and floating objects.  Structures can be subjected to drag, buoyancy and fluid forces.  

Wind effects can also be simulated. 

http://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/PDF/tech-briefs/Arch-Analysis-of-Driven-Pile-Setup-Abaqus-Standard-06.pdf
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Plaxis 2D and Plaxis 3D is able to model the linear and non-linear time dependent 

behaviour of soils. It is designed to deal with hydrostatic pressures within the soil.  It 

is equipped with features to simulate the interactions of structures and the soils.  A 

dynamics module is available to deal the propagation of waves through the soil and 

their influence on structures; this includes seismic loading and vibrations. Example 

foundation simulation (referred to as a ‘suction anchor’) in soft clay [55] 

The D-Pile software suite is specifically designed to undertake 3D modelling of 

single or group piles.  There are modules to account for elastic soil behaviour and 

cap interaction, although interactions between piles are not accounted for.  Also 

available is the online service Citrix which allows the modelling parameters to be 

uploaded online and the simulations to be run on the powerful computing equipment 

on the central server.  The results are then returned to customer via the website. 

 

Figure 22: Screenshot of Pile-D software showing properties of a pile installed within 

a mixed material soil 

http://www.deltaressystems.com/geo/product/108146/d-pile-group1/1100323
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Slope/W is a tool designed for analysing slope stability analysis.  It is capable of 

modelling many stability scenarios including, natural rock slopes, fixings on slopes, 

earthquake and seismic loading. 

 

 

Figure X: Dynamic effect on a structure, modelled on Plaxis3D 

LimitstateGeo:  This is also a stability analysis tool. It uses Discontinuity Layout 

Optimisation (DLO) as opposed to FEM and is therefore able to model 

collapses/failures directly without the need to iterate. 

STA Pile3: A tool for the design and analysis of pile anchors.  It can be used for 

suction embedding calculations and for capacity analysis of pile anchors. 

Other software includes BIFURC-3D and HVMCap which are produced by the 

Norwegian Geotechnical Institute and have many similar capabilities as ABAQUS 

and Plaxis. Further information regarding this software can be found in Appendix C.  

 

 

http://wildeanalysis.co.uk/fea/software/plaxis/plaxis-3d-suite/3d-dynamics
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Standards and guidelines that all geotechnical design tools will need to follow 

include: 

 Piles API RP 2SK, Appendix E 

 Shallow foundations API RP 2A, Section 6  

 Anchors API RP 2SK, Appendix D 
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5. Summary 

It has been the purpose of this report to provide an overview of several key aspects 

of MRE mooring and foundation design including; mooring and foundation 

technologies and the assessment criteria used in the design making process of 

mooring and foundation system design. The state-of-the-art numerical tools and 

guidance from certification agencies which are used for design and analysis of 

mooring and foundation systems have been summarised. The transferability of 

existing approaches to offshore structure design is questionable for MRE devices 

and more relevant guidance is required that can account for the particularities of 

MRE arrays (i.e. hydrodynamic interactions). This work is in progress, with 

certification agencies such as Det Norske Veritas and International Electrotechnical 

Commission at the forefront of guideline development in this field, for example the 

forthcoming IEC/TC 114 Marine energy - Wave, tidal and other water current 

converters - Part 10: The assessment of mooring system for marine energy 

converters (MECs) guidelines.  

Several software packages have been examined within the fields of linear analysis, 

mooring system analysis and geotechnical analysis.  The majority of modelling tools 

available have been designed for the shipping or oil and gas industries and how well 

they can be applied to MRE devices is a challenge for designers.  Some software, 

however, is now being produced specifically for the wave and tidal energy 

sector.  There appears to be a lack of software tools in the area of anchor selection. 

Geotechnical tools are available to simulate foundations; there is no reason that this 

also can be applied to the installation of tidal turbines and other MRE devices.   
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Appendix A1 

Recent MRE mooring and foundation Joint Industry Projects: 

A. Testing, qualification and commercialisation of advanced mooring system for 

wave & tidal arrays, study by Tension Technology, AWS, Bluewater, Bridon, 

Exeter University, Pelamis Vryhof, funded by Carbon Trust, January 2014. 

 

B. Synthetic fibre rope polymer lined fairleads, study by Tension Technology,  

Bridon, AWS and Bluewater, funded by Technology Strategy Board, Marine 

Energy Grant number 19116-141146, March 2013. 

 

C. Mooring systems, anchors and intermediate components (MOSAIC), study by 

Tension Technology, AWS, Ocean Power Technologies, Bridon, Promoor, 

Ecosea, funded by Carbon Trust, November 2007. 

 

D. Moorings and anchors for wave energy devices study by Tension Technology, 

AWS, Bridon, Promoor, Tencate, SSE Renewables and University of Exeter 

funded by Carbon Trust, January 2010 
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Appendix A2 

 

Figure 23: Vryhof Anchor Ultimate Handling Capacity (UHC) chart (image source: 

http://www.vryhof.com/) 

http://www.vryhof.com/
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Figure 24: Vryhof Anchor drag and penetration chart (image source: 

http://www.vryhof.com/) 

http://www.vryhof.com/
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Appendix B1 

 

 

  

Guideline Publication Date 

Det Norske Veritas   

Certification of Tidal and Wave Energy Converters: DNV-OSS-213 2012 

Cathodic protection design: DNV-RP-B401 2010 

Design of offshore steel structures, general (LRFD method): DNV-OS-C101 2011 

Fatigue analysis strength of offshore steel structures: DNV-RP-C203 2012 

Design against accidental loads: DNV-RP-C204 2010 

Environmental Conditions and Environmental Loads: DNV-RP-C205 2010 

Offshore concrete structures: DNV-OS-C502 2010 

Position Mooring: DNV-OS-E301 2010 

Offshore Mooring Chain: DNV-OS-E302 2009 

Offshore Fibre Ropes: DNV-OS-E303 2013 

Offshore Mooring Steel Wire Ropes: DNV-OS-E304 2009 

Design and Installation of Fluke Anchors: DNV-RP-E301 2012 

Design and Installation of Plate Anchors in Clay: DNV-RP-E302 2002 

Geotechnical Design and Installation of Suction Anchors in Clay: DNV-RP-E303 2005 

Dynamic risers: DNV-OS-F201 2010 

Design of Floating Wind Turbine Structures: DNV-OS-J103  2013 

Det Norske Veritas and Carbon Trust  

Guidelines on design and operation of wave energy converters 2005 

Bureau Veritas   

Classification of Mooring Systems for Permanent Offshore Units. NR 493 DT R02 E 2012 

Certification of fibre ropes for deepwater offshore services. 2nd edition. NI 432 DTO 

R01E 

2007 

Rules for the Classification of Offshore Loading and Offloading Buoys NR 494 DT R02 E 2006 

Table 15a: Existing offshore guidelines which may be relevant to the mooring of MRE devices 
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Appendix B2 

  
Guideline Publication Date 

American Petroleum Institute  

Recommended Practice for Design and Analysis of Stationkeeping Systems for 

Floating Structures: API RP 2SK 

1996 

Recommended Practice for Design, Manufacture, Installation, and Maintenance of 

Synthetic Fiber Ropes for Offshore Mooring: API RP 2SM (amended version) 

2007 

Mooring Chain. API Spec 2F 1997 

American Bureau of Standards  

Guidance Notes on the Application of Fiber Rope for Offshore Mooring 2011 

Guidelines for the purchasing and testing of SPM hawsers 2000 

Standards Norway  

Marine fish farms - Requirements for site survey, risk analyses, design, 

dimensioning, production, installation and operation: NS 9415:2009 

2009 

International Standards Organisation  

Petroleum and natural gas industries -- Specific requirements for offshore structures 

-- Part 7: Stationkeeping systems for floating offshore structures and mobile 

offshore units: ISO19901-7:2013 

2013 

Fibre ropes for offshore stationkeeping: Polyester: ISO18692:2007 2007 

Ships and marine technology -- Stud-link anchor chains: ISO1704:2008 2008 

Lloyds Register  

Rules and Regulations for the Classification of a Floating Offshore Installation at a 
Fixed Location 

2013 

British Standards Institute  

Code of practice for geotechnical design: BS6349-1-3 2012 

Table 15b: Existing offshore guidelines which may be relevant to the mooring of MRE devices 
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Appendix C 
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http://www.nrel.gov/water/pdfs/mkh_workshop_alain_clement.pdf
http://www.nrel.gov/water/pdfs/mkh_workshop_alain_clement.pdf
http://www.orcina.com/SoftwareProducts/OrcaFlex/Features/OrcaFlexFeatures.pdf
http://www.principia.fr/expertise-fields-software-products-deeplines-126.html
http://www.principia.fr/expertise-fields-software-products-diodore-132.html
http://www.ansys.com/Products/Other+Products/ANSYS+AQWA
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http://www.tensiontech.com/software/fibre_rope_modeller.html
http://www.gl-garradhassan.com/en/software/25900.php
http://www.veristar.com/content/veristarinfo/2005/11/03/Veristaroffshore/moor.htm
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http://www.sintef.no/upload/MARINTEK/PDF-filer/FactSheets/RIFLEX.pdf
http://www.sintef.no/upload/MARINTEK/PDF-filer/FactSheets/Mimosa.pdf
http://www.sintef.no/upload/MARINTEK/PDF-filer/FactSheets/MOOROPT2.pdf
http://www.eclipsecon.org/europe2013/sites/eclipsecon.org.europe2013/files/SIMA%20on%20EclipseCon%20Europe%202013%20-%20Sintef%20MARINTEK.pdf
http://www.sintef.no/upload/MARINTEK/PDF-filer/Sofware/Simo.pdf
http://www.dnv.com/services/software/products/sesam/sesam_deepc/
http://dsa-ltd.ca/software/proteusds/description/
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http://www.3ds.com/products-services/simulia/portfolio/abaqus/overview/
http://www.plaxis.nl/
http://www.plaxis.nl/
http://www.plaxis.nl/
http://www.ngi.no/en/Contentboxes-and-structures/Reference-Projects/Reference-projects/BIFURC/
http://www.ngi.no/en/Contentboxes-and-structures/Reference-Projects/Reference-projects/BIFURC/
http://www.limitstate.com/geo
http://www.limitstate.com/geo
http://www.stewart-usa.com/docs/sta-pile-3-1-8.pdf

