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ABSTRACT

We present the results of a numerical benchmark study for the MUIti-dimensional Stellar Implicit Code (MUSIC) based on widely
applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit
large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics
based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver.
The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the
Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative
effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the
hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A
series of multi-dimensional tests are performed and analysed. Each of these test cases is analysed with a simple, scalar diagnostic, with
the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions we verify MUSIC by comparing
to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and
widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers
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> 1. Introduction

ast

——IDespite the inherent three-dimensional nature of stellar interiors
the timescales involved in stellar evolution necessitate the use
of one-dimensional models. Stellar flows are multi-dimensional
a0 and non-linear in character. Therefore the one-dimensional ap-
Lo proach requires parametrisation of three-dimensional effects.
(O Examples of three-dimensional phenomena parametrised into
)

—i

VAl

one-dimensional effects are convection, through mixing length
theory (Vitense|[1953; | Bohm-Vitense|[1958}; |Brandenburg|2015),
y accretion (Siess & Forestini| [1996; [Siess et al.| [1997) and
shear driven mixing (Zahn||1992; Maeder & Meynet| [1996).
With advances in current computing capability the use of
«— multi-dimensional calculations to calibrate and improve such
*" parametrisations is becoming increasingly feasible. Attempts to
~— improve models of stellar convection have received considerable
interest, via the so-called 321D link, Arnett et al.| (2015)). Re-
E cent multi-dimensional tests of one-dimensional accretion mod-
els were carried out by |Geroux et al.| (2016).

The hydrodynamical processes that influence stellar evolu-
tion are non-linear in nature, and not well represented by the
idealised test problems available. Many standard test problems
for compressible hydrodynamics are supersonic and dominated
by shocks, and therefore not representative of the subsonic flows
prevalent within stellar interiors. A set of standard tests to com-
pare stellar hydrodynamics codes and evaluate their accuracy has
not been clearly defined and organised. Although it is possible to
directly characterise and compare such flows through diagnos-
tics such as the convective turnover time, as discussed in |Pratt, J.

describing the development of the MUSIC code and provides confidence in the future applications.
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et al.| (2016) such flows can vary greatly in space and time, and
must be observed over long times to gain meaningful statistics.

In this work we seek to find a middle ground: a set of test
problems that are fundamental to stellar interiors but are also
simple enough that they may be calculated quickly for the pur-
poses of benchmarking and testing, as well as having well-
defined diagnostics, to enable code comparison. We carry out
this work primarily to test the accuracy of the numerical methods
implemented in the MUIti-dimensional Stellar Implicit Code,
MUSIC.

MUSIC is distinguished from other stellar hydrodynamics
codes in that it is both time-implicit and fully compressible. The
tests collected in this work have been chosen so that they are use-
ful for comparing a wide variety of physical and numerical mod-
els, including codes that are time-explicit and/or those that im-
plement either the anelastic or Boussinesq approximations. The
Rayleigh-Taylor, Kelvin-Helmholtz and Taylor-Green tests are
relevant to a wide range of hydrodynamical applications. The
fourth test, the Hydrostatic Equilibrium test, is specifically ap-
plied to a stellar interior, however the concept could be extended
as a general test for the implementation of tabulated equations
of state. Additionally the Hydrostatic Equilibrium test demon-
strates for the first time the efficiency of the preconditioning
technique applied in MUSIC in a radiatively dominated regime.

Many astrophysical phenomena are known to exhibit depen-
dence on non-ideal effects, such as viscosity. In an effort to min-
imise non-ideal effects, codes that model such phenomena often
do not contain explicit viscous terms. In such a calculation only
numerical viscosity acts as a non-ideal term, entering into the
solution through the truncation errors of the scheme. A particu-
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larly interesting and timely aspect of this work is the examina-
tion of the application of such codes to astrophysical phenom-
ena. Within the context of Large Eddy Simulation (LES) cal-
culations this approach is described as the Implicit Large Eddy
Simulation (ILES) paradigm.

The Rayleigh-Taylor and Kelvin-Helmholtz instabilities are
sensitive to non-ideal effects, which only enter into an ILES so-
lution through truncation errors, and vary with resolution. One
might ask therefore, to what extent should an ILES code be
expected to produce solutions which converge with increasing
spatial resolution for these physical problems. For the Rayleigh-
Taylor instability we show differences in observed mixing pro-
files, due to the application of two different ILES methods to
a problem sensitive to non-ideal effects. However, a systematic
difference between a mixing estimate derived under the assump-
tion of incompressibility, and a more general estimate was ob-
served. For the Kelvin-Helmholtz test we show the velocity field
produced in MUSIC calculations exhibits the convergent prop-
erties expected from the numerical methods used. The Taylor-
Green vortex has been used as a validation test for ILES codes,
by monitoring the evolution of the kinetic energy. As this evo-
lution is strongly influenced by truncation errors, we investigate
the observed decay of the kinetic energy for different grid-sizes.
Additionally we show how the choice of time-step can effect the
decay of the kinetic energy.

This paper is structured as follows. In Section 2] we give an
overview of MUSIC. In Section [3| we compare the mixing of
a two-dimensional Rayleigh-Taylor instability produced in MU-
SIC simulations to that produced by ATHENA. In Section [ the
ability of MUSIC to reproduce the results for the McNally et al.
(2012) Kelvin-Helmholtz instability test problem is investigated.
In Section [5]the decay of the Taylor-Green vortex is analysed by
comparing MUSIC results to previous results from ILES, LES,
and DNS calculations. In Section [6] we assess the ability of MU-
SIC to recover hydrostatic equilibrium in a radiatively domi-
nated region of a star. We conclude in Section [7} summarising
our findings and discussing their implications for future calcula-
tions of stellar interiors.

2. The MUSIC code

The MUSIC code is a time-implicit, compressible hydrodynam-
ics code. Initial development is described in|Viallet et al.| (2011}
2013)). Recently, MUSIC has been modified to use the Jacobian-
free Newton Krylov (JENK) method (Viallet et al.|[2016). MU-
SIC solves the Euler equations in the presence of external gravity
and thermal diffusion:

op v,

i V- (ou), )]
% = -V-(peu)—pV-u+V-(VT), )
%u = =V-(ou®u)-Vp+pg, €)]

where p is the density, e the specific internal energy, u the ve-
locity, p the gas pressure, T the temperature, g the gravitational
acceleration, and y the thermal conductivity. The gravitational
acceleration does not change during a MUSIC calculation. It can
either be assigned a spatially constant value, or use values calcu-
lated consistently with one-dimensional model which vary with
the radial coordinate. In both cases it is implemented as a body
force in the momentum equation.

Boundary conditions within MUSIC are implemented using
ghost cells. Options include standard techniques, for example
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reflecting and stress-free, and less common options such as a va-
riety of models for hydrostatic equilibrium as described in [Pratt,
J. et al.| (2016).

Equations (I)-(3) are closed by an equation of state, and an
expression for the thermal conductivity. The equation of state
within MUSIC can either be taken as an ideal gas equation of
state, or a tabulated equation of state, accounting for ionisation
and non-ideal effects. The thermal conductivity is given by

: 160T3

X = ; “

3kp

where « is the Rosseland mean opacity, and o the Stefan-
Boltzmann constant. Equation (@) is the form of the thermal con-
ductivity for photons. For stellar calculations the opacity is inter-
polated from the OPAL (Iglesias & Rogers|[1996) and [Ferguson
et al.[|(2005) tables.

The scalar quantities (p,e) are defined at cell centres,
whereas velocities are located at cell interfaces. To calculate ad-
vective fluxes scalar quantities and vector components are ex-
trapolated linearly using an upstream method (Van Leer||1977)
and the reconstruction is ensured to be monotonic using the van
Leer limiter (Van Leer||1974), resulting in a second-order total
variation diminishing (TVD) scheme.

The temporal integration is carried out using the Crank-
Nicolson method (Crank & Nicolson||1947), and the result-
ing non-linear problem is solved using the Newton-Raphson
method. At each non-linear iteration a linear problem is solved
using the Generalised Minimum Residual (GMRES) method,
(Saad & Schultz [1986). A Jacobian-free Newton Krylov ap-
proach (for a review see Knoll & Keyes|[2004) is used to ap-
proximate the matrix-vector products required by GMRES.

The convergence of the GMRES method is improved by us-
ing a physics-based preconditioning method, based on the work
of |[Park et al.| (2009). Such a preconditioner takes the form of a
semi-implicit approximate solution to the full physical system.
The preconditioner is semi-implicit in that it treats the stiff terms
in the full system implicitly, and the remaining terms explicitly.
By adjusting which terms are treated implicitly, the precondi-
tioner can be adapted to a specific problem. Sound waves, and
optionally thermal diffusion, are treated implicitly. In this work
we present the first application demonstrating the efficiency of
the latter case.

2.1. Choice of Time-Step

The time-step At in MUSIC is adaptive and changes throughout
the calculation. The time-implicit method used in MUSIC allows
large stable time-steps to be taken for the problems considered
in this work. The practical choice of the time-step is driven by
a desire for an efficient calculation, which also provides an ac-
curate solution. MUSIC will adjust Az in an attempt to provide a
more efficient calculation. This adjustment is restricted by user-
provided limits placed on the time-step. The first measure of the
time-step used within MUSIC is relative to the hydrodynamical
CFL number:

+ ¢
CFLiyqr0 = max(|”| X < )At, (5)

X
where ¢ is sound speed, At is the time-step, Ax is the grid spac-
ing and u is the flow velocity. A value of CFLyyqr0 = 1 corre-
sponds to the stability limit of a time-explicit scheme. Similarly
we define the advective CFL number,

CFL,4y = max (%) At. (6)

X
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Due to the design of the physics-based preconditioner used in
MUSIC, convergence of the linear system becomes poor for val-
ues of CFL,4y > 0.5 and as such we limit the value of this time-
step measure to be at most 0.5 in all calculations in this work.

For calculations involving radiative effects we define the ra-
diative CFL number:

X
CFLy = (—)At, 7
4 = max A 7

with y defined by eq. {@). Preliminary, low-resolution calcula-
tions can be used to determine limiting values for both CFL,,4
and CFLjpygro Which provide converged results in as efficient
a manner as possible. In cases where multiple constraints are
placed on the time-step the most restrictive one is applied.

2.2. Passive Scalars

As part of this work, MUSIC has been extended to model a
scalar field that is advected with the flow but does not feed-
back on the dynamics of the fluid. This addition, commonly re-
ferred to as “passive scalars” is useful for estimating the mixing
and transport of physical quantities such as chemical composi-
tion and angular momentum. Example applications of passive
scalars may be found in the work of Madarassy & Brandenburg
(2010); [Falkovich & Fouxon| (2005); |Schumacher et al.| (2005));
Brethouwer| (2005). The scalars are modelled as compositions,
with density equal to the bulk fluid. The conservation equation
for a scalar i, with concentration c; is

acip = V- (cipu),

r ®)
where p is the fluid density, and u the fluid velocity.

MUSIC solves the equation set defined by eq. (8) using
an unpreconditioned Jacobian-free Newton Krylov method. The
same discretisation and solver settings as used for the core solver
are used for the passive scalar evolution with the exception of the
stopping criteria for the non-linear iterations. By default we do
not apply additional stopping constraints based on the passive
scalar to the non-linear iterations, instead relying on the conver-
gence of the fluid density alone. We take this approach to enable
us to exactly reproduce results with and without passive scalars
supplementing the main equations. We assess the accuracy of
our passive scalar implementation in Section 3]

This work shall only include cases where two scalars are
modelled. For stellar applications the number of species of inter-
est can take a larger value, therefore the implementation within
MUSIC was designed to have no restriction on the number of
passive scalars. As eq. (§) evolves mass fractions, there is no
guarantee ),;¢; = 1 is maintained. For this work we apply a
simple re-normalisation at the end of each time-step, but more
sophisticated approaches (e.g. Plewa & Miiller||1999) might be
required for other problems.

In the applications considered in this work the values of the
scalar concentrations do not influence the evolution of the hy-
drodynamical state defined by equations (I)-(3). For this reason
we refer to the scalars as “passive”. Eq. (8) may also be used to
describe the evolution of chemical compositions, which do influ-
ence the core hydrodynamical state. The solution method for this
situation is more complex; the scalar evolution can no longer be
decoupled, and instead equations (I)-(3)) and (8) must be solved
as a single system.

(20
P10

3. Rayleigh-Taylor instability
3.1. Problem Description

The Rayleigh-Taylor instability occurs when a dense fluid is ac-
celerated, for example by gravity, into a less dense fluid. This
instability occurs in a wide range of astrophysical applications
(e.g.Inogamov| (1999)). The instability has also been the subject
of multiple numerical studies (Jun et al.||{1995 [Dimonte et al.
2004), as well as for code validation, and comparison (e.g.|Liska
& Wendroft] (2003)). In this test we assess the ability of MUSIC
to model the two-dimensional Rayleigh-Taylor instability. We
study a single mode perturbation, provided as a standard exam-
ple proble for the ATHENA code (Gardiner & Stone/2005) and
assess the performance of MUSIC by comparison to ATHENAEI
The problem is similar to that of [Liska & Wendrofl| (2003) ex-
cept in this work the domain extends to the complete wavelength
of the perturbation, so that the entire mushroom is modelled. The
problem is calculated on a box defined by —0.25 < x < 0.25 and
—0.75 < y < 0.75. The aspect ratio of the box is chosen so that
the primary instability remains far from the boundaries for the
times considered. A constant gravitational acceleration of mag-
nitude g = 0.1 acts in the negative y-direction. The density is
given by,

if y > 0.0,

ify <00 ©)

The pressure is calculated by solving the equation of hydrostatic
equilibrium, and is given by

P=Py-pgy. (10)

where Py = 2.5. The equation of state is an ideal-gas law, with
v = 1.4. The Rayleigh-Taylor instability is sensitive to choices of
the initial perturbation (Ramaprabhu et al.|2005). The instability
may be seeded by either perturbing the interface, or the velocity.
In this work the instability is seeded through the velocity. The
velocity perturbation is given byﬂ

1 + cos 4
37ry .

We use dimensionless units, but we note the pressure scale height
varies between approximately 25.752 at the bottom of the do-
main and approximately 11.752 at the top. The linear growth rate
of the Rayleigh-Taylor instability depends on the gravitational
acceleration, and the dimensionless Atwood number which takes
a value of 1/3 in this case. To compare to more realistic values
for stellar cases, the scaling implied by the pressure scale height
(x0) and the gravitational acceleration (go) when combined with
a scaling for density (pg) provide a normalisation for the Euler
equations in the presence of external gravitational acceleration,
which is the system being described by this test case. Bound-
ary conditions in the vertical directions are calculated by lin-
early extrapolating the temperature. The density is then calcu-
lated according to the equation of hydrostatic equilibrium. Re-
flective and stress-free boundary conditions are applied to the ve-
locity components. Periodic boundary conditions are applied in
the horizontal directions. The evolution of the Rayleigh-Taylor
instability, particularly in the non-linear phase is strongly sen-
sitive to non-ideal effects (e.g. viscosity, |Cabot & Cook! (2006);

v, = 0.0025 [1 + cos (4mx)] an

! http://www.astro.princeton.edu/~jstone/Athena/tests

2 We use ATHENA version 4.2 available
https://trac.princeton.edu/Athena/wiki/AthenaDocsDownLd

3 Equation (TT) is taken from the ATHENA source code.

from
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Fig. 1: Evolution of mixing region width using the method of
Cabot and Cook (2006).

Lim et al.| (2010)). MUSIC includes no explicit viscosity, and
thus non-ideal effects enter only through errors introduced by the
numerical scheme. To aid comparison we run ATHENA without
including explicit viscosity. Late time evolution is influenced by
secondary Kelvin-Helmholtz instabilities. The break up of the
interface between the two fluids through secondary instabilities
is strongly dependent on the numerical scheme as discussed by
Liska & Wendroff| (2003). Comparisons between two codes run
without explicit viscosity must be performed with care, because
the growth rate of the primary instability, and the development
of secondary instabilities are both sensitive to the non-ideal ef-
fects caused by the truncation errors of the different numerical
schemes.

3.2. Mixing Region Width Calculation

We quantify the mixing in a given simulation by calculating a
mixing region width. By measuring the integrated amount of
mixing in a given region such a diagnostic should provide in-
sight into the effect the Rayleigh-Taylor instability could have
on a more complex physical system. Mixing of different chem-
ical species through the Rayleigh-Taylor instability could influ-
ence stellar structure, convective stability, and nuclear burning
rates by altering composition. A mixing width measures the ex-
tent to which the two initially separate species have been mixed.
This width is calculated by integrating the horizontally aver-
aged mixing fraction, which we use two methods to calculate.
The first is the method of |Cabot & Cook| (2006), developed
in the incompressible limit. The second method is to use pas-
sive scalars, which capture compressible effects. As discussed in
Miczek et al. (2015); |Guillard & Viozat|(1999), low Mach num-
ber flows, which typically occur in stellar interiors, approach the
incompressible limit. The Rayleigh-Taylor instability is a sub-
sonic phenomenon. For a grid size of 100 X 300 we obtain a
maximum Mach number of 0.2607 with MUSIC, and conse-
quently compressible effects are expected to be small. A com-
parison between the two methods of estimating mixing should
provide insight into the role compressible effects play in mixing
in the Rayleigh-Taylor instability.

Following |Cabot & Cook|(2006), the fraction of dense mate-
rial in a cell, Xy, is

P —PL
pu—pL’
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Xy = 12)

where p is the (volume averaged) density of a computational cell,
pu is the initial density of the heavy fluid (2.0 in this work), and
pL is the density of the light fluid (1.0). The fraction of mixed
fluid is

_[2Xu it Xu <0.5
X = {2(1 ~Xy) ifXy>05" (13)
The mixing region width is then defined as
+00
h= [ X, (14)

where (Xy) is the average fraction of dense material in a horizon-
tal layer. The Rayleigh-Taylor instability is also analysed using
two passive scalar fields, each evolved according to eq. (8). One
passive scalar marks the dense fluid, the other marks the lighter
fluid,

(1.0,0.0)
(0.0,1.0)

ify <0.0

ify>00" (15

(c1,02) = {

Passive scalars allow the calculation of the mixing region width
defined by eq. (T4) without the assumption of incompressibility.
In this case the mixing fraction is,
Xm = 2.0min(cy, cz). (16)
Having calculated the mixing fraction, the mixing width can
once again be calculated using eq. (I4).

As MUSIC is a time-implicit code, the time-step is not re-
stricted by the CFL condition. However, concerns over accuracy
and efficiency may provide practical limitations. Given the sensi-
tivity of the Rayleigh-Taylor instability, and to simplify compar-
ison to ATHENA we carry out MUSIC calculations with a fixed
value of CFLyyqr, = 0.8, which is the default value provided for
the ATHENA example. This choice does not take advantage of
the large time-step allowed by the time-implicit method imple-
mented within MUSIC, it is chosen to simplify comparison with
the ATHENA code.

3.3. Effect of Grid Size

We now study the effect of grid size on the evolution of the
the Rayleigh-Taylor instability. At early times, the evolution is
expected to be dominated by the initial perturbation. Any dif-
ferences in observed mixing region widths should be attributed
to failure to resolve the initial perturbation or changes in non-
ideal effects caused by varying the grid size. At later times, sec-
ondary instabilities can become more important. Liska & Wen-
droft| (2003) show that less dissipative codes experience a higher
rate of secondary instability, and a resulting break-up of the fluid
interface.

For this test we use the un-preconditioned JFNK time-
integration method in MUSIC to compare with results from the
ATHENA code. We carry out identical calculations using two
different two-dimensional grids. Grid sizes of 100 x 300 and
300 x 900 ensure the aspect ratio of the computational cells is
equal to 1.0. As the effective viscosity of an ILES calculation
depends on the truncation errors of the scheme, differences be-
tween results from different codes at a specific grid size should
be expected. However, as both MUSIC and ATHENA are spa-
tially second order codes each should experience similar be-
haviour with increasing grid size. At higher resolution, because
non-ideal effects become less significant, secondary instabilities
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Fig. 2: Final density plots for identical Rayleigh-Taylor calculations performed with (left) MUSIC and (right) ATHENA each with a

grid size of (300, 900).

should become more prevalent. The emergence and evolution of
secondary instabilities are not seeded by the initial conditions,
but through the truncation errors of a given scheme. Therefore
as the secondary instabilities grow differences between different
schemes may increase.

The evolution of the mixing region width, for MUSIC and
ATHENA using the method of [Cabot & Cook! (2006)) is shown in
Fig. [T} At early times the [Cabot & Cook| (2006) mixing region
width takes an un-physical negative value in both MUSIC and
ATHENA calculations. This is due to the effects of compressibil-
ity not being taken into account in this definition of the mixing
region width. The high and low grid size calculations with MU-
SIC diverge around ¢t = 12.0, whereas the two ATHENA calcu-
lations show more similar values. That MUSIC results show a
stronger dependence on grid size at later times may be indicative
of secondary instabilities playing a stronger role in the evolution
of the mixing. The influence of secondary instabilities may be
enhanced through the non-exact time integration within MUSIC.

Fig. 2] shows that calculations from both ATHENA and MU-
SIC perfectly maintain the symmetry present in the initial con-
ditions. This result demonstrates a physically important feature
of the GMRES algorithm: if the matrix vector products respect a
given physical symmetry, GMRES is able to produce an approxi-
mate solution to the linear problem which is also symmetric. The
JFNK method approximates matrix-vector products through the
evaluation of the non-linear residual of the full system. In order
to obtain a fully symmetric solution, the matrix-vector products
must be exactly symmetric. Given the non-associativity of float-

ing point arithmetic, care must be taken in the order of calcula-
tion:

It is also evident in Fig. [2| that the mixing in the MUSIC cal-
culation becomes asymmetric in the vertical direction; the dense
fluid penetrates further into the lighter fluid than the lighter fluid
does into the dense fluid. The ATHENA calculation remains more
symmetric in this respect. Such enhanced mixing in the lower
domain may be caused by the enhanced secondary instabilities
discussed previously.

In contrast to the agreement between the codes in the calcu-
lation of the mixing region width Fig. [2] shows significant dif-
ferences in the development of secondary instabilities. These
differences may be caused by differences in the initial condi-
tions, or by differences in the numerical technique applied. The
perturbation specified by eq. (TI) is identical in a continuous
sense, but the exact discrete form will differ between MUSIC
and ATHENA. ATHENA uses co-located variables, whereas MU-
SIC applies a staggered grid approach. The secondary instabil-
ities which dominate the differences between the two codes are
not seeded explicitly by the initial perturbation, and enter into
the initial conditions only through discretisation errors. Further-
more truncation errors can seed and enhance secondary instabil-
ities during the course of a simulation. In particular differences

4 We note that, in this respect codes written in C (or C++), such as
ATHENA, have an advantage over codes written in Fortran. The C and
C++ standards dictate compilers must respect the order of calculations,
whereas Fortran codes are only restricted by order implied by paren-
theses. Furthermore, not all Fortran compilers (e.g. Intel) follow this
restriction by default. For example, see the discussion in|Corden & Kre-
1tzer| (2009).
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Fig. 3: Evolution of mixing region width using passive scalars.

between the spatial reconstruction methods used by MUSIC and
ATHENA will compound differences between the two results.
That MUSIC and ATHENA obtain similar mixing region widths
despite these differences it should be concluded that for the times
considered the primary instability dominates mixing.

In addition to verifying the core hydrodynamic method with
MUSIC we also use the Rayleigh-Taylor instability to test the
implementation of the passive scalars discussed within Subsec-
tion [2.2] We investigate the impact of not enforcing the non-
linear convergence of the passive scalars. To this end we com-
pare two calculations: firstly a calculation where the passive
scalars are not accounted for in the non-linear convergence, and
secondly a calculation where we require the corrections to the
passive scalars to converge to the same level of accuracy as the
primary variables. We compare differences in the measured mix-
ing region width calculated using the volume fractions of the
passive scalars. No assumption of incompressibility is made; the
passive scalars act as a dye to measure the amount of mixing
within each grid cell. We do not observe any significant changes
in the mixing region width between the two calculations, but we
do note that by enforcing non-linear convergence of the passive
scalars the run-time increases by approximately 10%. In all fur-
ther calculations we do not enforce the convergence of the pas-
sive scalars, but we stress that such an approach should be as-
sessed for a given application.

ATHENA can also, optionally, evolve passive scalars. We
now compare results obtained using passive scalars in MUSIC,
to those obtained with ATHENA. The passive scalars evolved by
MUSIC and ATHENA also maintain the symmetry of the solu-
tion exactly. Fig. [3|compares the mixing region widths calculated
using passive scalars. In all cases the mixing region width cal-
culated using passive scalars is larger than that observed using
the fluid density, suggesting that the assumption of incompress-
ibility systematically underestimates mixing in the case consid-
ered here. The un-physical, early time negative mixing region
width observed with the |(Cabot & Cook] (2006) method is not ob-
served in the scalar measurements. For both sets of calculations
the mixing region width calculated using passive scalars is larger
than that using the method of |Cabot & Cook! (2006)) indicating
that the assumption of incompressibility systematically underes-
timates mixing in this case. Furthermore we can conclude that
compressible effects are comparable in the calculations of MU-
SIC and ATHENA.

Two methods of estimating Rayleigh-Taylor induced mixing
have been compared using the MUSIC and ATHENA codes. Dif-
ferences are expected because both codes were used as ILES
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codes. The MUSIC code appears more sensitive to secondary in-
stabilities. Despite this stronger sensitivity, in both cases a sys-
tematic under estimate of mixing is seen when using the method
of |(Cabot & Cook] (2006) under the assumption of incompress-
ibility.

4. Kelvin-Helmholtz instability
4.1. Problem Description

The Kelvin-Helmbholtz instability has been invoked to explain
mixing in novae explosions (Casanova et al.|[2011) as well as
vertical mixing in stellar interiors due to differential rotation
(Briiggen & Hillebrandt|[2001). Test problems for the instability
exist in many forms (Wang et al.|2010; |Agertz et al.[2007), here
we investigate the test case presented by McNally et al.[(2012).

McNally et al.|(2012) present a set of initial conditions that
does not contain sharp discontinuities. Additionally a reference
solution, calculated using the PENCIL code (Brandenburg &
Dobler|2001; Lyra et al. ZOOSE] was provided, in terms of a peak
kinetic energy, and the mode amplitude, or a resolution of 4096°.
The uncertainty in the solution provided was calculated using
Richardson extrapolation (Roache)|1998| [1994)).

We calculate the mode amplitude and peak kinetic energy
for a series of MUSIC simulations that use different grid sizes
(Fig. [d). The peak kinetic energy appears to match the solution
of McNally et al.| (2012)) for grid sizes greater than 5122 while
the value obtained for the mode amplitude shows good corre-
spondence with the reference solution for grid sizes greater than
2562, McNally et al.|(2012) calculated both the peak kinetic en-
ergy and the mode amplitude using a selection of grid based and
meshless codes. For the grid based codes, McNally et al.| (2012)
also showed a smaller error for the mode amplitude compared to
that of the peak kinetic energy, at a given grid size.

As in the case of the Rayleigh-Taylor instability, the Kelvin-
Helmholtz instability is sensitive to non-ideal effects. In a recent
work [Lecoanet et al.| (2016) considered the possibility of defin-
ing an effective Reynolds number for Kelvin-Helmholtz instabil-
ities calculated with differing grid size in the ILES framework.
The attribution of an effective Reynolds number was successful
for cases without a density contrast. Using the ATHENA code,
Lecoanet et al.|(2016) were able to find a good match between
cases with and without explicit viscosity and attribute this to
an approximate increase in Reynolds number with an increase
in grid size. The comparison was inconclusive for cases with a
density contrast such as the case considered here. For all cases,
an increase in grid size corresponds to a decrease in non-ideal
effects, but defining an effective Reynolds number is problem
dependent, and is not always possible. Care should be taken in
interpreting the convergence of such simulations.

4.2. Effect of Grid Size

We consider the convergence of the velocity field for the Kelvin-
Helmholtz instability. We study the behaviour of the vertical
velocity component with grid size. The spatial discretisation in
MUSIC varies between first and second order, due to the appli-
cation of a gradient limiter. Therefore, for a problem dominated
by discontinuities, the convergence of the scheme should be first
order, whereas for a smooth solution one should expect the solu-
tion to converge at second order.

3> Available from http://pencil-code.nordita.org/
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Fig. 4: Evolution of the mode amplitude and peak vertical kinetic energy for the Kelvin-Helmholtz instability. The [McNally et al.

(2012) solution is shown as a black line. Units are dimensionless.
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Fig. 5: Relative error, as defined by eq. (I7)), in the vertical veloc-
ity component for the Kelvin-Helmholtz test for different num-
bers of grid points in the x-direction. In all calculations Ny = N,.
Dashed lines indicate regions where second and first order con-
vergence is observed.

In the absence of an analytic solution for the velocity field we
calculate errors with respect to the highest grid size solution we
obtain, 40962. This does favourably bias the solution produced
by MUSIC, in effect it will mask any systematic error in the so-
lution. We rule out the presence of a systematic error, based on
the ability of MUSIC to reproduce the peak kinetic energy and
the mode amplitude provided by McNally et al.| (2012), and re-
produced by several codes in the same study. In the absence of
a systematic error, such a study provides an insight and mea-
sure of how the error reduces with increasing grid size. In order

to calculate the relative error at each grid size we coarsen the
high grid size solution to the lower grid size using a volume av-
eraging approach, following the method of [Toth| (2000). Such
an approach is consistent with the finite volume formulation of
MUSIC. Having coarsened the high grid size data we calculate
the relative absolute value defined as,

low _  high
y ~ Uy

2

€ =

v

— (17)
vl;igh

2

where vly"w is the low grid size data, and v;"gh is the coarsened
high grid size data. Summations are carried out over all grid
cells. We plot the variation of this error with grid size in Fig. 5]
At low grid sizes the error converges with approximately sec-
ond order with respect to the grid spacing as expected. As grid
size increases (beyond 256) the convergence tends towards first
order. This indicates that the error is dominated by regions in
which the solution is discontinuous, causing the spatial scheme
to switch to first order. The density at # = 1.5 is shown in Fig.[q]
for grid sizes of 64> and 20482, In the 64 case the interface
between the layers of different density is smeared across several
grid cells, whereas it remains sharper in the 20482 case. By com-
paring Fig.[6]and Fig.[7it is clear the error is concentrated around
the region of the density jump. Such a localisation in error was
also shown in Figs. 5 and 6 of [ McNally et al.|(2012).

We have demonstrated the ability of the MUSIC code to
reproduce key diagnostics of the Kelvin-Helmholtz instability
compared with those reported by McNally et al.| (2012)). Al-
though MUSIC does not include explicit viscous terms, we have
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also demonstrated a reduction in error for the velocity field con-
sistent with the numerical methods applied.

5. Decay of the Taylor-Green vortex
5.1. Problem Description

The decay of the Taylor-Green vortex (Taylor & Green||1937)
has been used as a benchmark for the modelling of turbulent de-
cay in multiple studies. We follow the study of [Drikakis et al.
(2007) (from here on referred to as “DFGY2007”) which as-
sesses the ability of the Monotone Implicit Large Eddy Simula-
tion (MILES) method to reproduce features of vortex decay ob-
served when studying the problem with conventional Large Eddy
Simulation (LES) and Direct Numerical Simulations (DNS). We
do not explicitly attempt to assess the validity of the MILES
paradigm, as numerous works on this topic already exist, we sim-
ply compare MUSIC to established MILES calculations. This
provides an opportunity to investigate the ability of the spatial
discretisation in MUSIC to perform as a MILES code. We assess
any possible side-effects the time-implicit method has on MILES
calculations.
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The initial conditions of the Taylor-Green vortex are given
by

uy(X,y,2) = g Sin X cOS y COS Z, (18)
uy(X,Y,2) = —utp COS X siny cos z, (19)
u(x,y,z) = 0. (20)

The domain has an arbitrary uniform density of py = 1.0. The
initial pressure field is

1
p(x,y,2) = po + —p0u3(2 + cos 2z)(cos 2x + cos 2y).

16 @h

The domain is a cube with edge lengths of 27, and boundary
conditions are periodic in all directions. As in DFGY2007 di-
mensionless units are used.

In a previous study with MUSIC (Viallet et al. 2016) ug
was fixed to 1.0, and py was adjusted to simulate the decay of
the Taylor-Green vortex for a range of Mach numbers, 10! <
M, < 107°. However in this work, we adjust p so that the initial
peak Mach number is M; = 0.28, as in DFGY2007. Therefore,
in addition to verifying MUSIC through comparison to a range
of ILES, conventional LES, and DNS simulations, we can also
investigate possible compressive effects through comparison to
Viallet et al.| (2016]).
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5.2. Effect of Time Step

Within ILES calculations the dissipation of kinetic energy occurs
through the truncation errors of the scheme. We first investigate
the ability of MUSIC to reproduce kinetic energy evolution for
different limits on the adaptive time-step. We carry out three cal-
culations, at a grid size of 256°. In the first calculation we fix the
CFLjyaro = 0.05 (“TGV0.05”). In the remaining two runs, we
impose limits on the hydrodynamical CFL number, defined in
eq. (®), limiting CFLuygro < 10 (“TGV10”), and CFLhyaro < 50
(“TGVS507”). We show the evolution of the kinetic energy (nor-
malised to its initial value) in Fig. [8] For early times the kinetic
energy for all three simulations is very similar.

A decay of +"!2 of the kinetic energy is predicted by
Saffman’s law (Saffman|1967) for homogeneous high Reynolds
number turbulence. [Skrbek & Stalp| (2000) interpret decays
faster than =12 as being caused by viscous corrections to the
high Reynolds number result. At later times the finite-size of the
domain results in a quadratic decay of kinetic energy , as dis-
cussed by |[Lesieur & Ossia (2000). Such a decay has also been
observed experimentally by |Stalp et al.|(1999).

We fit power-law decays for the kinetic energy in MUSIC
calculations for two time periods. The first spans to 8.4 < ¢ < 10.
This covers the time from the peak dissipation rate shown in
Fig[9 and the point at which the decay takes on a steady, steeper
decay. Power-law decays are also fit for the period 7 > 10. Both
sets of values are recorded in Table |1} For the fits to the early
(8.4 < r < 10) time we find a values between the high and low
Reynolds number predictions from Saffman’s law, indicating the
calculations are in neither extreme regime.

All calculations show similar evolution, up until ¢ = 20, at
which point the calculation with the least restrictive time-step
constraints (TGV50) shows a slightly increased rate of dissipa-
tion. The TGV10 case matches the fixed time-step calculation
until approximately ¢+ = 25 at which point it too shows a slight
increase in dissipation rate when compared to the fixed CFL
number calculation. At later times the TGV50 and TGV 10 cal-
culations show similar kinetic energy, both slightly less than the
fixed CFL number calculation. All three data sets show decays
slightly slower than 2. These results can be compared to Fig.
5 of DFGY2007. This shows four ILES and three LES schemes
producing an approximate decay of kinetic energy as 2. All
schemes shown in DFGY2007 show fluctuations around the =2
decay, indeed the differences seen in the three sets of calcula-
tions using MUSIC appear smaller than those observed between
different ILES schemes in DFGY2007.

5.3. Effect of Grid Size

We now investigate the evolution of the kinetic energy in de-
tail. We carry out a series of calculations at grid sizes of 643,
1283, 2563 and 5123, until r = 20. We carry out these calcula-
tions with CFLpyaro < 10. This choice of time-step restriction
is chosen so that the kinetic energy is converged with respect
to the time-step, and results in a shorter run-time than the other
choices considered. We explicitly calculate the rate of change
of kinetic energy density (K = %pvz)for each grid size at each
time-step. We first compare the 64° calculation shown in Fig. E]
with those shown in Fig. 4 of [Viallet et al.| (2016). Viallet et al.
(2016) show that MUSIC is able to produce consistent results
for a range of Mach numbers, 107" < M, < 107°. However
results presented here show fluctuations around the profile pre-
sented in|Viallet et al.|(2016)). As these fluctuations only manifest
in MUSIC simulations with M, > 10! they are likely a result of

1.0 T~

S 05
N
- TGVO0.05
0.011{| e=—e TGV10
= -0 TGV50
12.5 25 50 75 100

Time

Fig. 8: Evolution of the volume averaged, normalised kinetic en-
ergy in Taylor-Green vortex simulations. The three simulations
shown are identical except for the limitation on the time-step
based on the hydrodynamic CFL number. The black dashed line
shows a 12 decay.

Table 1: Power law decay constants fitted to the observed kinetic
energy from 256° Taylor-Green vortex calculations. Errors cor-
respond to 0.

Run Name Decay Constant
(8.4 <1t<10.0)
1.26 +£0.01
1.27 £0.02

1.28 £ 0.05

Decay Constant
(> 10.0)
1.828 +0.002
1.865 + 0.004
1.92 +0.01

TGV0.05
TGV10
TGV50

0.016

0.014
0.012
0.010

0.008

dK/dt

0.006
0.004
0.002

0.000

—0.002
0

Fig. 9: Decay rate of the Taylor-Green vortex, for different grid
sizes.

acoustic fluctuations. Similar fluctuations are also present in Fig.
2(e) of DFGY2007. They are not present in the incompressible
conventional LES calculations presented in DFGY2007.

In ILES calculations non-ideal effects should become less
influential with increased grid size. Therefore as the grid size is
increased in ILES calculations the solution should tend towards
higher Reynolds number results from conventional DNS calcula-
tions. We initially compare the evolution of kinetic energy from
MUSIC with Fig. 2(a) of DFGY2007, which shows results from
the DNS calculations of Brachet et al.|(1983)). The peak dissipa-
tion is observed around ¢ = 9 for all MUSIC calculations. This is
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also seen in all DNS calculations shown in DFGY2007, except
the lowest Reynolds number, Re = 400, which shows a broad
peak, from around ¢ = 6 to t = 9. Such a period of high dissipa-
tion is also observed in the lowest grid size MUSIC simulation
643, albeit with an additional peak at approximately ¢ = 9.

Two general patterns of behaviour can be observed with in-
creasing grid size in Fig. [9] Firstly, the initial high rate of dissi-
pation around ¢ = 5 quickly reduces with increasing grid size.
This is observed both in the DNS calculations of [Brachet et al.
(1983)), as well as in the MILES calculations shown in figure 2(e)
of DFGY2007. Additionally, the maximum dissipation observed
at t = 9 increases with increasing grid size. A similar pattern
is seen with increasing Reynolds number for DNS calculations.
The peak value of dissipation in the 512° MUSIC calculations
appears comparable to that observed in DNS calculations with
Reynolds numbers of 3000 and 5000.

Finally we note the double peak feature in the dissipation
rate, seen for both 128> and 256° grid sizes in MUSIC calcula-
tions. Such a double peak is also apparent in the 1283 MILES
calculations of Fig. 3 in DFGY2007 (calculated using the TUR-
MOIL3D code, [Youngs| (1991)), but not other MILES calcula-
tions. DFGY2007 suggest that such a double peak feature could
be produced by more dispersive numerical schemes. However,
DFGY?2007 do not show whether this peak is present in other
calculations using TURMOIL3D, so further comparison is not
possible.

We have demonstrated not only the capability of MUSIC to
reproduce features of the decay of the Taylor-Green vortex seen
in other ILES calculations, but also that an increase in grid size
reproduces the same qualitative changes in dissipation seen in
DNS calculations of increasing grid size. We stress that this work
is not in itself a verification of the ILES paradigm. We do show
that whilst an increase in the computational time-step does re-
sult in fluctuations of the observed kinetic energy, the range of
these fluctuations is within the range observed for differing ILES
schemes.

6. Hydrostatic equilibrium under realistic stellar
conditions

We perform a final test based on hydrostatic equilibrium under
realistic stellar conditions. The MUSIC code is primarily de-
voted to studying fluid processes in stellar interiors on timescales
where hydrostatic equilibrium prevails. It is thus crucial to verify
the ability of the code to converge towards a state of hydrostatic
equilibrium in a multi-dimensional configuration. As MUSIC
uses a staggered grid, a balance between the pressure gradient
and the gravitational forces should be obtainable without resort-
ing to more specialised methods, for example a well-balanced
technique (e.g. |[Kéappeli & Mishral (2016)) as used in codes with
co-located variables.

The stellar model selected for this test is a 20 Mg Main
Sequence star with zero metallicity calculated with the Lyon
one-dimensional (1D) stellar evolution code (Baraffe & El Eid
1991; |Baraffe et al. [1998). The 1D model used as an initial
setup for the present test is characterised by a surface luminos-
ity L ~ 1.9- 10% ergs™ (~ 5-10* Lo, radius R ~ 1.9R and
effective temperature Teg ~ 6.2 - 10*K. It is in thermal equi-
librium, meaning that the nuclear energy production in the cen-
tral regions counterbalances the energy loss at the surface. We
chose this model because of its simple interior structure, with a
convective core and a radiative envelope. Due to the absence of
metals in the envelope this model exhibits low radiative opaci-
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ties in the outer layers. Consequently convection is not able to
develop close to the stellar surface, and we are able to choose a
fully radiative portion of the stellar envelope for our numerical
domain.

The test is performed in two-dimensional spherical geome-
try (with azimuthal symmetry) that considers only a small por-
tion of the radiative envelope. In order to obtain rapid conver-
gence whilst using large CFL numbers, we avoid the region very
close to the surface characterised by steep temperature and den-
sity gradients (see Fig. [I0). We use a grid size of 120 x 120.
The radial grid has a fixed radial spacing and is defined between
0.96R and 0.99R. In the angular direction, the grid covers the
region 50° < 6 < 55°.

Periodic boundary conditions in the angular direction are
used. The boundary conditions at the radial extent of the domain
are reflective for the radial velocity component, and stress-free
for the tangential component. The inner and outer radial bound-
ary conditions on the energy flux assume the constant luminosity
given by the 1D initial model. The inner and outer radial bound-
ary conditions for the density are based on the assumption of hy-
drostatic equilibrium (see Eq. (5) of Pratt, J. et al.[2016)). |Pratt, J.
et al.|(2016) tested various boundary conditions and this set pro-
vides the best convergence toward hydrostatic equilibrium mea-
sured by the maximum velocity magnitude obtained at the end
of the simulation.

The model requires some time to relax toward very low ve-
locity magnitudes that characterise the state of hydrostatic equi-
librium. This is illustrated in Fig. by the evolution of the
total kinetic energy contained in the numerical domain. After
10%s, the highest velocity magnitude within the domain remains
around ~ 7-1073cms~!. This low velocity corresponds to a Mach
number of ~ 107", The minimum value for the velocity magni-
tude is around ~ 8 - 107 %cm !,

The most severe constraint on the timestep during the relax-
ation process is imposed by the radiative CFL number, defined
by eq. (7). This stems from the combination of high temperature,
low density and low opacity in the stellar model, resulting in
very high radiative diffusivity D,g = x/(ocp) o« T3 /(kp?), with
cp the specific heat at constant pressure and the other quantities
defined in eq. (@). We limit the radiative CFL number to 500 to
reduce the number of non-linear iterations and to obtain the best
performance of our solver. The preconditioner within MUSIC is
designed to target the physics which is restricting convergence.
Due to the level of thermal diffusion in this problem it is neces-
sary to apply the form of the physics based preconditioner which
treats thermal diffusion implicitly. Without targeting the thermal
diffusion with the preconditioner, the convergence of the linear
system fails. The large time-step facilitated by the application of
this preconditioner allows the structure to settle towards equilib-
rium efficiently, without the need of explicit damping. We have
not tried to fine-tune the parameters of our solver (see [Viallet
et al.|[2016) to reach lower velocities. We consider these results
and the convergence toward a hydrostatic equilibrium state as
satisfactory given the extremely low Mach numbers reached at
the end of the relaxation process.

7. Conclusion

This work builds on previous descriptions of the MUSIC code
by providing a series of non-linear, multi-dimensional tests. In a
model of the Rayleigh-Taylor instability MUSIC produces com-
parable mixing layer widths to the well established ATHENA
code. The test was additionally used to assess the new implemen-
tation of passive scalars within MUSIC. The Kelvin-Helmholtz
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Fig. 10: Radial profiles from the 1D model of the temperature (in
units of 10°K), density (in units of 10-°g cm~) and sound speed
(in units of 10’cm s™!) in the outer radiative envelope of a 20 Mg
star with zero metallicity. R is the total stellar radius.
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Fig. 11: Evolution of the total kinetic energy Eyi, (in ergs) dur-
ing the relaxation process toward hydrostatic equilibrium in the
stellar model. Time ¢ is in seconds.

test of McNally et al.| (2012) provides reference solutions for
peak kinetic energy, and the mode amplitude, which are both
reproducible using the MUSIC code. Furthermore the variable
nature of the convergence of the velocity field for this test prob-
lem is examined. Like many other astrophysical codes MUSIC
does not include explicit viscous terms. Using the Taylor-Green
vortex the ability of MUSIC to reproduce features of established
ILES codes, and conventional LES codes is shown, as well as
observations suggesting an increasing effective Reynolds num-
ber with increasing grid size. Finally, MUSIC converges towards
the hydrostatic equilibrium within a radiatively dominated por-
tion of a star, in an efficient manner through the application of a
preconditioning technique adapted to such a problem.

Whilst this work aims to increase confidence in MUSIC cal-
culations, we intend it to be of general use as the basis of a code
comparison test suite for hydrodynamics. Such a benchmarking
exercise provides confidence and credibility to simulations. This
work concludes the development of the hydrodynamical core of
MUSIC. Future work will focus on applications to stellar interi-
ors, such as convective overshooting and shear-driven mixing.
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