
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract— A robust understanding of the uncertainty in a yield 

estimate for a tidal energy project is a key investor requirement and a 

common barrier to the commercialisation of the nascent sector. The 

Root Sum Squared (RSS) method is commonly used to combine the 

uncertainty in site resource (i.e. velocity, m/s) with the uncertainty in 

plant performance and losses (i.e. energy, GWh). The validity of the 

assumptions underlying RSS has been questioned in literature, 

particularly for early stage projects. RSS assumes that all 

uncertainties are independent and normally distributed, that the 

relation between yield and velocity is linear for small variations and 

that the combined yield uncertainty is also normally distributed.  

Monte Carlo Analysis (MCA) is a competing method for uncertainty 

analysis which is not limited by the same assumptions. This study 

quantitatively compares the combined yield uncertainty for 4 realistic 

test cases derived using the two different methods with the same 

input uncertainty distributions. An excellent agreement is found for 

cases where the uncertainties are relatively small and where the site 

resource is low relative to the turbine rated velocity. Some 

divergence in results is shown for projects with higher uncertainties 

but it is noted that these projects are likely to be early stage with a 

higher tolerance for inaccuracy in the uncertainty estimate. RSS 

predicts a higher P90 yield than MCA but it is prudent to adopt the 

more conservative view. The point at which the divergence occurs is 

hard to define as it is a complex function of site resource, turbine 

rated velocity and project uncertainties. As such, the confidence in 

RSS results is somewhat compromised, particularly for early stage 

projects.               

Keywords— Tidal Energy, Uncertainty Analysis, Annual Energy 

Production, Root Sum Squared, Monte Carlo Analysis  

I. INTRODUCTION 

A key barrier to the commercialisation of the nascent tidal 

energy sector is the associated high investment risk. A 

significant risk component, affecting all tidal energy projects, 

is the uncertainty in the pre-construction resource and yield 

estimate. A robust understanding of those uncertainties will 

increase investor confidence [1].  

It is important for the investor to know not only the most 

likely (P50) value for a project’s yield (and therefore revenue) 

but also the conservative case (P90) in order to appraise the 

risk involved in the investment. A project with a lower P50 

yield may in fact be more financeable than a similar project 

with a higher P50 yield if the P90/P50 ratio is higher, i.e. 

smaller likelihood of large deviation from the P50 (Figure 1). 

 

 

Figure 1: Annual yield uncertainty distributions for example projects 

The distribution of annual yield uncertainty depends on: 

1) Characteristics of the underlying individual 

uncertainties (magnitude, distribution shape and 

correlation)   

2) Method used to combine the individual uncertainties 

A standardised framework for the categorisation and 

quantification of marine energy yield uncertainties is proposed  

in [2] and [3] respectively. As such, the focus of this paper is 

on the methods used to combine the uncertainties once their 

characteristics have been quantified. The uncertainty 

categories are summarised in Table 1 as well as the values for 

case study projects described in Section III.C. 

Reference [3] recommends using the Root Sum 

Squared (RSS) method for combining the individual 

uncertainties. However the validity of the assumptions 

implicit in such local methods when applied to the context of 

tidal energy has been questioned [1]. Section II discusses these 

assumptions and how a global method such as Monte Carlo 

Analysis (MCA) may be more suitable.       

Confidence in the process used to combine the yield 

uncertainties is as important as confidence in the individual 

uncertainties themselves. The aim of this paper is to 

quantitatively assess the two competing methods for 

combining uncertainties to identify their benefits and 

limitations.  



Table 1: Taxonomy of yield uncertainty categories and uncertainty values used in this study [2] [3] 

Uncertainty 

Category 
Sub-Category 

Standard Uncertainty (%) 

Project A1 Project A2 

1. Site Measurement 

1a. Instrument Accuracy 1% 1% 

1b. Measurement Interference 0% 0% 

1c. Short-term site data synthesis 0% 0% 

1d. Data quality and metadata 0% 0% 

2. Temporal 

Variation 

2a. Historic resource estimation 2% 2% 

2b. Future resource variability 0.2% 0.2% 

2c. Climate change 0% 0% 

3. Spatial Variation 

3a. Model inputs 0% 0% 

3b. Horizontal and vertical extrapolation 0% 11.2% 

3c. Other uncertainty 0% 0% 

4. Plant Performance 

and Losses 

4a. Availability 0% 1.2% 

4b. Resource-array interactions 0% 2.3% 

4c. Marine energy convertor performance 0% 5.5 % 

4d. Electrical losses 1% 1% 

4e. Performance degradation 0% 0% 

4f. Curtailment 0% 0% 

4g. Other losses 0% 0% 

5. Other 5a. Other 0% 0% 

Section II provides an overview of the theory, assumptions 

and limitations of RSS and MCA methods in the context of 

yield uncertainty analysis. The test case projects are defined in 

Section III as well as the common inputs such as resource and 

turbine data. The results from the RSS and MCA models 

using common input data are compared in Section IV and V, 

followed by a discussion and conclusion.     

II. THEORY 

A. Root Sum Squared (RSS) method 

The combined standard uncertainty in a variable can be 

expressed as a function of the individual uncertainties in the 

variables upon which it is dependent. If the individual 

uncertainties are independent and uncorrelated [4]:  

𝑢𝑐
2(𝑦) = ∑ (

𝜕𝑓

𝜕𝑥𝑖

)
2
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where f is the function between the individual variables xi 

and the final variable y, u(xi) is the standard uncertainty in the 

individual variables and uc is the combined standard 

uncertainty.  The partial derivatives, called the sensitivity 

coefficients describe the sensitivity of y to changes in xi.  

Reference [1] presents a methodology for the application of 

the above generic equation to the context of tidal yield 

uncertainty calculation. A summary of the process is 

presented below for completeness.  
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where uc is the combined standard uncertainty in the annual 

yield and cv is the sensitivity coefficient between mean 

velocity and yield. The standard uncertainty in the resource 

and plant performance and losses, uR and u4 respectively are:  
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Assuming that the relation between change in velocity (i.e. 

dv = vpert – v) and the resultant change in annual yield (i.e. 

dE = Epert – E) is linear for small variations in mean velocity, 

the cv can be derived numerically: 

𝑐𝑣 =
(𝐸𝑝𝑒𝑟𝑡/𝐸) − 1

(𝑣𝑝𝑒𝑟𝑡/𝑣) − 1
 (5) 

where vpert is a perturbed mean velocity and Epert  is the 

corresponding gross annual yield. The perturbed mean 

velocity is derived by multiplying the measured ADCP 

timeseries by a small perturbation factor. A value in the range 

of -3% to 3% is initially proposed in [1] and a perturbation of 

-0.5% is then shown to give results closest to the analytical 

solution for one particular case. Reference [3] implies the use 

of an average cv from perturbations of ±5%.      

As per the Central Limit Theorem (CLT), it may be assumed 

that the uncertainty in annual yield is normally distributed. 

The P90 yield can then be calculated from the P50 yield and 

combined standard uncertainty, uc, using a coverage factor of 

1.282[1]:  

𝐸𝑃90 = 𝐸𝑃50 − 1.282𝑢𝑐 (6) 

The implications of the major assumptions in this process are: 

1) Gaussian and independent uncertainties: any skewed 

or correlated behaviour (e.g. increase in turbulence 

may have a correlated effect on Table 1 uncertainties 

4a, 4b and 4c) is not modelled. The RSS method can 

account for correlated uncertainties but the derivation 

of cv is more difficult.  



2) Linear approximation: this assumption does not hold 

its validity when the uncertainty in the resource is 

relatively large. The deviation from assumed linearity 

will result in an inaccurate cv calculation and in fact the 

value derived will be very dependent on the 

perturbation level used.  

3) uR = f(uv) only: implicit in Equations (2) and (3) is the 

assumption that resource uncertainty is wholly 

dependent on the uncertainty in velocity [1]. The 

uncertainty resulting from factors such as turbulence 

and flow direction is captured in the plant performance 

uncertainties.       

4) Normally distributed uc: the assumption of normally 

distributed yield uncertainty may be invalid if the 

individual uncertainties are not independent, 

uncorrelated and normally distributed [5]. The 

assumption is also invalidated in cases of significant 

non-linearity or if a few uncertainty components 

dominate the combined uncertainty     

B. Monte Carlo Analysis (MCA)  

Monte Carlo Analysis is a probabilistic method used to 

solve complex deterministic problems which are difficult to 

solve analytically. The function relating the input variables to 

the output parameter is solved repeatedly, with each repetition 

being seeded by a random value from each input distribution 

in Table 1 [6].  The MCA process in the context of tidal 

energy yield uncertainty assessment is shown in Figure 3.   

 

Figure 2: Generic Monte Carlo Analysis process flowchart 

MCA overcomes each of the limitations with RSS 

highlighted earlier. Input uncertainty distributions that are 

non-Gaussian and correlated can be sampled easily. The 

power function is no longer assumed to be linear and is solved 

analytically (Equation 9) for each simulation. Therefore any 

non-linearity will naturally be accounted for and propagated 

through to the combined yield uncertainty distribution. 

Therefore large uncertainties can be processed validly. The 

distribution of the combined yield uncertainty is no longer 

assumed to be Gaussian as the individual uncertainty 

distributions are numerically propagated to calculate the 

combined uncertainty. However, MCA is more 

computationally onerous than RSS and the computational 

burden increases non-linearly with the number of simulations 

carried out.  

 
Figure 3: Monte Carlo Analysis applied to yield uncertainty analysis 

III. COMMON MODEL INPUTS 

A. ADCP Data 

Velocity timeseries data recorded by Acoustic Doppler 

Current Profilers (ADCP) at two sites in the North of Scotland 

are used in this study (Figure 4). The characteristics of the two 

datasets are summarised in Table 2.  

Table 2: ADCP dataset specification 

Dataset Measurement 

Period 

Total Days 

Recorded 

Ensemble 

Period (mins) 

Pings per 

Ensemble 

ADCP 1 
17/02/13 to 

23/03/13 
34 10 1200 

ADCP 2 
19/03/15 to  

21/04/15 
33 20 24 

Draw nth random value, ui,n, from each input 
uncertainty distribution u1a, u1b etc. to u5a     

Calculate combined resource uncertainty in nth 
simulation:  

𝑢𝑅,𝑛 = 𝑢1𝑎,𝑛 + 𝑢1𝑏,𝑛 + ⋯ + 𝑢3𝑏,𝑛 + 𝑢3𝑐,𝑛            (7) 

Calculate nth velocity timeseries: 

𝑣𝑛 = 𝑣𝑛𝑜𝑚𝑖𝑛𝑎𝑙  . 𝑢𝑅,𝑛                                             (8) 

Calculate nth gross yield: 

𝐸𝑔𝑟𝑜𝑠𝑠,𝑛 = 𝑓(𝑣𝑛)                                                   (9) 
where f is the yield function discussed in III.B. 

Calculate combined plant performance and loss 
uncertainty in nth simulation: 

𝑢4,𝑛 = 𝑢4𝑎,𝑛 + 𝑢4𝑏,𝑛 + ⋯ + 𝑢4𝑔,𝑛 + 𝑢5𝑎,𝑛        (10) 

Calculate nth net yield: 

𝐸𝑛 = 𝐸𝑔𝑟𝑜𝑠𝑠,𝑛 .  𝐿𝑜𝑠𝑠𝑒𝑠 . 𝑢4,𝑛                             (11) 
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Figure 4: Location of the two ADCPs considered in this study 

Both datasets are post processed by removing data from bins 

close to the seabed and sea surface to exclude data that is 

likely to be contaminated due to sidelobe ringing and surface 

wave interference [7]. The data in the remaining vertical bins 

is averaged to derive a depth averaged velocity timeseries for 

each site.       

B. Annual Yield Calculation 

A generic power curve representative of a variable pitch 

1.3 MW turbine with a rated velocity of 2.7m/s is used 

throughout the study [8]. Figure 5 and Figure 6 show the 

power curve used in this analysis in relation to the prevalent 

resource at the two study sites. It is evident that the ‘ADCP 1’ 

experiences considerably higher velocities for a higher 

proportion of time. The velocity is above the turbine’s rated 

velocity for a significantly larger period of time at ‘ADCP 1’ 

site.  

Harmonic analysis using UTide [9] is used to synthesise an 

annual velocity timeseries for 2017 with a timestep of 10 

minutes from ADCP1 and ADCP2 measured timeseries. 

 

The yield is calculated using the time domain expression: 

𝐸𝑔𝑟𝑜𝑠𝑠 =  
𝑡

𝑛
∑ 𝑓(𝑣𝑖)

𝑛

𝑖=1

 (12) 

where Egross is the gross yield, t is the hours in a year, n is the 

number of samples in the timeseries and f(vi) is the function 

defining power output for a given velocity vi, as shown in 

Figure 5 and Figure 6.  

Note that the power curve is defined in bin intervals of 

0.1m/s. Linear interpolation is used to derive the power output 

for velocities between the bin edges. This approach is chosen 

over the frequency domain method of bins (Equation 13) to 

avoid introduction of numerical errors to the analysis which 

are not related to the topic of study.    

𝐸𝑔𝑟𝑜𝑠𝑠 =  𝑡 ∑ 𝑓(𝑣𝑗). 𝑝𝑗

𝑏𝑖𝑛𝑠

𝑖=𝑗

 (13) 

where bins is the number of bins in the power curve and pj is 

probability of velocity being in the jth bin.   

 

Figure 5: Power curve compared to ‘ADCP 1’ velocity frequency distribution 

 

Figure 6: Power curve compared to ‘ADCP 2’ velocity frequency distribution 

An arbitrary loss factor of 20% is applied to the gross yield to 

account for performance and availability losses.  

C. Uncertainties  

The yield uncertainty categories proposed in [2] are used in 

this study because it can be considered to be the industry 

standard. Reference [3] proposes representative values of 

standard uncertainties for each of the categories for a number 

of realistic, but hypothetical projects. The uncertainties 

proposed for Reference project A1 and A2 in [3] are used in 

this study and listed in Table 1. These projects are chosen as 

they represent realistic low and high uncertainty projects 

whilst being comparable to the ADCP data available for this 

study.  



 Reference Project A1 is a single turbine project with a 

28 day ADCP measurement at the turbine location. The 

availability and performance is assumed to be warranted and 

therefore poses no additional uncertainty to the project yield. 

Project A2 is a 5 turbine project which uses a 2D 

hydrodynamic model to spatially extrapolate the resource 

from the 28 day ADCP measurement site. Only a minimum 

availability and performance level is warranted and therefore 

uncertainty on the plant performance is present. Both projects 

use harmonic analysis to extrapolate the measured resource 

temporally. It is assumed that all uncertainties are normally 

distributed and independent. Detailed justification of standard 

uncertainties listed in Table 1 can be found in [3] but is not 

described further as quantifying the uncertainties is not the 

focus here. 

D. Study test cases 

Therefore there are 4 projects being considered. Their 

defining characteristics in the context of yield uncertainty 

analysis can be summarised as:  

Table 3: Summary of test case characteristics  

 High uncertainties Low uncertainties 

High mean velocity ADCP1 Project A2 ADCP1 Project A1 

Low mean velocity ADCP2 Project A2 ADCP2 Project A1 

IV. ROOT SUM SQUARED (RSS) MODEL   

A. Combined Resource Uncertainty (uR) and Performance 

and Loss Uncertainty (u4) 

Equations (3) and (4) are used with the corresponding 

standard uncertainties in Table 1 to calculate the uR and u4 for 

the two projects:  

Table 4: uR and u4 values for study projects 

 Project A1 Project A2 

uR (%) 2.24 11.42 

u4 (%) 1.00 6.16 

B. Sensitivity Coefficient (cv) 

Sensitivity coefficients are calculated for a range of 

perturbations from -5% to 5% in increments of 0.5% to test 

the stability of the linearity assumption. Figure 7 shows that 

the linear assumption appears valid for ADCP2 but a slight 

deviation from the general linear trend is observed for positive 

perturbations greater than 2%. This can be explained as the 

linearity assumption is generally valid for velocities 

corresponding to the region in the power curve between the 

cut-in and rated velocities. The rated power and cut-out 

regions introduce severe non-linearity in the dv-dE relation. 

The ADCP1 site resource has a relatively large frequency of 

occurrence in the rated region in the nominal case (Figure 5). 

The larger positive perturbations push enough of the velocity 

timeseries into the rated region to have an apparent overall 

non-linear effect in the annual yield.  

The sensitivity coefficient, cv, is effectively the non-

dimensionalised gradient of the lines in Figure 7 so any non-

linearity in the data will result in instability in the derived cv. 

Considering the linear line of best fit gradient as the most 

accurate derivation of cv, Figure 8 shows the stability of the cv 

dependent on the perturbation level used. It is clear that the 

value of cv is extremely sensitivity to even a small non- 

linearity. This is demonstrated by a variation of up to ±4% in 

the cv for ADCP2 despite the apparently linear relation 

observed in Figure 7. Similarly, the slight non-linearity for 

positive perturbations on ADCP1 observed in Figure 7 is 

exaggerated results in up to 10% difference from the line of 

best fit cv. The average cv of a positive and negative 

perturbation at a given level (e.g. average of ±5% cv) provides 

a more stable value which is also closer to the line of best fit 

cv.   

 

 

Figure 7: Variation in annual yield due to small perturbations in mean velocity 
(data shows perturbations from -5% to 5% in 0.5% increments) 

 
Figure 8: Variation in sensitivity coefficient with change in perturbation level 

 

 



C. Combined and Expanded Yield Uncertainty 

The cv values calculated earlier can be used to calculate the 

P90 yield using Equation (13) and plot the combined yield 

uncertainty distribution. Figure 9 shows the P90/P50 ratios 

resulting for the 4 test cases resulting from the two ADCP 

sites and two projects being studied. The deviation in ADCP1 

cv for large positive perturbations results in a corresponding 

deviation in the P90/P50 ratios. However, this deviation is 

much more significant for project A2 because it has a much 

larger combined resource uncertainty, ur, and the P90 is a 

function of the product of ur and cv. The small linear instability 

in cv for ADCP2 is notable for project A2 but using the 

average cv values gives a stable P90/P50 regardless for the 

perturbation level chosen.  

 

Figure 9: Variation on P90/P50 ratio dependent on perturbation level 

Figure 10 shows the expanded yield uncertainty for ADCP1 

Project A2 which has the worst case combination of the most 

instable cv and largest individual uncertainties resulting in the 

biggest variance in P90/P50 depending on the perturbation 

level chosen. The difference in the exceedance probabilities 

for two extreme perturbations can be considered to be small.  

 

Figure 10: Probability and cumulative distribution functions for ADCP1 

Project A2 combined annual yield uncertainty normalised per turbine  

V. MONTE CARLO ANALYSIS (MCA) MODEL 

All random samples for MCA are drawn using the 

Mersenne Twister random number generator with a fixed seed 

of ‘1’ to allow reproducibility. A total of 10,000 simulations 

are carried out as it was found to provide a stable solution for 

a reasonable computational time of less than 2 minutes on a 

standard desktop PC using MathWorks MATLAB software.   

A. Combined Resource Uncertainty (uR) and Performance 

and Loss Uncertainty (u4) 

Equations 7 and 10 are used with the corresponding 

standard uncertainties in Table 1 to calculate the empirical 

distributions and standard deviations for uR and u4 for the two 

projects (Table 5). They are similar but not identical to the 

corresponding values in Table 4. 

Table 5: uR and u4 values for study projects 

 Project A1 Project A2 

uR (%) 2.27 11.47 

u4 (%) 1.00 6.18 

B. Combined Yield Uncertainty Distributions 

The process described in Figure 3 is used to calculate the 

uncertainty distribution of annual yield for each of the test 

cases. The MCA distribution for Project A1 matches very well 

with the RSS results    (Figure 11). A less good fit is observed 

in the comparison for Project A2. This is largely because the 

RSS assumption of combined uncertainty distribution being 

Gaussian is no longer valid due to the large uncertainties. The 

distribution is skewed towards the minimum as the turbine 

power output is not proportional to velocity in the rated region 

and large deviations from the mean velocity push sufficient 

velocities into this region to have a noticeable effect. The 

skew is more pronounced for ADCP1 which has a higher 

mean velocity in the nominal case. The effect of this on the 

P90/P50 ratio is shown in Table 6. Whilst there is excellent 

agreement for Project A1, approximately 2% difference is 

observed for the higher uncertainty Project A2.  

Table 6: Comparison of P90/P50 ratios from RSS and MCA results  

 RSS P90/P50 MCA P90/P50 Diff. (%) 

ADCP1 Project A1 0.965 0.964 0.10 

ADCP1 Project A2 0.816 0.801 1.87 

ADCP2 Project A1 0.946 0.945 0.11 

ADCP2 Project A2 0.721 0.706 2.12 
 

 

 

 
 

 

VI. DISCUSSION 

Some dependence of cv on the arbitrary choice of 

perturbation level has been shown. Whilst cv is extremely 

sensitivity to small non-linearity in the dE/dv function, the 

effect on final P90/P50 is shown to be relatively small. 

Nonetheless, using the average of a negative and positive 

perturbation will provide a better result and such an approach 

is recommended if using RSS. As noted in [10], a turbine with 

a lower rated velocity will yield a lower cv (and therefore uc) 

than a higher rated turbine for a given resource. However, it 

will also increase the instability of cv with perturbation level 

as shown in Figure 8. This is introducing an additional 



  

 

 
 

 

 

element of uncertainty to the results and must be included in 

the consideration of matching a turbine to a resource with 

respect to the uncertainty analysis. 

MCA is shown to provide noticeably different results to 

RSS when the assumption of normally distributed uc is not 

valid (and to a small extent also when the assumption of 

linearity is not valid). It is noted that whilst the difference is 

significant, a project with such a high uncertainty is likely to 

be early stage and therefore have a higher tolerance for 

inaccuracy in the risk metrics. However, it is noted that the 

RSS results predict a more optimistic P90 yield but it is 

prudent to adopt the more conservative view.          

There is no easily defined point at which the RSS 

assumptions are invalidated as it is a complex function of the 

site velocity distribution, turbine power curve and magnitude 

of individual project uncertainties. As a general rule, the 

assumptions are pushed to the limit when a significant portion  

 

 
 

 

 

of the velocity frequency distribution occurs within and above 

the rated region of the power curve, and when the 

uncertainties are relatively high. In other words, RSS may be 

invalid for projects using turbines with a low rated velocity 

relative to the site resource and/or for early stage projects 

which have poor quality measurements, modelling and 

performance data. Nonetheless, the RSS results are shown to 

be approximately correct in the worst case tested here, which 

is representative of a realistic early stage project with low 

rated velocity turbine.            

The RSS process can easily be carried out in a standard 

spreadsheet and a purpose built tool is freely available for this 

purpose [11]. MCA currently requires the analyst to build the 

model, although the publication of an equivalent MCA tool is 

quite possible. Nonetheless, licenses for specialist software 

and/or user expertise will be required and the computational 

time required is also higher.  

 

Figure 11: Annual yield distribution (top) and corresponding cumulative distribution functions (bottom) for resulting from RSS and MCA methods for 

Project A1 (left) and Project A2 (right). Note that the yield is normalised per turbine for Project A2 and RSS results are calculated using cv derived from the 

gradient of lines in Figure 7 

 



VII. CONCLUSIONS AND FUTURE WORK 

1) Conclusions 

The known limitations of RSS are tested and compared to 

equivalent results from MCA, which is not restricted by the 

same limitations. Whilst good agreement is found in projects 

with relatively low uncertainty and site resource relative to 

turbine rated velocity, divergence in results is seen for the 

high resource, high uncertainty test case. Whilst there may be 

a higher tolerance for small inaccuracies in the yield estimate 

for a high uncertainty project, it is noted that inaccuracy 

results in a more optimistic P90 yield. It is difficult to define 

the limit at which the difference between RSS and MCA 

becomes significant. As such, the confidence in uncertainty 

estimates derived using RSS may be undermined. Confidence 

in the uncertainty analysis is key for investors and the use of 

MCA provides higher confidence, particularly for early stage 

projects where the RSS assumptions are stretched.   

2) Future Work 

The current work compares identical inputs and therefore 

limits MCA to the RSS assumption of normally distributed 

and independent input uncertainties. A study with some 

skewed and correlated uncertainty distributions will likely 

show further divergence in results. Analysing more projects 

with a large range in uncertainty and different power curves 

will provide more data points to more accurately define the 

transition region where MCA results become more accurate 

than RSS. The MCA method will be extended to include wave 

energy projects which have two parameters affecting the 

combined uncertainty rather than one as is the case for tidal 

energy. 
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