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Previous work has identified a number of vertical discretizations of the nonhydrostatic

compressible Euler equations that optimally capture the propagation of acoustic,

inertio-gravity, and Rossby waves. Here, that previous work is extend to apply to a

general equation of state, making it applicable to a wider range of geophysical fluid

systems. It is also shown that several choices of prognostic thermodynamic variables

and vertical staggering that were previously thought to be suboptimal can, in fact, give

optimal wave propagation when discretized in an appropriate way. The key idea behind

constructing these new optimal discretizations is to ensure that their corresponding

linear system is equivalent to that of a certain, most fundamental, optimal configuration.
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1. Introduction

The developer of a numerical method for the simulation of

geophysical flows is faced with various decisions, including the

choice of which thermodynamic variables to predict, and the

relative placement of the prognostic variables on the vertical

grid, i.e. the vertical staggering. Previous work has identified a

number of choices that permit an optimal representation of the

propagation of different types of waves: acoustic, inertio-gravity

and Rossby waves. Here ‘optimal’ means that the errors due

to vertical averaging in the discrete equations are, in a certain

sense, minimized, resulting in a numerical dispersion relation

that is as close as possible, for a second-order centred difference

scheme on a uniform grid, to the exact dispersion relation. By

considering the discrete equations for the vertical momentum and

thermodynamic variables, the present work generalizes previous

results in two ways: first, to apply to an arbitrary equation of

state, and second, to identify a broader class of configurations∗ for

which optimal discretizations may be found; this class allows any

two thermodynamic variables from density ρ, entropy η, pressure

p, and temperature T to be predicted.

Different alternatives for vertical grid staggering were

introduced in the early days of numerical modelling of the

atmosphere (Charney and Phillips 1953; Lorenz 1960). Grids with

potential temperature θ and vertical velocity staggered relative

to horizontal velocity are natural for the representation of quasi-

geostrophic dynamics, and have become known as Charney-

Phillips grids. Grids with vertical velocity staggered relative to

potential temperature and horizontal velocity facilitate the design

∗Here the term ‘configuration’ will be used to refer to the choice of prognostic

variables and their vertical staggering. Any given configuration may be discretized

in more than one way, as discussed in this note.

of schemes that conserve energy and other properties, and have

become known as Lorenz grids.

Systematic analysis of the ability of different vertical

grid staggerings to capture wave propagation began with

Tokioka (1978), (see also Lesley and Purser 1992; Fox-Rabinovitz

1994, 1996; Liu 2008; Girard et al. 2014). These authors

observed that the Charney-Phillips grid gives relatively accurate

wave propagation. Tokioka (1978), Fox-Rabinovitz (1994) and

Girard et al. (2014) also found some schemes involving prediction

of a vertically averaged variable that gave good wave propagation.

We do not consider such schemes here because the need to undo

the averaging on the predicted variable creates difficulties, and

such schemes appear unpopular in nonhydrostatic models. These

studies also noted the computational mode of the Lorenz grid

(and some other grids): a vertical pattern in the thermodynamic

variables that, because of averaging in the discrete equations,

spuriously satisfies hydrostatic balance and so is invisible to the

dynamics. Some modest improvements in the accuracy of wave

propagation can be obtained by increasing the order of accuracy of

the discretization beyond two, but this cannot eliminate the Lorenz

grid computational mode (Lesley and Purser 1992; Liu 2008). In

these studies, however, the analysis is simplified by making the

hydrostatic assumption or an anelastic or Boussinesq assumption

(or both). Thus, only gravity waves or inertio-gravity waves are

considered; acoustic waves are eliminated from consideration.

Thuburn and Woollings (2005) extended this type of analysis

to the fully compressible Euler equations, and included a

representation of the β-effect; thus they were able to examine

acoustic waves, inertio-gravity waves, and Rossby waves. For

height-based, mass-based, and isentropic vertical coordinates,

they examined the dispersion relations of a large number of

configurations with different choices of thermodynamic variables
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2 J. Thuburn

and vertical staggerings. For each vertical coordinate they

identified one or two ‘optimal’ configurations giving the best

achievable numerical dispersion relations. They introduced a

convenient notation summarizing the choice of predicted variables

and their staggering for any configuration. For example (wθ, uvp)

indicates that w and θ are staggered relative to u, v and p, where

w is the vertical velocity and u and v are the horizontal velocity

components. This particular configuration, a type of Charney-

Phillips grid, happens to be optimal in a height-based vertical

coordinate.

None of the optimal configurations identified by

Thuburn and Woollings (2005) involve prediction of the

relevant mass variable (e.g. ρ in a height-based coordinate),

suggesting that it would be difficult to achieve mass conservation

and optimal wave dispersion at the same time. However,

Thuburn and Woollings (2005) only considered the most obvious

way of writing various terms in the governing equations. For

example, in height coordinates the vertical pressure gradient was

written as ρ−1pz , where subscript z indicates a partial derivative.

Almost simultaneously, Thuburn (2006) and Toy and Randall

(2007) noticed that some of the near-optimal configurations

identified by Thuburn and Woollings (2005) that do predict the

relevant mass variable could be made optimal by writing the

pressure gradient in a different way, for example as CpθΠz for

the (wθ, uvρ) configuration in a height-based coordinate and the

(wθz, uv) configuration in a mass-based coordinate. Here, Cp is

the specific heat capacity at constant pressure and Π = (p/p0)
κ is

the Exner pressure, where p0 is a constant reference pressure and

κ = R/Cp with R the gas constant. The (wθ, uvρ) configuration

using the Cpθ∇Π form of the pressure gradient is used, for

example, in the ENDGame dynamical core (Wood et al. 2014)

operational at the Met Office.

These latest results raise two further questions. (i) What other

configurations might be modified to have optimal wave dispersion

properties by suitably re-expressing the pressure gradient term

or other terms in the equations? (ii) While the ρ−1∇p form

of the pressure gradient is universal, the form Cpθ∇Π is only

applicable for a perfect gas; therefore, are the additional optimal

configurations identified by Thuburn (2006) and Toy and Randall

(2007) only optimal for a perfect gas, or can they be generalized

to other equations of state? This last question is pertinent for

using numerical models to simulate atmospheres where there

are significant variations in composition, for example from the

ground to the thermosphere in Earth’s atmosphere (e.g. Akmaev

2011), or for fluids where the equation of state is not well

approximated by a perfect gas, such as the ocean, the deep

interior of gas giant planets (e.g. Militzer and Hubbard 2013),

or laboratory flows (e.g. Read et al. 2000). The present paper

addresses these two questions. It is shown that the new optimal

(wθ, uvρ) height-coordinate configuration found by Thuburn

(2006) and Toy and Randall (2007) can remain optimal even with

the pressure gradient written as ρ−1pz , provided it is evaluated

in an appropriate way. This, then, removes the restriction to

the perfect gas equation of state. The (wη, uvp) configuration,

where η is the specific entropy, is identified as being the

most fundamental optimal configuration. However, for several

other configurations, predicting combinations of ρ, η, p and T ,

systematic choices can be made in evaluating certain terms so that

their corresponding linear systems are equivalent to the optimal

linear system; thus these other configurations can also be made

optimal.

For brevity we restrict attention to the height-coordinate case;

a similar analysis is possible for other vertical coordinates.

Section 2 reviews the optimal height-coordinate configurations

found by previous authors and shows how they can be modified

to express the pressure gradient term as ρ−1pz while remaining

optimal. Section 3 notes how these optimal configurations can

be generalized for an arbitrary equation of state, and also notes

several configurations, previously thought to be suboptimal, that

can, in fact, be discretized in such a way as to have optimal wave

dispersion.

2. Analysis for a perfect gas

We begin with the continuous compressible, nonhydrostatic

equations of motion in Cartesian β-plane geometry for a perfect

gas, linearized about a resting, hydrostatic, horizontally uniform

basic state (indicated by superscript (r)). The normal modes

of this system are separable with horizontal and temporal

dependence proportional to exp{i(kx+ ly − ωt)}, where k and

l are horizontal wavenumbers and ω is the frequency. For such

solutions the linearized equations of motion are

−iωu− fv −
ikβ

K2
u+

1

ρ(r)
ikp = 0, (1)

−iωv + fu−
ikβ

K2
v +

1

ρ(r)
ilp = 0, (2)

−iωw +
1

ρ(r)
pz + g

ρ

ρ(r)
= 0, (3)

−iω
θ

θ(r)
+ wA = 0, (4)

−iω
p

ρ(r)
+ c2 (iku+ ilv + wz −Bw) = 0. (5)

Here, u, v, w, ρ, θ and p are now perturbations to the

reference state, g is the gravitational acceleration, K2 = k2 +

l2, subscript z indicates a vertical derivative, A = N2/g where

N2 = gθ
(r)
z /θ(r) is the buoyancy frequency squared, and B =

g/c2 where c2 = RT (r)/(1− κ) is the sound speed squared.

The property ρ
(r)
z = −(A+B)ρ(r) will be used to write (7)

below. See Thuburn and Woollings (2005) for details of the

approximations made in including the β-effect so as to permit

separable solutions.

To close this system we need the linearized equation of state‡

1

c2
p

ρ(r)
=

ρ

ρ(r)
+

θ

θ(r)
. (6)

We will also consider the case in which density rather than

pressure is predicted; the linearized density evolution equation is

− iω
ρ

ρ(r)
+ {iku+ ilv + wz − (A+B)w} = 0. (7)

In the special case of an isothermal reference state c2 and N2

are constants and it is possible to solve the system (1)-(5), (6)

to find the vertical structure of the normal modes and the quintic

dispersion relation satisfied by ω (Thuburn and Woollings 2005).

In the vertically discrete case the vertical derivative terms pz
and wz are approximated by finite differences δzp, δzw; we will

only look at configurations in which w is staggered relative to p, so

these derivatives can be approximated by a centred difference over

the interval ∆z, which we take to be uniform. Also, some variables

may need to be averaged from the levels at which they are defined

to the levels at which they are needed. A simple equally-weighted

mean will be used, indicated by an overbar.

For an isothermal reference state the discrete linear problem can

be solved to find the vertical structure of the normal modes and

the corresponding numerical dispersion relation. As expected, the

differences between the exact and numerical dispersion relations

‡In the rest of this note the term ‘equation of state’ will be used to refer to any

relation that expresses one thermodynamic variable in terms of two others.
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Vertical discretizations for a general equation of state 3

arise from the approximation of the vertical derivatives and the

vertical averages. Following Thuburn (2006), the differences can

be analysed by noting that the discrete normal modes will have

vertical structures such as

p ∝ exp

(

im+
1

Hp

)

z, (8)

where m is a vertical wavenumber and Hp is a height scale, which

might be negative, for the pressure perturbation (other fields will

have their own height scale, but all will have the same m). The

finite difference vertical derivative of p is then equal to the exact

vertical derivative of p multiplied by a factor

S(p) =
1

(im+ 1/Hp)∆z

×

[

exp

{(

im+
1

Hp

)

∆z

2

}

− exp

{

−

(

im+
1

Hp

)

∆z

2

}]

,(9)

(this corrects an error in equation (26) of Thuburn 2006), while

the vertical average of p is equal to the exact value of p multiplied

by a factor

C(p) =
1

2

[

exp

{(

im+
1

Hp

)

∆z

2

}

+ exp

{

−

(

im+
1

Hp

)

∆z

2

}]

.

(10)

Analogous factors arise for derivatives and averages of other

fields.

For realistic reference temperature profiles the normal modes

can no longer be found analytically in either the continuous or the

discrete case. Nevertheless, useful understanding can be derived

by considering the limit of large vertical wavenumber, in which

variations in reference state profiles are assumed to be small on the

scale of the vertical wavelength. We can then take c2 and N2 as

locally approximately constant, and the dispersion relation holds

approximately using the local values of c2 and N2. (Essentially

we are making a WKB approximation, e.g. Lighthill (1978).)

Restricting attention to the large vertical wavenumber case is not

a serious limitation on the analysis because this is precisely the

case for which discretization errors will be greatest. In this case

the inverse height scale 1/Hp becomes negligible compared with

m and the factors S(p) and C(p) are approximated by

S =
2

m∆z
sin

(

m∆z

2

)

; C = cos

(

m∆z

2

)

. (11)

Thus, the numerical dispersion relation acquires some factors of

S arising from the approximation of vertical derivatives, along

with, possibly, some factors of C arising from vertical averages.

For the smallest resolvable vertical wavelength m∆z = π we have

S = 2/π, giving a moderate distortion of those terms arising from

vertical derivatives. On the other hand, C = 0 in this limit, so

any terms in the dispersion relation that have picked up factors

of C will be lost and the wave propagation can be significantly

distorted.

For present purposes it is not necessary to compute the

numerical dispersion relation. It is sufficient to examine the

discrete linear system to see which terms are vertically

averaged. Any scheme whose linear system is equivalent to

that of the optimal (wθ, uvp) configuration will have the

same dispersion relation and hence will itself be optimal.

To this end, the optimal height-coordinate configurations

identified by Thuburn and Woollings (2005), Thuburn (2006) and

Toy and Randall (2007) are first briefly reviewed.

2.1. The (wθ, uvp) configuration

We will only consider configurations in which w is staggered

relative to u and v, and p is defined primarily at u-v levels. Thus,

no vertical averaging is needed in the discrete linearized u and

v equations, which therefore look exactly like their continuous

counterparts (1) and (2). Henceforth we focus on the w equation,

the prognostic equations for the thermodynamic variables, and

the equation of state. For the optimal (wθ, uvp) configuration a

vertically averaged w appears in the pressure equation. Also, a

value of ρ is needed at w levels (indicated by superscript (w))

in the w equation; this is obtained using the equation of state

evaluated at w-levels, which involves a vertically averaged p.

−iωw +
1

ρ(r)
δzp+ g

ρ(w)

ρ(r)
= 0, (12)

−iω
θ

θ(r)
+ wA = 0, (13)

−iω
p

ρ(r)
+ c2 (iku+ ilv + δzw −Bw) = 0, (14)

1

c2
p

ρ(r)
=

ρ(w)

ρ(r)
+

θ

θ(r)
. (15)

Using (15) to eliminate ρ(w), (12) becomes

− iωw +
1

ρ(r)
(δzp+Bp)− g

θ

θ(r)
= 0. (16)

Thus, the discrete linear system contains two vertically averaged

terms: w in (14) and p in (16). However, in both cases the

vertically averaged term appears alongside a vertical derivative of

the same quantity, and in the limit of large vertical wavenumber,

which is when the errors due to averaging will be most serious,

the averaged term is dominated by the vertical derivative term, so

the averaging errors remain negligible after all.

2.2. The (wθ, uvρ) configuration

Next we look at three versions of the (wθ, uvρ) configura-

tion, beginning with the near optimal version examined by

Thuburn and Woollings (2005):

−iωw +
1

ρ(r)
δzp+ g

ρ(w)

ρ(r)
= 0, (17)

−iω
θ

θ(r)
+ wA = 0, (18)

−iω
ρ

ρ(r)
+ {iku+ ilv + δzw − (A+B)w} = 0, (19)

1

c2
p

ρ(r)
=

ρ

ρ(r)
+

θ

θ(r)
. (20)

In this version the equation of state is evaluated at u-v levels to

provide a value of p, and ρ(w) is evaluated as a simple average

of the predicted value ρ(w) = ρ. Using (20), (19) and (18) may

be combined to obtain the implied evolution equation for p; it is

identical to (14). However, using (20) to eliminate ρ in (17) leaves

− iωw +
1

ρ(r)
(δzp+Bp)− g

θ

θ(r)
= 0. (21)

Thus, the linear system for this version is almost the same

as the optimal (wθ, uvp) configuration except for the double

averaging of θ in (21). This double averaging of the buoyancy

term effectively reduces the static stability seen by the scheme

and leads to a retardation of higher internal Rossby modes for

long horizontal wavelengths and of higher internal gravity modes

for short horizontal wavelengths (Thuburn 2006).
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4 J. Thuburn

As an alternative, Thuburn (2006) and Toy and Randall (2007)

proposed to evaluate the pressure gradient term not as ρ−1∇p but

as Cpθ∇Π. Using the linearized definition of the Exner pressure

Π/Π(r) = κp/p(r), the linearized vertical momentum equation

becomes

− iωw +
1

ρ(r)
(δzp+Bp)− g

θ

θ(r)
= 0. (22)

The linear system is now identical to that for the optimal (wθ, uvp)

configuration, and thus this system, too, has optimal dispersion

relation. The pressure gradient term has been constructed in such

a way that the buoyancy contribution from θ remains unaveraged.

We can exploit this insight to obtain optimal wave dispersion

while retaining the ρ−1∇p form of the pressure gradient term.

The key idea is to apply the equation of state twice, first at u-v

levels (20) to obtain p from ρ and θ, and again at w levels (15) to

obtain ρ(w) from p and θ. At first sight this appears to introduce a

double averaging of θ in the w equation. However, if we derive the

evolution equation for w and the implied evolution equation for p,

regarding u, v, w, θ and p as the unknowns, then the linear system

is again identical to that for the optimal (wθ, uvp) configuration,

so optimal wave dispersion is obtained. To apply this idea in the

full nonlinear equations it is simply necessary to apply the full

equation of state at u-v levels to obtain p = p(ρ, θ) and again at w

levels to obtain ρ(w) = ρ(p, θ).

3. Analysis for a general equation of state, and some new

optimal discretizations

For a general equation of state the perfect gas definition of

potential temperature θ = T (p0/p)
κ no longer applies, and the

Exner pressure Π = (p/p0)
κ loses its significance. (In fact a

materially conserved potential temperature may be defined for

a general equation of state—see e.g. Feistel et al. (2010). It is

a function of entropy and could be used in place of entropy

below.) However, we have seen already that the pressure gradient

term may be written as ρ−1pz without sacrificing optimal wave

dispersion; it is not necessary to use the Cpθ∇Π form. It is

then convenient to use entropy η in place of θ as one of the

thermodynamic variables. The continuous linearized equations

remain (1)-(5) except that (4) is replaced by

− iωQη + wA = 0, (23)

where

Q = −
∂ ln ρ

∂η

∣

∣

∣

∣

(r)

p

, (24)

(the subscript p indicates that the partial derivative is taken at

constant pressure). A linearized equation of state can be obtained

by differentiating the nonlinear expression ρ = ρ(η, p), giving

ρ =
∂ρ

∂η

∣

∣

∣

∣

p

η +
∂ρ

∂p

∣

∣

∣

∣

η

p (25)

or, dividing by ρ(r),

1

c2
p

ρ(r)
=

ρ

ρ(r)
+Qη, (26)

where

c2 =
∂p

∂ρ

∣

∣

∣

∣

(r)

η

, (27)

is the sound speed squared for a general compressible fluid. The

buoyancy frequency squared is given by the general expression

N2

g
= −

ρ
(r)
z

ρ(r)
−

g

c2
(28)

(e.g. IOC et al. 2010), or, writing

ρ
(r)
z

ρ(r)
=

∂ ln ρ

∂η

∣

∣

∣

∣

(r)

p

η
(r)
z +

∂ ln ρ

∂p

∣

∣

∣

∣

(r)

η

p
(r)
z (29)

and using hydrostatic balance,

N2 = gQη
(r)
z . (30)

We will also consider using temperature T as one of the predicted

variables; its linearized tendency equation is

− iωT + wT
(r)
z + ρ(r)c2

∂T

∂p

∣

∣

∣

∣

(r)

η

(iku+ ilv + wz) = 0. (31)

For a general equation of state there is no longer any guarantee

that a hydrostatic reference state with constant c2 and N2 exists

and therefore that exact analytical normal modes can be found.

Nevertheless, we can proceed as in section 2 by restricting

attention to large vertical wavenumber m so that c2 and N2 are

approximately constant on the scale of the waves. The continuous

dispersion relation is then identical to that in the perfect gas case,

using the local values of c2 and N2. In the discrete case, consistent

with this approximation, we will assume that reference state

profiles, including c2 and N2, are smooth on the grid scale, so that

multiplicative factors of reference state quantites can be moved

inside or outside averaging operators with negligible error; e.g.

Bw ≈ Bw. The definitions A = N2/g and B = g/c2 are retained,

and it remains true that ρ
(r)
z = −(A+B)ρ(r), even for a general

equation of state.

In the remainder of this section we look at a number of

alternative configurations. In several cases the most obvious

discretization is not optimal; however, in each case we can identify

why it fails to be optimal and, using the ideas introduced above,

modify the discretization to make it optimal.

3.1. The (wη, uvp) configuration

This configuration is the straightforward generalization to an

arbitrary equation of state of the configuration discussed in

section 2.1. Using (26) evaluated at w levels to eliminate ρ(w)

from the w equation, the discrete linear system reduces to

−iωw +
1

ρ(r)
(δzp+Bp)− gQη = 0, (32)

−iωQη + wA = 0, (33)

−iω
p

ρ(r)
+ c2 (iku+ ilv + δzw −Bw) = 0. (34)

This scheme is arguably the most fundamental of the optimal

schemes, since it emerges naturally from an obvious discretization

once the (wη, uvp) configuration is specified. As for the

configuration of section 2.1, the only averaged terms that appear

do so in combination with vertical derivatives of the same quantity,

so the errors due to averaging never dominate the dispersion

relation. It is also consistent with the heuristic arguments of

Thuburn et al. (2002) in terms of the vertical structures of

normal modes. The strategy for finding optimal versions of other

configurations will be to manipulate them so that their discrete

linear system is equivalent to this one.

3.2. The (wη, uvρ) configuration

This configuration is the generalization to an arbitrary equation

of state of the configuration discussed in section 2.2. Paralleling

the discussion there, the equation of state must be applied at u-v

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls



Vertical discretizations for a general equation of state 5

levels to find p and again at w levels to find ρ(w):

−iωw +
1

ρ(r)
δzp+ g

ρ(w)

ρ(r)
= 0, (35)

−iωQη + wA = 0, (36)

−iω
ρ

ρ(r)
+ {iku+ ilv + δzw − (A+B)w} = 0, (37)

1

c2
p

ρ(r)
=

ρ

ρ(r)
+Qη, (38)

1

c2
p

ρ(r)
=

ρ(w)

ρ(r)
+Qη. (39)

Eliminating ρ(w) from the w equation leaves (32), while

combining (36) and (37) to give the implied p equation leaves

(34). Thus, this discrete linear system reduces to the optimal one

(32)-(34).

3.3. The (wρ, uvp) configuration

In this configuration ρ is predicted at w levels; the notation

ρ(w) is used to keep this clear. The linearization of one obvious

discretization (in which the density equation is written as

Dρ/Dt+ ρ∇ · u = 0) is

−iωw +
1

ρ(r)
δzp+ g

ρ(w)

ρ(r)
= 0, (40)

−iω
p

ρ(r)
+ c2 (iku+ ilv + δzw −Bw) = 0, (41)

−iω
ρ(w)

ρ(r)
+ {iku+ ilv + δzw − (A+B)w} = 0. (42)

Substituting the equation of state

1

c2
p

ρ(r)
=

ρ(w)

ρ(r)
+Qη (43)

in (40) gives (32). Using it again to construct the implied evolution

equation for η gives

− iωQη + (A+B)w −Bw = 0. (44)

Thus the linear system differs from the optimal one through the

appearance of B(w − w) in (44). The effect of this term is to

exaggerate the effect of the buoyancy frequency for large vertical

wavenumbers and thus to lead to spuriously fast Rossby waves, as

found by Thuburn and Woollings (2005) for the perfect gas case.

This configuration could be made optimal if we could replace

the discrete linearized density equation by

− iω
ρ(w)

ρ(r)
+
{

iku+ ilv + δzw −Aw −Bw
}

= 0. (45)

Then the Bw terms would cancel in the implied evolution equation

for η and it would agree with the optimal one (33). One way to

achieve this would be to write the full nonlinear density equation

as

Dρ

Dt
= −ρQ

Dη

Dt
+

1

c2
Dp

Dt
(46)

and substitute the obvious (and optimal) discretizations of the η

and p equations, with the latter averaged to w levels.

3.4. (wη, uvT ) configuration

The discrete linearized prognostic equations for this configuration

are

−iωw +
1

ρ(r)
δzp+ g

ρ(w)

ρ(r)
= 0, (47)

−iωQη + wA = 0, (48)

−iωT + wT
(r)
z

+ρ(r)c2
∂T

∂p

∣

∣

∣

∣

(r)

η

(iku+ ilv + δzw) = 0. (49)

If we use

p =
∂p

∂η

∣

∣

∣

∣

(r)

T

η +
∂p

∂T

∣

∣

∣

∣

(r)

η

T (50)

to derive the implied evolution equation for p, we find it agrees

with the optimal form (34). Next consider the w equation. If we

eliminate ρ(w) in the most obvious way using

ρ(w) =
∂ρ

∂η

∣

∣

∣

∣

(r)

T

η +
∂ρ

∂T

∣

∣

∣

∣

(r)

η

T (51)

then the w equation becomes

− iωw +
1

ρ(r)
δzp+

g

ρ(r)

(

∂ρ

∂η

∣

∣

∣

∣

(r)

T

η +
∂ρ

∂T

∣

∣

∣

∣

(r)

η

T

)

= 0. (52)

Rewriting this in terms of p and η using (50) gives

− iωw +
1

ρ(r)
(δzp+Bp)− gQη +

B

ρ(r)
∂p

∂η

∣

∣

∣

∣

(r)

T

(η − η) = 0.

(53)

This differs from the optimal form through the inclusion of

the last term on the left hand side. Once again, the effect

of the error is to exaggerate the buoyancy frequency for

large vertical wavenumbers leading to spuriously fast Rossby

waves, consistent with the (wθ, uvT ) configuration examined by

Thuburn and Woollings (2005) and Thuburn (2006).

An optimal version of this configuration can be obtained by

not using (51) to eliminate ρ(w) but, rather, using (50) to obtain

p and then (39) to obtain ρ(w). The w equation is then of the

optimal form (32). For the full nonlinear equations one would use

the equation of state first at u-v levels to obtain p = p(T, η), then

again at w levels to obtain ρ(w) = ρ(p, η).

3.5. The (wT, uvp) configuration

Using an obvious discretization of the T equation, the discrete

linearized prognostic equations for this configuration are

−iωw +
1

ρ(r)
δzp+ g

ρ(w)

ρ(r)
= 0, (54)

−iω
p

ρ(r)
+ c2 (iku+ ilv + δzw −Bw) = 0, (55)

−iωT + wT
(r)
z

+ρ(r)c2
∂T

∂p

∣

∣

∣

∣

(r)

η

(iku+ ilv + δzw) = 0. (56)

Using

η =
∂η

∂T

∣

∣

∣

∣

(r)

p

T +
∂η

∂p

∣

∣

∣

∣

(r)

T

p (57)

to obtain η and then (39) to obtain ρ(w) puts (54) in the optimal

form (32). However, using (57) again to obtain the implied

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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evolution equation for η gives

− iωQη + wA−Q
∂η

∂p

∣

∣

∣

∣

(r)

T

p
(r)
z

(

w − w
)

= 0. (58)

This differs from the optimal form through the inclusion of the

last term on the left hand side. For a perfect gas the coefficient

Q ∂η/∂p|
(r)
T

p
(r)
z is positive, so the effect of the error in (58) is to

underestimate the buoyancy frequency, leading to spuriously slow

Rossby waves, in agreement with Thuburn and Woollings (2005).

An optimal version of this configuration can be obtained by

modifying the discretization of the T equation so that its linearized

form becomes

−iωT + w
∂T

∂η

∣

∣

∣

∣

(r)

p

η
(r)
z + w

∂T

∂p

∣

∣

∣

∣

(r)

η

p
(r)
z

+ρ(r)c2
∂T

∂p

∣

∣

∣

∣

(r)

η

(iku+ ilv + δzw) = 0. (59)

Then the implied evolution equation for η reduces to the optimal

form (33). One way to achieve this would be to write the full

nonlinear temperature equation as

DT

Dt
=

∂T

∂η

∣

∣

∣

∣

(r)

p

Dη

Dt
+

∂T

∂p

∣

∣

∣

∣

(r)

η

Dp

Dt
(60)

and substitute the obvious (and optimal) discretizations of the η

and p equations, with the latter averaged to w levels.

3.6. The (wT, uvρ) configuration

All of the configurations considered so far in this section

predict either p or η (or both). Their perfect gas equivalents,

using the most obvious discretizations, were classified by

Thuburn and Woollings (2005) as either optimal or near optimal;

for the near optimal configurations we have seen how an

optimal scheme can be obtained by a relatively straightforward

modification. In the final two configurations neither p nor η

is predicted, and Thuburn and Woollings (2005) placed them in

a large class of ‘problematic’ schemes. Nevertheless, optimal

discretizations can be constructed based on the lessons learned

from sections 3.1-3.5.

For the (wT, uvρ) configuration the optimal linear discretiza-

tion is

−iωw +
1

ρ(r)
δzp+ g

ρ(w)

ρ(r)
= 0, (61)

−iω
ρ

ρ(r)
+ {iku+ ilv + δzw − (A+B)w} = 0, (62)

−iωT + w
∂T

∂η

∣

∣

∣

∣

(r)

p

η
(r)
z + w

∂T

∂p

∣

∣

∣

∣

(r)

η

p
(r)
z

+ρ(r)c2
∂T

∂p

∣

∣

∣

∣

(r)

η

(iku+ ilv + δzw) = 0, (63)

η =
∂η

∂T

∣

∣

∣

∣

(r)

p

T +
∂η

∂p

∣

∣

∣

∣

(r)

T

p, (64)

p =
∂p

∂η

∣

∣

∣

∣

(r)

ρ

η + c2ρ, (65)

along with (39). Note that the equation of state is now used three

times: (i) to relate the prognostic thermodynamic variable at w

levels (in this case T ) to η and p; (ii) to relate the prognostic

thermodynamic variable at u-v levels (in this case ρ) to η and p;

and (iii) to express ρ(w) in terms of η, p. In addition, the prognostic

equations for ρ and T take the same form they do in the optimal

schemes discussed above.

The two versions of the equation of state (64) and (65) must be

solved simultaneously to obtain p and η:

L1(p) ≡ p−
∂p

∂η

∣

∣

∣

∣

(r)

ρ

∂η

∂p

∣

∣

∣

∣

(r)

T

p =
∂p

∂η

∣

∣

∣

∣

(r)

ρ

∂η

∂T

∣

∣

∣

∣

(r)

p

T + c2ρ, (66)

and

L1(η) = c2
∂η

∂p

∣

∣

∣

∣

(r)

T

ρ+
∂η

∂T

∣

∣

∣

∣

(r)

p

T. (67)

Thus, a vertical tridiagonal system must be solved to obtain either

p or η (the other can then be obtained by back-substitution).

We can confirm that the implied tendency equations for p and

η are of the optimal form. Substituting (62) and (63) in (66), after

some maniputation, leads to

− iω
L1(p)

ρ(r)
+ c2L1 (iku+ ilv + δzw −Bw) = 0. (68)

Provided L1 is invertible, this is equivalent to (34). The operator

L1 is guaranteed be invertible provided its tridiagonal matrix

representation is diagonally dominant, which, in turn, will be true

provided

∂p

∂η

∣

∣

∣

∣

(r)

ρ

∂η

∂p

∣

∣

∣

∣

(r)

T

< 1. (69)

It may be verified that this condition does hold for a perfect gas.

A similar argument can be used to show that the implied η

tendency equation is equivalent to (33). Alternatively, given that

the p and T tendency equations are of the same form as the optimal

version of the (wT, uvp) configuration, it immediately follows

that the implied η tendency equation is of the optimal form.

To apply this scheme to the full nonlinear equations it will be

necessary to solve simultaneously the nonlinear versions of (64)

and (65):

η = η(T, p), (70)

p = p(η, ρ). (71)

This is a nonlinear and nonlocal problem. One obvious approach

would be to use a Newton method; at each Newton iteration a

linear system like (66) would need to be solved. With a good

first guess only a small number of Newton iterations would

be required. Nevertheless, this clearly involves more work and

greater complexity than a simple local evaluation of the equation

of state.

3.7. The (wρ, uvT ) configuration

To complete the set, the optimal version of the (wρ, uvT )

configuration is given by

−iωw +
1

ρ(r)
δzp+ g

ρ(w)

ρ(r)
= 0, (72)

−iω
ρ(w)

ρ(r)
+
{

iku+ ilv + δzw −Aw −Bw
}

= 0, (73)

−iωT + wT
(r)
z

+ρ(r)c2
∂T

∂p

∣

∣

∣

∣

(r)

η

(iku+ ilv + δzw) = 0, (74)

η =
∂η

∂ρ

∣

∣

∣

∣

(r)

p

ρ+
∂η

∂p

∣

∣

∣

∣

(r)

ρ

p, (75)

p =
∂p

∂η

∣

∣

∣

∣

(r)

T

η +
∂p

∂T

∣

∣

∣

∣

(r)

η

T. (76)

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Similarly to the (wT, uvρ) configuration, the equation of state is

used three times, each time relating another variable to η and p,

and the prognostic equations for ρ(w) and T take the same form

as in the optimal schemes discussed above.

The equations of state (75) and (76) must be solved

simultaneously to obtain p and η. For example

L2(p) ≡ p−
∂p

∂η

∣

∣

∣

∣

(r)

T

∂η

∂p

∣

∣

∣

∣

(r)

ρ

p =
∂p

∂η

∣

∣

∣

∣

(r)

T

∂η

∂ρ

∣

∣

∣

∣

(r)

p

ρ+
∂p

∂T

∣

∣

∣

∣

(r)

η

T,

(77)

followed by back-substitution to obtain η. Again a vertical

tridiagonal system must be solved. The operator L2 will be

diagonally dominant and therefore invertible provided

∂p

∂η

∣

∣

∣

∣

(r)

T

∂η

∂p

∣

∣

∣

∣

(r)

ρ

< 1. (78)

Again it may be verified that this condition does hold for a perfect

gas.

Substituting (73) and (74) in (77) leads, after some

manipulation, to

− iω
L2(p)

ρ(r)
+ c2L2 (iku+ ilv + δzw −Bw) = 0. (79)

Provided L2 is invertible, this is equivalent to (34). The fact that

the p and ρ(w) tendency equations are of optimal form then means

that the implied η equation is of optimal form.

4. Conclusions and Discussion

Previous work has examined the ability of different vertical

discretizations of the nonhydrostatic compressible Euler equations

to capture accurately the propagation of acoustic, inertio-gravity,

and Rossby waves. Here the approach has been extended to

apply to a general equation of state, making it applicable to a

wider range of geophysical fluid systems. This previous work

had identified a number of choices of prognostic thermodynamic

variables and vertical staggering (i.e. ‘configurations’) that give

an optimal representation of wave propagation. The present work

has identified several configurations that were previously thought

to be suboptimal but which, when discretizated appropriately, can

give optimal wave propagation after all.

The key idea behind the construction of the new optimal

discretizations is to ensure that the corresponding linearized

system is equivalent to the fundamental one that comes from the

(wη, uvp) configuration. Specifically, one must diagnose η at w

levels from the predicted thermodynamic variables and diagnose

p at u-v levels from the predcted thermodynamic variables. Then

the buoyancy term in the w equation must be expressed in terms

of η and p. The evolution equation for η must be expressed

in advective form; the flux form would introduce additional

averaging. If η is not predicted then its implied evolution equation

must be equivalent to the optimal advective form; this requirement

constrains how the prognostic thermodynamic equations should

be discretized. Similarly, if p is not predicted then its implied

evolution equation must be equivalent to the optimal form, in

which the divergence involves no averaging.

Given a choice of two prognostic thermodynamic variables

from ρ, η, p and T , there are 12 possible configurations that have

one thermodynamic variable at w levels and one at u-v levels.

Of these 12, we have shown that 7 can be discretized in a way

that gives optimal wave propagation. The remaining 5 involve

the prediction of η at u-v levels or the prediction of p at w

levels (or both). For these 5 there is no possibility to construct a

discretization with an unaveraged η at w levels and an unaveraged

p at u-v levels, as required for an optimal scheme. Thus, the 7

optimal discretizations identified here comprise essentially the

complete set.

Some of the optimal discretizations identified here are less

appealing than others from a practical point of view. For example,

some do not predict the mass variable ρ, or predict it but not

via a flux-form conservation equation (e.g. section 3.3), and so

do not lend themselves to mass conservation. Others involve

considerable extra complexity with no obvious compensating

advantages (section 3.6, 3.7). Nevertheless, it is instructive to

have this more complete picture of how vertical discretization

affects wave propagation. Finally, it should be emphasized

that linear wave propagation is but one consideration, albeit

an important one, in the design of numerical models; others

include the representation of hydrostatic and geostrophic balance

(which is closely related to wave propagation), Lagrangian and

integral conservation properties, and the representation of strongly

nonlinear circulations.
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