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 1.3 The linear stability of two well known energy and enstrophy conserving schemes for 

the vector invariant hydrostatic primitive equations is examined. The problem is analysed for a 
stably stratified Boussinesq fluid on an f -plane, with a constant velocity field, in height and 
isopycnal coordinates, by separation of variables into vertical normal modes and a linearised 
form of the shallow water equations (SWEs). As found by [Hollingsworth 
~al.(1983)Hollingsworth, Kallberg, Renner and Burridge], (HKRB hereafter) the schemes are 
linearly unstable in height coordinate models, due to a non-cancellation of terms in the 
momentum equations. The schemes with the modified formulations of the kinetic energy 
proposed by HKRB are shown to have Hermitain stability matrices and hence to be stable to all 
perturbations. All perturbations in isopycnal models are also shown to be neutrally stable, even 
with the original formulations for kinetic energy. Analytical expressions are derived for the 
smallest equivalent depths obtained using Charney-Phillips and Lorenz vertical grids, which 
show that the Lorenz grid has larger growth rates for the unstable schemes than the Charney-
Phillips grid. Test cases are proposed for assessing the stability of new numerical schemes using 
the SWEs.  
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1  Introduction 
The vector invariant form of the momentum equations expresses the advection of 

momentum as the sum of the gradient of the kinetic energy and the vector product of the velocity 
and the vorticity. This form is used to derive Kelvin’s circulation theorem [Pedlosky(1987)] and 
was used by [Sadourny(1975)] to discretise the shallow water equations (SWEs). In that paper 
Sadourny proposed two schemes, demonstrating that one conserves energy and the other, now 
known as the ens scheme, conserves the volume integral of potential enstrophy (the square of the 
potential vorticity). He later devised the een (energy and enstrophy) scheme, which for the SWEs 
conserves the total energy for general flows and enstrophy for non-divergent flows. This scheme 
was tested in a hydrostatic primitive equation (HPE) model using pressure based sigma 
coordinates by [Burridge and Haseler(1977)]. [Arakawa and Lamb(1981)], hereafter referred to 
as AL, derived the Arakawa-Lamb (AL) scheme which, for the SWEs, conserves the total energy 
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and enstrophy for general flows. AL also provided a proof of the conservation properties of the 
een scheme. 

[Hollingsworth ~al.(1983)Hollingsworth, Kallberg, Renner and Burridge], HKRB 
hereafter, reported that the een scheme as implemented by [Burridge and Haseler(1977)] was 
prone to near-grid-scale instabilities which reduced the kinetic energy of the jet stream 
particularly in their higher resolution model. They provided an heuristic linear stability analysis 
which accounted for the 3-grid-point structure of the instabilities in the horizontal and predicted 
that the growth rates should be proportional to cfu/ , where f  is the Coriolis parameter, u  is the 
speed of the flow in the basic state and gHc =  is the gravity wave speed. This prediction was 
consistent with their experimental results for different speeds u  and their finding that the modes 
with highest vertical wavenumber (and smallest speeds c ) are the most unstable ones. From the 
dispersion relationship derived by HKRB it is clear that the instability is a form of destabilised 
inertia-gravity wave. HKRB also proposed a modified scheme involving reformulations of the 
kinetic energy gradient and the mass fluxes for the een scheme and showed that it was effective 
in suppressing the instabilities. A similarly modified form of the AL scheme can also be used 
(see section 6 of AL) and [LaziÀ~al.(1986)LaziÀ JanjiÀand Mesinger] derived a modified form 
of the een scheme for the E-grid. 

There has recently been renewed interest in these instabilities for two reasons. Firstly 
some ocean models now use grids which resolve the Rossby radius of deformation very well. 
Ducousso and le Sommer (personal communication) found that the NEMO model, which uses 
the een scheme, when configured with a 1 Nautical Mile grid spacing had significantly reduced 
kinetic energy in the mesoscale flow unless the kinetic energy was reformulated as proposed by 
HKRB. Secondly a number of researchers such as [NiÀ~al.(2002)NiÀ Gavrilov and ToÀ, 
[Thuburn(2008)], [Ringler ~al.(2010)Ringler, Thuburn, Klemp and Skamarock], [Skamarock 
~al.(2012)Skamarock, Klemp, Duda, Fowler, Park and Ringler] and [Gassmann(2013)] are 
seeking to develop atmospheric models using meshes with triangular, hexagonal or pentagonal 
elements employing the vector invariant momentum equations. [Gassmann(2013)] discusses the 
Hollingsworth instability from an historical perspective and concludes, in agreement with 
HKRB, that the instability would be more pronounced the less stable the stratification. She also 
proposes a method for choosing the formulation of the kinetic energy on regular hexagonal grids 
so as to minimise the size of the term in the momentum equations which lead to the instabilities. 
[Skamarock ~al.(2012)Skamarock, Klemp, Duda, Fowler, Park and Ringler] show that their 
scheme is prone to the Hollingsworth instability and use [Gassmann(2013)]’s formulation of the 
kinetic energy to suppress it. 

As noted above, HKRB provided a good initial theoretical analysis of the instability, but 
their derivation of the dispersion relationship for the instability included the neglect of a term 
which was only justified by a rather ad hoc argument. Also some aspects of the occurrence of the 
instability have not been clarified since the work of HKRB. [Arakawa ~al.(1992)Arakawa, 
Mechoso and Konor] argue that the properties of isentropic coordinates “do not allow room for” 
the Hollingsworth instabilities. [Arakawa(2000)] notes that the family of consistent energy and 
enstrophy conserving schemes (including the een and AL schemes) that AL derived generally 
behave well for the SWEs. He suggests that the Hollingsworth instabilities arise in pressure or 
sigma coordinates “at least in part” because of the formal application of the schemes in these 
coordinates in which the layer depth h  is replaced by the thickness of model layers despite the 
fact that the model levels are not material surfaces. This has left developers of new dynamical 
cores uncertain how to test their schemes using the SWEs. This is very inconvenient for them 
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and a better understanding of the occurrence of the instabilities in easily accessible variants of 
the SWEs is highly desirable. 

This paper has two main aims. The first is to confirm that an idealised 3D basic state 
consisting of a uniform horizontal flow (independent of x , y  and z ) in a stably stratified fluid 
on an f -plane can suffer from Hollingsworth instabilities when the original een and AL 
schemes are used to discretise the equations of motion. Because the isopycnals in the basic state 
are flat, these linear instabilities can be analysed using separable solutions that are the product of 
vertically varying normal modes and solutions to linearised SWEs. The resulting linearised 
SWEs also determine the stability of an appropriately balanced layer of shallow water moving 
with the same velocity ),( 11 vu  on an f -plane. This result will allow the potential for 
Hollingsworth instabilities in 3D problems to be explored with new numerical schemes using 
appropriately specified 2D problems. 

The second aim is to derive the matrices determining the dispersion relationships for 
these linearised SWEs and to analyse them in some detail. It is shown that the modifications 
proposed by HKRB and AL to the een and AL schemes remove spurious off-diagonal terms 
(non-cancelling advection terms) from the stability matrix and recover its Hermitian form. This 
makes the schemes stable for any linear disturbance to the idealised basic states. The original een 
and AL schemes in isopycnal coordinates are also shown to be neutrally stable to all 
perturbations. Numerical results and an expression for the instabilities in height coordinates 
suggest that the most unstable perturbations are fairly closely aligned with the grid. 

It is more natural to consider the simple 3D basic state described above in an oceanic 
context, where variations in the surface height of the ocean can easily occur and affect the 
pressures at all depths, than in an atmospheric context. For this reason the analysis is presented 
using the Boussinesq, equations which are appropriate for the ocean (rather than the equations of 
state for a perfect gas appropriate for the atmosphere). The normal modes of the continuous 
equations for an atmosphere on a sphere are also separable (provided one makes use of 
traditional assumptions such as the shallow atmosphere approximation) and the equivalent depth 
of the vertical modes is independent of their frequency if the motions are taken to be hydrostatic 
[Daley(1988)]. These points also hold for the vertically discrete equations studied by [Thuburn 
and Woollings(2005)]. So we would expect our analysis to be relevant to atmosphere models as 
well as ocean models. 

The linear stability analysis of the states described in this paper is most safely approached 
by writing out the full non-linear governing equations and the description of the basic state in 
discretised form, then deriving from these the linearised equations, and finally deriving the 
separable solutions. This approach is unnecessarily lengthy and with some care it is possible to 
linearise the equations and derive the separable solutions using the continuous equations and 
then discretise. Section 2 writes down the full non-linear governing equations and the linearised 
equations for their separable solutions firstly for z -coordinates and secondly for isopycnal 
coordinates. The derivations of these equations are given in appendices 8 and 9. The linearised 
equations for the solutions which vary in time and in the horizontal are then derived by 
linearising two sets of SWEs. The only difference between the two sets of SWEs is that the 
generalised Coriolis terms in the one relating to isopycnal coordinates are the product of the 
potential vorticity, q , and a depth weighted velocity *u , whilst those for height coordinates are 
the product of the vertical component of the vorticity, Z , and the velocity u . It transpires that 
this difference is of crucial importance. 

Section 3 derives the vertical discretisation of the modes in isopycnal and height 
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coordinates. The vertical modes with the highest vertical wavenumbers have small equivalent 
depths as one would expect from the vertical modes for the continuous problem. It is shown that 
on the Lorenz grid the smallest equivalent depths reduce as the number of vertical levels ( K ) 
increases at a rate which is a factor of 2K  faster than that of the continous modes and that this 
result is related to the presence of the computational mode on the Lorenz grid. The resulting 
reduction in the phase speed of the gravity waves ( c ) on the Lorenz grid for these modes 
increases their Froude number ( uF ) and exacerbates the Hollingsworth instabilities. 

Section 4 first describes the discretisation of the SWEs using the een scheme and derives 
the discrete form of the linearised SWEs for both height and isopycnal coordinates. It then 
reduces the analysis of the stability of the scheme to an eigenvalue problem involving 3  by 3  
matrices written in a non-dimensional form and shows that for the modified form of the een 
scheme the matrices are Hermitian and hence that the scheme is stable. Section 4 also shows that 
all linear perturbations are neutrally stable for the original een scheme in isopycnal coordinates. 
Appendix 11 shows that the same conclusions hold for the AL scheme and appendix 12 provides 
an interpretation of the stability of the schemes in isopycnal coordinates. Section 4 ends by 
illustrating the dependence on the Froude and Rossby numbers of the instabilities with the aid of 
analytical calculations for some special cases and numerical evaluations. 

Section 5 illustrates the nature of the instabilities further using integrations of the SWEs 
and proposes test cases with doubly-periodic Cartesian domains that could be used to test 
whether new numerical schemes suffer from these instabilities. Section 6 provides a concluding 
summary and discussion and the tables in appendix 7 provide a summary of the symbols used in 
the main body of the paper. 

 
2  Model formulation and separation of variables 
  
The governing equations will be taken to be a form of the hydrostatic, incompressible, 

adiabatic, Boussinesq equations suitable for a liquid. They will be written in Cartesian 
coordinates and the Coriolis parameter f  will be taken to have a constant value 0f . The 
horizontal kinetic energy per unit mass will be denoted by  

 ),(
2
1= 22 vuKe +  (1) 

 the vertical component of the relative and total vorticities will be denoted by ζ  and Z  
respectively with  

 ,=,= 0 ζζ +
∂
∂−

∂
∂ fZ

y
u

x
v  (2) 

 and 00ρ  will denote a constant density. 
 
2.1  Formulation in height coordinates 
  
 
Governing equations 
 
In height coordinates, the Bernoulli function Φ  is given by  
 ,/= 00 eKp +Φ ρ  (3) 
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 where p  is the pressure field which is in hydrostatic balance with the density ρ  and gravity g ,  

 .= g
z
p ρ−

∂
∂  (4) 

 
The horizontal momentum equations in vector invariant form are then  

 
.=

,=

vDA
yz

vwZu
t
v

uDA
xz

uwZv
t
u

mm

mm

+
∂
Φ∂−

∂
∂++

∂
∂

+
∂
Φ∂−

∂
∂+−

∂
∂

 (5) 

 where w  is the vertical velocity, mA  is a coefficient of viscosity, and mD  is a diffusive operator 
such as 2

H∇  or 22/ z∂∂ . The viscosity will be set to zero except in this section and section 4.6 
where the stabilising effect of viscous terms on perturbations with small Froude numbers is 
discussed. 

The density, ρ , will be taken to be conserved following the motion,  

 ,=0,=
z

w
y

v
x

u
tDt

D
Dt
D

∂
∂+

∂
∂+

∂
∂+

∂
∂ρ  (6) 

 and the flow will be assumed to be incompressible  

 0.=
z
w

y
v

x
u

∂
∂+

∂
∂+

∂
∂  (7) 

 
The domain will be taken to be unbounded in x  and y  and to have a flat boundary at 

Hz −=  where the vertical velocity is zero. Attention will be focussed solely on the baroclinic 
modes for which to a very good approximation the upper boundary at 0=z  also has zero normal 
velocity so  

 .0,=0,= Hzw −  (8) 
 The barotropic mode satisfies the shallow water equations (to a very good approximation) and is 
not considered further in this section. 

 
Separable solutions to the linearised equations 
  The evolution of very small amplitude perturbations can be determined by linearising 

the hydrostatic Boussinesq equations about a basic state. 
The assumed basic state consists of a stably stratified density field )(0 zρ , that is in 

hydrostatic balance with the pressure field )(0 zp , and a horizontal velocity field with 
components 1= uu  and 1= vv  which does not depend on x , y , z  or t . This velocity field is in 
geostrophic balance with a pressure field 1p  which is independent of z , and the vertical velocity 

0w  is zero. The non-zero velocity in the basic state and the non-linearities in the equations of 
motions give the potential for instabilities. 

These linearised equations enjoy separable solutions. The derivation is detailed in 
Appendix 8, which is a straightforward generalisation of section 6.11 of [Gill(1982)]. Denoting 
the small amplitude perturbations by primed variables, functions varying only in the horizontal 
and time by tildes and functions varying only in the vertical by hats, the horizontal velocity and 
pressure pertubations are expressed in the forms:  
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).(ˆ),,(~=

,)(ˆ
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),,(~=
0000

zptyxp
g

zptyxvv
g

zptyxuu

η
ρρ

′

′′
 (9) 

 
The solutions dependent only on x , y  and t  are determined by the linearised horizontal 

momentum equations,  

 ,~
~

=~~~
,~

~
=~~~

10

10

vDA
y

uuf
t
v

uDA
x

vvf
t
u

mm

mm

+
∂
Φ∂−++

∂
∂

+
∂
Φ∂−−−

∂
∂

ζ

ζ

 (10) 

 where  
 ,~~~=),,(~

11 vvuugtyx ++Φ η  (11) 
 and a continuity equation  

 0,=
~~~~~

11 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂

y
v

x
uH

y
v

x
u

t e
ηηη  (12) 

 where eH  is the equivalent depth (a separation constant). This system is the linearised form of a 
shallow water system (see below). 

The vertical structure of the perturbed variables is given by  

 ,ˆ=
d

ˆd ρg
z
p −  (13) 

  

 ,ˆ
d

d=ˆ 0 h
z

He
ρρ −  (14) 

  

 ,
d

ˆd=
ˆ

00 z
h

g
p
ρ

 (15) 

 where )(ˆ zρ  and )(ˆ zh  describe the vertical variation of the perturbation’s density and vertical 
velocity fields. The boundary conditions are given by  

 .0,=0,=ˆ Hzh −  (16) 
 

 
2.2  Formulation in isopycnal coordinates  
  
 
Governing equations 
 
Following section 3.9.1 of [Vallis(2006)] we write the density and pressure fields in the 

form  
 ,)(=,= 000 pzpp δδρρρ ++  (17) 
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 .=

d
d

00
0 ρg

z
p −  (18) 

 The buoyancy and an inverse measure of the stratification for this system are then given by  

 .=,=
00 b

zgb
∂
∂− σ

ρ
δρ  (19) 

 If the isopycnal coordinates were used in a layer model, σ  would represent the thickness of the 
layers. The Montgomery potential and Bernoulli function are given by  

 .=,=
00

eKMbzpM +Φ−
ρ
δ  (20) 

 
The horizontal momentum equations are then given by  

 
.=

,=

*

*

y
qu

t
v

x
qv

t
u

∂
Φ∂−+

∂
∂

∂
Φ∂−−

∂
∂

 (21) 

 where  
 .=,=,/= )(*)(*)( vvuuZq vuq σσσ  (22) 

 Here q  is the potential vorticity, *u  and *v  are proportional to the fluxes within the layers (i.e. 
the velocities multiplied by the thicknesses of the layers), and the superscripts )(q , )(u and )(v  
indicate the location at which σ  is calculated. They have been included at this stage so that the 
discretised form of the linearised equations can be inferred easily in section 4.1. As usual the 
partial derivatives in the momentum equations are evaluated with b  held constant and the 
diapycnal velocities have been set to zero. 

The hydrostatic equation then takes the form  

 ,= z
b
M −
∂
∂  (23) 

 and for an ideal Boussinesq fluid the continuity equation is given by  

 ,==
D
D

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂+

∂
∂−

∂
∂+

∂
∂+

∂
∂

y
v

x
u

y
v

x
u

tt
σσσσσ  (24) 

 in which all partial derivatives are again evaluated with b  held constant. 
Denoting the buoyancy at 0=z  and Hz −=  by (0)=0)=( bzb  and )(=)=( HbHzb −−  

respectively, the boundary conditions of no normal flow are given by  

 ).((0),=0,=
D
D Hbbb

t
z −  (25) 

 
 
Separable solutions to the linearised equations 
 
Assuming an analogous basic state to that of the height coordinates model, the separable 

solutions which depend only on x , y  and t  in a continuous model satisfy equations of the same 
form as those for the height coordinate. However, in a numerical isopycnal model extra terms 
arise because the layer thicknesses (σ ) in (22) are calculated at different points. Appendix 9 
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shows that the separable solutions which depend on x , y  and t  satisfy the following horizontal 
momentum equations  

 
( )

( ) ,
~

=~~~~~

,
~

=~~~~~

)()(10
10

)()(10
10

yH
ufuuf

t
v

xH
vfvvf

t
u

qu

e

qv

e

∂
Φ∂−−+++

∂
∂

∂
Φ∂−−−−−

∂
∂

ηηζ

ηηζ
 (26) 

 In the horizontally discreted form of (26a) the terms )(~ vη  and )(~ qη  orginate from different 
points. They consequently represent different averages of η  and their difference is non-zero. The 
separable solutions also satisfy the continuity equation (12) which is the same as that for the 
height coordinate model. 

Appendix 9 also shows that the vertical structure of the separable solutions is given by  

 ,ˆ=
d

ˆd h
b
Mg −  (27) 

  

 ,ˆ=
d

ˆd
0M

b
hHe σ  (28) 

 where ĥ  describes the vertical variation in the height z′  of the perturbations to the isopycnals 
and eH  is again the separation constant. The boundary conditions are given by  

 ).((0),=0,=ˆ Hbbbh −  (29) 
 

 
2.3  Formulation for shallow water 
 
The shallow water equations, for a layer of constant density in which the bottom of the 

fluid is at height bz  and the depth of the fluid layer is η , are given by  

 

( ) ( ) 0,=

,=

,=

v
y

u
xt

y
Zu

t
v

x
Zv

t
u

ηηη
∂
∂+

∂
∂+

∂
∂

∂
Φ∂−+

∂
∂

∂
Φ∂−−

∂
∂

 (30) 

 where the Bernoulli potential is given by  
 .)(= eb Kzg ++Φ η  (31) 

 
A steady basic state with a constant horizontal velocity field ),( 11 vu  and fluid depth, eH , 

which is independent of position, is obtained provided the bathymetry, bz , is given by  
 ),(= 1100 yuxvfgzgz bb −+  (32) 

 where 0b  is a constant. 
Writing uuuu ~== 1−′ , vvvv ~== 1−′ , and ηηη ~== eH−′  and linearising (30) about 

this basic state one obtains the equations (10) and (12) derived for height coordinates. 
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If one defines  

 ,=,=,= )(*)(* vvuuZq vu ηη
η

 (33) 

 replaces Zv  by *qv  and Zu  by *qu  in (30) and linearises about the same basic state, one 
obtains the equations (26) and (12) derived for isopycnal coordinates. 

A second way to obtain a steady basic state with a fluid depth independent of position is 
to use a fictitious force added to the momentum equations. One of the numerical test cases in 
section 5 uses a fictitious force and the other uses a sloping bathymetry to balance the zonal 
flow. 

 
3  Analysis of the discrete vertical modes 
  
 
3.1  Discretization in height coordinates  
 
The natural discretisation in the vertical of the level model is not clear cut and it is well 

known that there are a number of options; see [Tokioka(1978)], [Thuburn and Woollings(2005)] 
and [Girard ~al.(2014)Girard, Plante, Desgagnà McTaggart-Cowan, Cotà Charron, Gravel, Lee, 
Patoine, Qaddouri, Roch, Spacek, Tanguay, Vaillancourt and Zadra]. Most ocean models use the 
Lorenz grid illustrated in Figure 1a in which u , v , p  and ρ  are stored on full levels and w  
(and therefore ĥ ) is stored at half-levels. The vertical structure equations (13) - (15) are then 
discretised as  

 ( ) ,)(ˆˆ
2

=ˆˆ 1/211 +++ Δ+−− kkkkk zgpp ρρ  (34) 

  

 ( ),ˆˆ
2
1

d
d=ˆ 1/21/2

0
−+ +− kkke hh

z
H ρρ  (35) 

  
 ( ),ˆˆ=)(ˆ 1/21/200 −+ −Δ kkkk hhgzp ρ  (36) 

 and the boundary conditions (16) as  
 0.=ˆ=ˆ

1/21/2 +Khh  (37) 
 

 
   

Figure  1: The arrangement of variables using (a) height coordinates and (b) isopycnal 
coordinates. In both grids u  and v  are held at full levels, and the upper and lower boundaries are 

at half-levels.  
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3.2  Discretization in isopycnal coordinates 
 The natural discretisation in the vertical of the isopycnal model is to take the horizontal 

boundaries to lie at half levels and to store u , v  and M  at full levels and z  (and therefore ĥ ) at 
half levels as in Figure 1b. Denoting the levels with a subscript k , the level number increasing 
with height, (27) and (28) are discretised as  

 ,)(ˆ=)ˆˆ( 1/21/21 +++ Δ−− kkkk bhMMg  (38) 
  

 .)(ˆ=)ˆˆ( 01/21/2 kkkkke bMhhH Δ− −+ σ  (39) 
 For a grid with K  levels, the boundary conditions (29) are simply  

 0.=ˆ=ˆ
1/21/2 +Khh  (40) 

 
One sees that (36) and (37) correspond to (39) and (40). Equations (34) and (35) when 

combined correspond to (38), but in a form that involves more vertical averaging. The 
discretisation used above for the isopycnal model corresponds to that for the best category in 
[Thuburn and Woollings(2005)] obtained using a Charney-Phillips grid with potential 
temperature evaluated at half-levels . 

 
3.3  Discretised vertical modes 
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The impact of the vertical discretisation on the equivalent depth, eH , which is the 

separation constant and the eigenvalue for the normal modes in the vertical, can be illustrated for 
the case of uniform stratification and grid-spacing. Then the vertical structure equations for 
height coordinates (34) - (36) reduce to a single equation  

 0,=ˆˆ2ˆ
1/21/23/2 −++ +Λ− kkk hhh  (41) 

 with  

 
.

d
d

,
4
4

2

00

2

2

2

ee

e

gH
bz

gH
z

z
gn

n
n

ΔΔ≈Δ−≡

+
−≡Λ

ρ
ρ

 (42) 

 Together with its boundary conditions (41) defines an eigenvalue problem for Λ . These 
eigenvalues determine 2n  and then eH  through (42). 

Similarly (38) and (39) for isopycnal coordinates reduce to (41) with  

 .=)(=/2,1
2

022

ee gH
bz

gH
bmm ΔΔΔ−≡Λ σ  (43) 

 The last identity above follows from (19b). 
The solutions of (41) are given by  
 .1i=},{Re=ˆ 2

1/2 Λ−±Λ+ WCWh k
k  (44) 

 W  lies on the unit circle when 11 ≤Λ≤−  and hence can also be written in the form θiexp=W , 
where θ  is a real argument. The solutions written in this form that also satisfy the boundary 
conditions, (40) for isopycnal coordinates or (37) for height coordinates, are given by   

 ,=),(sin=ˆ
1/2 K

NkChk
πθθ+  (45) 

 where N  is an integer and KN ≤≤1 .  
The solution (45) with KN =  has 0=ˆ

1/2+kh  for all integer k  within the domain so its 
vertical velocities are zero. From (36) it also has 0=ˆ kp  for all points in the domain and hence 
by (9) zero horizontal velocities. When 0=eH , (35) does not constrain ρ̂  and (34) is satisfied 
provided 1ˆ=ˆ +− kk ρρ  at all points in the domain. Hence (45) with KN =  corresponds to the 
computational mode on the Lorenz grid. 

The solutions with 1= −KN  are the ones with the smallest equivalent depths that can 
give rise to Hollingsworth instabilities. We now calculate their equivalent depths for the realistic 
case with 1>>K . For these modes  

 .i1
K

W π+−≈  (46) 

 Equating (44b) and (46) one infers that  

 .1 2

K
π≈Λ−  (47) 

 As Λ  is close to 1− , one can take )2(1))(1(1=1 2 Λ+≈Λ+Λ−Λ−  and infer from (47) that  

 .
2

1 2

2

K
π+−≈Λ  (48) 
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 Using (42) and (43) in (48) one finds that for height and isopycnal coordinates respectively  

 4.)2(1=and16 2
2

2
2 ≈Λ−≈ mKn

π
 (49) 

  By (42b) and (43b) the equivalent depth, eH , is proportional to 2−m  and also to 2−n . For the 
Charney-Phillips grid (and the continuous equations), eH  is inversely proportional to the square 
of the vertical wavenumber. If one chooses g  so that 1000=eH m for the first baroclinic mode 
then for the largest vertical wavenumber on the Charney-Phillips grid, 21000= −KHe m . For a 
grid with 100  vertical levels this gives 0.1=eH m for the most rapidly varying mode. For height 
coordinates using the Lorenz grid, (49) shows that eH  for the most rapidly varying mode is a 
factor of 22

4
1 −Kπ  smaller which means that it is 4102.5 −× m in the above example. 

The solutions above are consistent with those derived by [Tokioka(1978)]. It is however 
clearer from the analysis above than that of [Tokioka(1978)] that the solutions satisfying (47) 
have the fastest vertical variation and smallest equivalent depths of all the vertical modes that 
need to be considered on the Charney-Phillips and Lorenz grids. So all the vertical modes on the 
Charney-Phillips grid are well-behaved and have equivalent depths of the same order of 
magnitude as the continuous equations, whilst the modes with the most rapid variation in the 
vertical on Lorenz grids have much smaller equivalent depths because of their similarity to the 
computational mode. 

 
4  Analysis of the discretised SWEs 
  
 
4.1  Formulation of een scheme 
  
 
For simplicity the equations will be written in Cartesian coordinates and discretised on a 

C-grid with uniform, but not necessarily isotropic, grid spacing. The arrangement of variables on 
the C-grid is illustrated in Figure 2.  

 
   

Figure  2: The staggering of variables on the C-grid. This figure and the indexing is based on 
[Arakawa and Lamb(1981)].  
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The following difference and average operators will be used. Let ξ  denote any of the 

coordinate directions x , y  and z , ι  denote its discrete indexing and ψ  denote any function of 
ξ . Then  

 ( ) .)()()(,
)(

)(

,)(),(
2
1

1/21/2

1/21/21/21/2

ιξιιι
ι

ιι
ιξ

ιιιιι
ξ
ι

ψδξψδ
ξ
ψψψδ

ξξξψψψ

Δ≡
Δ

−≡

−≡Δ+≡

−+

−++−

 (50) 

 The index for which the quantity is calculated is usually suppressed. All of these operators 
commute with each other and obey the associative laws of arithmetic. [Adcroft 
~al.(1997)Adcroft, Hill and Marshall] provide a useful summary of identities they satisfy. 

The discretisation on a C-grid of ζ  as defined by (2a) is given by  
 uv yx δδζ −=  (51) 

 and the discretisation of the x - and y -derivatives of the Bernoulli function is given by Φxδ  
and Φyδ  respectively. 

The averaging operators needed to define the modified een scheme are given by  

 ,
3
2

3
1,

3
2

3
1 yyExxE ψψψψψψ

νμ
+≡+≡  (52) 

 where the E  subscript indicates the expression is relevant to the een scheme. Additional 
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averaging operators Fμ  and Fν  which allow the original and modified schemes to be concisely 
defined are given by  

 
.cheme)(originals,

cheme),(modifieds,
ψψψψ

ψψψψ
νμ

ννμμ

≡≡
≡≡
FF

EFEF

 (53) 

 
For shallow water and isopycnal coordinate models the een scheme calculates (22) using  
 .=,=,= )()()( FxuFyvxyq νμ

ηηηηηη  (54) 
 As noted by HKRB, this averaging of the layers also needs to be used in the discretisation of the 
mass fluxes in the continuity equation,  

 ( ) ( ) 0,=vu
t

Fy

y
Fx

x

μν
ηδηδη ++

∂
∂  (55) 

 to ensure conservation of total (kinetic plus potential) energy with the modified form of the 
kinetic energy,  

 .=2 22 FyFx

E vuK
μν

+  (56) 
 

The een scheme for the SWEs associated with height coordinates discretises the terms 
Zv  and Zu  of (30) using  

 
( ) ( )
( ) ( ) .

3
1

3
2)(

3
2=)(

,
3
1

3
2(

3
2=)( )

x
yxyx

xy
y

E

y
xxyy

xy
x

E

uZuZuZZu

vZvZvZZv

−+

−+
 (57) 

 
Expressions for the SWEs associated with isopycnal coordinates are obtained by 

replacing Z , u  and v  by q , *u  and *v  respectively in (57). These expressions were noted in 
HKRB and are briefly derived from the expression for the een scheme used by AL in Appendix 
10. 

 
4.2  Linearisation of the een scheme 
 
Using ψδψψδ x

x

x 2=2  one finds that the linearised kinetic energy gradient in the x - and 
y -directions for (56) is given by  

 
.=
,=

11

11
Fy

y
Fx

yEy

Fy

x
Fx

xEx

vvuuK
vvuuK

μν

μν

δδδ
δδδ

′+′′
′+′′

 (58) 

 
Introducing  
 .tesalcoordinaforisopycn,1oordinatesforheightc0=Iδ  (59) 

 in order to allow the expressions for height and isopycnal coordinates to be combined, 
linearising (57)  one obtains  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

( )
( ) ,=)(

,=)(

10
10

10
10

xxy
EF

I
Exxy

E

xyy
EF

I
Eyxy

E

H
ufuufZu

H
vfvvfZv

ννν

μμμ

ηηδζ

ηηδζ

′−′+′+′′

′−′+′+′′
 (60) 

 
Using (51) in (58) and (60), one sees that the discrete linearised form of the momentum 

SWE (30) is given by   

 

( ) ( )

( ) ( ) 0,=

0,=

10
1

110

10
1

110

xxy
EF

I
ExFx

y

Fy
y

Ex
xy

xy

xyy
EF

I
EyFy

x

Ey

y
Fx

xx

xy

H
ufuuu

vvvuguf
t
v

H
vfvvv

uvuugvf
t
u

νννν

μν

μμμμ

μν

ηηδδ

δδηδ

ηηδδ

δδηδ

′−′+′−′

+′+′+′+′+
∂

′∂

′−′−′−′

+′+′+′+′−
∂

′∂

 (61) 

  
The first line of each equation above consists of terms corresponding to those present in 

the continuous equations. The second line consists of additional terms arising from the 
discretisation employed which have the potential to give rise to spurious effects (the non-
cancelling terms of HKRB). In HKRB the basic flow was taken to be zonal, 0=1v , and the 
terms proportional to Iδ  were not considered. The instability of the original scheme was traced 

by HKRB to lack of cancellation between 
xFx

uu ′′ =
ν

 and Ex
u

ν
′  in the first term on the second 

line of the y -component of the momentum equation. The kinetic energy in their modified 

scheme was re-formulated as in (56) to ensure that this term is identically zero ( ExFx
uu

νν ′′ = ). 
Both terms on the second line of each of the equations in (61) are zero for the modified 

schemes in both height and isopycnal coordinates. The stability of the modified schemes derived 
below is due in large part to this. For isopycnal coordinates the additional term proportional to 

Iδ  is only zero when the mass fluxes are calculated using (54). 
Linearising (55) one also finds that  

 ( ) 0,=11 vuHvu
t yx

Fy

y
Fx

x ′+′+′+′+
∂

′∂ δδηδηδη μν
 (62) 

 where H  is the unperturbed depth.  
4.3  Stability matrices 
  
The properties of the numerical schemes are best analysed in terms of non-dimensional 

parameters. So it will be assumed that the perturbations are of a wave-like form  

 ,iiiexp),,(=),,( 0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
+

Δ
′′′ tf

y
y

x
xvuvu EEE ωλκηη  (63) 

  where ω  is a non-dimensional frequency normalised using 0f , and κ  and λ  are non-
dimensional horizontal wavenumbers for the x - and y -directions normalised using the grid 
spacings xΔ  and yΔ  respectively. As is usual in linearised stability calculations, physical 
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quantities are given by the real parts of the above expressions and of those obtained below. 
Defining  

 ,,=/2),(sin=/2),(cos= λκppspc pp  (64) 
 for any quantity ψ  which varies with x , y  and t  in the same way as the quantities in (63) the 
x - and y -averaging operators give  

 ,=,= ψψψψ λκ cc
yx

 (65) 
 and the differencing operators xδ  and yδ  give  

 .i2=,i2= ψψδψψδ λκ s
y

s
x yx ΔΔ

 (66) 

 It is convenient also to introduce the coefficients corresponding to the averaging operators,  

 ).2(1
3
1=),2(1

3
1= 22

λκ νμ cc EE ++  (67) 

 and the associated modified coefficients which are given by  

 
.cheme)(originals1==

,cheme)(modifieds=,=

FF

EFEF

νμ
ννμμ

 (68) 

 
One can define the other non-dimensional quantities in a number of different ways. A 

convenient approach is to define Froude numbers for the basic flows 1u  and 1v   

 
c
vF

c
uF vu

11 =,=  (69) 

 and to complete the set of non-dimensional parameters using  

 .=,2=
0 y

xX
yf

cRc Δ
Δ

Δ
 (70) 

 cR  is twice the ratio of the Rossby radius ( 0/fc ) and the grid spacing yΔ  (the factor of 2  has 
been introduced to simplify expressions later) and X  is the ratio of the grid-spacings. In models 
using latitude and longitude coordinates the latter ratio is small near the pole so the range 

1<0 ≤X  is of interest. The grid-scale Rossby numbers uR  and vR  for the flows 1u  and 1v  can 
be constructed using the above parameters  

 .=2=,=2=
0

1

0

1
cvv

cu
u RF

yf
vR

X
RF

xf
uR

ΔΔ
 (71) 

 We note that the factors of 2  in (71) result in values for uR  and vR  that are a factor of 2  larger 
than the values one would obtain using the classical definition of grid-scale Rossby numbers. 

Substituting the above relations into the discrete linearised equations (61) and (62), after 
some algebra (doing normalizations using 0f , H , g  and c ), one obtains a matrix form of the 
stability problem 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

0.=

ii

ii

33

232221

131211

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

+−−−

−−−−−

H
c
v
u

EsR
X
sR

EsREEcc

E
X
sREccE

E

E

E

c
c

c

c

ηω

ω
ω

λ
κ

λλκ

κ
λκ

 (72) 

 
where  

 

).(=
),(=

),(=
),(=

,=
,=
,=

2
23

2
13

21

1
12

33

22

11

EFuI

EFvI

EFu

EFv

FvFu

FvEu

EvFu

ccFE
ccFE
cXsRE

csXRE
csRcsRE
csRcsRE
csRcsRE

ννδ
μμδ

νν
μμ

μν
μν
μν

λκ

λκ

κλ

λκ

λλκκ

λλκκ

λλκκ

−
−

−
−

+
+
+

−  (73) 

 
In (72) the diagonal elements 11E , 22E  and 33E  represent advection of u′ , v′  and η′  

respectively by the basic flow ),( 11 vu , λκ cc−  in the same element as 12iE  represents the Coriolis 
term vf ′− 0  in (102) and λκ cc  in the same element as 21iE  represents the Coriolis term uf ′0  in 
(103). Note that the off-diagonal elements 12E , 21E , 13E  and 23E  are all equal to zero for the 
modified een scheme. 

 
4.4  Stability of the modified een scheme 
 
For the modified een scheme, because 0==== 23132112 EEEE , the matrix equation (72) 

has the form  
 0,=)( zHI +ω  (74) 

 where I  is the identity matrix and H  is an Hermitian matrix, that is a matrix whose transpose is 
equal to its complex conjugate. All eigenvalues of Hermitian matrices are real-valued and hence 
the corresponding perturbations are neutrally stable. The eigenvectors of Hermitian matrices are 
also orthogonal (or can be chosen to be when two or more of the eigenvalues are identical). The 
gravity wave and Rossby wave solutions of (72) have different phase speeds and hence different 
eigenvalues so are automatically orthogonal. In conclusion the linear perturbations of the form 
(63) can be used to represent any initial conditions and the basic flow is neutrally stable to all 
linear perturbations.  

4.5  Stability in isopycnal coordinates 
  
Consider now the stability problem (72) for the original scheme using isopycnal 

coordinates ( 1=Iδ ). It will be convenient to introduce  
 ).(1),(1 EvvEuu cRTcRT μν λκ −≡−≡  (75) 

 Using these definitions with (73) one sees that  
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 ,=,= 33223311 κλ sTEEsTEE uv −−  (76) 

 and (72) becomes  

 

0.=

ii

ii

23

13

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

+−+−

−−−−+

H
c
v
u

sR
X
sR

IsRsTXsTcc

I
X
sR

X
sTccsT

E

E

E

cc

cuu

cvv

ηϖ

ϖ
ϖ

λ
κ

λκλλκ

κκ
λκλ

 (77) 

 in which  
 1

23
1

13 , −− ≡≡ cucv RTccIRTccI λκλκ  (78) 
 and  

 λλκκωωϖ csRcsRE vu −−− == 33  (79) 
 is the Doppler-shifted non-dimensional frequency of the perturbation. 

By direct calculation of the determinant MD  of the matrix in (77), one finds that  
 .= 2223 PQQPDM −−+ ϖϖϖ  (80) 

 where  

 
.=

,=
22222222
λκλκ

λκ

sRXsRccQ
sTsTP

cc

vu

++
+

−  (81) 

 Substituting P−=ϖ  into (80) one sees that it is a solution of 0=MD . Hence it is easy to 
factorise (80),  

 ).)((= 22 QPDM −+ ϖϖ  (82) 
 The solutions of 0=MD  with Q±=ϖ  are the gravity waves and the solutions with P−=ϖ  are 
the Rossby waves and both sets of solutions are neutrally stable. 

An interpretation of this result is presented in appendix 12. 
 
4.6  Instabilities of the original schemes 
  
There are of course general expressions for the solutions of the cubic equations derived 

from setting the determinant of the matrix in (72) to zero but the resulting expressions for the 
growth rates of the instabilities present in the original scheme are complicated and do not aid 
understanding. The expressions for instabilities aligned with the grid are much simpler than those 
for the general case so, following HKRB, these are considered first in this section. The solutions 
obtained numerically motivated the calculations for very small equivalent depths presented at the 
end of the section. The solutions are only presented for the een scheme but entirely analogous 
arguments and solutions hold for the AL scheme.  

 
Instabilities aligned with the grid 
 
We will consider instabilities that are aligned with the grid and without loss of generality 

take 0=κ  (rather than 0=λ ). Both 1u  and 1v  will be allowed to be non-zero (which was not 
the case in HKRB). 0=κ  implies that 0== 12Esκ  and 1== Ec μκ . One then finds that 0=13E  
whether or not 0=Iδ  and  
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 .=== 332211 λλcsREEE v  (83) 

 Consequently it is useful to introduce the Doppler-shifted non-dimensional frequency  
 .= λλωϖ csRv−  (84) 

 Setting the determinant of the matrix in (72) for the original een scheme to zero, one of the 
solutions is 0=ϖ  and the other solutions have  

 ( ) ,1i= 22 Ja Iδϖ −+  (85) 
 where  

 ).(1,2222
Ecuc csRFJsRca νλλλλ −≡+≡  (86) 

 Equations (85) and (86) are essentially the same as (6) in HKRB and are clearly a version of the 
dispersion relation for inertia-gravity waves. The final term on the rhs of (85) is purely imaginary 
and destabilises the inertia-gravity waves. When 1=Iδ  this term is zero and the solutions for ϖ  
are all real. So the SWEs discretised using q  in the Zu  and Zv  terms and isopycnal coordinate 
models should not suffer from symmetric instabilities of the kind discovered by [Hollingsworth 
~al.(1983)Hollingsworth, Kallberg, Renner and Burridge]. This result is consistent with the 
comments made in [Arakawa(2000)] that were noted in the introduction and the results of the 
previous sub-section. 

The dependence of the non-dimensional growth rate on the non-dimensional parameters 
for height coordinate models ( 0)=Iδ  can be found by writing ir iϖϖϖ +≡  in (85) and 
eliminating rϖ :  

 .=2 2422
i Jaa ++−ϖ  (87) 

 This solution to (72) has made no assumptions or approximations other than 0=κ . 
The growth rate iϖ  hence depends on the ratio 2/aJ . When 2aJ ≈  or 2>> aJ , iϖ  is 

relatively insenstive to a  and to within 50%   
 .||/2, 22

i JaJ ≤≈ϖ  (88) 
 This is the formula derived by HKRB for a slightly less general case. For the case with 

|>>|2 Ja , evaluating (87) using a Taylor series one finds that  

 .|>>|,
2

|| 2
i Ja

a
J≈ϖ  (89) 

 
The equivalent depths and associated velocities c  in the ocean vary greatly. Barotropic 

modes in water of 4 km depth have 1ms200 −≈c  whilst the first baroclinic mode has 1ms3 −≈c . 
As discussed in section 3, when the number of vertical levels is denoted by K , the highest 
vertical wavenumber mode in a model using the Charney-Phillips grid has 11ms3 −−≈ Kc  and in 
one using the Lorenz grid has 12

2
3 ms−−≈ Kc π . In a model with a 10  km grid at mid-latitudes 

1ms1 −≈Δxf . Hence for the high wavenumber baroclinic modes 22
λca ≈  and uXRJ ≈  and when 

X  is of order 1 and uR  is larger than or of order 1 the growth rate, iϖ , is given by (88). For the 
barotropic modes 0/fcsa λ≈  and iϖ  is given by (89). 

For the baroclinic modes using (88), (86b), (64) and (67b) one sees that the most unstable 
perturbations have the largest values of  

 .
2

cos
2sin3

2= 3 λλ
cu RFJ  (90) 
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 Differentiating J  wrt λ  one finds (in agreement with HKRB) that it is a maximum for the 3-
gridpoint wave with  

 
22

3=,
3

2= cu RFJπλ  (91) 

 When 1>>= ucu XRRF , as is often the case with modern grids, these modes can grow very 
rapidly. For example when 10=uR , 6≈maxJ  and 3i ≈ϖ . With 14

0 s10= −−f  the perturbation 
would increase by a factor of 2.7e ≈  in 1

0 )( −ϖf s which is about 3103.3× s, i.e. just less than an 
hour. 

For the barotropic modes  

 .
2

cos
2sin3

2=)(1=
2

|| 2
i

λλνϖ λ uEu FcF
a

J −≈  (92) 

 Differentiating one finds that iϖ  is a maximum when 1/23=cos −λ . In the ocean uF  is typically 

less than or of order 0.01  and the maximum value of )3/(94=i uFϖ . 
 
Instabilities for very small Froude or Rossby numbers 
 
Consider next the instabilities obtained in height coordinates when uF  and vF  are very 

small compared to uR  and vR . For this case 02313 ≈≈ EE  and all the ijE  terms are proportional 
to uR  or vR . As uF  and vF  tend to zero only the last element in the last row and the last column 
of the stability matrices remain non-zero. So the instabilities are determined by the determinant 
of the upper-left 22×  sub-matrix. 

In practice the growth rates of the instabilities are likely to be reduced by dissipative 
fluxes. Vertical diffusion of momentum is a parameterisation of an important physical process in 
ocean model which usually has large coefficients within the surface boundary layer and is a 
sufficiently fast process to need to be calculated implicitly. As the specification of the viscous 
coefficients varies considerably from one numerical model to another in the analysis below it is 
specified simply as being proportional to mA , that is we set uAuDA mmm −=  leaving the 
dependence on the vertical (and horizontal) wavenumbers of the disturbance for the reader to 
specify. These viscous dissipation terms only make contributions to the diagonal elements in the 
upper two rows of the stability matrix. The revised diagonal elements, 11E′  and 22E′  are given by  

 .i=,i= 1
02222

1
01111

−− −′−′ fAEEfAEE mm  (93) 
   (a)  (b)   

Growth rates, iω , for the original een scheme using height coordinates for a flow aligned with 
the grid ( 0=1v ), 1=X  and 10=uR  as functions of (a) κ  with /32= πλ  and (b) λ  with 0=κ . 

   
Because the determinant in (72) reduces to just the upper-left 22×  sub-matrix multiplied 

by ω−33E  the solutions consist of the Doppler-shifted “geostrophic” mode with 33= Eω  and 
two other solutions which satisfy  

 ,
2

= 1/22211 SEE ±
′+′ω  (94) 
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 ( )( ).ii

2 2112

2
2211 EccEccEES −+−⎟
⎠
⎞

⎜
⎝
⎛ ′−′

≡ λκλκ  (95) 

 
The first term in (94) is a Doppler-shifted frequency with a decay rate equal to 1

0
−fAm  

which is what one might expect from the viscous dissipation. Evaluating S  with 0=κ  one sees 
that, 0=κs , 1=Eμ  and 2211 = EE ′′ , and hence that  

 ( ) .
3

2i=ii= 32
21 λλλλκλ csRXcEcccS u+−−  (96) 

 When the imaginary part of S  is non-zero one of the two solutions is unstable in the limit of 
small viscosity. 

Evaluating κ∂∂ /S  for any λ  with 0=κ  one finds that  

 0.=
κ∂

∂S  (97) 

 This implies that 0=/i κω ∂∂  for any λ  with 0=κ . This shows that the growth rates are 
stationary in the direction of κ  when the perturbations are aligned with the grid. Taken with the 
numerical results it strongly suggests that the fastest growing perturbations are aligned with the 
grid for the limit of small Froude number. 

An analysis of the instabilities when the Rossby number is very small can also be carried 
out. Denoting the eigenvalue solutions for 0== vu RR  by 0ω , the gravity wave solutions have  

 ,= 2

2
22222

0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

X
ssRcc c

κ
λλκω  (98) 

 and the Rossby waves have 0=0ω . Linearising the determinant of the matrix in (72) about 
these solutions and writing 10= ωωω + , to first order in uR  and vR  one finds that the gravity 
waves have  

 ),(
2

= 1221
0

i1 EEcc −
ω

ω λκ  (99) 

 and the Rossby waves have 0=i1ω . 
 
4.7  Numerical evaluations of solutions of the stability matrices 
  
Figure 4.6 presents numerical evaluations of the fastest growth rates obtained from (72) 

for a basic flow with 0=1v , using height coordinates ( 0=Iδ ) with 10=uR  and 1=X , for a 
number of values of uF . The corresponding figure for the AL scheme is similar except that the 
non-dimensional maximum growth rate is approximately 1.2  rather than 1. Figure 4.6(a) plots 
the non-dimensional growth rates iω  as a function of κ  with /32= πλ  and figure 4.6(b) plots iω  
as a function of λ  with 0=κ . From Figure 4.6(a) it is apparent that when 1>>uF  the fastest 
growing disturbances have 1<<κ . Figure 4.6(b) shows that the maximum non-dimensional 
growth rate when 10== uu RF  is close to 1. These disturbances increase in magnitude by a 
factor of 2.7e ≈  in 1

0
−f s. At mid-latitudes 41

0 10≈−f s which is just less than 3 hours. From 
figure 4.6 it is also clear that the growth rate at the chosen value of uR  is strongly dependent on 
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the Froude number ( uF ) being weak when 0.1<uF  and strong when 5>uF . High values of the 
Froude number are obtained for the highest vertical modes, particularly on the Lorenz grid. 

 
   

Figure  3: Growth rates, iω , for the original een scheme using height coordinates for a flow 
aligned with the grid ( 0=1v ), 1=X , 10=uR  and 10=uF  as functions of λ  with 0=κ . Blue 

solid line: eq (72). Red dash-dot line line: eq (88). Green dashed line: eq (89). 
   
Figure 3 provides a comparison of the solutions of (88) and (89) with those of (72) 

calculated using 10== uu RF  and 1=X . The green lines are solutions of (89) with 2|<| aJ  and 
the blue line is the solution of (72). Clearly the agreement is good. The red line in figure 3 is the 
solution of (89). This solution depends only on uR  and is expected to hold only when uF  is very 
large. Comparing figures 4.6(b) and 3 one sees that the approximation requires uF  to be very 
large to be accurate. 
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  (a) 10=uR , 10=uF   (b) 10=uR , 40=uF  
   
(c) 40=uR , 10=uF   (d) 40=uR , 40=uF  
   
 

Figure  4: The fastest growing instabilities (maximum || iω ) for varying λ  and κ  for the 
original een scheme in height coordinates for the case with 0=1v  and four combinations of uR  

and uF . 
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   Figure 4 illustrates the growth rates of the unstable solutions of (72) for the original een 

scheme using height coordinates as a function of κ  and λ  for four combinations of uR  and uF  
when 1=X . The fastest growing solutions have growth rates similar to the fastest growing 
solutions with 0=κ  and their wavenumber is quite closely aligned with the λ -axis particularly 
when uF  is large. 

  (a)  (b)   
Figure  5: The fastest growing instabilities for all λ  and κ  for the original een scheme in height 

coordinates for the case with 0=1v  as a function of uF  (on the abscissa) and uR ; (a) the 
maximum growth rates, iω  and (b) their wavenumber ),( λκ ; the arrows show their direction 

and the contours their magnitude. 
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   Figure 5(a) shows the maximum values of iω  obtained for all κ  and λ  as a function of 

uF , on the abscissa, and uR  when 1=X . The largest growth rates are obtained when both uF  
and uR  are large, values of iω  as large as 2.2  being obtained when 50== uu FR . These 
perturbations take less than 90 minutes to double in amplitude at mid-latitudes. The 
corresponding plot (not shown) of maximum growth rates for perturbations restricted to those 
with 0=κ  is barely distinguishable by eye from figure 5(a). Figure 5(b) shows the direction and 
magnitude of the wavenumber ),( λκ  of the fastest growing perturbations. These perturbations 
have 0≈κ  and the wavenumber of maximum growth rate 2.1≈λ  is consistent with the findings 
of HKRB and (91). When 0.1=X  the fastest growing disturbances also have 0≈κ  but the 
maximum growth rates are somewhat smaller (their maximum being of order 0.9 for the range of 

uF  and uR  plotted in figure 5(a)). 
Figure 6 is the same as figure 5 except that it shows the maximum growth rates for the 

AL scheme rather than the een scheme. The plot of maximum growth rate for symmetric 
disturbances only corresponding to figure 6a is again not shown because they are barely 
distinguishable.   (a)  (b)   
Figure  6: The same as Figure 5 except that the results are for the AL scheme rather than the een 

scheme. 
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Figure 7 is the same as figure 4 except that it was obtained using 11 = uv  instead of 

0=1v . It is symmetric about the line λκ =  as one would expect from the symmetries of the 
problem. More interesting is that it shows that the most unstable perturbations are aligned with 
the grid rather than the background flow, the alignment again being particularly strong when 

1>>uF . The figures for this case corresponding to figure 5 for the een scheme and figure 6 for 
the AL scheme are not shown because they are barely distinguishable from those already 
presented except that when 11 = vu  there are two maxima, the second being obtained from the 
single maximum present for 0=1v  by reflection in λκ = .   (a) 10=uR , 10=uF   (b) 10=uR , 

40=uF  
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(c) 40=uR , 10=uF   (d) 40=uR , 40=uF  
   
 

Figure  7: The fastest growing instabilities (maximum || iω ) for varying λ  and κ  for the 
original een scheme in height coordinates for the case with 11 = uv  and selected values of uR  and 

uF . 
   
Numerical solutions of (72) strongly suggest that all linear disturbances to a flow in any 

direction are neutrally stable for the original schemes in isopycnal coordinates. This result 
motivated the analysis presented in section 4.5. 

 
5  Numerical analyses of the SWE 
  
To investigate the instability using the fully nonlinear shallow water equations, we 

implemented the een scheme (as described in sub-section 4.1) on a [0,1][0,1]×  doubly periodic 
plane with an explicit fourth order four stages Runge-Kutta time-integration scheme. The model 
was validated using initial conditions given by )(2sin= yu π , 0=v  and h  chosen to balance with 
u . Second order accuracy in space and conservation of total energy and total potential enstrophy 
within time truncation errors was achieved on all 4 configurations tested: original and modified 
schemes, with height and isopycnal coordinates. 
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One of the main outcomes of this study is that the developer of a new numerical scheme 

should be able to test whether it will suffer from Hollingsworth type instabilities in a shallow 
water model context, rather than having to wait for a fully 3D version of the scheme to be 
developed. The key point is to use uniformly small equivalent depths which slow down the 
gravity waves and highlight nonlinear effects. A similar approach was discussed by 
[Gassmann(2011)] in an investigation of the divergence of computational modes on triangular 
grids. To help researchers track the instability at the shallow water development stage, we 
propose two test cases. 

 
5.1  Instabilities on a constant zonal flow 
  
In this first test case we used a constant initial zonal flow, a flat bottom ( 0=bz  in (31)) 

and an additional forcing term equal to 10uf  on the rhs of (30b) to produce a balanced steady 
state solution (parameters xu Δ50=1 , 22.5= yH Δ , 10=0f , 10=g , 1/64== yx ΔΔ  and 
timestep 1/1024=tΔ  which give 10=uR  and 10=uF ). To trigger the instability, we added a 
small perturbation to η  at the central point of the domain (we used /1000H+ ). The modified 
scheme in height coordinates and both schemes in isopycnal coordinates did not reveal any 
instabilities in the tests performed. However, the height coordinate model with the original een 
scheme suffers from instabilities with a dominant non-dimensional wavenumber λ , of 
approximately /32π  which grow in amplitude by a factor larger than 310  for every 
nondimensional time unit (see Figure 8). Taking the difference from the initial state, )(tE , to 
grow exponentially with time at a rate given by 0i fω  and fitting a straight line through the right 
panel of figure 8 we obtain an approximate value for iω  of 0.8 , in very good agreement with 
figure 3b. 

 
   

Figure  8:  Shallow water model run with height coordinates, the original een scheme, an initially 
constant water depth, a constant zonal initial velocity, zonally symmetric forcing to keep the 

system in a steady state, and a small perturbation in the center of the domain. On the left: 
Spectrum of a y -slice of η , where the wavenumbers were normalized to )(0,π . On the right: 

evolution of )(tEη , the maximum difference from the initial state of the layer depth η .  
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5.2  Instabilities on a sinusoidaly varying zonal flow 
 
 
   

Figure  9: Shallow water model run with height coordinates, the original een scheme, an initially 
constant water depth and sinusoidal zonal velocity with a bottom topography which keeps the 
zonal flow in balance. On the left: Spectrum of a y -slice of η , where the wavenumbers were 

normalized to )(0,π . On the right: evolution of )(tEη , the maximum difference from the initial 
state of the layer depth η .  
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In this second test case we set the zonal velocity )(2sin=),( 1 yuyxu π , and 0=),( hyxh , 

where both 1u  and 0h  are constants. In order to create a steady state solution, the bottom 

topography (bathymetry) is set to )(2cos
2

=),( 01 y
g
fuyxzb π

π
. Since the prognostic variables are 

functions only of y , the solution is independent of x , and the shallow water equations reduce to 
a 1D problem. The only initial source of error is due to the non cancellation of the nonlinear 
terms in the evolution equation for v . For appropriate choices of the parameters, the instability 
afflicts the height coordinate model with the original een scheme, as expected. We show in 
figure 9 an example (parameters 10=1u , 0.1=H , xf Δ1/=0 , 10=g , 1/64== yx ΔΔ  and 

1/1024=dt  which give 20=uR  and 10=uF ) of the spectrum a few time steps before the model 
blows up, and also the evolution with time of the maximum error in the layer thickness (η ) (i.e. 
the maximum difference from its original value). The initial condition is dominated by a low 
wavenumber pattern (wave number 2), but as time evolves, errors in higher wavenumbers appear 
and the instability is triggered. Once triggered, the growth rates are very large. The estimated 
non-dimensional growth rate for the parameters used in figure 9 is 2.0≈iω . This test case has 
non zero relative vorticity and growth rates that are somewhat larger than those obtained using 
the formulae for a constant flow on an f -plane. Figure 10 provides a snapshot of the model 
fields at a time when the instability is emerging in the h  and v  fields. 

   
Figure  10: The fields from the same integration as figure 9 at a time 0.35=t  when the 
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instability is emerging. Blue lines indicate the field values at 0.35=t , and the red (green) line 

indicates the maximum (minimum) value attained earlier in the integration.  
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6  Concluding summary and discussion 
  
The factors that determine the linear stability of constant flows on an f -plane to grid-

scale disturbances have been clarified for a number of discretisations of the vector invariant 
momentum equations which use regular rectangular grids in the horizontal. The 3D stability 
problems obtained in height coordinates and isopycnal coordinates have been confirmed to be 
soluble as a linear combination of products of a vertical mode and a solution of linearised 
shallow water equations (SWEs) with the depth H  of the water determined by the eigenvalue of 
the vertical mode. Two dimensional SWEs which can be used to explore the stability of new 3D 
dynamical cores written in height or isopycnal coordinates have also been identified. 

The depth H  of the SWE associated with the modes of highest vertical wavenumber 
obtained using the Lorenz grid decreases more rapidly as the number of depth levels increases 
than is the case for solutions obtained using the Charney-Phillips grid, for reasons related to the 
occurrence of the computational mode on the Lorenz grid. 

The 33×  matrices which determine the linear stability of the een (energy and enstrophy 
conserving) scheme (and the AL scheme) both in their original and modified forms and in height 
and isopycnal coordinates have been constructed. It has been shown that these stability problems 
for all the modified schemes can be written as eigenvalue problems for Hermitian matrices and 
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hence that all the modified schemes are neutrally stable. The instabilities obtained for the 
original schemes in height coordinates grow most rapidly when the Froude number and the grid-
scale Rossby numbers are large and the instability is nearly aligned with the grid. 

Simple expressions for the growth rates have been obtained for instabilities aligned with 
the grid and for instabilities when the Froude number or the Rossby number is very small. Our 
numerical investigations of the original schemes for isopycnal coordinates found that they do not 
suffer from Hollingsworth instabilities, in agreement with [Arakawa(2000)]. The determinant of 
the stability matrix for this case has been shown to reduce to a simple factorisable form which 
has real solutions and an explanation of this result has been proposed in terms of solutions of the 
linearised SWEs with uniform potential vorticity (appendix 12). 

As shown by HKRB (see the discussion following (85) and (86)) the instabilities are 
inertia-gravity waves that have been destabilised by the discretisation of the generalised Coriolis 
terms. Consequently, and consistent with the discussion in appendix B of [Gassmann(2013)], one 
would not expect quasi-geostrophic models (which do not represent inertia-gravity waves) to 
suffer from them. [Gassmann(2013)] notes that the instabilities occur preferentially in regions of 
high vertical shear where the stratification is relatively weak and the phase speeds of the internal 
modes are consequently relatively slow. The Froude number will be highest in these regions so, 
provided the Rossby number is high enough, the instabilities will grow more rapidly in these 
regions. 

Our results show that basic states that have no horizontal temperature gradients (and 
associated vertical shear in the horizontal velocity) can suffer from the Hollingsworth instability 
when discretised using the een or AL schemes and height coordinates. High vertical shear and 
high horizontal velocity tend to occur near to each other, so in practice it will be difficult to 
distinguish whether an instability seen in a model is associated with one rather than the other, 
especially when other factors (stratification, vertical grid spacing) are also implicated. The 
instabilities can be obtained in height coordinates if a C-P vertical grid is used with a large 
number of vertical levels but will usually grow faster on a Lorenz grid (with the same number of 
vertical levels) because the equivalent depth of the most rapidly varying modes is then much 
smaller and the Froude number much larger. These instabilities do not occur for these simple 
states discretised using isopycnal coordinates but this does not rule out the possibility that other 
instabilities owing their existence to discretisation issues rather than physical causes may occur 
on more complex flows, for example on a β -plane or the sphere or, as found by [Arakawa and 
Moorthi(1988)], on flows with vertical shear. 

The origin of the instabilities in height coordinates might be attributed to a a loss of some 
form of momentum conservation, as suggested by HKRB, or to the loss of the invariance of the 
momentum equations to uniform motion of the frame of reference. As suggested (but not proved) 
by HKRB and AL, by smoothing the kinetic energy in the Bernoulli potential using a stencil 
similar to that used in the generalised Coriolis terms one can obtain a modified scheme which is 
stable to all disturbances. The instabilities for the original schemes grow extremely rapidly when 
the Froude number and Rossby number are very large but sufficient cancellation of terms may be 
possible using this approach on other (e.g. hexagonal) grids as suggested by [Gassmann(2013)]. 

It is hoped that the above results will help developers of new dynamical schemes (e.g. on 
triangular, hexagonal and other meshes) to test their schemes using appropriately configured 
SWEs and to devise modified schemes which do not suffer from Hollingsworth instabilities. 
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Appendix 
 
 
7  Notation 
  
Tables 1 - 3 summarise the notation used in the main body of the paper. The third column 

of the tables refers to the equations where symbols are first introduced. 
 

Table  1: Table of Greek symbols for primary variables  
   

   
 Greek - Lower case 

ιδ    a difference 
operator  

 (50)  

Iδ    Kronecker 
delta function  

 (59)  

ζ    vertical 
component of 

the relative 
vorticity  

 (2)  

η    height of the 
free surface  

 (9)  

ι    the grid index 
in any 

direction  

 (50)  

κ , λ    wavenumbers 
of perturbation 
in x - and y - 

directions  

 (63) 

μ    coefficients 
from averaging 

in x   

 (52)  

ν    coefficients 
from averaging 

in y   

 (52)  

ξ    a coordinate in 
any direction  

 (50)  

ϖ    Doppler 
shifted non-
dimensional 
frequency  

 (79), (84) 
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ρ    density   (4)  
σ    inverse of 

stratification in 
isopycnal 

model  

 (19)  

ψ    any function 
of ξ   

 (50)  

ω    non-
dimensional 
frequency of 
perturbation  

 (63) 

Greek - Upper case 
Δ    the difference 

between 
neighbouring 

grid points  

 (50)  

Λ    a non-
dimensional 

parameter for 
vertical modes 

 (41)  

Φ    the Bernoulli 
function  

 (3)  

 
   

  
 
 

 
 

Table  2: Table of Roman symbols for primary variables  
   

   
 Roman - Lower case 

a    a parameter   (86)  
b    buoyancy   (19)  
c    speed 

gHc =2   
  

κc , λc    cosines of 
wavenumbers  

 (64) 

f    the Coriolis 
parameter  

 (2)  

g    gravity   (4)  
h    function of z  

related to w  or 
z   

 (14), (109)  
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nm,    constants 

related to 
equivalent 

depths  

 (42), (43)  

p    pressure   (3)  
q    potential 

vorticity  
 (22)  

κs , λs    sines of 
wavenumbers  

 (64) 

t    time   (5)  
wvu ,,    velocity 

components  
 (5)  

yx,    horizontal 
coordinates  

 (2)  

z    height 
coordinate  

 (4)  

Roman - Upper case 
mA    coefficient of 

viscosity  
 (5)  

MD    determinant   (80)  
D    total 

derivative (as 
in DtD/ )  

 (6)  

mD    diffusive 
operator  

 (5)  

ijE    matrix 
element for 
een scheme  

 (73)  

vu FF ,    Froude 
numbers  

 (69)  

H    the total depth 
(or equivalent 

depth)  

 (12)  

H    an Hermitian 
matrix  

 (74)  

I    the identity 
matrix  

 (74)  

J    a non-
dimensional 

quantity  

 (86)  

eK    horizontal 
kinetic energy  

 (1)  

K    the number of 
vertical levels  

 (37)  

M    Montgomery  (20)  
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potential  

1−N    the number of 
zeros in the 

vertical  

 (45)  

QP,    coefficients   (81)  

cR    twice the ratio 
of the Rossby 

radius and grid 
spacing  

 (70)  

uR , vR    Rossby 
numbers  

 (71)  

S    a non-
dimensional 

quantity  

 (96)  

uT , vT    modified 
Rossby 
numbers  

 (75)  

X    grid aspect 
ratio  

 (70)  

W    a constant in 
normal mode 

soln  

 (44)  

Z    vertical 
component of 

the total 
vorticity  

 (2)  

 
   

  
 

Table  3: Table of subscripts and superscripts  
   

   
 Subscripts 

b    the (height of 
the) bottom  

 (31)  

e    equivalent (as 
in eH )  

 (12)  

i    imaginary part  (87)  
ji,    x - and y  

coordinate 
indices  

 (50)  

k    the vertical 
index  

 (34)  

yx,    horizontal  (50), (51)  
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coordinates  

E    een scheme   (52)  
F    modified een 

scheme  
 (53)  

I    isopycnal   (59)  
M    matrix   (80)  
00    constant 

density  
 (3)  

0    the stably 
stratified 

component of 
the basic state  

 (100)  

1   the constant 
velocity 

component of 
the basic state  

 (101)  

Superscripts 
μ    averaging in 

x   
 (52)  

ν    averaging in 
y   

 (52)  
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 a perturbation  (9), (102) 
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*    transports 

through faces 
of cells  

 (22), (33)  

φ̂    a function of 
the vertical 
coordinate  

 (9)  

φ~    a function of 
x , y  and t   

 (9)  

φ    an average of 
φ   

  

 
  
 
8  Separation of variables in height model 
  
 
8.1  Basic state and perturbed equations 
 
Assuming the basic state of a stably stratified density field )(0 zρ  as described in section 

2.1, we have that  

 ,=
d
d

0
0 g

z
p ρ−  (100) 

 and  
 ).(= 11001 yuxvfp −ρ  (101) 

 
Denoting the perturbations by primed quantities and neglecting products of perturbations 

the horizontal momentum equations for the perturbations are given by  

 ,=10 uDA
x

vvf
t
u

mm ′+
∂
Φ′∂−′−′−

∂
′∂ ζ  (102) 

  

 .=10 vDA
y

uuf
t
v

mm ′+
∂
Φ′∂−′+′+

∂
′∂ ζ  (103) 

 where  

 ).(=,= 11
00

vvuup
y
u

x
v ′+′+

′
Φ′

∂
′∂−

∂
′∂′

ρ
ζ  (104) 

 Hydrostatic balance for the perturbations is  

 ,= g
z
p ρ′−

∂
′∂  (105) 

 the incompressibility condition is  

 0,=
z
w

y
v

x
u

∂
′∂+

∂
′∂+

∂
′∂  (106) 

 and the density perturbations satisfy  
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 0,=

d
d

11 z
w

y
v

x
u

t
eρρρρ ′+

∂
′∂+

∂
′∂+

∂
′∂  (107) 

 because the heating by dissipation is zero in (107) when the basic state has no shear. Finally the 
boundary conditions are  

 .0,=0,= 0Hzw −′  (108) 
 In summary the above set has five unknowns u′ , v′ , w′ , ρ′  and p′  that are constrained by five 
equations and the boundary conditions (108). 

 
8.2  Separable solutions 
 
Comparing the five equations just summarised with those in section 6.11 of [Gill(1982)] 

one sees that they enjoy separable solutions of the same form. Departing slightly from the order 
of Gill’s derivation we assume that the variations in u′ , v′  and p′  are given by (9). Then 

),,(~)(ˆ=00 tyxzpg ΦΦ′ρ  where Φ~  is given by (11) and the horizontal momentum equations 
reduce to (10). 

Following Gill we let  
 ).,,(~)(ˆ=,~)(ˆ= tyxwzhwz ′′ ηρρ  (109) 

 Substituting (9c) and (109a) into (105) we obtain (13). Substituting (109) into (107) and 
introducing the separation constant eH  we obtain (14) and  

 ,
~~~

=~
11 y

v
y

u
t

wHe ∂
∂+

∂
∂+

∂
∂ ηηη  (110) 

 Substituting (9) and (109b) into (106) we can choose to set (15) and obtain  

 0.=~~~
w

y
v

x
u +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂+

∂
∂  (111) 

 Eliminating w~  from (111) using (110) we obtain (12). 
Hence the solutions dependent on x , y  and t  are governed by the shallow water 

equations (10) and (12). The vertical structure functions )(ˆ zh , )(ˆ zρ  and )(ˆ zp  are determined by 
(13) (14) and (15) and the boundary conditions (16) obtained from (108) and (109). 

 
9   Separation of variables in isopycnal model  
  
 
9.1  Basic state and perturbed equations 
 
The assumed basic state is the same as that in the previous section. Here we just adjust 

the notation. So, the stably stratified state is expressed as a profile )(0 bz  that is in hydrostatic 
balance  

 .=
d

d
0

0 z
b

M −  (112) 

 The horizontal velocity field ),( 11 vu  is again in geostrophic balance with a pressure field 1p  so,  
 ).(=,)(= 11110 yuxvfMMbMM −+  (113) 
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 The relative vorticity is again zero and the total vorticity, 00 = fZ , is independent of position. 

The horizontal momentum equations for the perturbations are given by  

 ( ) ,=)()(

0

10
10 x

vfvvf
t
u qv

∂
Φ′∂−′−′−′−′−

∂
′∂ σσ

σ
ζ  (114) 

  

 ( ) .=)()(

0

10
10 y

ufuuf
t
v qu

∂
Φ′∂−′−′+′+′+

∂
′∂ σσ

σ
ζ  (115) 

 where ζ ′  is given by (104a) and   
 ).(= 11 vvuuM ′+′+′Φ′  (116) 

 From (23), hydrostatic balance for the perturbations is given by  

 .= z
b

M ′−
∂

′∂  (117) 

 Continuity of mass, (24), gives  

 ,= 011 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

′∂+
∂

′∂−
∂

′∂+
∂

′∂+
∂

′∂
y
v

x
u

y
v

x
u

t
σσσσ  (118) 

 and the boundary conditions, (25), become  

 ).((0),=0,=11 Hbbb
y
zv

x
zu

t
z −

∂
′∂+

∂
′∂+

∂
′∂  (119) 

 In summary the above set has four unknowns u′ , v′ , M ′  and z′  that are constrained by four 
equations and the above boundary conditions. 

 
9.2  Separable solutions 
 
Let  

 
).,,(~)(ˆ=

),,,(~)(ˆ=),,,(~)(ˆ=
tyxgbMM

tyxvbMvtyxubMu
η′

′′
 (120) 

 Then  
 ,~~~=),,(~),,,(~)(ˆ= 11 vvuugtyxtyxbM ++ΦΦΦ′ η  (121) 

 and the terms in (114) and (115) other than those involving σ ′  reduce to (26). These additional 
terms will be considered shortly. 

Letting  
 ,~)(ˆ= ηbhz′  (122) 

 and substituting (120c) and (122) into (117) gives (27). Substituting (120) and (122) also into 
(118) and introducing the separation constant eH  one obtains (12) and (28). 

The vertical structure of the additional terms in the horizontal momentum equations can 
now be considered. Using (19) and (28) one sees that their vertical structure is given by  

 
eH

M
b
h ˆ~

=
d

ˆd~
=

00

η
σ
η

σ
σ ′

 (123) 

 Hence these additional terms have the same vertical structure as the other terms in the 
momentum equations and (114) and (115) reduce to (26). 

Finally the boundary conditions obtained from (119) and (122) reduce to (29). 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 
10  The een scheme horizontal discretisation  
  
The een scheme calculates *qv  at the central u  point in Figure 11, located at 1/2),( +ji , 

as the sum of products of quantities calculated at the surrounding v  points (A, B, C and D in the 
figure)  

  
0 0.5 1 1.5 2 2.5 3 3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 | 
ω

i |

κ

F
u

 

 
0.1
1
5
10
25
50

 
Figure  11: A depiction of the variables used by the een scheme in the calculation of *qv  at the 
u  point in the centre of the figure. The een scheme uses the values of *v  at points A - D and the 

values of q  at points 1-6 at this u  point.  
    

 
.

=)(
*

1/2,1/2,
*

1/2,1/2,

*
11/2,1/2,

*
11/2,1/2,1/2,

*

jijijiji

jijijijiji

vv
vvqv

−+++

+−+++++

++
+

δγ
βα

 (124) 

 The coefficient at each of these velocity points is calculated (see AL equation (4.21)) using 
values of q  at three nearby q  points  

 

].[
12
1=

],[
12
1=

],[
12
1=

],[
12
1=

1,,1,1/2,

1,,1,1/2,

,1,11,1/2,

,1,11,1/2,

+++

+−+

++−+

++++

++

++

++

++

jijijiji

jijijiji

jijijiji

jijijiji

qqq

qqq

qqq

qqq

δ

γ

β

α

 (125) 
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 At point A the first two of these q  points used to calculate α  are those on either side of point A 

(at points 1 and 2). The sum of these two contributions at A is hence given by /6*vq
x

 and the 
sum of the corresponding first two contributions at A, B, C and D is given by  

 .)(
3
2= *

1

xy
x
vqC  (126) 

 The other contribution at point A is calculated using the value of q  at point 5 in Figure 11a. 
Point 5 is on the opposite side of the u  point from point 2. The remaining contribution at point B 
also involves q  at point 5. So the sum of these two contributions is equal to 1/6  times q  at point 

5 times 
x

v*  at point 2. The final remaining contributions from points C and D are given by 1/6  

times q  at point 2 times 
x

v*  at point 5. Denoting the “geometric product” for any quantities φ  
and ψ  by  

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 | 
ω

i |

λ

F
u

 

 
0.1
1
5
10
25
50

 
 ( ),

2
1),( ,1,1,,1/2, jijijijijiyG ψφψφψφ +++ +≡  (127) 

 one then sees that the een scheme discretises *qv  by  

 ).,(
3
1)(

3
2=)( ***

x

y

xy
x

E vqGvqqv +  (128) 

 By direct calculation of terms one can establish that  
 .2=),( 1/2

yyy
jy abbabaG −+  (129) 

 Substituting (129) into (128) one obtains (57a). 
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The een scheme calculates *qu  for the u  point stored at )1/2,( ji +  using  

 
.

=)(
*

1/21,1/21,
*

1/2,1/2,

*
1/2,1/2,

*
1/21,1/21,1/2,

*

−+−+−−

+++++++

++
+

jijijiji

jijijijiji

uu
uuqu

βα
δγ

 (130) 

 A similar argument to that given above establishes (57b). 
 
11  Stability analysis for the AL scheme 
  
As for the een scheme the original and modified AL schemes can be concisely written by 

defining the averaging operators  
 ,,

yyAxxA ψψψψ
νμ

≡≡  (131) 
 where the A  subscript indicates the expression is relevant to the AL scheme, and the associated 
“modified” averaging operators  

 
.lschemefororigina,

,dschemeformodifie,
ψψψψ

ψψψψ
νμ

ννμμ

≡≡
≡≡

BB

ABAB

 (132) 

 
Similarly to (54) the AL scheme for isopycnal coordinate models sets  
 ,=,=,= )()()( BxuByvxyq νμ

ηηηηηη  (133) 
 and discretises the continuity equation as  

 ( ) ( ) 0.=vu
t

By

y
Bx

x

μν
ηδηδη ++

∂
∂  (134) 

 It then discretises the terms *qv  and *qu  in (30) using  

 
( )( )[ ]

,
48
1)(=)(

**

***

x

i

x

i

jjii

x
yxy

A

uu

vqvqqv

εδεδ

δδδδ

+⎟
⎠
⎞⎜

⎝
⎛+

+
 (135) 

  

 
( )( )[ ]

,
48
1)(=)(

**

***

y

j

y

j

ijij

y
xxy

A

vv

uquqqu

φδφδ

δδδδ

+⎟
⎠
⎞⎜

⎝
⎛+

+
 (136) 

 in which (50d) defines iδ  and jδ  and  

 .
12
1=,

12
1=

y

i

x

j qq δφδε  (137) 

 [Ketefian and Jacobson(2009)] note that the AL scheme can be expressed in the form given by 
(135) - (136) and these equations are derived in detail in the appendices of [Ketefian(2006)]. For 
height coordinates the same expressions apply with q  replaced by Z , *u  by u  and *v  by v . 

The original version of the AL scheme takes eK  to be discretised in the same way as in 
the original een scheme. AL propose a modified form for the kinetic energy in their equation 
(6.1). A form which is more similar to that used above for the een scheme whose first term gives 
the same gradients of AK  as the form proposed by AL is given by  
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 ( ).

12
1=2 22 xxyy

ji
ByBx

A vuvuK δδ
μν

−+  (138) 

 The last term in (138) is only used in the modified scheme. It  has been introduced here to 
cancel contributions arising from the Coriolis terms proportional to ε  and φ  in (135) and (136). 

Using the above discretisations one finds that in place of (61) - (62) one obtains  

 
( )
( )

( ) 0,=

12
)(1

12
1

10

11

11

110

xyy
AB

I

A
jix

BAyBy

x

A
jixB

A
jiy

Ay

y
Bx

xx

xy

H
vf

vuvvv

uvuu

uvuugvf
t
u

μμ

μμμ

νμ

μν

ηηδ

δδδδδ

δδδδδδδ

δδηδ

′−′−

′−+′−′+

′+′−

′+′+′+′−
∂

′∂

 (139) 

  

 
( )

( )
( ) 0,=

12
)(1

12
1

10

11

11

110

xxy
AB

I

A
jiy

BAxBx
y

A
jix

A
jiyB

By

y
Ax

xy

xy

H
uf

uvuuu

vvvu

vvvuguf
t
v

νν

ννν

νμ

μν

ηηδ

δδδδδ

δδδδδδδ

δδηδ

′−′+

′−+′−′+

′+′−

′+′+′+′+
∂

′∂

 (140) 

  

 ( ) 0,=11 vuHvu
t yx

By

y
Bx

x ′+′+′+′+
∂

′∂ δδηδηδη μν
 (141) 

 where  
 .fiedschemeforthemodi,1inalschemefortheorig0=Bδ  (142) 

 The first lines of (139) and (140) consist of terms corresponding to those in the original 
equations. For the modified schemes the other terms are either zero or contribute only to 
diagonal terms of the stability matrix, so the stability matrix is Hermitian as it was for the een 
scheme. 

 
12  An interpretation of the stability of the original scheme in isopycnal coordinates 
  
Some insight into why the rather asymmetric matrix obtained for the original schemes in 

isopycnal coordinates (see (77)) has such simple solutions can be obtained by considering the 
potential vorticity of the flow and its perturbations. AL show that both the een and AL schemes 
will not change q  in a flow that has uniform q . So one might anticipate that only perturbations 
whose potential vorticity is identically zero will be able to grow and that this will constrain the 
instabilities. The calculations presented below support this interpretation. 

The linearized form of the potential vorticity (22) is given by  

 ,= 2
0

H
f

H
q

xy
ηζ ′−

′′  (143) 

 and hence, for wave-like solutions,  
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 ,i2i2= 0 ⎟

⎠
⎞

⎜
⎝
⎛−

Δ
−

Δ H
c

cH
fccu

yH
sv

xH
sq E

EEE
ηλκλκ  (144) 

 where Eq  is defined by analogy with (63). Using (144) one sees that the first two rows of (77) 
can be written as  

 
0.=

2
ii

0,=
2
ii

Eu
E

cEE

Ev
E

cEE

xqHT
H

csRvucc

yqHT
H

c
X
sRvccu

Δ−−+

Δ+−−

ηϖ

ηϖ

λλκ

κ
λκ

 (145) 

 In other words, the asymmetric terms in the matrix in (77) are proportional to Eq . For 
perturbations with 0=Eq , (77) consequently simplifies to  

 0.=i

i

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

H
c
v
u

sR
X
sR

sRcc
X
sRcc

E

E

E

c
c

c

c

ηϖ

ϖ
ϖ

λ
κ

λλκ

κ
λκ

 (146) 

 Hence ϖ  is the eigenvalue of an Hermitian matrix and is real-valued. So the solutions with 
0=Eq  are neutrally stable. Moreover, because 0=Eq  implies a constraint relating Eu , Ev  and 

Eη , the system (146) has a redundancy, which allows us to drop the third row of equation (146) 
and use the constraint to eliminate Eη  from the first two rows of (146). This reduces (146) to a 

22×  matrix equation  

 0.=
i

i

2

2

2

2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ΔΔ
−

Δ
+

Δ
−−

ΔΔ
+

E

E

v
u

yx
ssA

y
sAcc

x
sAcc

yx
ssA

λκλ
λκ

κ
λκ

λκ

ϖ

ϖ
 (147) 

 where )/(i4= 2
0

2 fcccA λκ . Setting the determinant to zero gives the numerical inertia-gravity 
wave dispersion relation  

 ( ) ,4= 2

2

2

2

2
0

2
22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

+
Δ

+
y

s
x

s
f
ccc λκ

λκϖ  (148) 

 in agreement with the roots 22 = Qϖ  given by (81b) and (82). 
The dispersion relation for perturbations in which Eq  is non-zero can be determined by 

using (145) to form a vorticity equation. Multiplying (145b) by 1)(i2 −ΔxHsκ  and subtracting 
1)(i2 −ΔyHsλ  times (145a) one obtains  

 
( ) 0.=

2i2i2

Evu

EEEE

qsTsT

v
y

su
x

s
H

ccu
yH

sv
xH

s

λκ

λκλκλκϖ

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

+
Δ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

−
Δ  (149) 

 Subtracting 1
0 )( −cHfcc λκ  times the last row of (77) one finds that  

 ( ) 0.=Evu qsTsT λκϖ ++  (150) 
 The factor in parentheses in (150) can vanish only if ϖ  is real confirming that wave-like 
solutions with non-zero potential vorticity are neutrally stable. Note that this factor agrees with 
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the factor P+ϖ  in (82). 
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