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Abstract 11	

Reductions in Arctic sea ice may promote the negative phase of the North Atlantic Oscillation 12	

(NAO-). It has been argued that NAO-related variability can be used an as analogue to predict the 13	

effects of Arctic sea ice loss on mid-latitude weather. Since NAO- events are associated with colder 14	

winters over Northern Europe, a negatively-shifted NAO has been proposed as a dynamical 15	

pathway for Arctic sea ice loss to cause Northern European cooling. This study uses large-ensemble 16	

atmospheric simulations with prescribed ocean surface conditions to examine how seasonal-scale 17	

NAO- events are affected by Arctic sea ice loss. Despite an intensification of NAO- events, 18	

reflected by more prevalent easterly flow, sea ice loss doesn’t lead to Northern European winter 19	

cooling, and daily cold extremes actually decrease.  The dynamical cooling from the changed NAO 20	

is “missing” because it is offset (or exceeded) by a thermodynamical effect owing to advection of 21	

warmer air masses.  22	
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The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report (AR5)1 found that 23	

warming of the climate system is unequivocal and human influence on the climate system is clear. 24	

The rapid retreat of Arctic sea ice cover is one of the most visible manifestations of man-made 25	

climate change2-4. The annual minimum sea ice cover (in September) has declined by 40% from 26	

1979-2015 and is now lower than at any other time in the past 1,450 years5. Climate model 27	

simulations run with increasing greenhouse gas concentrations unanimously project continued loss 28	

of sea ice, with ice-free summers the norm later this century if greenhouse gas concentrations 29	

continue to rise6-9. This profound environmental change has motivated extensive research aimed at 30	

understanding the climatic implications of sea ice loss, both within the Arctic and beyond10-15.  31	

 32	

The response of the large-scale Northern Hemisphere atmospheric circulation to Arctic sea ice loss 33	

has proven hard to elucidate, owing to its inherent nonlinearity15-17 - with respect to the magnitude 34	

and spatial pattern of sea ice loss18-21 and to the background climatic state22,23 - apparent model 35	

dependence24, and often low detectability amidst the large chaotic variability of the system25. 36	

Despite this large uncertainty, a common conclusion is that reductions in Arctic sea ice tend to 37	

favour a shift towards the negative phase of the North Atlantic Oscillation (NAO)26, or its 38	

hemispheric equivalent, the Arctic Oscillation (AO). A causal link between Arctic sea ice and the 39	

NAO (or AO), has been inferred from observations/reanalyses27-36, seasonal predictions37, and 40	

climate model simulations19,20,24,38-46. Whilst such a negative shift of the NAO has been found in 41	

many studies, there are exceptions17,21,25,47,48, for reasons that are not well understood.  42	

 43	

The negative phase of the NAO is associated with cooler winter temperatures over Europe26. It has 44	

been assumed (often implicitly or via association) therefore, that sea ice loss will favour colder 45	

winters over Europe (and mid-latitudes more generally) if, as evidence suggests, sea ice loss 46	

promotes the negative NAO phase49-52. However, it is plausible that the European winter 47	

temperature response to Arctic sea ice loss is influenced by factors other than the negative NAO 48	
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shift. Furthermore, whilst several studies have suggested a physical link between Arctic sea ice loss 49	

and winter cooling over Asia18,53-58, connections to European winter climate are less clear14. 50	

Extreme caution is required when extrapolating conclusions from one mid-latitude region to 51	

another. 52	

 53	

This study presents evidence from model simulations that strongly support the notion of a negative 54	

NAO response to Arctic sea ice loss. This atmospheric circulation change would be expected to 55	

lead to cooling over Europe, if the NAO is a good analogue for the expected temperature response 56	

to Arctic sea ice loss. However, such a cooling response is “missing” in these model simulations 57	

because it is offset (or exceeded) by a thermodynamical effect owing to advection of warmer air 58	

masses. 59	

  60	

Results 61	

 62	

Sea ice loss 63	

This study makes use of large-ensemble atmospheric model simulations with perturbed sea ice 64	

conditions to isolate the influence of Arctic sea ice loss on the negative phase of the NAO (NAO-). 65	

It focuses on the NAO- for two key reasons. Firstly, the climatological winter mid-tropospheric 66	

circulation response to sea ice loss in these simulations projects onto the NAO- (Supplementary Fig. 67	

1), prompting a closer look at NAO- events specifically. Secondly, considering the wider literature, 68	

the one dynamical change that appears commonplace (if not ubiquitous) in response to sea ice loss 69	

is a tendency towards NAO-. The main analyses are based upon two 502-member ensembles, one 70	

with below-average sea ice cover and the other with above-average sea ice cover (see Methods for 71	

further details), hereafter referred to as the low ice (LI) and high ice (HI) ensembles. Figure 1a,b 72	

show the differences in sea ice concentration between LI and HI during early winter (November-73	

December) and midwinter (January-February), respectively. There are reduced sea ice 74	
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concentrations, in LI compared to HI, along the sea ice edge and in the sub-polar seas. The 75	

difference patterns are largely similar between early and midwinter, except for larger sea ice 76	

reductions in Hudson Bay and the Chukchi Sea in the former, and larger reductions in the Sea of 77	

Okhotsk and Labrador in the latter. The Barents-Kara Sea is a region where sea ice reductions are 78	

understood to be especially effective at influencing the NAO18,33,36,46,56.  Decreased ice cover in this 79	

region is evident in both early and midwinter. 80	

 81	

Figure 1c,d show differences in sea ice concentration between two additional experiments, referred 82	

to as the 21st century (C21) and 20th century (C20) ensembles (see Methods). The differences in sea 83	

ice cover between C21 and C20 are more spatially extensive than between LI and HI, and the 84	

difference in sea ice area is roughly twice as large (-8.9 vs. -4.8 million km2 in early winter; -10.2 85	

vs. -5.2 million km2 in midwinter). However in some regions, the differences in sea ice 86	

concentration are larger between LI and HI than between C21 and C20 (Supplementary Fig. 2). 87	

This is especially the case near to the observed climatological sea ice edge (stemming from the fact 88	

that C20 has less sea ice than HI). The C21 and C20 ensembles will be utilised later, but first, focus 89	

is on the differences in the NAO between LI and HI. 90	

 91	

NAO response 92	

Unlike previous studies that have examined seasonal-mean changes of the NAO in response to 93	

Arctic sea ice loss, the large ensembles used here allow in-depth analysis of strongly negative NAO 94	

events specifically. This distinction is important as changes in extreme events (in this case, low 95	

surface NAO index values) may not simply follow changes in mean climate, and society is arguably 96	

more sensitive to the former. This study focuses on seasonal-scale (January-February mean) NAO- 97	

events, which are associated with prolonged periods of anomalous weather and significant impacts 98	

on society. Simulated NAO- events (defined here as when the midwinter surface NAO index is 99	

more than one standard deviation below its mean; see Methods) are characterized by raised mid-100	



	 5	

tropospheric (500 hPa) geopotential heights centred over Greenland and lowered heights over the 101	

North Atlantic (Fig. 2a; contours). These anomalies are vertically coherent and extend from the 102	

surface into the stratosphere, as illustrated by a vertical cross-section along the 40°W meridian (Fig. 103	

2b; contours).  104	

 105	

To estimate the influence of Arctic sea ice loss on NAO- events, the difference is taken between a 106	

composite-mean of NAO- events in LI and that in HI.  Mid-tropospheric height differences between 107	

NAO- events in LI and HI (Fig. 2a; shading) project strongly onto the climatological NAO- pattern 108	

(Fig. 2a; contours). NAO- events are associated with raised heights over Greenland and depressed 109	

heights over the North Atlantic in LI compared to HI. The vertical profile of height differences 110	

between NAO- events in LI and HI (Fig. 2b; shading) also closely resembles the vertical structure 111	

of the climatological NAO- (Fig. 2b; contours). These differences imply that midwinter NAO- 112	

events are amplified (intensified) by Arctic sea ice loss. This intensification can also be seen as 113	

significant (p < 0.001) increase in the standard deviation of the surface NAO index (1.36 hPa [95% 114	

confidence intervals: 0.86−1.86]) but no significant (p = 0.96) change in its mean (0.02 hPa [-115	

0.64−0.68]; Supplementary Fig. 3). Note that the climatological winter circulation response is 116	

NAO-like in the mid-troposphere but not at the surface, hence no mean shift in the surface NAO 117	

index. This study focuses on midwinter (January-February) as the intensification of NAO- events is 118	

most pronounced in these months (Supplementary Fig. 4); however, other studies have found NAO 119	

responses to be maximal in late winter19,20. The timing of the NAO response may be dependent of 120	

the atmospheric model used and/or the sea ice conditions prescribed. 121	

 122	

Troposphere-stratosphere interaction 123	

The temporal evolution of polar cap (>65°N) height (PCH) is a commonly used metric to infer the 124	

evolution of the NAO (or AO) through time19,20,46. Figure 2c shows the evolution of PCH in the 125	

months preceding, during and following midwinter NAO- events, and how this differs between LI 126	
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and HI. Typically midwinter NAO- events are preceded by increases in stratospheric PCH in late 127	

autumn and early winter months (Fig 2c; contours). These positive PCH anomalies descend through 128	

time and become apparent in the troposphere by midwinter. Although the stratospheric PCH 129	

anomalies persist into early spring following the midwinter NAO- event, the tropospheric anomalies 130	

dissipate. Comparing LI and HI, PCH is enhanced in the stratosphere from October to March in LI 131	

with positive tropospheric anomalies emerging a few months later in December and persisting until 132	

April. This familiar response pattern to Arctic sea ice loss19,20,46 strongly suggests a warming and 133	

weakening of the stratospheric vortex, followed by a downward propagation of circulation 134	

anomalies into the troposphere with a lag of around 1-2 months. Negative PCH differences in the 135	

stratosphere during spring may be linked to delayed final breakdown of the polar vortex, which 136	

often follows the recovery from a weakened winter vortex. 137	

 138	

Since large differences in stratospheric PCH emerge in November preceding midwinter NAO- 139	

events (Fig. 2c), attention now turns to this month and potential causes of the weakened polar 140	

stratospheric vortex. Previous work has suggested that sea ice loss increases vertical wave 141	

propagation into the stratosphere in early winter and leads to a weakened polar vortex46. Such 142	

increases in vertical wave activity are understood to relate to amplification of the climatological 143	

planetary waves, in particular the zonal wavenumber 1 component46. The concept of linear 144	

interference – how the forced response interacts with the climatological waves – appears a powerful 145	

paradigm to explain the effect of extratropical surface forcing, such as sea ice loss, on vertical wave 146	

activity59-61. Figure 3 shows the zonal wavenumber 1 component of the difference in geopotential 147	

height between LI and HI for Novembers preceding midwinter NAO- events. The differences 148	

display a westward tilt with altitude, indicative of vertical wave propagation62, and are tightly in 149	

phase with the climatological wavenumber 1. Thus, these simulations support the notion that the 150	

planetary wave response to Arctic sea ice loss interferes constructively with the climatological wave 151	

pattern in November and enhances vertical wave propagation into the stratosphere, consistent with 152	
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ref. 46. In other months the wave response does not project so well onto the climatological wave 153	

pattern (Fig. 3b), which suggests enhanced vertical wave activity in November (and to a lesser 154	

extent October) triggered by sea ice loss is especially relevant for winter weather, as proposed by 155	

others33,37,46. It is worth noting that despite using a  “low-top” model (i.e., with a model lid at 10 156	

hPa and relatively poor vertical resolution of the stratosphere) in this study, the results are strongly 157	

consistent with those from “high-top” models19,20,46. In summary, these simulations display a robust 158	

intensification of NAO- events in response to Arctic sea ice loss, through a mechanism whereby 159	

enhanced tropospheric wave activity leads to a weaker stratospheric polar vortex and precedes more 160	

intense NAO- events. 161	

 162	

NAO-related temperature response 163	

Focus now shifts to the effects of NAO- events on near-surface (1.5 m) temperature. The NAO 164	

explains the largest percentage of midwinter temperature variance over a region covering 15°W-165	

40°E 50-65°N (Fig. 4a), encompassing the British Isles, Belgium, Netherlands, northern Germany 166	

and Poland, the Baltic States and southern Scandinavia; and hereafter referred to as Northern 167	

Europe. One third (33.2%) of the simulated variance in midwinter Northern European 1.5 m 168	

temperature is explained by the NAO. Northern European temperature is 2.26 °C [1.84−2.68] 169	

colder than average during NAO- events (Table 1). This cooling is understood to be largely related 170	

to easterly wind anomalies and enhanced advection of cold continental air masses into Northern 171	

Europe. Averaged over Northern Europe, NAO- events are associated with mean westerlies of 0.61 172	

m/s compared to an average of 1.98 m/s (Table 1). Figure 4b shows the spatial pattern of 173	

temperature anomalies during NAO- events. Cooler temperatures also occur over Siberia, East Asia 174	

and North America; however, in these regions the NAO explains a smaller fraction of the total 175	

variance than over Northern Europe. 176	

 177	
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One might expect that the temperature difference between NAO- events in LI and HI (Fig. 4c) 178	

would resemble an amplified NAO- temperature pattern (Fig. 4b), given the intensification of 179	

NAO- events by sea ice loss. However, this is not the case. Over Siberia, NAO- events are 180	

associated with warmer temperatures in LI compared to HI (Fig. 4c), rather than cooler 181	

temperatures that would be expected from more intense NAO- events. Over most of Europe there is 182	

little change in temperature associated with NAO- events, despite the intensification of these events. 183	

Specifically for Northern Europe, there is a marginally significant (p = 0.06) warming despite a 184	

highly significant (p < 0.001) decrease in zonal wind (Table 1), the latter implying a more easterly 185	

flow regime typically linked to colder winter temperatures. This is called the missing cooling 186	

response, referring to the fact that midwinter Northern European temperature is unaffected by sea 187	

ice loss despite the marked intensification of NAO- events that would be expected to yield cooling. 188	

A lack of Northern European cooling is also apparent in the climatological midwinter response to 189	

sea ice loss (i.e., including all midwinters not just NAO- ones; Supplementary Fig. 1).  190	

 191	

Better understanding of the reasons for this missing cooling response can be obtained by 192	

considering the anatomy of NAO- events using simulated daily data. Figure 5a compares 193	

histograms of Northern European daily zonal wind for all midwinters, and for NAO- events in LI 194	

and HI. During NAO- events (in both LI and HI) there are more frequent days of easterly zonal 195	

wind compared to climatology and conversely, fewer days of westerly zonal flow. Comparing 196	

NAO- events in LI and HI, there are more easterly days and fewer westerly days in the former than 197	

the latter (Fig. 5a). Thus, the reduction in midwinter mean zonal wind over Northern Europe 198	

induced by sea ice loss is associated with more days of easterly flow. Comparable histograms for 199	

surface temperature (expressed as anomalies from the daily climatology in HI to remove the effects 200	

of the seasonal cycle) reveal more frequent days of below-average temperature during NAO- events 201	

(in both LI and HI) and in particular, more frequent occurrences of cold extremes (Fig. 5b). There 202	

are notable differences in the histograms of daily temperature during NAO- events between LI and 203	
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HI, despite the small change in mean temperature. There are fewer occurrences of temperature 204	

anomalies lower than -3 °C in LI compared to HI, but more occurrences of anomalies in the range -205	

3 to 7 °C (Fig. 5b). In other words, whilst sea ice loss increases the number of moderate cold and 206	

warm anomalies, the largest cold anomalies decrease in number. These opposing differences result 207	

in only a small change in mean temperature.  208	

 209	

There is a strong linear relationship between Northern European daily zonal wind and temperature 210	

during NAO- midwinters, evident in both LI and HI (Fig 5c). As mentioned earlier, easterlies tend 211	

to be associated with colder conditions and vice versa. This linear relationship can be used to 212	

estimate the temperature change that one would expect for a given change in zonal wind: the 213	

decrease in zonal wind of -0.58 m/s, between LI and HI, yields an anticipated cooling of 0.50 °C. 214	

This contradicts the simulated warming of 0.68 °C [-0.02−1.39].  215	

 216	

Dynamical and thermodynamical effects 217	

The temperature difference between NAO- events in LI and HI (0.68 °C [-0.02−1.39]) can be 218	

partitioned into contributions coming from days of differing daily zonal wind strength (Fig. 5d; 219	

black line). Further, it is possible to estimate a contribution owing to the change in frequency of 220	

days in each wind category, assuming no change in the average temperature of days in each wind 221	

category; and a contribution owing to a change in the average temperature associated with each 222	

wind category, assuming no change in the frequency of days in each wind category. Since the 223	

former describes a change of wind in the absence of a mean temperature change and the latter, a 224	

mean temperature change in the absence of changes in circulation, these are referred to as 225	

dynamical and thermodynamical components, respectively. The dynamical component (Fig. 5d; 226	

blue line) is dominated by a cooling contribution on days of zonal wind in the range -5 to 2 m/s. 227	

These are more frequent in LI relative to HI and are associated with cold temperature anomalies, 228	

hence they act to lower the midwinter temperature in LI relative to HI. Note that although days of 229	
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zonal wind less than -4 m/s are also increased, these are few in number so contribute less to the 230	

midwinter mean change. There is a smaller dynamical cooling contribution from days of zonal wind 231	

in the range 4 to 8 m/s, owing to fewer of these typically warmer days in LI compared to HI. The 232	

dynamical contribution is small for days of zonal wind in the range 0 to 3 m/s. In contrast, the 233	

thermodynamical contribution (Fig. 5d; red line) is largest in this range, but positive for all 234	

categories. Since all wind categories are warmer in LI compared to HI (Fig. 3c), the magnitude of 235	

the thermodynamical contribution is largely dictated by the mean frequency of each category, with 236	

more frequent categories making a larger contribution to the midwinter mean temperature 237	

difference. The net contribution (Fig. 5d; black line) shows cooling (dynamically driven) on days of 238	

strong easterly flow (< -5 m/s) and on days of strong (> 5 m/s) westerly flow, and warming 239	

(thermodynamically driven) on days of moderate (-5 to 5 m/s) easterly and westerly flow. Summed 240	

over all days in midwinter NAO- events (i.e., over all wind categories), the cooling effect of 241	

intensified NAO- is missing owing to a larger and opposite warming effect. 242	

 243	

Cold extremes 244	

Figure 5b shows a reduction in the frequency of daily cold extremes. This reduction in cold 245	

extremes is caused in part by mean warming, but also by decreased daily temperature variability, 246	

consistent with previous work20,57. Reduced variability is a physical consequence of weakened 247	

horizontal temperature gradients63,64. Northern European cold extremes tend to be associated with 248	

advection of cold subpolar air from northern Eurasia, a region that is warmed by Arctic sea ice loss 249	

(Fig 4c). It is worth noting that cold extremes decrease in frequency (Fig. 5b) despite a net cooling 250	

on days of strongest easterlies (< -5 m/s; Fig. 5d). This can be understood by the fact that the zonal 251	

wind is only one factor of many that influences temperature, meaning that not all the coldest days 252	

are coincident with strong easterlies. Some of the coldest days fall into wind categories that are 253	

warmed by sea ice loss (e.g., -5 to 5 m/s; Fig. 5d), which explains the reduction in cold extremes. 254	

 255	
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Robustness of the response 256	

Past work has suggested that the atmospheric response to Arctic sea ice loss can be dependent on 257	

the magnitude and spatial pattern of sea ice loss17-21, and the background climatic state22-23. 258	

Therefore, a pertinent question to ask is: is the missing Northern European cooling response a 259	

feature specific to these simulations, or a consistent feature of the atmospheric response to Arctic 260	

sea ice loss? To begin to explore this question the large ensemble was sub-sampled into four 261	

smaller ensembles corresponding to the four different background states (see Methods). Both the 262	

NAO- response (i.e., across all midwinters; there are too few NAO- events in each of the smaller 263	

ensembles to allow reliable comparison of solely NAO- midwinters) and the absence of Northern 264	

European cooling are robustly simulated in all four cases (Supplementary Figs. 5 and 6), suggesting 265	

little sensitivity to the background state (this is in contrast to other aspects of the response to sea ice 266	

loss23). To further explore potential sensitivities it is useful to attempt to reproduce the results using 267	

another set of ensemble simulations with the same model, but very different prescribed sea ice 268	

concentrations. These additional ensembles were briefly introduced earlier (C21 and C20). Recall 269	

that the difference in sea ice area between C21 and C20 is approximately twice as large as between 270	

LI and HI, and the spatial patterns of sea ice loss are very different (Fig. 1; Supplementary Fig. 2). 271	

Despite these differences in sea ice forcing (and in the background state), there is very high 272	

consistency in the simulated atmospheric response to sea ice loss. Mid-tropospheric heights 273	

differenced between C21 and C20, show a very similar amplification of NAO- events (Fig. 6a) to 274	

that discussed previously (Fig. 2a), suggesting this is a robust feature of the atmospheric response to 275	

sea ice loss (at least in this model). Another consistent feature is the absence of European cooling 276	

associated with these more intense NAO- events (c.f. Fig. 6b and Fig. 4c).  277	

 278	

Histograms of Northern European daily zonal wind and temperature during NAO- events reveal 279	

very similar changes between C21 and C20 (Fig. 6c,d) to those reported earlier between LI and HI 280	

(Fig. 5a,b). Namely, an increase in days of easterly flow, an increase in days of moderate cold 281	
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anomalies and a decrease in days of large cold anomalies., The difference in midwinter Northern 282	

European zonal wind between NAO- events in C21 and C20 is of comparable magnitude (-0.60 m/s 283	

[-0.95−-0.26]; Fig. 6e) to that between LI and HI (-0.58 m/s [-0.88−-0.27]; Fig. 5c), despite much 284	

larger sea ice differences between C21 and C20 (Fig. 1; Supplementary Fig. 2), emphasising that 285	

the dynamical response does not scale linearly with the magnitude of sea ice loss15-17. The enhanced 286	

easterlies exert a dynamical cooling contribution but, as found before, this is offset by 287	

thermodynamical warming (Fig. 6f), leading to a small and insignificant (p = 0.81) mean 288	

temperature response (0.10 °C [-0.66−0.87]). Despite an increase in frequency (as well as intensity) 289	

of NAO- midwinters in C21 relative to C20 (see Methods), there is no evidence of Northern 290	

European cooling in the climatological temperature response to sea ice loss (i.e., across all 291	

midwinters not just NAO- ones; Supplementary Fig. 7), even though the climatological circulation 292	

response is like the NAO-.  293	

 294	

One noteworthy difference between the two sets of simulations is that the slope of the wind-295	

temperature relationship is reduced in C21 compared to C20 (Fig. 6e), whereas it stays roughly 296	

constant in HI and LI (Fig. 5c). This difference in slope is attributable to larger (sub-) polar 297	

warming in the future sea ice loss scenario and further weakened horizontal temperature gradients. 298	

In summary, the intensification of NAO- events and the missing Northern European cooling are 299	

common features of the response to Arctic sea ice loss in both sets of simulations. The absence of 300	

NAO-like surface temperature change, despite a circulation response to sea ice loss reminiscent of 301	

the NAO-, was also evident in ref. 24 (although it was not explored in any detail). However, both 302	

sets of simulations analysed in this study and the simulations analysed in ref. 24 were conducted 303	

with the same model, so model dependence cannot be ruled out. 304	

 305	

Discussion 306	

 307	
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The NAO is a key driver of winter weather and climate variability over Northern Europe. Given the 308	

similarities between the mean atmospheric state during NAO- events and that often simulated in 309	

response to Arctic sea ice loss (e.g., Fig. 2a, Fig. 6a), the NAO has been suggested as a prototype to 310	

understand how mid-latitude weather might change with Arctic sea ice loss. Since NAO- winters 311	

are typically colder than average, the above line of reasoning would predict that Arctic sea ice loss 312	

causes winter cooling over Northern Europe. This study strongly suggests, however, that Northern 313	

European winter temperature is only weakly affected by Arctic sea ice loss, despite a marked 314	

intensification of NAO- events. The temperature of seasonal-scale NAO- events remains fairly 315	

constant (or warms) because thermodynamical warming offsets (or exceeds) NAO-related 316	

dynamical cooling. Furthermore, using the NAO as an analogue would predict more frequent cold 317	

extremes over Northern Europe, whilst the simulated response suggests fewer such events. Thus, 318	

the NAO- cannot be used as an analogue to predict how surface temperature responds to Arctic sea 319	

ice loss. Further work is required to ascertain whether this holds true for modes of atmospheric 320	

variability other than the NAO. In this context it is noteworthy that a similar conclusion was 321	

recently drawn in relation to the AO as an analogue for the effect of Arctic warming on atmospheric 322	

blocking67. 323	

 324	

This study has shown that a Northern European cooling response is missing in these simulations 325	

and explained its absence, but why then are Arctic sea ice reductions correlated with cold winters in 326	

the real world49-52? The simulations strongly suggest that whilst Arctic sea ice loss may augment the 327	

negative NAO, the European cooling correlated with sea ice loss in observations, is not caused by 328	

sea ice loss. Instead, it is likely related to co-varying atmospheric variability52,65,66. In other words, 329	

the observed correlation between Arctic sea ice and European winter temperature does not appear to 330	

be indicative of a physical relationship. This study has only considered the effects of sea ice loss 331	

and it remains to be seen how co-varying factors, such as Eurasian snow cover, may influence 332	

connections between sea ice, the NAO and Northern European weather.  333	
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 334	

Research into linkages between the Arctic and mid-latitudes is in part motivated by the potential to 335	

improve prediction of mid-latitude weather33,68. The results here suggest that Arctic sea ice cover 336	

could be potential source of predictability for the NAO. Indeed, November sea ice cover in the Kara 337	

Sea has been identified as one possible contributor to skilful NAO predictions in a state-of-the-art 338	

seasonal prediction system37. However, the results also suggest that improved predictions of the 339	

NAO may not translate in better forecasts of surface temperature unless the temperature of advected 340	

air is also well predicted. 341	

 342	

In conclusion, the paper provides support for a causal link between Arctic sea ice loss and more 343	

intense midwinter NAO- events; but importantly, emphasises that cooling over Northern Europe 344	

stemming from this dynamical change is fully compensated by thermodynamical warming.345	
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Methods 346	

 347	

Model. Model simulations were performed with the UK Met Office Unified Model version 6.6.3, 348	

which is the atmospheric component of the Coupled Model Intercomparison Project 5 (CMIP5) 349	

model HadGEM2-ES69. The model was utilized in an atmosphere-only configuration with 350	

prescribed surface boundary conditions. The atmosphere-only framework has the distinct advantage 351	

that sea ice can be perturbed in a controlled way, to isolate its influence on the atmosphere. The 352	

major weakness of this approach, however, is that it fails to capture coupled atmosphere-ocean-ice 353	

interactions and feedbacks, which may modify the atmospheric response44,45,66. External forcings 354	

(e.g., greenhouse gas concentrations, aerosols and so on) were held constant. The model version 355	

used here has a horizontal resolution of 1.875° longitude and 1.25° latitude (known as N96) and 38 356	

vertical levels.  357	

Low ice and high ice ensembles. Two ensemble experiments were performed with either positive 358	

or negative sea ice anomalies. Both experiments consist of 502 ensemble members, with each 359	

member being 1-year in duration and having the same surface boundary conditions, but starting 360	

from a different atmospheric initial condition. For sea ice boundary conditions, the monthly-mean 361	

climatological mean and standard deviation (σ) of observed sea ice concentration and sea surface 362	

temperature (SST), 1979-2013, was calculated at each grid-point from the UK Met Office Hadley 363	

Centre Ice and SST (HadISST) data set (http://www.metoffice.gov.uk/hadobs/hadisst). In the high 364	

ice (HI) experiments a sea ice concentration anomaly of +2 σ was applied to the climatological 365	

mean and for the low ice (LI) experiments an ice concentration anomaly of -2σ was applied to the 366	

climatological mean. At grid-points where a sea ice anomaly was imposed, a SST anomaly was also 367	

imposed to account for SST changes linked to sea ice changes, adapting the approach of ref. 24. In 368	

the HI experiment a SST anomaly of -2 σ was applied to the climatological mean and in LI, an SST 369	

anomaly of +2 σ was applied to the climatological mean. At grid-points where sea ice is never 370	

present or always has the same concentration, the climatological sea ice concentration and SST was 371	
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used. Specific ice-related anomalies are applied in each calendar month, but only in the northern 372	

hemisphere. Sea ice concentrations were restricted to being between 0-100% to avoid unphysical 373	

values. Sea ice thickness was calculated empirically within the model code from the prescribed sea 374	

ice concentrations. Previous work has shown that the atmospheric response to sea ice loss can be 375	

sensitive to the background SST22,23. For this reason four different background states are used, 376	

intended to capture SST variability associated with the Pacific Decadal Oscillation (PDO) and the 377	

Atlantic Multidecadal Oscillation (AMO). These were chosen as they are the dominant modes of 378	

SST variability on decadal to multi-decadal timescales in the Pacific and Atlantic oceans, 379	

respectively, and this study is focused on the response to Arctic sea ice loss on these timescales. To 380	

represent the different PDO phases, the detrended and normalized annual-mean PDO index 381	

(http://www.esrl.noaa.gov/psd/data/climateindices/list/), 1948-2013, was regressed against 382	

detrended annual-mean global SST to yield a SST anomaly per 1 σ change in the PDO index (β). 383	

For one background state an SST anomaly of +2 β was applied and the other an SST anomaly of -2 384	

β was applied. The SST anomalies were applied globally at all ice-free grid-points, with the same 385	

SST anomalies applied in each calendar month. SSTs were restricted to no lower than -1.8 °C 386	

(freezing temperature of saltwater) to avoid unphysical values. An analogous procedure was applied 387	

for the AMO to yield two additional background states. In both LI and HI (to ensure no net 388	

difference in SST between these), the two PDO background states were each applied in 150 389	

members and the two AMO background states were each applied in 101 members. 390	

21st and 20th century ensembles. Two 260-member ensembles were performed with either sea ice 391	

conditions representative of the late 20th century (C21) or those projected for the late 21st century 392	

(C20). For the C20 experiment, sea ice concentrations and SSTs were taken from the CMIP5 393	

historical simulations of HadGEM2-ES, averaged for the period 1980–99 and across all available 394	

ensemble members (4). For the C21 experiment, sea ice concentrations were taken from the CMIP5 395	

RCP8.5 simulations of HadGEM2-ES, averaged for the period 2080–99 and across all available 396	

ensemble members (4). SSTs  in C21 were the same as C20, except at grid boxes where sea ice was 397	
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lost, where the climatological SST of the late 21st century was used. This procedure accounts for the 398	

local SST warming associated with reduced sea ice cover. The RCP8.5 simulations are forced by a 399	

continuous increase in greenhouse gas concentrations and are often viewed as a 'business-as-usual' 400	

scenario, with limited mitigation strategies applied. This scenario was chosen to maximize the 401	

signal-to-noise ratio. Further details on these simulations can be found in ref. 57.  402	

NAO events and compositing. NAO indices were calculated from the midwinter (January-403	

February) weighted area-average mean sea level pressure (SLP) over the domain 0-80 °W 30-50 °N 404	

minus that over the domain 0-80 °W 60-80 °N. Sensitivity tests confirmed that the results were 405	

robust for alternative NAO definitions, e.g., based upon the Principal Component time-series of the 406	

leading Empirical Orthogonal Function (EOF) of SLP over the Atlantic sector (Supplementary Fig. 407	

8). The NAO indices were normalised by subtracting the ensemble mean and dividing by the 408	

ensemble standard deviation. The mean and standard deviation where determined separately for 409	

each experiment; however, the results are highly consistent when normalisation is relative to the HI 410	

experiment (Supplementary Fig. 9). A surface NAO index value of -1 or lower was classified as an 411	

NAO- event, yielding 71 events in both LI and HI, and 49 and 42 events in C21 and C20, 412	

respectively. Note that the number of events differs between C21 and C20 due to differences in 413	

higher-order moments (more negative skewness and kurtosis). The difference in NAO- events 414	

induced by Arctic sea ice loss was estimated from by subtracting the composite-mean of NAO- 415	

cases in HI (C20) from that in LI (C21). A student’s T-test was used to assess the statistical 416	

significance of the differences, which compares the sample means to the variances within both 417	

samples and accounts for unequal variances between samples. The null hypothesis of equal means 418	

is rejected with 95% confidence when p ≤ 0.05.  419	

Dynamical and thermodynamical roles. The methodology to decompose the dynamical and 420	

thermodynamical contributions was adapted from ref. 70. Rather than classifying each day based on 421	

a two dimensional spatial pattern, here each day was classified based on the strength of 10 m zonal 422	
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wind averaged over Northern Europe (15 °W-40 °E 50-65 °N), using 15 bins from -6 to 8 m/s with 423	

an interval of 1 m/s. The dynamical and thermodynamical contributions were estimated from: 424	

∆𝑇 = 𝑇!∆f! + f!∆𝑇! +  ∆𝑇!∆f!   
!

!

1 

where ∆𝑇 is the total change in temperature between LI (C21) and HI (C20), 𝑇! is the bin-averaged 425	

temperature in HI (C20), f! is the frequency of occurrence of bin i in HI (C20), ∆f! is the change in 426	

frequency of occurrence for bin i between LI (C21) and HI (C20), ∆𝑇! is the change in bin-averaged 427	

temperature between LI (C21) and HI (C20), and N is the total number of bins (in this case, N = 428	

15). The first term, 𝑇!∆f!, relates to changes in the frequency of occurrence of particular wind 429	

regimes and provides an estimate of the dynamical contribution. The second term, f!∆𝑇!, relates to 430	

changes in temperature averaged over all days that belong in each bin, which provides an estimate 431	

of the thermodynamical contribution. The third term, ∆𝑇!∆f!, represents the contribution from the 432	

interaction of both changing wind regime and bin-averaged temperature. It is included in the net 433	

contributions shown (for completeness), but is not presented as an individual term as it was found to 434	

be small compared to the other two terms. 435	

Software. All graphics were produced using IDL® version 8.2.2. 436	

Data availability. All relevant data are available from the corresponding author on request.  437	
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Figures 606	

 607	

 608	

Figure 1 | Arctic sea ice loss prescribed in the model simulations. a, Early winter 609	

(November-December) sea ice concentration differenced between the low ice (LI) and high 610	

ice (HI) simulations (LI minus HI). b, As a but for midwinter (January-February). c,d, As 611	

a,b but for the difference between 21st century (C21) and 20th century (C20) simulations 612	

(C21 minus C20). The red and green lines mark the sea ice edge (15% contour) in LI and 613	

HI respectively in both a and b; and in C21 and C20 respectively in both c and d. 614	

 615	
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 616	

Figure 2 | Changes to NAO- events induced by Arctic sea ice loss. a, Midwinter 617	

(January-February) 500 hPa geopotential height during NAO- events, differenced between 618	

the low ice (LI) and high ice (HI) simulations (shading; LI minus HI). b, Midwinter 619	

geopotential height along the 40°W meridian (marked by a grey line in a) during NAO- 620	

events, differenced between LI and HI (shading). c, Polar cap (north of 65°N) averaged 621	

geopotential height for the 4 months preceding (September-December; leftmost), during 622	

(January-February; centre) and 4 months following (March-June; rightmost) midwinter 623	

NAO- events, differenced between LI and HI (shading). Green hatching (a-c) denotes 624	

differences that are statistically significant at the 95% (p = 0.05) confidence level. Black 625	

contours (a-c) show the average geopotential height for NAO- events relative to 626	

climatology (average of both LI and HI; solid for positive; dashed for negative; drawn from 627	

-200 to 200 at intervals of 20 m, excluding zero). The solid grey line in b marks the 628	

tropopause. 629	
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 631	

Figure 3 | Planetary wave interference induced by Arctic sea ice loss. a, Zonal 632	

wavenumber 1 component of November geopotential height averaged between 40-60°N 633	

during NAO- events, differenced between the low ice (LI) and high ice (HI) simulations 634	

(shading; LI minus HI). The black contours show the climatological wavenumber 1 635	

(average of both LI and HI; solid for positive, dashed for negative; drawn from -300 to 300 636	

at intervals of 50 m, excluding zero). Values below 700 hPa are omitted due to pressure 637	

levels intersecting elevated topography. b, Pattern correlation (50-700 hPa) between the 638	

forced wavenumber 1 response and the climatological wave for the months preceding and 639	

during midwinter NAO- events. 640	
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 644	

Figure 4 | Effects of the NAO on near-surface temperature. a, Percentage of midwinter 645	

(January-February) 1.5 m temperature variance explained by the NAO (average of both 646	

low ice (LI) and high ice (HI) simulations). b, Midwinter 1.5 m temperature during NAO- 647	

events (average of both LI and HI) relative to climatology. c, Midwinter 1.5 m temperature 648	

during NAO- events, differenced between LI and HI (LI minus HI). The black box in a 649	

marks the Northern European domain. Green hatching (b,c) denotes differences that are 650	

statistically significant at the 95% (p = 0.05) confidence level. 651	
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 653	

Figure 5 | Anatomy of NAO- events changed by Arctic sea ice loss. a, Histograms of 654	

daily 10 m zonal wind averaged over Northern Europe (black box in Fig. 4a) for all 655	

midwinters (January-February; grey bars; both low ice (LI) and high ice (HI) simulations) 656	

and for NAO- events in LI and HI (red and blue lines, respectively). b, As a, but for daily 657	

1.5 m temperature anomalies (relative to the daily climatology in HI). c, Relationship 658	

between daily 10 m zonal wind and 1.5 m temperature anomalies during NAO- midwinters. 659	

Each cross corresponds to a Northern European and bin average (classified by zonal wind 660	

with a bin size of 1 m/s) in LI (red) and HI (blue). The solid lines show linear relationships, 661	

referred to in the main text with the blue line used to predict the expected temperature 662	

change (dT) due to the simulated change in zonal wind (dU; LI minus HI). d, Dynamical 663	

(blue), thermo-dynamical (red) and net (black) contributions to the midwinter mean 664	

difference in Northern European 1.5 m temperature during NAO- events between LI and 665	

HI. The line graph shows the contributions as a function of daily 10 m zonal wind, and the 666	

crosses show the total contribution. 667	
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 668	

Figure 6 | Replication of main results in simulations with different Arctic sea ice 669	

loss. a, Midwinter (January-February) 500 hPa geopotential height during NAO- events, 670	

differenced between the 21st century (C21) and 20th century (C20) simulations (shading; 671	

C21 minus C20).b, As a, but for 1.5 m temperature. Green hatching (a-b) denotes 672	

differences that are statistically significant at the 95% (p = 0.05) confidence level. Black 673	

contours (a) show the average geopotential height for NAO- events relative to climatology 674	

(average of both C21 and C20; solid for positive; dashed for negative; drawn from -200 to 675	

200 at intervals of 20 m, excluding zero). c, Histograms of daily 10 m zonal wind averaged 676	

over Northern Europe (black box in Fig. 4a) for all midwinters (January-February; grey 677	
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bars; both C21 and C20) and for NAO- events in C21 and C20 (red and blue lines, 678	

respectively). d, As c, but for daily 1.5 m temperature anomalies (relative to the daily 679	

climatology in C20). e, Relationship between daily 10 m zonal wind and 1.5 m temperature 680	

anomalies during NAO- midwinters. Each cross corresponds to a Northern European and 681	

bin average (classified by zonal wind with a bin size of 1 m/s) in C21 (red) and C20 (blue). 682	

The solid lines show linear relationships, referred to in the main text with the blue line used 683	

to predict the expected temperature change (dT) due to the simulated change in zonal 684	

wind (dU; C21 minus C20). f, Dynamical (blue), thermo-dynamical (red) and net (black) 685	

contributions to the midwinter mean difference in Northern European 1.5 m temperature 686	

during NAO- events between C21 and C20. The line graph shows the contributions as a 687	

function of daily 10 m zonal wind, and the crosses show the total contribution. 688	

  689	
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Tables 690	

	 Mean	(all)	 Mean	(NAO-)	 Difference	(NAO-)	

1.5	m	temperature		 -4.15	 -6.41	 0.68	[-0.02−1.39]	

10	m	zonal	wind	 1.98	 0.61	 -0.58	[-0.88−-0.27]	

	691	

Table 1: Changes in Northern European winter climate. Simulated 1.5 m temperature 692	

(°C) and 10 m zonal wind (m/s) over Northern Europe (black box in Fig. 4a): in all 693	

midwinters (average of both low ice (LI) and and high ice (HI) simulations); during NAO- 694	

events (average of both LI and HI); and the difference between NAO- events in LI and HI 695	

(LI minus HI). Differences (fourth column) significant at the 95% confidence level 696	

(confidence intervals provided in parentheses) are highlighted in bold italic font. 697	


