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1.3 The linear stability of two well known energy and enstrophy conserving schemes for
the vector invariant hydrostatic primitive equations is examined. The problem is analysed for a
stably stratified Boussinesq fluid on an f -plane, with a constant velocity field, in height and

isopycnal coordinates, by separation of variablesinto vertical normal modes and alinearised
form of the shallow water equations (SWES). Asfound by [Hollingsworth
~al.(1983)Hollingsworth, Kallberg, Renner and Burridge], (HKRB hereafter) the schemes are
linearly unstable in height coordinate models, due to a non-cancellation of termsin the
momentum equations. The schemes with the modified formulations of the kinetic energy
proposed by HKRB are shown to have Hermitain stability matrices and hence to be stable to al
perturbations. All perturbationsin isopycnal models are also shown to be neutrally stable, even
with the original formulations for kinetic energy. Analytical expressions are derived for the
smallest equivalent depths obtained using Charney-Phillips and Lorenz vertical grids, which
show that the Lorenz grid has larger growth rates for the unstable schemes than the Charney-
Phillips grid. Test cases are proposed for assessing the stability of new numerical schemes using
the SWEs.
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1 Introduction

The vector invariant form of the momentum equations expresses the advection of
momentum as the sum of the gradient of the kinetic energy and the vector product of the velocity
and the vorticity. This form is used to derive Kelvin's circulation theorem [Pedlosky(1987)] and
was used by [Sadourny(1975)] to discretise the shallow water equations (SWES). In that paper
Sadourny proposed two schemes, demonstrating that one conserves energy and the other, now
known as the ens scheme, conserves the volume integral of potential enstrophy (the square of the
potential vorticity). He later devised the een (energy and enstrophy) scheme, which for the SWEs
conserves the total energy for general flows and enstrophy for non-divergent flows. This scheme
was tested in a hydrostatic primitive equation (HPE) model using pressure based sigma
coordinates by [Burridge and Haseler(1977)]. [Arakawa and Lamb(1981)], hereafter referred to
as AL, derived the Arakawa-Lamb (AL) scheme which, for the SWESs, conserves the total energy
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and enstrophy for general flows. AL also provided a proof of the conservation properties of the
een scheme.

[Hollingsworth ~al.(1983)Hollingsworth, Kallberg, Renner and Burridge], HKRB
hereafter, reported that the een scheme as implemented by [Burridge and Haseler(1977)] was
prone to near-grid-scale instabilities which reduced the kinetic energy of the jet stream
particularly in their higher resolution model. They provided an heuristic linear stability analysis
which accounted for the 3-grid-point structure of the instabilities in the horizontal and predicted
that the growth rates should be proportional to fu/c, where f isthe Coriolis parameter, u isthe

~ speed of the flow in the basic state and ¢ =,/gH is the gravity wave speed. This prediction was

C ) consistent with their experimental results for different speeds u and their finding that the modes
with highest vertical wavenumber (and smallest speeds c) are the most unstable ones. From the
° H dispersion relationship derived by HKRB it is clear that the instability is a form of destabilised
inertia-gravity wave. HKRB also proposed a modified scheme involving reformulations of the
H kinetic energy gradient and the mass fluxes for the een scheme and showed that it was effective
% l in suppressing the instabilities. A similarly modified form of the AL scheme can aso be used
(see section 6 of AL) and [LaziA~al.(1986)LaziA JanjiAand Mesinger] derived a modified form

of the een scheme for the E-grid.
There has recently been renewed interest in these instabilities for two reasons. Firstly
some ocean models now use grids which resolve the Rossby radius of deformation very well.
Ducousso and le Sommer (personal communication) found that the NEMO model, which uses
the een scheme, when configured with a 1 Nautical Mile grid spacing had significantly reduced
kinetic energy in the mesoscale flow unless the kinetic energy was reformulated as proposed by
HKRB. Secondly a number of researchers such as [NiA~al.(2002)NiA Gavrilov and ToA,
[Thuburn(2008)], [Ringler ~al.(2010)Ringler, Thuburn, Klemp and Skamarock], [Skamarock
Q) ~al.(2012)Skamarock, Klemp, Duda, Fowler, Park and Ringler] and [Gassmann(2013)] are
seeking to develop atmospheric models using meshes with triangular, hexagonal or pentagonal
elements employing the vector invariant momentum equations. [Gassmann(2013)] discusses the
Hollingsworth instability from an historical perspective and concludes, in agreement with
Q HKRB, that the instability would be more pronounced the less stable the stratification. She also
proposes a method for choosing the formulation of the kinetic energy on regular hexagonal grids
so as to minimise the size of the term in the momentum equations which lead to the instabilities.
[Skamarock ~al.(2012)Skamarock, Klemp, Duda, Fowler, Park and Ringler] show that their
scheme is prone to the Hollingsworth instability and use [Gassmann(2013)]’ s formulation of the

Kinetic energy to suppressit.

As noted above, HKRB provided a good initial theoretical analysis of the instability, but
< ) their derivation of the dispersion relationship for the instability included the neglect of a term
which was only justified by arather ad hoc argument. Also some aspects of the occurrence of the
instability have not been clarified since the work of HKRB. [Arakawa ~al.(1992)Arakawa,
Mechoso and Konor] argue that the properties of isentropic coordinates “do not allow room for”
the Hollingsworth instabilities. [Arakawa(2000)] notes that the family of consistent energy and
enstrophy conserving schemes (including the een and AL schemes) that AL derived generally
behave well for the SWEs. He suggests that the Hollingsworth instabilities arise in pressure or
sigma coordinates “at least in part” because of the formal application of the schemes in these
coordinates in which the layer depth h is replaced by the thickness of model layers despite the
fact that the model levels are not material surfaces. This has left developers of new dynamical
cores uncertain how to test their schemes using the SWEs. This is very inconvenient for them
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and a better understanding of the occurrence of the instabilities in easily accessible variants of
the SWEs s highly desirable.

This paper has two main aims. The first is to confirm that an idealised 3D basic state
consisting of a uniform horizontal flow (independent of x, y and z) in a stably stratified fluid

on an f -plane can suffer from Hollingsworth instabilities when the original een and AL

schemes are used to discretise the equations of motion. Because the isopycnals in the basic state
Q) are flat, these linear instabilities can be analysed using separable solutions that are the product of
vertically varying normal modes and solutions to linearised SWEs. The resulting linearised
~ SWEs aso determine the stability of an appropriately balanced layer of shallow water moving
with the same velocity (u,v,) on an f -plane. This result will allow the potentia for
O Hollingsworth instabilities in 3D problems to be explored with new numerical schemes using

° ﬁ appropriately specified 2D problems.

The second aim is to derive the matrices determining the dispersion relationships for

these linearised SWEs and to analyse them in some detail. It is shown that the modifications

% | proposed by HKRB and AL to the een and AL schemes remove spurious off-diagona terms
(non-cancelling advection terms) from the stability matrix and recover its Hermitian form. This
makes the schemes stable for any linear disturbance to the idealised basic states. The original een
and AL schemes in isopycna coordinates are also shown to be neutrally stable to all
perturbations. Numerical results and an expression for the instabilities in height coordinates
suggest that the most unstable perturbations are fairly closely aligned with the grid.

It is more natural to consider the simple 3D basic state described above in an oceanic
context, where variations in the surface height of the ocean can easily occur and affect the
pressures at al depths, than in an atmospheric context. For this reason the analysis is presented
using the Boussinesq, equations which are appropriate for the ocean (rather than the equations of

Q) state for a perfect gas appropriate for the atmosphere). The normal modes of the continuous
equations for an atmosphere on a sphere are also separable (provided one makes use of
traditional assumptions such as the shallow atmosphere approximation) and the equivalent depth
of the vertical modes is independent of their frequency if the motions are taken to be hydrostatic

Q [Daley(1988)]. These points also hold for the vertically discrete equations studied by [Thuburn
and Woollings(2005)]. So we would expect our analysis to be relevant to atmosphere models as

q) well as ocean models.
The linear stability analysis of the states described in this paper is most safely approached
by writing out the full non-linear governing equations and the description of the basic state in

< ) discretised form, then deriving from these the linearised equations, and finally deriving the
separable solutions. This approach is unnecessarily lengthy and with some care it is possible to

< ’ linearise the equations and derive the separable solutions using the continuous equations and
then discretise. Section 2 writes down the full non-linear governing equations and the linearised
equations for their separable solutions firstly for z-coordinates and secondly for isopycnal
coordinates. The derivations of these equations are given in appendices 8 and 9. The linearised
equations for the solutions which vary in time and in the horizontal are then derived by
linearising two sets of SWEs. The only difference between the two sets of SWEs is that the
generalised Coriolis terms in the one relating to isopycnal coordinates are the product of the
potential vorticity, g, and a depth weighted velocity u”, whilst those for height coordinates are

the product of the vertical component of the vorticity, Z, and the velocity u. It transpires that
thisdifferenceis of crucial importance.
Section 3 derives the vertical discretisation of the modes in isopycnal and height
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coordinates. The vertical modes with the highest vertical wavenumbers have small equivalent

depths as one would expect from the vertical modes for the continuous problem. It is shown that

on the Lorenz grid the smallest equivalent depths reduce as the number of vertical levels (K)

increases at a rate which is a factor of K? faster than that of the continous modes and that this

result is related to the presence of the computational mode on the Lorenz grid. The resulting

reduction in the phase speed of the gravity waves (c) on the Lorenz grid for these modes
Q) increases their Froude number ( F,) and exacerbates the Hollingsworth instabilities.

Section 4 first describes the discretisation of the SWES using the een scheme and derives

~ the discrete form of the linearised SWEs for both height and isopycna coordinates. It then

reduces the analysis of the stability of the scheme to an eigenvalue problem involving 3 by 3

matrices written in a non-dimensional form and shows that for the modified form of the een

° ‘ scheme the matrices are Hermitian and hence that the scheme is stable. Section 4 also shows that

al linear perturbations are neutrally stable for the original een scheme in isopycnal coordinates.

Appendix 11 shows that the same conclusions hold for the AL scheme and appendix 12 provides

an interpretation of the stability of the schemes in isopycnal coordinates. Section 4 ends by

H illustrating the dependence on the Froude and Rossby numbers of the instabilities with the aid of
analytical calculations for some special cases and numerical evaluations.

Section 5 illustrates the nature of the instabilities further using integrations of the SWEs
and proposes test cases with doubly-periodic Cartesian domains that could be used to test
whether new numerical schemes suffer from these instabilities. Section 6 provides a concluding
summary and discussion and the tables in appendix 7 provide a summary of the symbols used in
the main body of the paper.

2 Model formulation and separ ation of variables

The governing equations will be taken to be a form of the hydrostatic, incompressible,
adiabatic, Boussinesq equations suitable for a liquid. They will be written in Cartesian
coordinates and the Coriolis parameter f will be taken to have a constant value f,. The

horizontal kinetic energy per unit mass will be denoted by

K, = %(u2 +V%), (1)
the vertical component of the relative and total vorticities will be denoted by ¢ and Z
respectively with
ov du
=———, Z=1,+{, 2

and p,, will denote a constant density.

2.1 Formulation in height coordinates

Accepted

Governing equations

In height coordinates, the Bernoulli function @ isgiven by
@ = plpg, +K,, 3
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where p isthe pressure field which isin hydrostatic balance with the density o and gravity g,

d
L=py (4
z
The horizontal momentum equations in vector invariant form are then
ou ou_ 0d
— =N+ W—=——-+AD, U,
ot 0z oX (5)
ov ov _ 0P
—+Z2u+w—=-—+A D,V
ot 0z oy

where w isthe vertical velocity, A, isa coefficient of viscosity, and D, is a diffusive operator

such as V% or 9°/0z°. The viscosity will be set to zero except in this section and section 4.6

where the stabilising effect of viscous terms on perturbations with small Froude numbers is
discussed.
The density, p, will be taken to be conserved following the motion,

%_ , R:i+ui+vi+wi’ (6)
Dt Dt ot ox 9y 0z
and the flow will be assumed to be incompressible
ou ov oJw
A (7)
oX 9y 0z

The domain will be taken to be unbounded in x and y and to have a flat boundary at
z=—-H where the vertical velocity is zero. Attention will be focussed solely on the baroclinic
modes for which to a very good approximation the upper boundary at z=0 also has zero normal
velocity so

w=0, z=0-H. 8
The barotropic mode satisfies the shallow water equations (to a very good approximation) and is
not considered further in this section.

Separ able solutionsto the linearised equations
The evolution of very small amplitude perturbations can be determined by linearising

the hydrostatic Boussinesq equations about a basic state.
The assumed basic state consists of a stably stratified density field p,(2z), that is in

hydrostatic balance with the pressure field p,(z), and a horizontal velocity field with
components u=u, and v =V, which does not depend on x, y, z or t. Thisvelocity field isin
geostrophic balance with a pressure field p, which isindependent of z, and the vertical velocity
W, is zero. The non-zero velocity in the basic state and the non-linearities in the equations of

motions give the potential for instabilities.

These linearised equations enjoy separable solutions. The derivation is detailed in
Appendix 8, which is a straightforward generalisation of section 6.11 of [Gill(1982)]. Denoting
the small amplitude perturbations by primed variables, functions varying only in the horizontal
and time by tildes and functions varying only in the vertical by hats, the horizontal velocity and
pressure pertubations are expressed in the forms:
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u =a(x, y,t)@, vV =V(xV,t) f)(z)’
9o 9P00 ©)

0 =iy P

The solutions dependent only on x, y and t are determined by the linearised horizontal
momentum equations,

W .- = _ oD _
g—fov—g“vl:—a—)i+Aanu,
o -~ = oD ~
—+ fl+{u=——+AD,V, 10
St 0=+ AD (10)
where
D(X,y,t) = g7 +ul+V,\V, (12)
and a continuity equation
a—77+ula—77+vla—77+He 8_u+8_v =0, (12)
ot oX ay ox oy

where H, isthe equivalent depth (a separation constant). This system is the linearised form of a

shallow water system (see below).
The vertical structure of the perturbed variablesis given by

d A
o= (13)
A do, ~
Hp=—20h, (14)
9P Oz’

where p(z) and ﬁ(z) describe the vertical variation of the perturbation’s density and vertical
velocity fields. The boundary conditions are given by
h=0, z=0,—-H. (16)

2.2 Formulation in isopycnal coordinates

Governing equations

Accepted Article

Following section 3.9.1 of [Vallis(2006)] we write the density and pressure fields in the
form

P=Puptdp, P=Py(2)+dp, (17)
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d
Do _ ~0P00- (18)

dz
The buoyancy and an inverse measure of the stratification for this system are then given by
b=_9% 5-92 (19)
Poo db

If the isopycnal coordinates were used in alayer model, o would represent the thickness of the
layers. The Montgomery potential and Bernoulli function are given by

M =ﬁ—bz, =M +K.. (20)

P

The horizontal momentum equations are then given by
ou . _ 0D

N, @
—+qu =———
ot ay
where
q=2/c9, u =cWu, v =co%v (22)

Here q isthe potential vorticity, u” and v are proportiona to the fluxes within the layers (i.e.
the velocities multiplied by the thicknesses of the layers), and the superscripts (g), (u)and (v)
indicate the location at which o is calculated. They have been included at this stage so that the
discretised form of the linearised equations can be inferred easily in section 4.1. As usual the
partial derivatives in the momentum equations are evaluated with b held constant and the
diapycnal velocities have been set to zero.

The hydrostatic equation then takes the form
oM
b Z, (23)
and for an ideal Boussinesq fluid the continuity equation is given by
Do _do . 90 d0 _ (au avJ
—=—+U—+V—=—0] —+— |, (24)
Dt ot X oy ox oy

in which all partial derivatives are again evaluated with b held constant.

Denoting the buoyancy at z=0 and z=—H by b(z=0) =b(0) and b(z=-H) =b(-H)
respectively, the boundary conditions of no normal flow are given by
Dz

T =0 b=D(0)b(-H). (25)

Separable solutionsto the linearised equations

Accepted Article

Assuming an analogous basic state to that of the height coordinates model, the separable
solutions which depend only on x, y and t in a continuous model satisfy equations of the same

form as those for the height coordinate. However, in a numerical isopycnal model extra terms
arise because the layer thicknesses (o) in (22) are calculated at different points. Appendix 9
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shows that the separable solutions which depend on x, y and t satisfy the following horizontal
momentum equations

o .~ = fV(~n = oD
N fov_é’vl—L(ﬂ()—f](q)) T
ot H, ox (26)
£+ f,0+Cu +ﬁ(ﬁ(“)—ﬁ(q)) __9®
o’ YUH, oy’

In the horizontally discreted form of (26a) the terms 7 and 77 orginate from different
points. They consequently represent different averages of 77 and their difference is non-zero. The
separable solutions also satisfy the continuity equation (12) which is the same as that for the
height coordinate model.

Appendix 9 also shows that the vertical structure of the separable solutionsis given by
dM

A~

QE:_I’L (27)
He%= oM, (28)

where h describes the vertical variation in the height Z of the perturbations to the isopycnals
and H, isagain the separation constant. The boundary conditions are given by

h=0, b=b(0),b(-H). (29)

2.3 Formulation for shallow water

The shallow water equations, for a layer of constant density in which the bottom of the
fluidisat height z, and the depth of the fluid layer is 77, are given by

ou 0o
a YT
CYP. ) (30
ot oy
on 0 d _
§+&(ﬂu)+a—y(7ﬁ)— 0,
where the Bernoulli potential is given by
@ = g(+2)+K,. (31)

A steady basic state with a constant horizontal velocity field (u,,v;) and fluid depth, H.,
which is independent of position, is obtained provided the bathymetry, z , isgiven by
92, = 92y + fo(ViX—wy), (32)
where b, isaconstant.
Writing u'=u-u, =0, V=v-v,=V, and ”=n—-H_ =7 and linearising (30) about
this basic state one obtains the equations (10) and (12) derived for height coordinates.
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If one defines

q= % u =7%, v =n, (33)

replaces Zv by qv and Zu by qu in (30) and linearises about the same basic state, one
obtains the equations (26) and (12) derived for isopycnal coordinates.

A second way to obtain a steady basic state with a fluid depth independent of position is
to use a fictitious force added to the momentum equations. One of the numerical test cases in
section 5 uses a fictitious force and the other uses a sloping bathymetry to balance the zonal
flow.

3 Analysisof the discrete vertical modes

3.1 Discretization in height coor dinates

The natural discretisation in the vertical of the level model is not clear cut and it is well
known that there are a number of options; see [Tokioka(1978)], [Thuburn and Woollings(2005)]
and [Girard ~al.(2014)Girard, Plante, Desgagna McTaggart-Cowan, Cota Charron, Gravel, Lee,
Patoine, Qaddouri, Roch, Spacek, Tanguay, Vaillancourt and Zadra]. Most ocean models use the
Lorenz grid illustrated in Figure 1ain which u, v, p and p are stored on full levels and w

(and therefore ﬁ) is stored at half-levels. The vertical structure equations (13) - (15) are then
discretised as

f)k+l - bk =- % (ﬁk+1 + ﬁk )(AZ) k+1/21 (34)

A do, 1(~ ~
Hepoy = _gg (hk+l/2 +h )’ (39)
P (A2), = gy, (ﬁkmz - ﬁk—1/2 )’ (36)

and the boundary conditions (16) as

A

hy, = ﬁmyz =0. (37

Figure 1: The arrangement of variables using (a) height coordinates and (b) isopycnal
coordinates. In both grids u and v are held at full levels, and the upper and lower boundaries are
at half-levels.
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3.2 Discretization in isopycnal coordinates

The natural discretisation in the vertical of the isopycnal model is to take the horizontal
boundariesto lie a half levelsand to store u, v and M at full levelsand z (and therefore h) at
half levels as in Figure 1b. Denoting the levels with a subscript k, the level number increasing
with height, (27) and (28) are discretised as

agM,,, - M k)= _ﬁk+]Jz (AD)y 110 (38)

H e(ﬁk+ﬂ2 - ﬁk—uz) = O'0k|\7I «(AD),. (39)
For agrid with K levels, the boundary conditions (29) are ssmply
hy, =he.q, =0. (40)

One sees that (36) and (37) correspond to (39) and (40). Equations (34) and (35) when
combined correspond to (38), but in a form that involves more vertical averaging. The
discretisation used above for the isopycnal model corresponds to that for the best category in
[Thuburn and Woollings(2005)] obtained using a Charney-Phillips grid with potential
temperature evaluated at half-levels.

Accepted Article

3.3 Discretised vertical modes
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The impact of the vertical discretisation on the equivalent depth, H,_, which is the

separation constant and the eigenvalue for the normal modes in the vertical, can be illustrated for
the case of uniform stratification and grid-spacing. Then the vertical structure equations for
height coordinates (34) - (36) reduce to a single equation

Nz —2AN 5 + 0y, =0, (41)
with
2
A = j n2 ,
+Nn
2 = 9 do AZ" AZAb (42)

Pwo dz gH, gH,
Together with its boundary conditions (41) defines an eigenvalue problem for A. These
eigenvalues determine n? and then H_ through (42).
Similarly (38) and (39) for isopycnal coordinates reduce to (41) with
= 0,(Ab)* _ AzAb

A=1-m?/2,
gH, gH,

(43)

The last identity above follows from (19b).
The solutions of (41) are given by
A, = R(CWK}, W =A+ivi-AZ, (44)
W lies on the unit circlewhen —1< A <1 and hence can also be written in the form W = expié,

where @ is a real argument. The solutions written in this form that also satisfy the boundary
conditions, (40) for isopycnal coordinates or (37) for height coordinates, are given by

fse = Csin(@), 0="7, (45)

where N isaninteger and 1< N <K.

The solution (45) with N =K has ﬁkﬂ,z =0 for al integer k within the domain so its
vertical velocities are zero. From (36) it aso has p, =0 for all points in the domain and hence
by (9) zero horizontal velocities. When H, =0, (35) does not constrain p and (34) is satisfied
provided p, =-p,,, a al points in the domain. Hence (45) with N = K corresponds to the

computational mode on the Lorenz grid.

The solutions with N = K -1 are the ones with the smallest equivalent depths that can
give rise to Hollingsworth instabilities. We now calculate their equivalent depths for the redlistic
case with K >>1. For these modes

iz

W = —1+ ? (46)
Equating (44b) and (46) one infers that

V1-A2 = % (47)

As A iscloseto —1, one cantake 1— A? = (1- A)(1+ A) = 2(1+ A) and infer from (47) that

2
V4

A~-1+—. 48
K (48)
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Using (42) and (43) in (48) one finds that for height and isopycnal coordinates respectively
16K ?
n? =

7Z'2

By (42b) and (43b) the equivalent depth, H., is proportional to m™ and also to n™. For the
Charney-Phillips grid (and the continuous equations), H, isinversely proportional to the square
of the vertical wavenumber. If one chooses g so that H, =1000m for the first baroclinic mode
then for the largest vertical wavenumber on the Charney-Phillips grid, H_ =1000K *m . For a
grid with 100 vertical levelsthisgives H, = 0.1 m for the most rapidly varying mode. For height
coordinates using the Lorenz grid, (49) shows that H, for the most rapidly varying mode is a

and M’ =2(1-A) =4, (49)

factor of 172K~ smaller which meansthat it is 2.5x10™* m in the above example.

The solutions above are consistent with those derived by [Tokioka(1978)]. It is however
clearer from the analysis above than that of [Tokioka(1978)] that the solutions satisfying (47)
have the fastest vertical variation and smallest equivalent depths of al the vertica modes that
need to be considered on the Charney-Phillips and Lorenz grids. So all the vertical modes on the
Charney-Phillips grid are well-behaved and have equivalent depths of the same order of
magnitude as the continuous equations, whilst the modes with the most rapid variation in the
vertical on Lorenz grids have much smaller equivalent depths because of their similarity to the
computational mode.

4 Analysisof the discretised SWEs

4.1 Formulation of een scheme

For simplicity the equations will be written in Cartesian coordinates and discretised on a
C-grid with uniform, but not necessarily isotropic, grid spacing. The arrangement of variables on
the C-grid isillustrated in Figure 2.

Figure 2: The staggering of variables on the C-grid. Thisfigure and the indexing is based on
[Arakawaand Lamb(1981)].
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The following difference and average operators will be used. Let £ denote any of the
coordinate directions x, y and z, ¢ denote its discrete indexing and w denote any function of
&. Then

— 1
v, = E W W), (AE), =&, =& 1,

— (WH]JZ — Wz—l/Z) =
G%WL—f——C§5T——n (6y), = (A2),(6:¥),.

The index for which the quantity is calculated is usually suppressed. All of these operators
commute with each other and obey the associative laws of arithmetic. [Adcroft
~al.(1997)Adcroft, Hill and Marshall] provide a useful summary of identities they satisfy.

The discretisation on a C-grid of ¢ as defined by (2a) is given by
{=0,v-ou (51)
and the discretisation of the x- and y -derivatives of the Bernoulli function is given by 6 ®
and 6,® respectively.

The averaging operators needed to define the modified een scheme are given by
T HE 1 2_XX —VE 1 2_W
=—y+— , =—y+—- ) 52
A AT A A A 4 (52)
where the E subscript indicates the expression is relevant to the een scheme. Additional

(50)
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averaging operators 4. and v which alow the original and modified schemes to be concisely
defined are given by

He

y'" =y"®, y'F =y® (modifiedscheme),
e

_, (53)
v =y, w =y (originascheme).

For shallow water and isopycnal coordinate model s the een scheme cal culates (22) using

n®=n", n¥V=n"%" 7¥=p (54)
As noted by HKRB, this averaging of the layers also needs to be used in the discretisation of the

mass fluxes in the continuity equation,
.yl i <ss>

to ensure conservation of total (kinetic plus potential) energy with the modified form of the
kinetic energy,

XVF

XvVe _2)’/1|:

2K =u2 F V2T (56)

The een scheme for the SWESs associated with height coordinates discretises the terms
Zv and Zu of (30) using

—— [ =V
), :3(2 v +§(zyvxy)—% v,

1

(57)
2
(Zu) . ——(Z u) +3(Z u )—5 zu’

Expressions for the SWEs associated with isopycnal coordinates are obtained by
replacing Z, u and v by g, u and V' respectively in (57). These expressions were noted in
HKRB and are briefly derived from the expression for the een scheme used by AL in Appendix
10.

4.2 Linearisation of the een scheme

Using s,w° = 2?@1// one finds that the linearised kinetic energy gradient in the x - and
y -directions for (56) is given by
’r _ XVE YHE
oK. = uléxu_xv +v15X\£W : (59)
O KL=udu " +vo V.

Introducing
0, =0 forheightcoordinates,1 forisopycnal coordinates. (59)

in order to alow the expressions for height and isopycna coordinates to be combined,
linearising (57) one obtains

This article is protected by copyright. All rights reserved.



. _ — — Xyy
@0, = 17 + e+ 5,0 ]
- XV —V —V oy
(2u); = fou’xy+§” fu, +6, f|0_|u1 in’ F_np'F ' ,

Using (51) in (58) and (60), one sees that the discrete linearised form of the momentum
SWE (30) isgiven by

(60)

o _ oV + g8 +Ud U S UTE 4
V15X(V;yﬂ|: _\/y,”E )_5| % ﬂ/ﬂF _ﬂ/ﬂE — O,

(61)
oV

=7 fu” + go,n + udV E+ vl§y\7y”F +

17y | Fi 77 77 -

The first line of each equation above consists of terms corresponding to those present in
the continuous equations. The second line consists of additional terms arising from the
discretisation employed which have the potential to give rise to spurious effects (the non-
cancelling terms of HKRB). In HKRB the basic flow was taken to be zona, v, =0, and the

terms proportional to 6, were not considered. The instability of the original scheme was traced

’XVE

by HKRB to lack of cancellation between uF =u” and u in the first term on the second
line of the y-component of the momentum equation. The kinetic energy in their modified

H scheme was re-formulated as in (56) to ensure that thistermisidentically zero (u’XVF =u"'E ).

Both terms on the second line of each of the equations in (61) are zero for the modified
schemes in both height and isopycnal coordinates. The stability of the modified schemes derived
below is due in large part to this. For isopycna coordinates the additional term proportional to
o0, isonly zero when the mass fluxes are calculated using (54).

Linearising (55) one also finds that

aa—z +usy T vldyﬁ’yﬂF +H(EU + sV )=0, (62)

where H isthe unperturbed depth.
4.3 Stability matrices

ed Article

ccep

The properties of the numerical schemes are best analysed in terms of non-dimensional
parameters. So it will be assumed that the perturbations are of a wave-like form
, / kX iy .
(u1\/’77):(UE’VE’UE)eXp(E'f'A_z_lajot]’ (63)
where @ is a non-dimensional frequency normalised using f,, and x and A are non-
dimensional horizontal wavenumbers for the x- and vy -directions normalised using the grid

spacings Ax and Ay respectively. As is usua in linearised stability calculations, physical
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guantities are given by the rea parts of the above expressions and of those obtained below.
Defining

c, =cos(p/2), s,=sin(p/2), p=x,A4, (64)
for any quantity w which varieswith x, y and t in the same way as the quantities in (63) the
x-and y -averaging operators give

v o=cy, v =cy, (65)
and the differencing operators 6, and &, give
2i 2i
oW =— , oW =—sS. 66
s v 1 (66)
It is convenient also to introduce the coefficients corresponding to the averaging operators,
Ue = %(1+ 2¢%), ve = %(1+ 2c). (67)

and the associated modified coefficients which are given by
MHe =g, Ve =Vg (modifiedscheme), (69)
MHe =V =1 (originalscheme).

One can define the other non-dimensional quantities in a number of different ways. A
convenient approach is to define Froude numbers for the basic flows u, and v,

ed Article

F=2, F=-t (69)
c c
and to complete the set of non-dimensional parameters using
R =", x= (70)

f, Ay’ Ay’
H R. is twice the ratio of the Rossby radius (c/f,) and the grid spacing Ay (the factor of 2 has

been introduced to simplify expressions later) and X isthe ratio of the grid-spacings. In models
using latitude and longitude coordinates the latter ratio is small near the pole so the range
0< X <1 isof interest. The grid-scale Rossby numbers R, and R, for the flows u, and v, can

be constructed using the above parameters
v _FR 2v,
=—==-4 = =1 = Fv . 71
R f,AX X R f, Ay R (1)
We note that the factors of 2 in (71) result in valuesfor R, and R, that are afactor of 2 larger

than the values one would obtain using the classical definition of grid-scale Rossby numbers.
Substituting the above relations into the discrete linearised equations (61) and (62), after
some algebra (doing normalizations using f,, H, g and c), one obtains a matrix form of the

stability problem

ccep
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R.S.

w-Ey —icc,—E, - X —iE, U
icc,—-E;, w-E, —-Rs+iE;| V¢ (72)
S, cn
e N
=0.

where
E, =RSCVe+RS,Cole,
E,, =RSCVe+RS,Coue,
Ex =RSCVe +RSC ol
E, =RX7s.c,(ue - ), (73)
E21 = RJXSACK(VF _VE)1
E13 = é‘l FVCKCE (;uF _IUE)’
E,, =6F.cic,(vVe —Vve)

In (72) the diagonal elements E,,, E,, and E,, represent advection of u’, V' and 7’
respectively by the basic flow (u,,v,), —c.c, inthe same element as iE;, represents the Coriolis
term — f,v' in (102) and c.c, in the same element as iE,, represents the Coriolisterm f,u" in
(103). Note that the off-diagonal elements E,,, E,,, E,; and E,; are al equal to zero for the
modified een scheme.

4.4 Stability of the modified een scheme

For the modified een scheme, because E, = E,, = E; = E,; =0, the matrix equation (72)

has the form
(wl +H)z=0, (74)
where | istheidentity matrix and H isan Hermitian matrix, that is a matrix whose transpose is
egual to its complex conjugate. All eigenvalues of Hermitian matrices are real-valued and hence
the corresponding perturbations are neutrally stable. The eigenvectors of Hermitian matrices are
also orthogonal (or can be chosen to be when two or more of the eigenvalues are identical). The
gravity wave and Rossby wave solutions of (72) have different phase speeds and hence different
eigenvalues so are automatically orthogonal. In conclusion the linear perturbations of the form
(63) can be used to represent any initial conditions and the basic flow is neutrally stable to all
linear perturbations.
4.5 Stability in isopycnal coordinates

ccepted Article

Consider now the stability problem (72) for the origina scheme using isopycnal
coordinates (6, =1). It will be convenient to introduce

T,=Rc.(1-ve), T,=Rc,(1-ue). (75)
Using these definitions with (73) one sees that
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E11 = E33 —TVSi, Ezz = E33 _Tusrr’ (76)
and (72) becomes

T+T,s, -icc, —TV% - R%—ilm U,
ic.c,—T,Xs, o+T,S, —-Rs; +il 5 | Ve (77)
— R i — RCS 0l %
X * H
=0.
inwhich
l,=C TR, 1x=CC TR (78)
and
@ =0-E3=0-RsC.-RsC, (79)
is the Doppler-shifted non-dimensional frequency of the perturbation.
By direct calculation of the determinant D,, of the matrix in (77), one finds that
D, =@’ +Po’-Q°w - PQ’. (80)
where
P =Ts,+T,s,,
(81)

Q° =c i +RSIX?+R’s].
Substituting @ =—P into (80) one sees that it is a solution of D,, =0. Hence it is easy to
factorise (80),
D, = (@ +P)@*-Q?). (82
The solutions of D,, =0 with @ = +Q are the gravity waves and the solutionswith @ = —-P are

the Rossby waves and both sets of solutions are neutrally stable.
An interpretation of this result is presented in appendix 12.

4.6 Instabilities of the original schemes

There are of course genera expressions for the solutions of the cubic equations derived
from setting the determinant of the matrix in (72) to zero but the resulting expressions for the
growth rates of the instabilities present in the original scheme are complicated and do not aid
understanding. The expressions for instabilities aligned with the grid are much simpler than those
for the general case so, following HKRB, these are considered first in this section. The solutions
obtained numerically motivated the calculations for very small equivalent depths presented at the
end of the section. The solutions are only presented for the een scheme but entirely analogous
arguments and solutions hold for the AL scheme.

Instabilities aligned with the grid

We will consider instabilities that are aligned with the grid and without loss of generality
take x =0 (rather than A =0). Both u, and v, will be allowed to be non-zero (which was not

the casein HKRB). x =0 impliesthat s. =E, =0 and c_ = . =1. Onethenfindsthat E; =0
whether or not 6, =0 and
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B, =B, =E5=RS,C,. (83)
Consequently it is useful to introduce the Doppler-shifted non-dimensional frequency
o =w-Rs,C,. (84)
Setting the determinant of the matrix in (72) for the original een scheme to zero, one of the
solutionsis @ = 0 and the other solutions have
@’ =a’+i(1-4,)J, (85)
where
a’=c;+R’s;, J=F,Rs,c,(1-v;). (86)
Equations (85) and (86) are essentially the same as (6) in HKRB and are clearly a version of the
dispersion relation for inertia-gravity waves. The fina term on the rhs of (85) is purely imaginary
and destabilises the inertia-gravity waves. When ¢, =1 thisterm is zero and the solutions for @
are al real. So the SWEs discretised using q inthe Zu and Zv terms and isopycnal coordinate

models should not suffer from symmetric instabilities of the kind discovered by [Hollingsworth
~al.(1983)Hollingsworth, Kallberg, Renner and Burridge]. This result is consistent with the
comments made in [Arakawa(2000)] that were noted in the introduction and the results of the
previous sub-section.

The dependence of the non-dimensional growth rate on the non-dimensiona parameters
for height coordinate models (8, =0) can be found by writing @ =@, +i®@, in (85) and

eliminating @, :
207 =-a*+ya*+J°%. (87)
This solution to (72) has made no assumptions or approximations other than x = 0.
The growth rate @, hence depends on the ratio J/a®>. When J=a* or J>>a’*, @, is
relatively insenstive to a and to within 50%
o’ =J2, a*<|J|. (88)
This is the formula derived by HKRB for a dlightly less genera case. For the case with
a® >>|J |, evaluating (87) using a Taylor series one finds that

afizm, a’>>|J|. (89)
2a

The equivalent depths and associated velocities ¢ in the ocean vary greatly. Barotropic

modes in water of 4 km depth have ¢ = 200ms™ whilst the first baroclinic mode has ¢~ 3ms™.
As discussed in section 3, when the number of vertical levels is denoted by K, the highest

vertical wavenumber mode in a model using the Charney-Phillips grid has ¢=3K 'ms™ and in
one using the Lorenz grid has c=22K ?ms™. In a model with a 10 km grid at mid-latitudes

fAx =1ms™. Hence for the high wavenumber baroclinic modes a’ = ¢; and J = XR, and when
X isof order 1 and R, islarger than or of order 1 the growth rate, @, , is given by (88). For the
barotropic modes a = cs,/f, and @; is given by (89).

For the baroclinic modes using (88), (86b), (64) and (67b) one sees that the most unstable
perturbations have the largest val ues of
2 A A
J==F R sin®*=cos-. 90
3 uRsin'> c0s7 (90)
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Differentiating J wrt A one finds (in agreement with HKRB) that it is a maximum for the 3-
gridpoint wave with

=2 jdFR
3’ 242

When F,R = XR, >>1, as is often the case with modern grids, these modes can grow very
rapidly. For example when R, =10, J_ =6 and @, =3. With f,=10"s™ the perturbation

(91)

would increase by afactor of e=~2.7 in (f@)'swhichisabout 3.3x10°s, i.e. just less than an
hour.
For the barotropic modes
|J] 2_ LA A
o.~—=Fc,(1-v.)=—=F —COS—. 92
i 2a u ﬂ( E) 3 uSlrl 2 2 ( )
Differentiating one finds that @, is a maximum when cosA =3 In the ocean F, istypically

less than or of order 0.01 and the maximum value of @, = 4F /(9V/3) .

rticle

Instabilitiesfor very small Froude or Rossby numbers

Consider next the instabilities obtained in height coordinates when F, and F, are very
small compared to R, and R, . For thiscase E; = E,; =0 and al the E; terms are proportional
to R, or R.As F, and F, tend to zero only the last element in the last row and the last column
of the stability matrices remain non-zero. So the instabilities are determined by the determinant

fluxes. Vertical diffusion of momentum is a parameterisation of an important physical processin
ocean model which usually has large coefficients within the surface boundary layer and is a
Q sufficiently fast process to need to be calculated implicitly. As the specification of the viscous

of the upper-left 2x2 sub-matrix.
Q) In practice the growth rates of the instabilities are likely to be reduced by dissipative

coefficients varies considerably from one numerical model to another in the analysis below it is
specified smply as being proportional to A, that is we set A D,u=-AuU leaving the
dependence on the vertical (and horizontal) wavenumbers of the disturbance for the reader to
specify. These viscous dissipation terms only make contributions to the diagonal elementsin the
upper two rows of the stability matrix. The revised diagonal elements, E;, and E,, are given by

E1,1 = E11 - iAn f0_17 E;2 = Ezz o iAn f0_1- (93)

@ (b)
o Growth rates, ., for the original een scheme using height coordinates for a flow aligned with
thegrid (v, =0), X =1 and R, =10 asfunctionsof (a) x with 4 =243 and (b) 4 with x =0.

Because the determinant in (72) reduces to just the upper-left 2x2 sub-matrix multiplied
by E,,—w the solutions consist of the Doppler-shifted “geostrophic’ mode with @ = E,, and

two other solutions which satisfy
w="0"E2 : S2 4 g, (94)
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S = (@j - (i CCt E12 )(' C.C— E21)' (95)

The first term in (94) is a Doppler-shifted frequency with a decay rate equal to A, f;*

which is what one might expect from the viscous dissipation. Evaluating S with x =0 one sees
that, s. =0, x4 =1 and E;, = E,,, and hence that

S:—icl(ic,(cl—E21):cj+i2?xF{,sjc,l. (96)

When the imaginary part of S is non-zero one of the two solutions is unstable in the limit of
small viscosity.
Evaluating 0Sdx for any 4 with x =0 one finds that
9 =0. (97)
oK
This implies that dw/dx =0 for any A with x=0. This shows that the growth rates are
stationary in the direction of x when the perturbations are aligned with the grid. Taken with the
numerical results it strongly suggests that the fastest growing perturbations are aligned with the
grid for the limit of small Froude number.
An analysis of the instabilities when the Rossby number is very small can also be carried

out. Denoting the eigenvalue solutionsfor R, =R, =0 by «,, the gravity wave solutions have
2
w? =c’c? + Rf[sj +%] (98)

and the Rossby waves have @, =0. Linearising the determinant of the matrix in (72) about
these solutions and writing @ = @, + @, , to first order in R, and R, one finds that the gravity

waves have
c.C,
20,

(E21 - E12)’ (99)

and the Rossby waves have @, =0.

4.7 Numerical evaluations of solutions of the stability matrices

Figure 4.6 presents numerical evaluations of the fastest growth rates obtained from (72)
for a basic flow with v, =0, using height coordinates (6, =0) with R, =10 and X =1, for a
number of values of F,. The corresponding figure for the AL scheme is similar except that the

non-dimensional maximum growth rate is approximately 1.2 rather than 1. Figure 4.6(a) plots
the non-dimensional growth rates @ asafunction of x with 4 = 24/3 and figure 4.6(b) plots @

as afunction of 4 with x=0. From Figure 4.6(a) it is apparent that when F, >>1 the fastest

growing disturbances have x <<1. Figure 4.6(b) shows that the maximum non-dimensional
growth rate when F, =R, =10 is close to 1. These disturbances increase in magnitude by a

factor of e=2.7 in f;'s. At mid-latitudes f,*=10"s which is just less than 3 hours. From
figure 4.6 it is also clear that the growth rate at the chosen value of R, is strongly dependent on
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the Froude number (F,) being weak when F, < 0.1 and strong when F, > 5. High values of the
Froude number are obtained for the highest vertical modes, particularly on the Lorenz grid.

Figure 3: Growth rates, @, for the original een scheme using height coordinates for a flow
aligned withthegrid (v, =0), X =1, R, =10 and F, =10 asfunctionsof A4 with k¥ =0. Blue
solid line: eq (72). Red dash-dot line line: eq (88). Green dashed line: eq (89).

Figure 3 provides a comparison of the solutions of (88) and (89) with those of (72)
calculated using F, =R, =10 and X =1. The green lines are solutions of (89) with | J |<a® and

the blue line is the solution of (72). Clearly the agreement is good. The red linein figure 3 isthe
solution of (89). This solution depends only on R, and is expected to hold only when F, isvery

large. Comparing figures 4.6(b) and 3 one sees that the approximation requires F, to be very
large to be accurate.

w

2.5*/\.

< 15+
0.
—0.5
e 0.
1 03— ,
05F
O 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

(8 R, =10, F, =10 (b) R, =10, F, =40

() R =40, F,=10 (d) R, =40, F, =40

Figure 4: The fastest growing instabilities (maximum | e, |) for varying 4 and x for the
original een scheme in height coordinates for the case with v, =0 and four combinations of R,
and F,.
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Figure 4 illustrates the growth rates of the unstable solutions of (72) for the original een
scheme using height coordinates as a function of x and A4 for four combinations of R, and F,
when X =1. The fastest growing solutions have growth rates similar to the fastest growing
solutions with x =0 and their wavenumber is quite closely aligned with the A -axis particularly
when F, islarge.

(@ (b)
Figure 5: The fastest growing instabilitiesfor all 4 and x for the original een scheme in height

coordinates for the case with v, =0 asafunction of F, (onthe abscissa) and R, ; (a) the

maximum growth rates, @ and (b) their wavenumber (x, A) ; the arrows show their direction
and the contours their magnitude.

I
1
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Figure 5(a) shows the maximum values of @ obtained for all x and A asafunction of
F,, on the abscissa, and R, when X =1. The largest growth rates are obtained when both F,
and R, are large, values of @ as large as 2.2 being obtained when R, =F, =50. These

perturbations take less than 90 minutes to double in amplitude at mid-latitudes. The

H corresponding plot (not shown) of maximum growth rates for perturbations restricted to those

with x =0 isbarely distinguishable by eye from figure 5(a). Figure 5(b) shows the direction and

Q magnitude of the wavenumber (x, A1) of the fastest growing perturbations. These perturbations

have x = 0 and the wavenumber of maximum growth rate A = 2.1 is consistent with the findings

of HKRB and (91). When X =0.1 the fastest growing disturbances aso have x =0 but the

G) maximum growth rates are somewhat smaller (their maximum being of order 0.9 for the range of
F, and R, plotted in figure 5(a)).

Figure 6 is the same as figure 5 except that it shows the maximum growth rates for the

AL scheme rather than the een scheme. The plot of maximum growth rate for symmetric

< ) disturbances only corresponding to figure 6a is again not shown because they are barely

distinguishable. (a) (b)
Figure 6: The same as Figure 5 except that the results are for the AL scheme rather than the een
scheme.
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Figure 7 is the same as figure 4 except that it was obtained using v, =u, instead of
v, =0. It is symmetric about the line x =4 as one would expect from the symmetries of the

problem. More interesting is that it shows that the most unstable perturbations are aligned with
the grid rather than the background flow, the alignment again being particularly strong when
F, >>1. Thefigures for this case corresponding to figure 5 for the een scheme and figure 6 for

the AL scheme are not shown because they are barely distinguishable from those aready
presented except that when u, = v, there are two maxima, the second being obtained from the

single maximum present for v, =0 by reflectionin x=4. (a) R, =10, F, =10 (b) R, =10,
F, =40
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Figure 7: The fastest growing instabilities (maximum | |) for varying 4 and x for the
original een scheme in height coordinates for the case with v, = u, and selected valuesof R, and
F

Numerical solutions of (72) strongly suggest that all linear disturbances to a flow in any
direction are neutrally stable for the original schemes in isopycnal coordinates. This result
motivated the analysis presented in section 4.5.

5 Numerical analyses of the SWE

To investigate the instability using the fully nonlinear shallow water equations, we
implemented the een scheme (as described in sub-section 4.1) on a [0,1]x[0,1] doubly periodic
plane with an explicit fourth order four stages Runge-K utta time-integration scheme. The model
was validated using initial conditions given by u=sin(2zy), v=0 and h chosen to balance with
u. Second order accuracy in space and conservation of total energy and total potential enstrophy
within time truncation errors was achieved on all 4 configurations tested: original and modified
schemes, with height and isopycnal coordinates.
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One of the main outcomes of this study is that the developer of a new numerical scheme
should be able to test whether it will suffer from Hollingsworth type instabilities in a shallow
water model context, rather than having to wait for a fully 3D version of the scheme to be
developed. The key point is to use uniformly small equivalent depths which slow down the
gravity waves and highlight nonlinear effects. A similar approach was discussed by
[Gassmann(2011)] in an investigation of the divergence of computational modes on triangular
grids. To help researchers track the instability at the shallow water development stage, we
propose two test cases.

5.1 Instabilities on a constant zonal flow

In this first test case we used a constant initial zona flow, a flat bottom (z, =0 in (31))
and an additional forcing term equal to f,u, on the rhs of (30b) to produce a balanced steady
state solution (parameters u, =50Ax, H =25Ay*, f,=10, g=10, Ax=Ay=1/64 and
timestep At =1/1024 which give R, =10 and F, =10). To trigger the instability, we added a

small perturbation to 7 at the central point of the domain (we used +H/1000). The modified

scheme in height coordinates and both schemes in isopycna coordinates did not revea any
instabilities in the tests performed. However, the height coordinate model with the original een
scheme suffers from instabilities with a dominant non-dimensiona wavenumber A, of

approximately 2773 which grow in amplitude by a factor larger than 10° for every
nondimensional time unit (see Figure 8). Taking the difference from the initial state, E(t), to

grow exponentially with time at a rate given by @ f, and fitting a straight line through the right

panel of figure 8 we obtain an approximate value for @ of 0.8, in very good agreement with
figure 3b.

Figure 8: Shallow water model run with height coordinates, the original een scheme, an initially
constant water depth, a constant zonal initial velocity, zonally symmetric forcing to keep the
system in a steady state, and a small perturbation in the center of the domain. On the left:
Spectrum of a y -dlice of 77, where the wavenumbers were normalized to (0, ) . On theright:

evolution of E, (t), the maximum difference from theinitial state of the layer depth 7.
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5.2 Instabilities on a sinusoidaly varying zonal flow

Figure 9: Shallow water model run with height coordinates, the original een scheme, an initialy
constant water depth and sinusoidal zonal velocity with a bottom topography which keeps the
zonal flow in balance. On the left: Spectrum of a y -dlice of 77, where the wavenumbers were

normalized to (0,7) . On theright: evolution of E, (t), the maximum difference from the initial
state of the layer depth 7.
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In this second test case we set the zonal velocity u(x,y) =u,sin(2zy), and h(x,y) =h,,
where both u, and h, are constants. In order to creste a Steady state solution, the bottom
topography (bathymetry) is set to z (X, y) = %COS(Z?Z}/). Since the prognostic variables are
functions only of y, the solution isindependent of x, and the shallow water equations reduce to
a 1D problem. The only initial source of error is due to the non cancellation of the nonlinear
terms in the evolution equation for v. For appropriate choices of the parameters, the instability
afflicts the height coordinate model with the original een scheme, as expected. We show in
figure 9 an example (parameters u, =10, H =0.1, f,=1/Ax, g=10, Ax=Ay=1/64 and
dt =1/1024 which give R, =20 and F, =10) of the spectrum afew time steps before the model
blows up, and aso the evolution with time of the maximum error in the layer thickness (77) (i.e.
the maximum difference from its original value). The initial condition is dominated by a low
wavenumber pattern (wave number 2), but as time evolves, errors in higher wavenumbers appear
and the instability is triggered. Once triggered, the growth rates are very large. The estimated
non-dimensional growth rate for the parameters used in figure 9 is @ = 2.0. This test case has
non zero relative vorticity and growth rates that are somewhat larger than those obtained using
the formulae for a constant flow on an f -plane. Figure 10 provides a snapshot of the model

fields at atime when the instability is emerging inthe h and v fields.

ccepted Article

Figure 10: The fields from the same integration as figure 9 at atime t = 0.35 when the
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instability is emerging. Blue lines indicate the field values at t = 0.35, and the red (green) line
indicates the maximum (minimum) value attained earlier in the integration.

6 Concluding summary and discussion

The factors that determine the linear stability of constant flows on an f -plane to grid-

scale disturbances have been clarified for a number of discretisations of the vector invariant
momentum equations which use regular rectangular grids in the horizontal. The 3D stability
problems obtained in height coordinates and isopycnal coordinates have been confirmed to be
soluble as a linear combination of products of a vertical mode and a solution of linearised
shallow water equations (SWEs) with the depth H of the water determined by the eigenvalue of
the vertical mode. Two dimensional SWES which can be used to explore the stability of new 3D
dynamical coreswritten in height or isopycnal coordinates have aso been identified.

The depth H of the SWE associated with the modes of highest vertical wavenumber
obtained using the Lorenz grid decreases more rapidly as the number of depth levels increases
than is the case for solutions obtained using the Charney-Phillips grid, for reasons related to the
occurrence of the computational mode on the Lorenz grid.

The 3x3 matrices which determine the linear stability of the een (energy and enstrophy
conserving) scheme (and the AL scheme) both in their original and modified forms and in height
and isopycnal coordinates have been constructed. It has been shown that these stability problems
for al the modified schemes can be written as eigenvalue problems for Hermitian matrices and
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hence that all the modified schemes are neutrally stable. The instabilities obtained for the
original schemes in height coordinates grow most rapidly when the Froude number and the grid-
scale Rossby numbers are large and the instability is nearly aligned with the grid.

Simple expressions for the growth rates have been obtained for instabilities aligned with
the grid and for instabilities when the Froude number or the Rossby number is very small. Our
numerical investigations of the original schemes for isopycnal coordinates found that they do not
suffer from Hollingsworth instabilities, in agreement with [Arakawa(2000)]. The determinant of
the stability matrix for this case has been shown to reduce to a simple factorisable form which

~ has real solutions and an explanation of this result has been proposed in terms of solutions of the
linearised SWESs with uniform potential vorticity (appendix 12).
< ’ As shown by HKRB (see the discussion following (85) and (86)) the instabilities are
inertia-gravity waves that have been destabilised by the discretisation of the generalised Coriolis
® ﬁ terms. Consequently, and consistent with the discussion in appendix B of [Gassmann(2013)], one
l ) would not expect quasi-geostrophic models (which do not represent inertia-gravity waves) to
suffer from them. [ Gassmann(2013)] notes that the instabilities occur preferentially in regions of
H high vertical shear where the stratification is relatively weak and the phase speeds of the interna
modes are consequently relatively slow. The Froude number will be highest in these regions so,
provided the Rossby number is high enough, the instabilities will grow more rapidly in these
regions.

Our results show that basic states that have no horizontal temperature gradients (and
associated vertical shear in the horizontal velocity) can suffer from the Hollingsworth instability
when discretised using the een or AL schemes and height coordinates. High vertical shear and

@ high horizontal velocity tend to occur near to each other, so in practice it will be difficult to
distinguish whether an instability seen in a model is associated with one rather than the other,
especially when other factors (stratification, vertical grid spacing) are also implicated. The
instabilities can be obtained in height coordinates if a C-P vertical grid is used with a large
number of vertical levels but will usually grow faster on a Lorenz grid (with the same number of

H vertical levels) because the equivalent depth of the most rapidly varying modes is then much
smaller and the Froude number much larger. These instabilities do not occur for these simple

states discretised using isopycnal coordinates but this does not rule out the possibility that other

instabilities owing their existence to discretisation issues rather than physical causes may occur

q) on more complex flows, for example on a / -plane or the sphere or, as found by [Arakawa and

Moorthi(1988)], on flows with vertical shear.

c ) The origin of the instabilities in height coordinates might be attributed to a aloss of some
form of momentum conservation, as suggested by HKRB, or to the loss of the invariance of the
momentum equations to uniform motion of the frame of reference. As suggested (but not proved)

O by HKRB and AL, by smoothing the kinetic energy in the Bernoulli potential using a stencil
similar to that used in the generalised Coriolis terms one can obtain a modified scheme which is
stable to all disturbances. The instabilities for the original schemes grow extremely rapidly when
the Froude number and Rossby number are very large but sufficient cancellation of terms may be
possible using this approach on other (e.g. hexagonal) grids as suggested by [ Gassmann(2013)].

It is hoped that the above results will help developers of new dynamical schemes (e.g. on
triangular, hexagonal and other meshes) to test their schemes using appropriately configured
SWEs and to devise modified schemes which do not suffer from Hollingsworth instabilities.
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Appendix

7 Notation

Tables 1 - 3 summarise the notation used in the main body of the paper. The third column
of the tables refers to the equations where symbols are first introduced.

Table 1: Table of Greek symbolsfor primary variables

Greek - Lower case
o) adifference (50)
operator
) Kronecker (59)
deltafunction
4 vertical 2
component of
therelative
vorticity
n height of the 9
free surface
l the grid index (50)
inany
direction
K, A wavenumbers (63)
of perturbation
in x-and y-
directions
H coefficients (52
from averaging
in x
1% coefficients (52)
from averaging
iny
acoordinate in (50)
any direction
o Doppler (79), (84)
shifted non-
dimensional
frequency
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P density (4)
o inverse of (29)
stratification in
isopycnal
model
4 any function (50)
of &
W non- (63)
dimensional
frequency of
perturbation
Greek - Upper case
A the difference (50)
between
neighbouring
grid points
A anon- (41)
dimensional
parameter for
vertical modes
) the Bernoulli 3
function

Table 2: Table of Roman symbols for primary variables

Accepted Article

Roman - Lower case
a a parameter (86)
b buoyancy (19)
c speed
¢’ =gH
C., C, cosines of (64)
wavenumbers
f the Coriolis ()]
parameter
g gravity (4)
h functionof z | (14), (109)
related to w or
z
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m,n constants (42), (43)
related to
equivalent
depths
P pressure 3
q potential (22
Q) vorticity
S., S; sines of (64)
— wavenumbers
t time (5)
< ) u,v,w velocity ()
components
oy X,y horizontal B
H coordinates
z height 4
H coordinate
Roman - Upper case
< A coefficient of (5)
viscosity
D,, determinant (80)
D total (6)
derivative (as
in D/Dt)
D,, diffusive 5)
Q) operator
E; matrix (73)
H element for
een scheme
Q F,.F, Froude (69)
numbers
Q) H thetotal depth|  (12)
(or equivaent
depth)
O H an Hermitian (74)
matrix
< ) I the identity (74)
matrix
J anon- (86)
dimensional
guantity
K, horizontal D
Kinetic energy
K the number of (37)
vertical levels
M Montgomery (20)
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potential

the number of
zerosin the
vertica

(45)

coefficients

(81)

twice theratio

of the Rossby

radius and grid
spacing

(70)

Rossby
numbers

(71)

anon-
dimensiond
guantity

(96)

modified
Rossby
numbers

(75)

grid aspect
ratio

(70)

aconstant in
normal mode
soln

(44)

vertical
component of
the total

vorticity

(2)

Table 3: Table of subscripts and superscripts

Subscripts

the (height of
the) bottom

(31)

equivalent (as
inH,)

(12)

imaginary part

(87)

]

x-and y
coordinate
indices

(50)

the vertical
index

(34)

Xy

horizontal

(50), (51)
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coordinates
E een scheme (52)
F modified een (53)
scheme
I isopycna (59)
M matrix (80)
00 constant 3
density
0 the stably (100)
stratified
component of
the basic state
1 the constant (101)
velocity
component of
the basic state
Superscripts
Hu averagingin (52)
X
1% averagingin (52)
y
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a perturbation
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transports (22), (33)
through faces
of cells
afunction of 9
the vertical
coordinate
afunction of ©)]
X,y andt

an average of

¢

<

AN

|

8 Separation of variablesin height model

8.1 Basic state and perturbed equations

Assuming the basic state of a stably stratified density field p,(z) as described in section
2.1, we have that
ap, _ (100)

and
P, = fog(viX—u,y). (101)

Denoting the perturbations by primed quantities and neglecting products of perturbations
the horizontal momentum equations for the perturbations are given by
ou’ 0P’
——fVv-{Vv=——+ADU, 102
V=g =-=—+AD, (102)

oV 0D’
—+fu+lU =- D V. 103
where

§’=%—8u, @ =Py uu+vy). (104)
ax  dy Poo

Hydrostatic balance for the perturbationsis

a / 7
ap =-p70, (105)
Z
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the incompressibility condition is
W NV, MWy (106)
oX o9y 0z

and the density perturbations satisfy
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9P +u18p +V18p +V\/d’09= , (107)
ot oX ay dz
because the heating by dissipation is zero in (107) when the basic state has no shear. Finally the
boundary conditions are

w =0, z=0-H,. (108)
In summary the above set has five unknowns u’, v, W, p” and p’ that are constrained by five
equations and the boundary conditions (108).

8.2 Separable solutions

Comparing the five equations just summarised with those in section 6.11 of [Gill(1982)]
one sees that they enjoy separable solutions of the same form. Departing slightly from the order
of Gill's derivation we assume that the variations in u’, V' and p’ are given by (9). Then
9P, D = b(z)&)(x, y,t) where o is given by (11) and the horizontal momentum equations
reduce to (10).

Following Gill we let

p'=p@i, W =h@W(x yt). (109)
Substituting (9¢) and (109a) into (105) we obtain (13). Substituting (109) into (107) and
introducing the separation constant H, we obtain (14) and
on . dn 07

HW=—"+u —-+v,—, (110)
ot oy oy
Substituting (9) and (109b) into (106) we can choose to set (15) and obtain
(a—u+a—vj+v~v =0. (112)
ox oy

Eliminating w from (111) using (110) we obtain (12).
Hence the solutions dependent on x, y and t are governed by the shallow water

equations (10) and (12). The vertical structure functions ﬁ(z), p(2) and p(2) are determined by
(13) (14) and (15) and the boundary conditions (16) obtained from (108) and (109).

9 Separation of variablesin isopycnal model

9.1 Basic state and perturbed equations

The assumed basic state is the same as that in the previous section. Here we just adjust
the notation. So, the stably stratified state is expressed as a profile z,(b) that is in hydrostatic

balance

dM,
=-Z,. 112
il (112)
The horizontal velocity field (u,,v,) isagain in geostrophic balance with a pressure field p, so,
M=M,b)+M,;, M, =Tf(v,x-uy). (113)
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The relative vorticity is again zero and the total vorticity, Z, = f,, isindependent of position.
The horizontal momentum equations for the perturbations are given by

ou’ f.\v, 0D’
——fV-{Y -2 (o' - )= ——, 114
o oV - —0)= - (114
N, fou'+ ¢l + Ttk (¢ —6"@)=— o (115)
t o, ay
where ¢’ isgiven by (104a) and
D' =M+ (uu +wV). (116)
From (23), hydrostatic balance for the perturbationsis given by
oM’ ,
=-Z. 117
ob (417
Continuity of mass, (24), gives
Jo +u180' +V180' =-0, ou +ﬂ , (118)
ot oX ay oX oy
and the boundary conditions, (25), become
07 07  Jo7
—+Uu—+Vv,— =0, b=Db(0),b(—H). 119
at Tox Ty (0).b(-H) (119)

In summary the above set has four unknowns u”, v/, M’ and Z’ that are constrained by four
equations and the above boundary conditions.

9.2 Separable solutions

Let
u ,= A(b)u(x~,y,t), vV =M (b)V(X,y,t), (120)
M”=M(b)g7(x, y.t).
Then
@ =M (D)D(x, y,t), D(X, Y,t) = g7 + U0 +V,V, (121)

and the terms in (114) and (115) other than those involving ¢’ reduce to (26). These additional
terms will be considered shortly.
Letting
Z = h(b)7, (122)
and substituting (120c) and (122) into (117) gives (27). Substituting (120) and (122) also into
(118) and introducing the separation constant H, one obtains (12) and (28).

The vertical structure of the additional terms in the horizontal momentum equations can
now be considered. Using (19) and (28) one seesthat their vertical structureis given by

Accepted Article

i e (123)
o, o,db H

Hence these additional terms have the same vertical structure as the other terms in the
momentum equations and (114) and (115) reduce to (26).
Finally the boundary conditions obtained from (119) and (122) reduce to (29).
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10 Theeen scheme horizontal discr etisation

The een scheme calculates qv' at the central u point in Figure 11, located at (i, j +1/2) ,

as the sum of products of quantities calculated at the surrounding v points (A, B, C and D in the
figure)

0 0.5 1 15 2 2.5 3 3.5

Figure 11: A depiction of the variables used by the een scheme in the calculation of qv* at the

u point in the centre of the figure. The een scheme usesthe valuesof v' at points A - D and the
values of q at points 1-6 at this u point.

(qV*)i, 2 = ai,j+]J2Vi*+:lJ2*.j+1+ i j+:lJZVi*—:IJ2.j+1 (124)
+ 7V +5i,j+]]2Vi—1/2,j'

The coefficient at each of these velocity points is calculated (see AL equation (4.21)) using

values of q at three nearby q points

ccepted Article

1
& i _E[qi+1,j+l+qi,j+l+qi,j]!
1
ﬂi,j+1]2 :E[qi—l,j+l+qi,j+l+Qi,j]!
1 (125)
Vi iz _E[qi—l,j +G; +d .l

1
5i,j+1/2 :E[qiﬂ,j +q ; +qi,j+1]'
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At point A thefirst two of these g points used to calculate o are those on either side of point A

(at points 1 and 2). The sum of these two contributions at A is hence given by axv*/6 and the
sum of the corresponding first two contributions at A, B, C and D is given by

2 .Y
C=5@V) . (126)

The other contribution at point A is calculated using the value of g at point 5 in Figure 1la.

Point 5 is on the opposite side of the u point from point 2. The remaining contribution at point B
alsoinvolves g at point 5. So the sum of these two contributionsis equal to 1/6 times g at point

Stimes v at point 2. The final remaining contributions from points C and D are given by 1/6

times g at point 2 times Vooa point 5. Denoting the “geometric product” for any quantities ¢
and v by

0.9
0.8
0.7
0.6
E’ 0.5
0.4
0.3
0.2
0.1
G, (0¥ ua =5 0 W+ 0¥, ) (127
one then sees that the een scheme discretises qv' by
@)e=2@V) +26,@V ). (128)
By direct calculation of terms one can establish that
G,(ab),,,=2a’b —ab’. (129)

Substituting (129) into (128) one obtains (57a).
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The een scheme calculates qu” for the u point stored at (i +1/2, j) using
(qU*)i+]J2,j = 7i+1,j+1/2ui*+1,j+112 +5i,j+1]2ui*,j+112

* *
+ ai ,j—1/2ui,j—112 + i+l,j—1/2ui+l,j—1/2'

A similar argument to that given above establishes (57b).

(130)

11 Stability analysisfor the AL scheme

As for the een scheme the original and modified AL schemes can be concisely written by
defining the averaging operators

vh=y", yh=y” (131)
where the A subscript indicates the expression is relevant to the AL scheme, and the associated
“modified” averaging operators

e _ K oA

74 = 1// z// =y " formodifiedscheme,
z, (132)
B _ VB
74 =y, y 2=y fororiginascheme
Similarly to (54) the AL scheme for isopycnal coordinate models sets
n®@=p" pW=p"e  p0=p"e (133)
and discretises the continuity equation as
aa—? +0, (ﬁva u)+ J, (ﬁWBV)= 0. (134)
It then discretisestheterms qv- and qu’ in (30) using
\ —xy 1
@)= @V) +alas.akey )
(135)
( j+e§ u ,
@)= @) +-=ol66,al6u )]
(136)
( j+¢5v ,
in which (50d) defines 6, and 6; and
1 .—x 1 .-y
=80, 6=—00 . 137
£=,94 ¢ THA (137)

[Ketefian and Jacobson(2009)] note that the AL scheme can be expressed in the form given by
(135) - (136) and these equations are derived in detail in the appendices of [Ketefian(2006)]. For

height coordinates the same expressions apply with g replacedby Z, u” by u and v’ by v.
The original version of the AL scheme takes K, to be discretised in the same way as in

the original een scheme. AL propose a modified form for the kinetic energy in their equation
(6.1). A form which is more similar to that used above for the een scheme whose first term gives
the same gradients of K, as the form proposed by AL isgiven by
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2K, =u? P Ve —1—12@5,. v

(138)

The last term in (138) is only used in the modified scheme. It has been introduced here to
cancel contributions arising from the Coriolis terms proportional to £ and ¢ in (135) and (136).

Using the above discretisations one finds that in pI ace of (61) - (62) one obtains

where

scheme.
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an
ot

Ju —xy , 5 4y, 5 ue
ot

——(u 8,6,0,U"" +5,v,8,8,5,U A)
12

+V,0 (Vy”B —Vy”A)+ (1) 8,88,V
12

f V1 —F#A vy

:O’

aa—\t/+ fo U + 98,0 +uSV A+, Ve

(5 U860,V " +v 8,85V A)

+ u15 (JXVB - u’XVA) (L 125 )\, 5,56u "

f U _;/VA Y

:O’

w7 B v, +H(GU +8V)=0,

0z =0 fortheoriginalscheme 1 forthemodifiedscheme

The first lines of (139) and (140) consist of terms corresponding to those in the original
equations. For the modified schemes the other terms are either zero or contribute only to
diagonal terms of the stability matrix, so the stability matrix is Hermitian as it was for the een

(139)

(140)

(141)

(142)

12 Aninterpretation of the stability of the original schemein isopycnal coordinates

Some insight into why the rather asymmetric matrix obtained for the original schemesin

isopycnal coordinates (see (77)) has such simple solutions can be obtained by considering the
potential vorticity of the flow and its perturbations. AL show that both the een and AL schemes
will not change q in aflow that has uniform . So one might anticipate that only perturbations

whose potential vorticity is identically zero will be able to grow and that this will constrain the

instabilities. The calculations presented below support this interpretation.

The linearized form of the potential vort|C|ty (22) isgiven by

and hence, for wave-like solutions,
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g = 2is, v - 2is, 0, - c.c,f, (an ) (144)
HAX HAy cH H

where g. is defined by analogy with (63). Using (144) one sees that the first two rows of (77)
can be written as
ou; —ic.c,ve —R. ici+'—TVHquE =0,
XC H i2 (145)
ic.C,u. +@v; — RS, ZE _ET“ HAxq. = 0.

In other words, the asymmetric terms in the matrix in (77) are proportional to q.. For
perturbations with g. = 0, (77) consequently smplifiesto

. S,
o —-ic.c, - ch Ug
ic.C, o -Rs, | v |=0. (146)
RCSK‘ CUE
_—— — S m’ —=
X RS H

Hence @ is the eigenvalue of an Hermitian matrix and is real-valued. So the solutions with
gz =0 are neutrally stable. Moreover, because g. =0 implies a constraint relating u., v and

7 , the system (146) has a redundancy, which allows us to drop the third row of equation (146)
and use the constraint to eliminate 7. from the first two rows of (146). This reduces (146) to a

2x 2 matrix equation
2

w+A% —icKcl—A% Ug

y *lv. =0 (147)
. S S.S
icc,+A—2  @-A*4

Ay AXAY

where A=4ic®/(c.c,f;/). Setting the determinant to zero gives the numerical inertia-gravity

wave dispersion relation
2

2 2
o = (.0, F + ( S 4 J (148)

f2lAX®  Ay?
in agreement with the roots @* = Q* given by (81b) and (82).
The dispersion relation for perturbations in which g. is non-zero can be determined by
using (145) to form a vorticity equation. Multiplying (145b) by 2is_(HAx)™ and subtracting
2is, (HAy)™ times (145a) one obtains

w( 215, vE—ﬁuE]— 26,6, (qu+ivE]
HAX © HAy H Ax © Ay (149)
+ (T,s.+T,s,)q =0.
Subtracting c,c, f,(cH)™ timesthe last row of (77) one finds that
@+T,s.+T,s,)q =0. (150)

The factor in parentheses in (150) can vanish only if @ is real confirming that wave-like
solutions with non-zero potential vorticity are neutrally stable. Note that this factor agrees with
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thefactor @ + P in (82).
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