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Signal Phase Cannot Be 
Determined from a Fourier 
Transform of Sampled Data 
The Discrete Fourier Transform is a well-established tool for obtaining a frequency spectrum 
from a set of sampled data. The coefficients obtained from the DFT are complex-valued and 
so both phase and amplitude can be extracted. However, David Gibson asserts that if the 
sampled data originated in the real world (say, as a recording from a broadband radio 
antenna) the phase of the spectral components cannot be determined. This, he claims, is an 
‘obvious’ observation, but one that is not emphasised in textbooks. The details of the 
problem are left for the reader to work out, as an interesting ‘examination question’ in DSP. 

The Fourier Transform 
The Fourier transform is a mathematical 

equation that converts a function of time (i.e., 
a ‘signal’) into the frequencies that make it 
up, similarly to how a musical chord can be 
expressed as the amplitude of its constituent 
notes. So says the Wikipedia, which goes on 
to say that the Fourier transform of a function 
of time is a complex-valued function of 
frequency, whose absolute value represents 
the amount of that frequency present in the 
original function, and whose complex argu-
ment is the phase offset of the basic sinusoid 
in that frequency. 

We can consider this further… A Fourier 
Transform is one of a class of so-called 
integral transforms that work on functions 
evaluated from –∞ to +∞, and that produce a 
function of a different variable, expressed 
over the same interval. In our applications, 
we work with finite time intervals and there 
is an underlying assumption, in the maths, 
that our finite signal will repeat itself from 
t=–∞ to t=+∞. With this proviso, the maths 
‘works’; and we obtain a set of discrete 
frequencies rather than a continuous spec-
trum. For example, we can envisage a square 
wave that exists from –0.5 ms to +0.5 ms, 
changing state at t = 0 and repeating itself 
endlessly outside this interval. Its Discrete 
Fourier Transform will be an infinite set of 
discrete frequencies, at 1kHz intervals 

A second modification to the basic FT is 
that we are usually dealing with sampled data 
waveforms. If the square wave in the above 
example were sampled at 1µs intervals, we 
would have 1000 samples. We know that, 
within this sampled-data environment, the 
highest frequency we can represent is 
500kHz so, when we calculate the FT of the 
waveform, we do not need to consider 
frequencies higher than this. 

A brute-force algorithm for calculating 
the coefficients of a ‘Discrete Fourier Trans-

form of Sampled Data’ can take a large 
amount of computer time. Various short-cuts 
exist, the most common of which is known as 
the Cooley–Tukey algorithm, which gives 
rise to the term Fast Fourier Transform. For 
highest efficiency, an FFT requires the 
number of samples to be a power of 2; and 
so, for example, a 1024-point time sample is 
transformed into 1024 complex values of 
frequency. The top 512 of those are ‘essen-
tially’ repeats of the lower set. They do not 
correspond to anything physical, but are an 
artefact of the algorithm. (The same is not 
true if the inputs are complex-valued. Obvi-
ously, time itself is ‘real’ but the FT is an 
abstract tool). 

To summarise; if we take a set of time 
samples, we can apply a Discrete Fourier 
Transform and produce a complex-valued 
dataset, from which we can derive the 
amplitude and phase of the sine waves that 
comprise the signal. 

However, this is not as straightforward as 
it sounds and, in certain situations, the phase 
information cannot be relied on. This is one 
of those observations that is ‘obvious’ when 
one considers it in detail but, because it does 
not seem to be mentioned in popular text-
books, it makes an interesting conundrum for 
electronics undergraduates to consider! 

Cave Radio Using a 
Quadrature Phase Space 

This problem with Fourier Transforms 
came to light while I was studying the results 
of the tests with my channel sounder, which I 
had built as part of my PhD work on sub-
surface radio in the early 2000s. It had 
occurred to me that the parts of the spectrum 
that are occupied by broadcast stations must, 
were it not for the station itself, be the quiet-
est areas of the spectrum. Therefore – para-
doxically – this might be the best part of the 
spectrum to use for cave radio. 

For an AM broadcast station, the two 
sidebands are in phase with the carrier, and 
there is no signal in phase quadrature. An 
AM envelope demodulator is insensitive to 
phase, so the region occupied by a broadcast 
station needs to be free of interference at all 
phases. It is therefore clear that, if we could 
transmit a signal that was in phase quadrature 
to the broadcast carrier, we could detect it, 
using a phase-sensitive receiver, in such a 
way that we did not pick up the sidebands of 
the broadcast AM signal.  

I mentioned this briefly in my PhD thesis 
[Gibson, 2003] – now reprinted with some 
corrections as [Gibson, 2010] – and I also 
discussed it in the CREG Journal [Gibson, 
2002a]. My initial idea was to transmit a 
narrow-band FM or a double-sideband AM 
signal with the carrier in quadrature to the 
broadcast carrier. Obviously, the true situa-
tion is subtler than that because it is at the 
cave radio receiver that the quadrature phase 
relationship is required; and this might 
require some ‘training’ of the communica-
tions system. However, as I explained in the 
CREG article, if the ‘phase-space’ is quiet in 
the quadrature phase, then it is as equally 
quiet for an SSB signal as it is for a DSBSC 
or FM signal; and SSB transmissions do not 
require the receiver carrier to be synchron-
ised. We can therefore transmit using any 
phase of the hijacked broadcast carrier, and 
we receive using the local quadrature carrier.  

Moreover, the SSB receiver design is 
simplified because we can use a DSB de-
modulator. This will cause the two sidebands 
to be superimposed and, normally, we cannot 
do this with an SSB signal because there may 
be interference in the unwanted sideband. 
However, as we have already stated, this area 
of the spectrum is asserted to be free from 
interference. 

I went on to describe the operation of a 
‘phase-skewed’ DSB transmission where we 
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advance the phase of the modulation in one 
sideband and retard it by the same amount in 
the other. This scheme allows us to utilise the 
necessarily quiet region in quadrature phase 
space under an existing AM broadcast in a 
rather elegant fashion. 

Measuring Phase With a 
Fourier Transform 

My channel-sounding work had resulted 
in a number of datasets, which I presented 
and discussed in a CREG Journal article 
[Gibson, 2002b]. The radio receiver signal 
was sampled at 500kHz, capturing 217 
samples per dataset and resulting in spectral 
data at 3.8Hz intervals. The 16-bit ADC was 
an AD7721 from Analog Devices, featuring 
an over-sampling anti-aliassing digital filter 
with a 3dB bandwidth of 244kHz (16MHz 
clock) and an attenuation of 72dB at 276kHz. 

To evaluate whether my quadrature 
phase space technique was likely to work, I 
wanted to look at the amount of interference 
that was present in the spectrum, in the area 
occupied by the BBC Radio 4 broadcast 
transmitter at 198kHz. 

On the face of it, you would think this 
was easy – after all, the data has been 
sampled and, although sampling does remove 
information, it is still “all there”, from the 
point of view of applying sampling theory to 
reconstruct the waveform. However, as I 
looked at the problem more closely, I real-
ised that there were subtle difficulties. Con-
sider two possible methods of analysis… 

Firstly, we could simply compare the 
amplitude of the corresponding points on 
either side of the carrier. Since the two side-
bands should be identical, this “ought to” 
give us a measure of the interference. How-
ever there are a number of obvious difficul-
ties – we need to look at the phase as well; 
and it is clear that there is no unique solution 
– we could work out the difference in the 
signals but we cannot know which sideband 
(or sidebands) to attribute it to.  

A more workable approach would be to 
synthesis the operation of the proposed radio 
receiver itself. That is, we extract the phase 
of the broadcast carrier (it is simply the co-
efficient of the FT corresponding to 198kHz) 
and use it to demodulate the sampled data in 
such a way as to cancel the AM signal and 
reveal only the interference – that is, the 
component of the signal that is in phase 
quadrature to the broadcast carrier. It sounds 
straightforward, but when I investigated this I 
obtained some strange results, which caused 
me to take a closer look at the problem.  

Using MATLAB, I ran a number of 
simulations and discovered that ‘real-world’ 
data sets behaved differently to data sets that 
I created ‘on paper’. Eventually (and rather 

too slowly!), I realised what was causing the 
effect, and it is embarrassingly ‘obvious’ 
that, contrary to the simplistic notions we 
might have about how the Fourier Transform 
works, it does not allow us to extract the 
phase of ‘real world’ sampled data. The fact 
that the phase is arbitrary is not the problem, 
because we can always find some time refer-
ence to relate it to. Rather, the salient point is 
that the phase information produced by the 
Discrete Fourier Transform of a sampled data 
signal is, in effect, ‘random’. 

This is, on the face of it, an astonishing 
claim and, as I said earlier, one that I have 
not seen mentioned in any textbooks – 
although perhaps I have just been reading the 
wrong books?  I am going to take the unusual 
and provocative step of not explaining this 
result, since it is such a good puzzle for 
engineers and students to think about. 

Practical Evaluation of a 
Quadrature Phase Radio 

Unfortunately, the problem with the 
Fourier Transform means that we ‘probably’ 
cannot use a sampled dataset to investigate 
my concept of a quadrature phase radio. 
However, if we perform the quadrature de-
modulation in hardware before we sample 
the signal, the resulting sampled data will be 
adequate for us to do a spectral analysis of 
the interference. 

One reason why I have not done this in 
the intervening years since I proposed the 
concept is that I think my original assertion 
that the concept has merit is probably wrong. 
Although the interference may well be at too 
low a level to affect a strong broadcast 
signal, it could still be strong enough to 
affect a cave radio. My reasoning is related to 
the behaviour of the Loran signal, which is a 
strong source of interference to cave radios. 
Loran’s carrier is at 100kHz, and the spectral 
content at 80kHz is very low. The problem is 
that cave radio signals are also very low – 
and so, in relative terms, the interference is 
significant. Additionally, if the radio receiver 
pre-amp does not have a flat phase or ampli-
tude response, this is going to lead to leakage 
of the broadcast signal into the quadrature 
phase space. Thus, I have my suspicions that 
piggybacking on a broadcast carrier might 
not be a workable idea after all. Although, 
clearly, the field is still wide open for some-
one to do some experimental work. 

Concluding Remarks 
I have described the concept of a 

‘quadrature phase space’ cave radio, and 
asserted that it cannot be analysed by using a 
Discrete Fourier Transform of sampled data. 
I am claiming that the reason for this is 
‘obvious’ but that, because it is under-

reported in textbooks, it makes a good puzzle 
for the reader to consider!  

The essential point is that you cannot 
extract phase information from a sampled 
‘real-world’ data signal. But why does the 
Discrete Fourier Transform of such a signal 
not contain any useful phase information? 
The salient point is not the sampling ‘as 
such’; it is the fact that we are using a 
Discrete Fourier Transform. 

But – you may ask yourself – why is 
‘real-world’ data the problem, rather than any 
theoretical sample set?  What is the differ-
ence?  And why should phase be affected, 
and not the amplitude? After all, the FT is 
merely an abstract device and it does not 
‘know’ what amplitude and phase are – they 
are just similar aspects of a single entity, the 
complex number obtained by transforming 
the time-series data. (In fact, amplitude is 
affected but we usually process the sampled 
data in such a way that the effect on ampli-
tude is minimised). 

My earlier notes did not specifically refer 
to this problem, because, firstly, phase is not 
usually of interest to us in studies of the 
frequency spectrum; and secondly, I did not 
spot it till later. However, the clues are on 
those notes, just as they are in the article you 
are reading now. 

The chances are that, if you use the DFT 
in your work, you will immediately recognise 
the salient point that I have been avoiding 
mentioning in this article, and you will agree 
with me that it is ‘obvious’. But I hope you 
will also agree that the specific point of the 
phase being ‘random’ is under-reported in 
textbooks. Hopefully, you will also agree 
that, even though I have expressed the prob-
lem in somewhat provocative terms – i.e. that 
the DFT does not allow you to extract phase 
information – it is a real and actual problem 
and a fascinating conundrum.  

I probably need to write a follow-up note 
to this article, explaining what is going on; 
and readers may like to discuss it on the 
CREG forum at bcra.org.uk / cregf. 
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