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Abstract

Macroscopic models of brain networks typically incorporate assumptions regard-

ing the characteristics of afferent noise, which is used to represent input from

distal brain regions or ongoing fluctuations in non-modelled parts of the brain.

Such inputs are often modelled by Gaussian white noise which has a flat power

spectrum. In contrast, macroscopic fluctuations in the brain typically follow

a 1/f b spectrum. It is therefore important to understand the effect on brain

dynamics of deviations from the assumption of white noise. In particular, we

wish to understand the role that noise might play in eliciting aberrant rhythms

in the epileptic brain.

To address this question we study the response of a neural mass model to

driving by stochastic, temporally correlated input. We characterise the model

in terms of whether it generates “healthy” or “epileptiform” dynamics and ob-

serve which of these dynamics predominate under different choices of temporal

correlation and amplitude of an Ornstein-Uhlenbeck process. We find that cer-

tain temporal correlations are prone to eliciting epileptiform dynamics, and

that these correlations produce noise with maximal power in the δ and θ bands.
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Crucially, these are rhythms that are found to be enhanced prior to seizures

in humans and animal models of epilepsy. In order to understand why these

rhythms can generate epileptiform dynamics, we analyse the response of the

model to sinusoidal driving and explain how the bifurcation structure of the

model gives rise to these findings. Our results provide insight into how ongo-

ing fluctuations in brain dynamics can facilitate the onset and propagation of

epileptiform rhythms in brain networks. Furthermore, we highlight the need to

combine large-scale models with noise of a variety of different types in order to

understand brain (dys-)function.

Keywords: Epilepsy, Ictogenesis, Neural Mass Models, Jansen-Rit Model,

Nonlinear Dynamics, Stochastic Effects, Ornstein-Uhlenbeck Noise.

1. Introduction

Epilepsy is a prevalent neurological disorder characterised by the recurrence

of spontaneous seizures. Seizures predominantly arise amidst a backdrop of

otherwise healthy brain activity and are often accompanied by salient changes in

electrographic activity as measured, for example, on the electroencephalogram5

(EEG). There is much we do not understand about why seizures occur, and

contributing factors exist across multiple temporal and spatial scales [1, 2].

Here we focus upon a large spatial scale of interconnected brain regions since

this is the scale at which clinical signs and symptoms emerge, and clinical data

are most often recorded. At this scale, deficits can be observed both in the10

dynamics of brain regions [3, 4] and the connections between brain regions [5].

Thus recent focus has been placed on the role that large-scale brain networks

play in epilepsy [6, 7, 8, 9]. A fundamental, unanswered question in this context

is how seizures emerge and spread in such networks [10, 11, 12, 13, 14, 15].

Understanding seizures as emergent dynamics in brain networks is a chal-15

lenging endeavour. However, mathematical models of brain dynamics can be

used to study the mechanisms underlying the generation of seizures [16, 1, 2].

Previous work has focused on the types of dynamics that could underpin tran-
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sitions from healthy EEG to seizure EEG, such as changes in model parameters

(bifurcations), co-existence of healthy and abnormal states (bistability) or more20

complex spatiotemporal dynamics [17, 18, 19, 10, 20, 21, 22]. The bifurcation

route into seizures relies on a (relatively) slow time scale change in the brain that

drives it into an alternate (pathological) state, whereas the bistability paradigm

relies on a (fast) perturbation-induced transition from the healthy to patholog-

ical state. However, any of these scenarios can be assumed to occur amidst a25

backdrop of ongoing brain dynamics, which could additionally influence transi-

tions into seizures.

Modelling studies of seizure onset typically lump the “background” dynam-

ics of the brain into stochastic fluctuations. These fluctuations have most of-

ten been assumed to have a flat power spectrum (i.e. Gaussian white noise)30

[23, 24, 25, 26, 27, 12, 28], which can be motivated by the assumption that

ongoing activity of the brain is so complex that no single frequency dominates.

However, analysis of spectra of brain signals (for example scalp EEG) reveals on-

going brain dynamics to be characterised by a 1/f b relationship [29], with promi-

nent frequencies appearing concomitantly with different brain states [30, 29, 31].35

In the epileptic brain, abnormal (“epileptiform”) rhythms such as spikes or slow

waves can also be present, even during interictal periods [32, 33]. In particular,

in humans an increase of power in the delta band has been observed in MEG

[34] and EEG [35] recordings preceding absence seizures and pathological slow

rhythms can be observed in interictal or preictal periods associated with focal40

epilepsies [32, 36, 37]. In animal models of epilepsy, electrophysiological record-

ings performed in the preictal phase have revealed an increase of power in the

delta [38], and delta and theta [39] bands.

We therefore need to better understand the response of neuronal populations

to afferent rhythms and stochastic fluctuations with a variety of dynamics, in-45

cluding those that can be approximated by noise yielding a realistic 1/f b power

spectrum, and those that contain dominant rhythms observed in the epilep-

tic brain. A natural choice for the generation of such noise is the Ornstein-

Uhlenbeck (OU) process, which exhibits a Lorentzian power spectrum. The
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spectral distribution in the OU process can be tuned through temporal cor-50

relations (i.e. “colour”) of the resulting noise, therefore modelling alternative

spectral compositions. OU noise has also been associated with the integration

of background synaptic activity acting upon a neuron [40]. Recent studies of

OU processes driving neural models have investigated the effects of coloured

noise on temporal distributions of neuronal spiking [41, 42] and the generation55

of multimodal patterns of alpha activity [43]. In addition, networks of spiking

neurons [44] and of neuronal populations [45] have been shown to generate re-

alistic 1/f b-like spectra when driven by OU noise, or more complex dynamics

when subjected to driving at specific frequencies [46, 47]. However, we lack an

understanding of the ways in which non-white noise or rhythmic perturbations60

interact with neuronal populations to produce epileptiform dynamics.

Here, we study the effect of temporally correlated noise and rhythmic driving

on the generation of epileptiform dynamics. Our starting point is a neural mass

model that represents canonical interactions between populations of neurons in a

region of brain tissue. Such models have been shown to be capable of generating65

pathological spiking dynamics reminiscent of seizure activity [48, 49, 50, 51]. We

classify the dynamics of this model by assessing variations of the signal around

its time-averaged value, thus distinguishing between “healthy” and epileptiform

dynamics. We then study the response of the system to prototypical coloured

noise (an OU process) and identify an interval of temporal correlations for which70

noise can more readily elicit epileptiform dynamics. We show that this region is

bounded on the one hand by noise intensity being insufficient to generate spikes,

and on the other by bursting and transitions to an alternative rhythmic state,

previously used to model healthy dynamics (the alpha rhythm). Analysing

the spectrum of noise in this interval reveals it to contain high power in low75

(2-8 Hz) frequencies. In order to understand why such frequencies can drive

epileptiform rhythms, we study periodic perturbations in a deterministic version

of the model. Our analysis shows that driving the deterministic model using

frequencies in this band causes epileptiform dynamics to predominate. We show

how consideration of the bifurcation structure of the model can shed light on80
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these observations, which in turn highlight the need to consider a fuller analysis

of the repertoire of dynamics in the model beyond the genesis of epileptiform

rhythms. Our findings elucidate potential mechanisms by which healthy or

epileptiform rhythms present in certain regions of the brain can cause the onset

of aberrant dynamics in connected regions.85

2. Materials and methods

2.1. Jansen and Rit model

In order to study the dynamics of regions of brain tissue, we use a neural

mass model of a canonical circuit of interacting neuronal populations [48, 49].

The populations considered are pyramidal neurons, excitatory interneurons and90

inhibitory interneurons. The dynamics of these populations is governed by a

linear transformation that converts presynaptic spiking activity to changes in

postsynaptic membrane potential (PSP) and a nonlinear transformation of net

membrane potential to an efferent firing rate.

The linear transformation is given by the following convolution:

y(t) =

∫ t

−∞
h(t′)sin(t− t′)dt′, (1)

where sin(t) is the spike rate of activity afferent to the population, y(t) gives the95

dynamics of the PSP, and h(t) describes the way in which membrane potentials

respond to an activating impulse. h(t) equals zero for t < 0 and otherwise is

given for excitatory and inhibitory connections with the following equations:

he(t) = Aate−at, (2)

hi(t) = Bbte−bt, (3)

where A and B are the maximum excitatory and inhibitory PSPs, respectively,

and a and b are time constants of these responses. They follow from lumped con-100

tributions of all dilatory effects that include synaptic kinetics, dendritic signal

propagation and leak currents [52, 53, 54, 55, 23].
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Eq. 1 can be rewritten, using Eq.2, as a second order ordinary differential

equation (ODE):

d2y(t)

dt2
+ 2a

dy(t)

dt
+ a2y(t) = Aa · sin(t), (4)

Similarly, by using Eq. 3 one can find a corresponding representation for in-105

hibitory population dynamics.

Conversion of net membrane potential to efferent spiking is given by the

following sigmoid function:

sout(y) = Sigm(y) =
2e0

1 + er(ν0−y)
, (5)

where sout(y) is a firing rate of a spike train outgoing from the population, y

is its momentary total PSP (in general, time dependent), 2e0 is the maximum

firing rate, ν0 is the PSP for which half maximum of the firing rate is reached,

and r determines steepness (and thus nonlinearity) of this transformation.110

The two described transformations allow to model circuits of interconnected

neuronal populations. A circuit corresponding to a Jansen-Rit model of a cor-

tical column is shown in black in Fig. 1.

The equations above lead to a full description of circuit dynamics (Fig. 1)

as follows:115

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ÿ0(t) + 2aẏ0(t) + a2y0(t) = Aa Sigm[y1(t)− y2(t)]

ÿ1(t) + 2aẏ1(t) + a2y1(t) = Aa{Iex(t) + C2 Sigm[C1y0(t)]}
ÿ2(t) + 2bẏ2(t) + b2y2(t) = Bb{C4 Sigm[C3y0(t)]}

(6)

(7)

(8)

where y0 is proportional to excitatory PSPs induced on both populations of

interneurons, y1 is a net excitatory PSP induced on the population of pyramidal

neurons and y2 is an inhibitory PSP on this population. Subsequently y1 − y2

is the resultant PSP on this population, which following previous studies is

assumed to be proportional to the measured EEG. We set parameters of the120

neural mass model to typically used values as given in [49]: e0 = 2.5 s−1,
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Figure 1: A scheme of the Jansen-Rit model of a cortical column that comprises three neu-

ronal populations. A population of pyramidal neurons is marked with green, and populations

of excitatory and inhibitory interneurons with blue and red, respectively. Somata are de-

picted with the triangle, hexagon and circle. Continuous lines stand for dendritic processing

and dashed ones for axonal processing. A dot means multiplication and a star operator de-

notes convolution. Cyan indicates lumped external input from sub-cortical and cortico-cortical

structures. The black circuit depicts an analytic description of the underlying structure of a

cortical column. See text for details.
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v0 = 6 mV, r = 0.56 mV−1, A = 3.25 mV, B = 22 mV, a = 100 s−1, b = 50 s−1,

C1 = 135, C2 = 108, C3 = C4 = 33.75.

2.2. Driving of the model

Iex(t) in Eq. 7 represents external input to the microcircuit, lumping together125

cortico-cortical and sub-cortical afferents. The effect of Iex(t) on the dynamics

of the model is the focus of our study. Previous studies have sought to under-

stand the dynamics of the model by examining the effect of Iex as a bifurcation

parameter and found certain values of this parameter to lead to epileptiform

spiking [49, 51, 46, 27]. In Fig. 2 we recreate with XPPAUT [56] the results130

of [51], illustrating the invariant sets of the model that exist for different, time

invariant values of Iex. To ease subsequent interpretations of dynamics invoked

by different choices of temporally varying Iex(t), we briefly review the different

dynamic regimes that are possible in this model. Although in Fig. 2 we plot

a range of Iex that includes negative values (region I in Fig. 2), we focus on135

positive values of Iex, since only these are biologically plausible. The regime

marked II in Fig. 2 spans for −12.15 s−1 < p < 89.83 s−1. It is a bistable

regime that contains two stable fixed points: a node (blue) and a focus (cyan).

At p = 89.83 s−1 the focus transitions to a limit cycle (green) in a supercriti-

cal Hopf bifurcation. This limit cycle has its characteristic frequency close to140

10 Hz, and has therefore previously been used to model the alpha rhythm of the

brain (henceforth referred to as “alpha limit cycle”). The regime marked III is

also bistable, however here the two stable solutions are the node (blue) and the

alpha limit cycle (green). At p = 113.58 s−1 the stable node ceases to exist in

a saddle-node on invariant circle (SNIC) bifurcation that creates a limit cycle145

reminiscent of epileptiform spikes, henceforth referred to as “epileptiform limit

cycle” (continuous red line, Fig. 2). The frequency of this limit cycle ranges

from 0 Hz at its creation to ∼ 5 Hz at its termination point. Region IV in Fig. 2

denotes a bistable regime in which the epileptiform limit cycle coexists with the

alpha limit cycle. Regime V starts at p = 137.38 s−1, where the epileptiform150

limit cycle vanishes in a fold of limit cycles. In regime V the alpha limit cycle
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Figure 2: Bifurcation diagram of the Jansen-Rit model defined in Eqs 6-8. Parameters of the

model were set to biologically plausible values proposed in [49]. The X axis shows external,

constant input to the pyramidal population Iex = p. The Y axis shows net postsynaptic

potential on this population: y1 − y2. Continuous (dashed) lines represent stable (unstable)

solutions. Cyan and blue denote a node and a focus, respectively, and green and red indicate

alpha and epileptiform limit cycles, respectively. Vertical, grey dotted lines divide the diagram

to six regimes (denoted by roman numerals) of qualitatively distinct dynamical properties.

See text for details.

is the only stable solution. It ceases to exist in a supercritical Hopf bifurcation

at p = 315.70 s−1, where the last regime, marked with VI, starts. The focus

(cyan) remains the only stable solution there.

Here we focus on the dynamics of the microcircuit under the influence of

noisy or rhythmic perturbations from other regions of the brain. We therefore

decompose Iex(t) into a time invariant part p and a zero-mean, time dependent

component u(t) as follows:

Iex(t) = p+ u(t) (9)

p determines the average working point of the system in the landscape of

dynamical regimes as shown in Fig. 2. Following from our previous study [45] we

choose a default value of p = 89 s−1, placing the system close to the Hopf bifur-

cation. u(t) represents deterministic or stochastic perturbations: for the former,

we use u(t) = Ã sin( 2πT t+φ), for the latter, we use an Ornstein-Uhlenbeck (OU)
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process. This noise, ξou, is derived from the solution of the following linear

stochastic differential equation:

dξou
dt

= −ξou
τ

+

√
2D

τ
ξw(t) (10)

where ξw(t) is a random variable representing Gaussian white noise with zero

mean and correlation 〈ξw(t)ξw(t′)〉 = δ(t − t′) and τ is correlation time of the

OU noise. The standard deviation of this noise in the steady state is:

σou =

√
D

τ
(11)

The variables Iex, p, u, ξou(t) and σou represent firing rates of spike trains and

therefore are expressed in s−1. The intensity of the noise can be defined as the

product of its stationary variance (accounting for amplitudes of random fluctu-

ations) and its correlation time (accounting for persistence of the fluctuations)

[57]. In the notation adopted here, the intensity defined in this way is given

by D. Finally, the power spectrum of the OU noise is given by the Lorentzian

function:

Sou(f) =
2D

1 + 4π2τ2f2
(12)

In order to study how the frequency content of OU noise relates to tradi-155

tionally defined EEG frequency bands (i.e. δ, θ, α, β, γ) we quantify the fraction

of total spectral power of the noise (characterised with correlation time τ) con-

tained in a certain frequency window, bounded by fmin, fmax:

E(τ, fmin, fmax) =
2

Ptot
·
∫ fmax

fmin

Sou(f)df =
2

π
arctan(2πτ f)

∣∣∣fmax

fmin

(13)

where the normalisation factor Ptot yields the total power and equals
∫∞
−∞ SOU(f)df =

D
τ . The factor 2 in front of the integral follows from taking into account power160

transmitted in both the positive and negative frequency bands.

2.3. Classification of model dynamics

As previously described [49, 51, 58, 27], the model can display “healthy” or

“epileptiform” rhythms depending upon its parametrisation and the nature of
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its input, Iex (see Eq.9). By considering the bifurcation diagram shown in Fig. 2,165

we define epileptiform dynamics as those corresponding to the epileptiform limit

cycle, and healthy dynamics as any of the other regimes. The latter comprises

either noise-driven fluctuations around the node, or oscillations with frequency

close to 10Hz (alpha oscillations) due to the presence of, or proximity to, the

limit cycle generated by the Hopf bifurcation.170

Our classification of the output of the Jansen-Rit cortical column in these

three categories is depicted in Fig. 3. The classification is established via the

following algorithm: first, a moving average of the model’s output y1 − y2 is

computed with a sliding window of length 0.4 s. This window is long enough

to sufficiently smooth out the signal (see Fig. 3B) and thus allow for estimation175

of its variability (details below), and short enough to mark transitions between

dynamical regimes with good temporal accuracy (see Fig. 3A).

Second, the root mean square (RMS(y1−y2)) of the y1 − y2 signal around

this mean is obtained. When this quantity is high, variations of the signal are

rapid and/or have a high-amplitude, which are features of the epileptiform limit180

cycle. Therefore, we set a threshold ThB = 2.25 mV (dashed line in Fig. 3C)

that establishes the value of RMS(y1−y2) above which a specific time point of the

signal is classified as being in epileptiform dynamics. Otherwise, we compare

the smoothed y1 − y2 signal with the threshold value ThA = 5 mV (dashed line

in Fig. 3B), which separates the focus from the node along the y1− y2 axis (c.f.185

Fig.2). If the smoothed signal is greater than ThA, we classify a data point

as alpha oscillations, if it is smaller, we classify it as noisy fluctuations around

the node. Note that this methodology is valid also for deterministic conditions,

as in Sec. 3.3. The thresholds ThA and ThB as well as the window length

have been set such that resulting classification complies with inspection by eye.190

The attractor-based classification method described above is adequate in our

case, since our model attractors can be sufficiently distinguished by amplitude.

For other types of models, or for the analysis of experimental data, adding

frequency information to aid the classification might be beneficial, although

purely temporal classifications have been found to be sufficient in some cases195
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Figure 3: Methodology for classification of dynamics. Panel A shows y1 − y2 obtained from

10 seconds of stochastic simulation for p = 89 s−1, τ = 10−0.5 s, σou = 50 s−1. Background

colours indicate the type of activity assigned with the classification algorithm. Red stands for

epileptiform dynamics, green for alpha oscillations, and blue for random fluctuations around

the node. Panel B shows a smoothed version of the y1−y2 signal from panel A, obtained with a

running mean computed within a 0.4-second-long sliding window. The dashed line denotes the

ThA = 5 mV threshold, which is used to discriminate between stochastic fluctuations around

the node (smoothed y1 − y2 ≤ ThA) and alpha oscillations (smoothed y1 − y2 > ThA). Grey

marks root mean square of y1 − y2 around its smoothed version (RMS(y1−y2)). This value is

shown in panel C in grey along with the ThB = 2.25 mV threshold, which is used to identify

epileptiform dynamics (when RMS(y1−y2) > ThB).
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[59].

2.4. Computational simulation

We integrated the system using the stochastic Heun scheme [60] with a time

step equal to 10−4 s, and we stored every tenth point of the simulation. For

each value of noise correlation time τ and stationary standard deviation σou200

we performed 10 simulations, each with different realisation of the noise and we

averaged the results. Each simulation was 111 seconds long. The first 10 seconds

were discarded and one second buffered the sliding window. In the deterministic

system, the model was simulated for 111 seconds, with 100 seconds of transient

discarded and one second buffering the sliding window. This means that the205

effective time courses used in the deterministic analysis were 10 seconds long,

which corresponds to the longest period of the driving sinusoid that we utilised.

3. Results

3.1. Noise induced epileptiform dynamics

Simulations of the model under different values of the correlation time, τ , of210

the driving Ornstein-Uhlenbeck (OU) noise reveal qualitatively different dynam-

ics (Fig. 4). For weakly correlated noise (low values of τ) stochastic fluctuations

around the node predominate (Fig. 4A). For intermediate temporal correlations

epileptiform rhythms are more often observed (Fig. 4B), whilst at larger correla-

tion times the model displays mainly node and alpha activities (Fig. 4C). These215

results suggest that epileptiform dynamics are more readily observed for noise

with intermediate correlation times. In order to systematically study this effect,

simulations of the model were performed for different values of τ and standard

deviation of the noise, σou. For each simulation, we measured the fraction of

the total time that the system spent in epileptiform dynamics (Fig. 4D).220

Fig. 4D shows that for large enough values of the standard deviation σou

epileptiform dynamics arise for an intermediate value of the noise correlation

time. As σou decreases, the interval of values of τ for which epileptiform dynam-

ics predominates is shifted to larger values. The intensity of OU noise, D, as

13



described in Eq. 11 is overlaid in white dashed lines on Fig. 4D. It can be seen225

that the onset of epileptiform dynamics for intermediate values of τ coincides

with constant values of D. This means that in order to generate epileptiform dy-

namics, the noise generated by the OU process should have sufficient intensity,

regardless of its power and correlation time. However, this simple relationship

does not hold for τ � 10−1.5 s. The system more often displays alpha oscilla-230

tions for large correlation times (τ � 10−0.5 s) than for small correlation times.

Supplementary Fig. S1 illustrates the fractions of time that the system spends

in alpha oscillations and in the node attractor. In order to test the generalis-

ability of these results, we performed equivalent simulations under alternative

choices of parameters a and b, such that the presence of the attractor repre-235

senting epileptiform dynamics was preserved. We found that although changes

in the bifurcation diagram occurred (Fig. S2 in Supplementary Materials), the

value of τ maximising the presence of epileptiform dynamics remained the same

(Fig. S3 in Supplementary Materials). Increasing the value of σ still further can

be seen to increase the range of τ over which epileptiform dynamics are elicited240

(Fig. S4 in Supplementary Materials).

3.2. Relationship to brain rhythms

To relate these findings to underlying frequency components of brain rhythms

we studied how OU processes with different correlation times distribute their

power in different frequencies. In order to do this we used Eq. 13 to quantify the245

fraction of power deposited by the noise (characterised with correlation time, τ)

in a given frequency window (fmin, fmax). Evaluation of this function for fmin

and fmax set according to boundaries of traditionally defined EEG frequency

bands (δ, θ, α, β, γ) is shown in Fig. 5. For each frequency band, the location of

the maximum of the E function (Eq.13) represents the value of noise correlation250

time τ that maximises spectral power of the noise within that band. Values

of τ corresponding to these maxima are indicated with coloured circles on the

X axis of Fig.5. They demonstrate that the choice of noise correlation time

τ = 10−1.55 s maximises spectral power in the θ band (cyan). Furthermore,
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Figure 4: Response of the Jansen-Rit model to driving with the Ornstein-Uhlenbeck (OU)

noise. The left panels of the figure show example outputs (time courses of y1 − y2) produced

by the model under driving with the OU noise characterised with correlation time τ equal to

10−3 s (panel A), 10−1.5 s (panel B) and 100 s (panel C). Background colours mark periods of

random fluctuations around the node (blue), epileptiform dynamics (red) and alpha activity

(green). In all these cases stationary standard deviation of the noise σou was equal to 50 s−1

and p was set to 89 s−1. Panel D shows the fraction of time that the system spent in

epileptiform dynamics as a function of the noise correlation time τ (varied along the X axis in

logarithmic scale) and the noise stationary standard deviation σou (varied along the Y axis).

Locations of the red letters A,B and C mark settings in which time traces shown in panels

A,B and C were obtained. The white lines denote points of equal values of noise intensity D:

the dashed line marks D=
√
1000 s−1 and the dotted one marks D = 100 s−1. In all cases

initial conditions corresponded exactly to the node.
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τ = 10−1.25 maximises spectral power in the δ band (magenta). Experimental255

studies suggest that enhancement of rhythms falling to these two bands may

precede occurrence of epileptiform activity [34, 35, 39, 38]. We therefore com-

bine δ and θ bands together and find that spectral power within this δ+θ band

is maximised for τ = 10−1.4. As shown in the previous section (Fig. 4), this

value of τ coincides with correlation times of the driving noise for which epilep-260

tic spiking is most prevalent. Therefore, we speculate that rhythms around the

θ band (4-8Hz) or in the wider δ + θ band (2-8Hz) are particularly prone to

eliciting epileptiform dynamics in the model.

3.3. Periodic driving in the deterministic system

In order to test this prediction, we analysed the response of the system to265

harmonic driving u(t) = Ã sin( 2πT t+φ). We systematically varied the amplitude

Ã, period T and phase φ of the harmonic driving, and quantified the dynamics

of the model. It has previously been shown that the Jansen-Rit model displays

a variety of dynamics, caused by rhythmic driving, including periodicity, quasi-

periodicity and chaos [47, 46]. In this case, however, we narrow our interest to270

whether the activity resembles epileptiform dynamics, alpha oscillations, or fluc-

tuations around the node, and therefore apply the same classification algorithm

as in the stochastic system (see Methods and Fig.3). We focus on elucidating

values of amplitude and frequency for which healthy or epileptiform dynamics

are observed.275

Fig. 6 shows the presence of each of these dynamics when the amplitude and

period of the driving harmonic signal are varied. Alpha oscillations and the node

solution are encoded with oblique stripes (top-right to bottom-left for the node

and top-left to bottom-right for alpha) and epileptiform dynamics are encoded

with grey. Fig. 6A corresponds to settings where initial conditions were set ex-280

actly to the node, whereas Fig. 6B corresponds to initial conditions exactly at

the focus. Fig. 6A demonstrates that for fast periodic driving (T � 10−0.8 s), the

initial node dynamics are preserved and epileptiform rhythms are not elicited

even when the driving amplitude is large. On the other hand, for very slow driv-

16



−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

log10(τ) [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
(τ
,f

m
in
,f

m
a
x
)

τ=10−3.0 s

τ=10−1.4 s

τ=100.0 s

δ : 2-4 Hz

θ : 4-8 Hz

α : 8-12 Hz

β : 12-30 Hz

γ : 30-100 Hz

θ+δ : 2-8 Hz

0 2 5 8 10 15

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

S
o
u
(f
)
[a
u
]

fmin fmax

τ=10−3.0 s

τ=10−1.4 s

τ=100.0 s

Figure 5: Distribution of spectral power in frequency bands of standard brain rhythms

and dependence of location of maximum power on noise correlation time τ . Evaluation of

the E(τ, fmin, fmax) function (see Eq. 13) of an Ornstein-Uhlenbeck noise characterised with

correlation time τ within a frequency range fmin, fmax is plotted for fixed frequency ranges

that correspond to distinct brain rhythms: δ (2-4 Hz, magenta), θ (4-8 Hz, cyan), α (8-12 Hz,

brown), β (12-30 Hz, grey), γ (30-100 Hz, yellow) and combined δ+θ (2-8Hz, black). Units on

the Y axis express fraction of the spectral power of the noise characterised with τ contained

within the fmin, fmax range. Correlation time of the noise τ varies along the X axis. The inset

illustrates the meaning of E(τ, fmin, fmax). It shows an example theoretical power spectrum

of the Ornstein-Uhlenbeck noise calculated for τ = 10−3.0 s (green), τ = 10−1.4 s (blue) and

τ = 100 s (red). In each case stationary variance D
τ

was set to an arbitrary value 1 s−2.

Dashed vertical lines mark the fmin = 2 Hz, fmax = 8 Hz range, for which the black plot

shown in the main panel was derived from Eq. 13. Green, blue and red arrows on the main

plot indicate values of the E(τ, fmin, fmax) function that correspond to these spectra. The

value indicated by the blue arrow is highest (in this case it corresponds to the maximum),

which follows from the fact that the area below the blue curve, limited by fmin and fmax in

the inset is greater that area set by either red, or green curves. Coloured circles on the X

axis indicate values of τ corresponding to maxima of E(τ, fmin, fmax): τ = 10−2.54s for γ,

τ = 10−2.08s for β, τ = 10−1.79s for α, τ = 10−1.55s for θ, τ = 10−1.25s for δ, and τ = 10−1.4s

for δ + θ.
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Ã

[s
−
1
]

2
δ

4
θ

8
α

12
β

30
γ

100

Driving sine frequency [Hz]

a b c d

e

Spikes

Alpha

Node

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

log10(T), where T is the driving sine period [s]

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

D
ri
v
in
g
s
in
e
a
m
p
lit
u
d
e
Ã

[s
−
1
]

2
δ

4
θ

8
α

12
β

30
γ

100

Driving sine frequency [Hz]

f g h i

Spikes

Alpha

Node

A B

Figure 6: Phase diagram showing the different dynamical regimes resulting from oscillatory

driving with varying amplitude and period. The response of the Jansen-Rit model under

harmonic driving was classified as either a node (oblique stripes from top-right to bottom-

left), alpha activity (oblique stripes from top-left to bottom-right), or epileptiform dynamics

(grey). This classification was conducted for varying driving amplitude Ã, displayed on Y axes,

and driving period T , displayed on X axes in logarithmic (bottom) and linear (top) scales.

Ranges and names of typical brain rhythms are denoted on the linear scale. In general,

different dynamical regimes might coexist, therefore patterns overlap. Panel A corresponds to

initial conditions set exactly to the node and panel B to initial conditions set exactly to alpha

oscillations. In both cases p=89 s−1. Black lines divide the diagram into distinct regimes,

annotated with letters.
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ing (T > 100.5 s) and sufficiently high amplitude (Ã > 50 s−1), alpha oscillations285

dominate (regime “d”). Similarly to the stochastic case, epileptiform dynamics

prevail for intermediate periods of the driving and sufficiently large amplitude

(regime “a”). An exemplary time course corresponding to this case is provided

in supplementary Fig. S5. For initial conditions set to alpha oscillations, Fig. 6B

demonstrates that neither fast (T � 10−1.2 s) nor slow driving, characterised290

with an amplitude not exceeding a limit value, causes transitions away from the

initial dynamics. Similarly to the node initial conditions, intermediate values

of τ give rise to epileptiform dynamics (regime “g”). In particular, exclusively

epileptiform dynamics occur when driving frequencies correspond to either δ or

θ rhythms.295

Driving with frequencies of ∼ 10 Hz leads to a resonance effect, causing

an escape from alpha oscillations to the node. This effect is present in regime

“f” and the corresponding time course is shown in Fig. S6, in Supplementary

Materials. This resonance results in long-term node dynamics. However, when

excitability of the model is increased (an increase in parameter p), this escape300

from the alpha attractor is followed by epileptic activity (see Supplementary

Fig. S7). Figs 6A and B were obtained for φ = 0. We note that alternative

choices of φ did not alter the results of Fig. 6A. However, we did identify an

effect of altering phase in that the resonance regime (“f” in Fig. 6B) is slightly

narrower when the driving sinusoid is shifted by the phase φ = +π
2 . In these305

conditions no resonance appears for T = 10−1.2 s, and for T = 10−1.1 s and

Ã ∈ [70 s−1, 85 s−1]. For other phase shifts this effect of resonance attenuation

is not prominent, or does not occur, but the lower boundaries of regimes “g”,

“h” and “i” can be extended towards smaller values of Ã for some non-zero

phase shifts.310

These effects can be understood from the structure of the bifurcation dia-

gram of the model [51] shown in Fig. 2. In particular, transient periods of inten-

sive spiking (bursting), interleaved with periods of quiescence are observed when

a slowly varying input periodically crosses the bifurcation and leads the system

to alternate between regimes III and IV. In this case, the system switches be-315
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tween the node (denoted by blue in regime III in Fig. 2) and epileptiform spikes

(continuous red in regime IV). These dynamics are represented in Fig. 6 as com-

bined spiking+node activity in regimes “b” and “h”. In this case, although the

driving amplitudes can be high enough to enter regime V, alpha oscillations are

not observed, because driving is too fast and the system does not have time to320

converge to these oscillations. Furthermore, regime “e” in Fig. 6A marks driving

that is slow enough and characterised by amplitudes high enough to cross the

excitability threshold (enter regime IV in Fig. 2) - thus eliciting bursts of spikes

- but at the same time not large enough to enter regime V of alpha oscillations.

An exemplary bursting time course, corresponding to this regime is provided in325

Supplementary Materials, in Fig. S8.

Slow driving with sufficiently high amplitude moves the system through all

dynamic regimes and overshoots the epileptiform spiking regime to regime V

where alpha oscillations are the only existing dynamics. In this case, the system

displays the effects of hysteresis. For the upswing of the driving sinusoid all three330

dynamical regimes are displayed: from the node in regimes II and III (blue in

Fig. 2), through epileptiform dynamics in regime IV (continuous red in Fig. 2), to

alpha oscillations in regime V (green in Fig. 2). During the downswing phase of

the driving, however, the system remains in quasistatic conditions in the alpha

attractor, so in the bistable regimes IV and III it exhibits alpha oscillations335

(green in Fig. 2) and in the bistable regime II it remains on the focus (cyan

in Fig. 2). This hysteresis loop is closed when driving with a sufficiently high

amplitude moves the system to, or sufficiently close, regime I, where the system

relaxes to the node (blue in Fig. 2). This effect occurs in regimes “c” and “i”

combining all three types of dynamics. An exemplary time course corresponding340

to regime “c” is provided in Supplementary Materials, in Fig. S9. For smaller

driving frequencies the system remains in alpha oscillations and does not revert

to the node (regime “d”). A similar effect is observed for initial conditions

set to the focus (panel Fig. 6B). These effects explain why stochastic driving

with power concentrated in low frequencies promotes alpha oscillations of the345

system (as described in section 3.1). Supplementary Materials, Fig. S10 shows
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how slow driving, characterised with a sufficiently high amplitude, pushes the

system deeper into the alpha limit cycle, thereby increasing the amplitude of

alpha oscillations. We note that these model regimes are also physiologically

relevant, since slow (0.25Hz) driving has been shown to lead to an increased350

power in the α band [61, 45] and bursting following a slow quasi-harmonic

pattern may occur in the early ictal phase of seizures [62].

4. Discussion

In this study we investigated the effect of rhythmic driving and coloured

noise on the generation of epileptiform dynamics in a neural mass model. We355

found that epileptiform dynamics are more readily elicited by noise with certain

temporal correlations. By exploring the composition of OU noise in different

frequency bands and driving of the model with sinusoidal rhythms, we discovered

that simulated epileptiform discharges are more easily generated by rhythms in

the delta and theta frequency bands. Thus we suggest that the local microcircuit360

interactions embodied by the model can give rise to emergent dynamics that

leave it prone to generating epileptiform rhythms when bombarded by afferent

spiking with particular rhythmic properties.

Experimental and clinical findings lend support to this hypothesis. Interictal

focal slow activity in the delta or delta-theta bands has been shown to be present365

in a majority of invasive recordings from people with temporal lobe epilepsy [32],

and it lateralises with regions of seizure onset [32], in particular in neocortical

temporal lobe epilepsy [36]. Thus slow rhythms are associated with epileptic

brain networks [36]. Our modelling results lead us to hypothesise that such

rhythms could also be the cause of onset of seizures in such networks. Indeed,370

slow rhythms are also observed in invasive recordings at seizure onset in focal

epilepsies [37, 63]. Slow rhythms have also been observed in association with

generalised epilepsies in both clinical and experimental data. [38] observed an

increase of delta activity prior to onset of spike-wave-discharges in the WAG/Rij

rodent model and [39] reported an increase of delta and theta rhythms in the375
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preictal phase of brain activity in the same animal model. The frequency of

the alpha rhythm has also been shown to be lower in people with epilepsy

compared to control subjects [64]. Our results suggest a potential mechanism of

propagation of abnormal dynamics in large-scale brain networks: a local network

generating abnormal rhythms could induce the propagation of this activity in380

connected brain regions. Future extensions to our work could examine explicitly

the dynamics of networks of neural masses in order to investigate conditions for

propagation or restriction of epileptiform activity.

The epileptic brain is increasingly being thought of and studied in terms of

networks [65, 10, 8, 12, 66, 67]. Understanding seizure generation in networks385

is a difficult task since seizures represent emergent transitions in dynamics due

to both the underlying connectivity structure of the network and the intrin-

sic dynamics of individual nodes [11, 13]. To simplify this situation, in our

study we separated intrinsic node and network effects, considering the effects

of temporally structured afferent activity to a node. Our observations that cer-390

tain rhythms preferably generate epileptiform dynamics arise from an interplay

between the presence of different invariant sets (Fig. 2) and the time scale of

fluctuations in Iex. For example, on the node branch, close to the epileptiform

limit cycle, slow variations in afferents can allow the epileptiform limit-cycle

to appear and, if the amplitude of these fluctuations is in a certain interval,395

the system can also converge to this attractor, therefore displaying epileptiform

rhythms. By uncovering these phenomena in the deterministic system, we are

able to better understand the ways in which stochastic fluctuations with power

in certain frequencies could cause transitions in dynamics and ultimately lead

to epileptiform activity.400

In our study we used a set of parameters for the Jansen-Rit model that give

rise to dynamics relevant to the study of healthy brain function such as the alpha

rhythm as well as pathological dynamics [48, 49, 50]. Previous studies have used

bifurcation analyses to demonstrate how the arrangement of invariant sets varies

in parameter space [58, 27], and have studied the response of neural mass mod-405

els to driving by rhythmic pulses [46] and white noise [50]. Our work advances
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on these previous studies by quantifying the effect that temporally correlated

noise and rhythmic input have in terms of the generation of epileptiform spik-

ing, which led us to hypothesise a role for low-frequency brain rhythms in the

generation of seizures. We therefore demonstrated the importance of non-white410

noise in the context of bifurcations of neural mass models to uncover the mech-

anisms underlying brain (dys-)function. In modelling a complex system such as

the brain, a model is only useful so far as it recreates a relevant feature of the

dynamics of interest, which here is the presence of epileptiform dynamics. The

chosen parameter set enabled us to study the effect that different afferent dy-415

namics have on the generation of these dynamics, and we further demonstrated

that variations in the arrangement of attractors did not affect the optimal time

scale for induction of epileptiform dynamics.

Our study utilised a neural mass model that is capable of generating epilep-

tiform dynamics via a SNIC bifurcation, which has been shown to be a generic420

onset mechanism for a variety of epileptiform rhythms, including spike-wave

discharges and focal seizures [68, 69]. We therefore believe our results to be ap-

plicable in the context of both focal and generalised epilepsies. In future work it

will be important to study the effects of coloured noise in a variety of different

models, such as extensions to the neural mass model [17, 10] that can gener-425

ate alternative dynamics, networks of neural masses, or networks of canonical

models [18, 70, 22, 69]. It will be interesting to ascertain, for example, the con-

ditions for propagation or restriction of epileptiform activity or whether certain

epilepsies with specific emergent dynamics are susceptible to specific afferent

rhythms for the generation of seizures.430

5. Conclusion

The mechanisms underpinning the generation of seizures are imperfectly

understood. In this work we have shown that the temporal correlation of signals

afferent to neuronal populations may play a critical role in the initiation of

epileptiform dynamics. The reasons for this can be understood in terms of the435
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dynamical properties of these populations, in particular from the arrangement

in parameter space of a variety of dynamical regimes. We therefore highlight

the necessity of moving beyond white noise driving in computational studies of

epilepsy.
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