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Pipeline Failure Prediction in Water Distribution Networks using 1 

Evolutionary Polynomial Regression combined with K-means clustering 2 

Abstract 3 

This paper presents a new approach for improving pipeline failure predictions by combining a data-4 

driven statistical model, i.e. Evolutionary Polynomial Regression (EPR), with K-means clustering. 5 

The EPR is used for prediction of pipe failures based on length, diameter and age of pipes as 6 

explanatory factors. Individual pipes are aggregated using their attributes of age, diameter and soil 7 

type to create homogenous groups of pipes. The created groups were divided into training and test 8 

datasets using the cross-validation technique for calibration and validation purposes respectively. The 9 

K-means clustering is employed to partition the training data into a number of clusters for individual 10 

EPR models. The proposed approach was demonstrated by application to the cast iron pipes of a water 11 

distribution network in the UK. Results show the proposed approach is able to significantly reduce the 12 

error of pipe failure predictions especially in the case of a large number of failures. The prediction 13 

models were used to calculate the failure rate of individual pipes for rehabilitation planning. 14 

 15 

Keywords: Evolutionary Polynomial Regression, K-means clustering, pipe failure predictions, water 16 

distribution networks  17 

 18 

1. Introduction 19 

Due to the high economic, environmental and social costs resulting from pipe failures in water 20 

distribution systems, development of a reliable and accurate prediction model of pipe failure is of 21 

paramount importance. The failure is the cumulative effect of various pipe-intrinsic, operational and 22 

environmental factors. Pipe failure implies a decrease in the service level, resulting in economic, 23 

environmental and social costs. Water utilities usually follow one of two rehabilitation strategies: 24 

reactive or proactive (Røstum 2000). In a reactive strategy, a pipe will be rehabilitated after failure is 25 

detected whereas pipe rehabilitation in a proactive strategy is scheduled in advance after assessing and 26 
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forecasting pipe propensity to fail. Due to the advantages of taking a proactive approach (e.g. 1 

maintenance/improvement of current level of service), researchers and practitioners have striven to 2 

develop predictive models in which the likelihood of pipe failure is identified for future planning of 3 

replacement/ rehabilitation. 4 

Predictive models can be classified into physical (Rajani and Kleiner 2001), statistical (Kleiner and 5 

Rajani 2001; Scheidegger et al. 2015) and data-driven entailing artificial neural network (Clair and 6 

Sinsha 2012) and evolutionary polynomial regression (Giustolisi and Savic 2006; Berardi et al. 2008). 7 

Physical models analyse the loads to which the pipes are subject and the capacity of the pipes to resist 8 

these loads in order to predict their propensity to break (Rajani and Kleiner 2001). Despite their 9 

reasonable accuracy, physical models compared to other methods have significant input data demands 10 

because they try to simulate the mechanisms that lead to pipe failure whereas the other methods try to 11 

identify breakage patterns using historical failure data. These demands involve gaining an 12 

understanding of structural behaviour of buried pipes, pipe-soil interaction and knowledge about the 13 

quality of installation, internal and external stresses, material deterioration (e.g. external and/or 14 

internal corrosion) and historical level of pressure (Martínez-Codina et al. 2015). The relatively high 15 

cost of obtaining these data can be justified only for major transmission water mains where the cost of 16 

failure is high. In contrast, statistical models are applicable to various levels of input data and capable 17 

of linking pipe breakage patterns to various pipe descriptive variables and other environmental and 18 

operational factors using regression analysis of historical pipes break data (Kleiner and Rajani 2001). 19 

Statistical models can cope with the lack of sufficient knowledge related to the complex physical 20 

mechanisms that lead to pipe failure although they have some limitations such as requirement for 21 

some assumptions (e.g. selection of probability distribution function) that should be substantiated by 22 

some knowledge of the phenomenon, which is not always available. In order to overcome the 23 

complexity of failure patterns observed in water networks, data-driven methods (Fayyad et al. 1996) 24 

such as Artificial Neural Networks (ANNs) have also been developed (Ahn et al. 2005; Achim et al. 25 

2007; Tabesh et al. 2009). ANNs are data-driven ‘black-box’ models, able to capture the complex 26 

relationship between input and output failures using a non-linear learning process and with no 27 

assumption of the form of the relationship between the variables. 28 
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EPR (Giustolisi and Savic 2006) is another data-driven method that can be used for prediction of 1 

mains pipe breaks (Giustolisi and Savic 2006; Berardi et al. 2008, Giustolisi and Berardi 2009). EPR 2 

provides a range of statistical equations of pipes failure prediction in a trade-off between training 3 

model accuracy and number of polynomial terms. This particular feature can be counted as the main 4 

strength of EPR giving a flexible approach to the decision maker to select the most appropriate 5 

polynomial model. However, the single polynomial regression model must capture different failure 6 

patterns in the entire database. To overcome this limitation and better understand the patterns of pipes 7 

failure, Xu et al. (2011) first partitioned the pipe database into two clusters of those installed before 8 

the monitoring period and the others after the monitoring period. They then developed two distinctive 9 

prediction EPR models, one for each cluster. Although this clustering approach enhanced the failure 10 

prediction accuracy to a certain extent, a more precise clustering approach is required to accommodate 11 

the high variability of pipes failure patterns and thus improve the accuracy of predictive models. 12 

Therefore, this paper presents a novel predictive method by combining an Evolutionary Polynomial 13 

Regression model with the K-means clustering method (MacQueen 1967) with the aim to achieve 14 

more accurate predictions of the expected number of pipe failures. The rest of the paper is organized 15 

as follows. The second section describes the proposed methodology. A description of the case study 16 

employed to demonstrate the methodology is given in Section 3. The results are presented and 17 

discussed in Section 4 with key findings final remarks are given in the conclusions. 18 

 19 

2. Methodology  20 

The proposed methodology consists of the following steps: 21 

• Create pipe groups by aggregating individual pipes using diameter, age and soil type 22 

• Partition the created groups into training and test datasets using the cross-validation technique 23 

• Split the training dataset into k clusters using the K-means clustering method 24 

• Develop k EPR models each associated with the training data of relevant cluster 25 

• Identify the suitable cluster of each test data sample based on the diameter and age of pipe 26 

groups 27 
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• Use the EPR model corresponding to the associated cluster for each test data sample to 1 

calculate the number of failures 2 

• Calculate the performance indicators for the train and test data samples using the observed 3 

data 4 

The clusters are created using the KMEANS function in MATLAB (® R2014b) while EPR-MOGA-5 

XL vr.1 (Giustolisi and Savic 2009; Giustolisi et al. 2009) is employed to develop the EPR models. 6 

Initially, the individual pipes are aggregated into homogenous groups using pipe descriptive 7 

variables and environmental factors. This is based on the assumption that pipes with similar specific 8 

intrinsic properties such as material, diameter and age are expected to have the same breakage pattern 9 

(Kleiner and Rajani 2012). In addition to the pipe characteristics, soil type, as an environmental 10 

factor, is used as an aggregation criterion because soil properties have been associated with the 11 

corrosion of the metallic pipes (Sadiq et al. 2004; Kabir et al. 2015) and this is a dominant factor 12 

contributing to their failure (Makar 2000; Folkman 2012). Each aggregated homogenous class of 13 

pipes takes a length and a number of failures equal to the total lengths and total number of failures for 14 

the individual pipes of the same attributes, respectively. Note that both failed and non-failed pipes are 15 

considered here. The original dataset containing a large number of individual pipes is converted to a 16 

new dataset containing homogenous groups of pipes based on diameter, soil type and age. 17 

The created homogenous groups are split into training and test datasets using the cross-validation 18 

technique (Grossman et al. 2010) for calibration and validation purposes respectively. The training 19 

dataset is partitioned into k clusters based on the age and the diameter. Then, one specific EPR model 20 

is developed for each data cluster. The ‘explanatory variables’ of the EPR models are the total length 21 

(L), diameter (D) and age (A) and are the only available explanatory factors for this case study while 22 

the ‘dependent variable’ is the total number of failures (Y). 23 

Finally, the performance of the developed models is evaluated by using the test data. The 24 

Euclidian distance of input variables (i.e. age and diameter) between the test data sample and the 25 

counterpart cluster centre values (known as centroids) is calculated to identify the suitable cluster for 26 

each test data. The corresponding EPR model associated with the relevant cluster is used to predict the 27 

number of pipe failures. By calculating the number of failures using the k EPR models for all test data 28 

Page 5 of 31

URL: http:/mc.manuscriptcentral.com/nurw  Email: urbanwater@exeter.ac.uk

Urban Water Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

samples, performance indicators can be evaluated by using the predicted number of failures for the 1 

test dataset and the corresponding observations. Various numbers of clusters are tested to identify the 2 

optimal number which provides the highest improvement compared to the non-clustered EPR. 3 

Further details of the Evolutionary Polynomial Regression (section 1.1), K-means algorithm 4 

(section 1.2) and the cross-validation technique (section 1.3) are provided in the supplementary 5 

material. 6 

 7 

2.1 Model performance assessment 8 

One common way to assess the model prediction ability is the so-called hold-out validation based on a 9 

single split of the data, i.e. dividing the entire dataset into two subsets for training and test. However, 10 

the model performance derived by this approach would depend significantly on the selection of the 11 

training and test datasets. If the data have not been evenly distributed over the training and test 12 

datasets, this validation may not be a true representation of model performance. To overcome this 13 

drawback the cross-validation method is used (Figure A.1 in supplementary material) for assessing 14 

the predictive models. The performance indicators used here are the Coefficient of Determination (R
2
) 15 

and the Root Mean Square Error (RMSE). Their mathematical relationships are expressed as follows 16 

(Moriasi et al. 2007):  17 

��= (∑ (��,�	�
�)(��,�	�
�)
���� )�
∑ (��,�	�
�)�
���� ∑ (��,�	�
�)�
����      (1) 18 

RMSE=�∑ (��,�	��,�)�
���� ��       (2) 19 

where ��,� = prediction value for test sample i; ��,� = measurement value for test sample i, �
� = mean 20 

value of predictions, �
 �
�= mean value of measurements and n = the number of test data samples. 21 

 22 

3. Case study 23 

The proposed methodology is demonstrated for prediction of pipe failures in a case study located in 24 

part of a water distribution network of a UK city (Table A.1 in supplementary materials). Preliminary 25 
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analysis showed that the highest pipe failure rate (number of failures/km/year) is 0.258 for Cast Iron 1 

(CI) pipes compared to other material types which are 0.079 for Asbestos Cement (AC) pipes, 0.080 2 

for Ductile Iron (DI) pipes, 0.015 for Polyethylene (PE) pipes and 0.118 for Polyvinyl chloride (PVC) 3 

pipes. In addition, pipe records show that 85% of the failed pipes are made of CI pipes which 4 

constitute 73% of the network’s total length. Based on these findings, it can be concluded that the CI 5 

pipes are more prone to failure and therefore only they are considered in this paper for construction of 6 

the predictive models.  7 

 8 

4. Results and discussion 9 

Following the procedure described above for the data preparation, grouping of individual pipe failure 10 

data resulted in 141 data samples for developing the EPR models. In order to avoid over-fitting and in 11 

compliance with the parsimony rules, one polynomial term EPR model was selected from the Pareto 12 

front for all model runs analysed in this paper (Berardi et al. 2008). The cluster based approach was 13 

applied for different numbers of clusters (k) and the most appropriate number of clusters was 14 

identified by comparing the performance indicators. The results showed that the two performance 15 

indicators are improved by increasing the number of clusters until six clusters when no further 16 

improvement is achieved for both training and test data (Figure 21). The values shown in Figure 1 are 17 

the average values of the 10 iterations of the cross-validation technique. The comparison indicates that 18 

the most accurate results are achieved with the six-clustered EPR approach. Another limiting factor 19 

for increasing number of clusters is the number of data samples assigned to each cluster for model 20 

training. The number of samples needs to be equal or greater than the number of parameters to be 21 

estimated in the construction phase of the EPR model. With respect to this criterion, the six-clustered 22 

EPR was satisfactory as the minimum number of samples in one of the clusters was 7 (Figure 2) 23 

which was greater than the number of parameters to be identified in the EPR (i.e. 4).  24 

For comparative purposes, the results obtained from the cluster-based EPR models are compared 25 

here with the non-clustered EPR. Figure 2 1 shows the two performance indicators (R
2
 and RMSE) of 26 

the predictive models for both training and test data. The results show that both performance 27 
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indicators for the clustered EPR models are better than the non-clustered EPR approach for all the 1 

different number of clusters and for both training and test data. More specifically, the comparison of 2 

the six-clustered EPR with the non-clustered EPR shows a significant improvement especially for the 3 

test (i.e. improvement of 34% for RMSE and 10% for R2). All these can be attributed to the fact that 4 

clustering would be beneficial for pipe failure analysis and thus more appropriate EPR models fitted 5 

to the clustered data are identified effectively. 6 

Table 1 lists the associated models obtained from developing the six-clustered EPR and non-clustered 7 

EPR corresponding to one of the ten iterations of cross-validation. In both models, total number of 8 

pipe failures (Y) were selected from one polynomial term comprising of total group length (L), the 9 

diameter (D) and the age (A) of pipes with the defined candidates of exponents. Note that one 10 

polynomial term prediction model was selected and preferred here for all models in order to avoid 11 

possible overfitting of test data. 12 

The selected models for both the EPR and the six-clustered EPR approaches show an inverse 13 

relationship between the diameter and the number of failures. This relationship is confirmed in the 14 

literature (Boxall et al. 2007; Berardi et al. 2008; Xu et al. 2011). On the contrary, the relationship 15 

between failure and age shows some complexity. Four selected models with the six-clustered EPR 16 

approach corresponding to clusters 1, 2, 4, and 5 show a direct relationship whereas the remaining two 17 

models corresponding to clusters 3 and 6 show an inverse relationship. As shown in Figure 2, clusters 18 

3 and 6 entail the oldest pipes. The single model obtained with the EPR approach indicates an inverse 19 

relationship. 20 

The main reason for the counterintuitive relationship between pipe failure rate and age in the case 21 

study is probably due to the fact that the age of many pipes and particularly the oldest ones is much 22 

larger than the time period their failures were systematically recorded since the examined pipe dataset 23 

is left truncated. The left truncation occurs when the pipes were installed before their failures were 24 

systematically recorded and the number of failures between the installation year and the beginning of 25 

the monitoring period is unknown (Scheidegger et al. 2015). Hence, the contradiction can be 26 

attributed to the lack of pipe failure data collection duration of the monitoring period which is much 27 

shorter than the period that the majority of pipes have been in use. Several water authorities have also 28 
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a brief recorded failure dataset (Pelletier et al. 2003; Watson et al. 2004). Another possible factor can 1 

be that only measurable variables are included in the models. Several explanatory variables, such as 2 

design and construction practice, the quality and strength of the material, are not measured and their 3 

variation can lead to considerable changes in the subsequent performance of pipes from one age group 4 

to another (Boxall et al. 2007). 5 

Boxall et al. (2007) has also observed a discrepancy in the association between age and pipe failure. 6 

Xu et al. (2011) examined a brief recorded pipe breakage dataset. They partitioned the pipe database 7 

into two clusters of those installed before the beginning of monitoring period and these after the 8 

monitoring period. The models they obtained show an inverse relationship between pipe failure and 9 

age for the older pipes. 10 

 11 

4.1 Comparison between EPR and Six-clustered EPR 12 

 13 
Further analysis of this comparison can be seen in Figure 3 where the RMSE of the test data is plotted 14 

for both models based on different intervals of the number of pipe failures. This quantifies the initial 15 

impression that the clustered EPR is able to decrease prediction errors in most intervals especially 16 

giving a substantial error reduction for pipe failure events with a large number (i.e. 135-330 interval). 17 

In addition, although the improvements of the RMSE for the intervals with a low number of failures 18 

(i.e. 0-1 and 2-5) is small in absolute terms, the overall model accuracy improvement is significant 19 

due to impact on over 70% of the database. The model prediction of the clustered EPR is poorer than 20 

the EPR only for a few intervals which only accounts for 5% of the database. The improvement 21 

achieved can linked to the fact that the clustered EPR can better represent the behaviour of pipeline 22 

failure by clustering the database of the pipe characteristics (i.e. age and diameter) and dedicating a 23 

specific EPR for each cluster. 24 

The accuracy of predictions for pipe failure rates in different pipe characteristics is compared for 25 

both models in Figure 4. It is evident that EPR is unable to precisely predict small pipe diameter 26 

failure whereas this prediction has substantially improved for the six-clustered EPR (i.e. average 27 

failure rates for different pipe diameters in Figure 4a). This is due to the fact that the six-clustered 28 
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EPR employs a number of models to predict pipe failures of different clusters while the EPR is 1 

limited to a single model for all pipe characteristics. Failure predictions for other pipe diameters have 2 

also improved in the clustered EPR compared to the EPR that tend to highly overestimate true pipe 3 

failure rates. The imprecision of the EPR predictions is more apparent for different pipe ages 4 

especially for old pipes (Figure 4b). However, the predictions for the six-clustered EPR show its 5 

ability to predict true pipe failure rates with a relatively reasonable accuracy in most age groups. 6 

 7 

4.2 Spatial variation of pipe failure rate 8 

The predictive models have been used to spatially represent failure rates of individual pipes in the 9 

water distribution network and classify them in different ranges to identify more vulnerable regions as 10 

also shown by Kabir et al. (2015). The observed failure rates (expressed as number of 11 

failures/km/year) of individual pipes were classified using the Jenks Natural Breaks method (Jenks, 12 

1963) (Figure A.2 in supplementary materials). This method divides the data into four ranges as ‘very 13 

low’ [0-0. 097], ‘low’ [0.097-0.248], ‘high’ [0.248-0.4570] and ‘very high’ [greater than 0.457]. 14 

Comparison between the accuracy of the two predictive models can be summarised in the overall 15 

percentage of pipe failure rates in different ranges as shown in Figure 5. It is apparent that the overall 16 

percentages of pipe failure predictions in the six-clustered EPR relates more closely to observations 17 

than the EPR in all ranges. More specifically, the EPR model has either overestimated (‘low’ and 18 

‘very high’ ranges) or underestimated ‘very low’ and ‘high’ ranges) the percentages of observed pipe 19 

failure rates. 20 

Furthermore, the portion of those failure rate predictions which are in the correct observation 21 

ranges are shown in Figure 5 as shaded areas in the prediction bars along with a correct predictions 22 

percentage of the associated ranges. As it can be seen, the clustered EPR has more correct predictions 23 

than the EPR predictions in most ranges. In ‘Low’ failure rate, although the EPR has been able to 24 

predict with a relatively similar performance (86% vs 85%), it has a high proportion of wrong 25 

predictions compared to the corresponding range of the clustered model. Even for a small percentage 26 

of ‘Very low’ pipe failure rate, the EPR was unable to predict whereas the clustered EPR model could 27 
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identify most of true failure rates in this range. Similarly, a large percentage of the EPR predictions in 1 

‘High’ and ‘Very high’ rates fail to fall within the correct ranges of pipe failures.  2 

Figure 6 shows the spatial distribution of predictions of pipe failure rates in the wrong ranges for 3 

the six-clustered EPR. The clustered EPR model shows a high accuracy by correctly identifying 85% 4 

of the failure rates overall. The achieved accuracy is significantly higher compared to the EPR model 5 

which correctly identified 55% of the failure rates (Figure A.3 in supplementary materials). 6 

 7 

5. Conclusions 8 

This study presents a new model to predict failures of cast iron pipes in a water distribution networks 9 

by combining Evolutionary Polynomial Regression and K-means clustering. Individual pipes were 10 

aggregated using their attributes of age, diameter and soil type to create homogenous groups of pipes. 11 

The created homogenous groups were divided into training and test datasets using the cross-validation 12 

technique. The training data was partitioned into a predefined number of clusters using a K-means 13 

algorithm and an individual EPR model was developed for each created cluster. Individual EPR 14 

models were used to predict the number of failures as functions of pipe diameter, age and length from 15 

aggregated homogenous pipe databases. The approach here was only applied to cast iron pipes due to 16 

the highest failure rate in the network. However, it can be implemented to other pipe materials. The 17 

following can be concluded here: 18 

• Combining K-means clustering with the EPR results in a considerable improvement of the 19 

prediction accuracy for pipe failures.  20 

• The clustered EPR model can be effectively used to predict and identify individual pipe 21 

failure rates with different ranges and a high accuracy. 22 

• The clustered predictive model is specifically capable for prediction of extreme pipe failures 23 

(i.e. both small and large number of failures). This could be very useful for water utilities 24 

managers to make more informed and precise decisions for future rehabilitation planning. 25 

 26 
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Table 1. Obtained formulas for six-clustered EPR and EPR models 

Six-clustered EPR Non-clustered EPR 

Cluster 1: Y=0.513(L0.5A0.5D-1) Y=0.01724(LA-1D-0.5)  

Cluster 2: Y=2.206(LAD
-1
)  

Cluster 3: Y=0.131(LA-1)  

Cluster 4: Y=0.219(L0.5A0.5D-1)  

Cluster 5: Y=2.197(L
0.5
A

0.5
D

-2
)  

Cluster 6: Y=0.921(LA-0.5D-1)  
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Figure 1a. Performance indicators of the predictive models in terms of  R2  
*CL=abbreviation for ‘clustered’ (e.g. 2CL=two-clustered)  
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Figure 1b. Performance indicators of the predictive models in terms of RMSE  
*CL=abbreviation for ‘clustered’ (e.g. 2CL=two-clustered)  
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Figure 2. Input data clustering with the six clusters and the corresponding centroids  
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Figure 3. Prediction model error for different intervals of number of failures  
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Figure 4a. Average predictions and observations of pipe failure rates based on diameter and  
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Figure 4b. Average predictions and observations of pipe failure rates based on age  
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Figure 5. Percentage of pipe failure rates for predictions and observations in different ranges; note that the 
percentage next to the shaded bars of each predictive model indicates the percentage of correct predictions 

relative to total observations in each range  

 
233x97mm (150 x 150 DPI)  

 

 

Page 23 of 31

URL: http:/mc.manuscriptcentral.com/nurw  Email: urbanwater@exeter.ac.uk

Urban Water Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Figure 6. Six-clustered EPR predictions of pipe failure rate in wrong ranges (black pipes)  
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1. Supplementary materials 

1.1 Evolutionary Polynomial Regression 

Evolutionary Polynomial Regression (Giustolisi and Savic 2006, Giustolisi and Berardi 2009) is a 

data-driven method based on numerical and symbolic regression that is able to produce series of 

pseudo-polynomial models. After the user selects the generalised model structure, EPR employs a 

multi-objective search strategy to estimate unknown constant parameters of the assumed models using 

the least squares method. As a result of the multi-objective optimization approach, each single EPR 

run returns a number of polynomial models on a Pareto optimal front which is a trade-off between 

accuracy (fitness) and parsimony. The first criterion aims to maximise the model fit to the observed 

data (or minimise the model error) and the second (parsimony) aims to minimise the number of 

explanatory variables and/or polynomial terms in the model. Here, the number of polynomial terms is 

a surrogate for the model parsimony criterion. Its role is to prevent over-fitting of the model to data 

and thus endeavour to capture underlying general phenomena without replicating noise in data. 

Finally, the user can select the model of interest with respect to a specified model accuracy and/or 

parsimony. The general form of polynomial EPR model (Giustolisi and Savic 2006) is expressed as: 

Y =∑ ���, ����, 	
� +


�� 	�    (A.1) 

where Y= estimated output; 	
= unknown polynomial coefficients (i.e. model parameters); F= 

function finally constructed by the EPR process; X= the matrix of explanatory variables; f= function 

selected by the user; and m= the maximum number of polynomial terms and 	�= unknown constant. 

 

The specific model structure selected here for analysis of pipe failure is (Giustolisi and Savic 2006): 

Y =∑ 	
 	�������� …


�� �������� + 	�   (A.2) 

where Y=predicted number of pipe failures, Xi =explanatory variable i, Eij =matrix of unknown 

exponents. The candidate explanatory variables (X) that we use for pipe failure predictive model are 

the total group length (L), the diameter (D) and the age (A) of pipes. 
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The candidate values considered for exponents (Eij) in Eq. (A.2) were -2, -1, -0.5, 0, 0.5, 1 and 2 

which describe potential square, linear or square root exponents for explanatory variables of the EPR 

model. The value 0 was chosen to deselect input candidates with no influence on the output, while the 

positive and negative values were considered to describe potential direct and inverse relationship 

between the inputs and the output of the model. The maximum number of polynomial terms was set to 

3 (i.e. m=3) excluding the constant term (	�) to ensure the best fit without unnecessary complexity. 

Unnecessary complexity is defined as the addition of new terms that fit mostly random noise in the 

raw data rather than the underlying phenomenon. The result of each single EPR run is three regression 

models corresponding to the maximum number of polynomial terms defined in advance. 

 

1.2 K-means clustering 

K-means clustering as a data clustering approach is used here to partition dataset of pipeline failure 

into specific number of clusters (i.e. k) based on the available pipelines attributes (i.e. diameter and 

age of groups). Generally, data clustering is a data exploration technique that groups objects with 

similar characteristics together and thus classifies a large number of objects into a small number of 

clusters in order to facilitate their further processing (Pham et al. 2005). The creation of the clusters is 

based on the principle of maximising the intra cluster similarity and minimising the inter cluster 

similarity (Wettschereck et al. 1997). K-means is an unsupervised learning algorithm popular due to 

its simplicity and efficiency (Kanungo et al. 2002). It is based on assigning n data samples into k 

clusters such that an objective function of dissimilarity (or distance) is minimised (Jang et al. 1997). 

The search algorithm moves data samples between clusters until the objective function cannot be 

minimised further. In the case of the dissimilarity measure, minimisation of the Euclidean distance is 

usually chosen as the objective function as (Kim and Keo 2015): 

J=∑ ∑ ���
�
� − �
�

��
���

�

��     (A.3) 

where ���
�
� − �
�

�
= Euclidean distance of specified criteria between ith data sample ��

�
�
 and jth 

cluster centre �
; ��
�
�

= vector of specified criteria for ith data sample assigned to jth cluster centre; 

J=overall distance indicator for the n data samples from their respective cluster centres.  
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1.3 Cross-validation method 

Cross-validation method has the advantage that the entire dataset participates in the evaluation of the 

test set. Other advantage is that each data sample is used for model testing exactly once whereas even 

in repeated random sub-sampling, some of the original data may be selected more than once in the test 

dataset and some others may not be selected at all (Gandhi et al. 2011). The m-fold cross-validation 

method (Kohavi 1995) is used here. The m-fold cross-validation method is an extension of the 

conventional single-split method in which the data are divided into m subsets of (nearly) even size. 

One subset is taken as the test set (shaded cells in Figure A.1 for a 10-fold instance) and the union of 

the remaining m-1 subsets forms the training set. This process is repeated with a new subset of the 

training/test data and finally the model performance is evaluated m times each using a completely 

different subset of test data. The overall performance is calculated by averaging performance 

indicators applied to all data in m individual performance assessments. In this work, m=10 is used as 

suggested by Kohavi (1995), in which the union of 9 subsets (i.e. 90% of data) is allocated for training 

and the one remaining subset (i.e. 10% of data) is retained for test. 

 

 

Figure A.1 10-folds cross-validation technique 
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1.4 CI pipes of the case study  

 

Table A.1 The main features of the Cast Iron pipes in the case study 

Feature  Value/range 

Installation year  1865-1995 

Diameter range  75-300 mm 

Total length  814.48 km 

Number of pipes  23997 

Number of failed pipes  1830 

Number of failures  2414 

 

1.5 Comparison of spatial representation of pipe failure rates 

Observed failure rates (expressed as number of failures/km/year) of individual pipes can be shown in 

Figure A.2 by dividing the data into four ranges as ‘very low’ [0-0. 097], ‘low’ [0.097-0.248], ‘high’ 

[0.248-0.4570] and ‘very high’ [greater than 0.457]. Figure A.3 shows the spatial distribution of 

predictions of pipe failure rates in the wrong ranges for the EPR. The EPR model results in a large 

number of wrong predictions throughout the network especially for ‘High’ and ‘Very high’ rates 

which are the most critical for decision makers.  
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Figure A.2 Observed pipe failure rates of CI pipes 
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Figure A.3 EPR predictions of pipe failure rate in wrong ranges (black pipes) 
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