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Abstract 13 

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are increasingly used to 14 

reconstruct past terrestrial temperature and soil pH. Here we compare all available 15 

modern soil brGDGT data (n=350) to a wide range of environmental parameters to 16 

obtain new global temperature calibrations. 17 

We show that soil moisture index (MI), a modeled parameter that also takes 18 

potential evapotranspiration into account, is correlated to the 6-methyl brGDGT 19 

distribution but does not significantly control the distribution of 5-methyl brGDGTs. 20 

Instead, temperature remains the primary control on 5-methyl brGDGTs. We propose 21 

the following global calibrations: MAATsoil = 40.01 x !"#!!" 
! − 15.25 (n=350, R2= 22 

0.60, RMSE = 5.3 °C) and growing degree days above freezing (GDD0 soil) = 14344.3 23 

x !"!!!" 
! - 4997.5 (n=350, R2= 0.63, RMSE = 1779 °C).  24 

Recent studies have suggested that factors other than temperature can impact 25 

arid and/or alkaline soils dominated by 6-methyl brGDGTs. As such, we develop new 26 

global temperature calibrations using samples dominated by 5-methyl brGDGTs only 27 

(IR6me<0.5). These new calibrations have significantly improved correlation 28 

coefficients and lower root mean square errors (RMSE) compared to the global 29 

calibrations: MAATsoil’ = 39.09 x !"#!!" 
! − 14.50 (n=177, R2= 0.76, RMSE = 30 

4.1 °C) and GDD0 soil’ = 13498.8 x !"#!!" 
! − 4444.5 (n=177, R2= 0.78, RMSE = 31 

1326). We suggest that these new calibrations should be used to reconstruct terrestrial 32 



climate in the geological past; however, care should be taken when employing these 33 

calibrations outside the modern calibration range. 34 

 35 

1. Introduction 36 

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane-spanning 37 

lipids produced by bacteria, presumably acidobacteria (Weijers et al., 2009; Sinninghe 38 

Damsté et al., 2011). First discovered in a Dutch peat (Sinninghe Damsté et al., 2000), 39 

brGDGTs are ubiquitous in mesophilic settings (Schouten et al., 2013) such as soils 40 

(Weijers et al., 2006b; Peterse et al., 2012), lakes (Pearson et al., 2011; Schoon et al., 41 

2013; Li et al., 2016), rivers (De Jonge et al., 2014b), marine sediments (Hopmans et 42 

al., 2004; Fietz et al., 2012), and peat deposits (Weijers et al., 2006a; Huguet et al., 43 

2010; Zheng et al., 2015; Naafs et al., 2017). Recent advances in analytical methods 44 

(De Jonge et al., 2013; Yang et al., 2015; Hopmans et al., 2016) have revealed the 45 

existence of a wide range of brGDGTs in mineral soils (Fig. S1), varying in the 46 

number of methyl branches (between 4 and 6), the carbon position of methyl branches 47 

(C5 and C6 position), and number of cyclopentane moieties (between 0 and 2). 48 

Over the last decade brGDGTs have become of great interest to the organic 49 

geochemistry and paleoclimate communities because their distribution (degree of 50 

cyclisation and methylation) correlates with soil-pH and mean annual air temperature. 51 

This was originally expressed by Weijers et al. (2007b) in the MBT/CBT-proxy in a 52 

global soil dataset and redefined by Peterse et al. (2012) with the MBT’/CBT-proxy:   53 

1  !"#! = !" + !" + !"
!" + !" + !" + !!" + !!!! + !!" + !!!! + !!" + !!!! + !!!" + !!!"′ 

2  !"# =  − log !" + !!" + !!"′
!" + !!" + !!"′  

3  !"# °! = 0.81− 5.67 × !"# + 31.0 × !"!!       (! = 176,!!

= 0.59,!"#$ = 5.0 ℃) 
Consequently, the brGDGT-based MBT(’)/CBT-proxy has been increasingly applied 54 

to proximal marine and lake sediments as well as loess and paleosols to gain insights 55 

into past terrestrial temperatures (Weijers et al., 2007a; Pancost et al., 2013; Schouten 56 

et al., 2013; Peterse et al., 2014; Lu et al., 2016). 57 

De Jonge et al. (2013; 2014a) recently demonstrated that 5-methyl penta- and 58 

hexamethylated brGDGTs, used to calculate the CBT and MBT(’) indices, co-elute 59 

with newly identified 6-methyl brGDGTs. Re-evaluation of the global soil calibration 60 



dataset in this context removed the pH dependence upon the degree of methylation of 61 

brGDGTs (De Jonge et al., 2014a) and suggested that the abundance of 6-methyl 62 

brGDGTs is influenced predominantly by pH (De Jonge et al., 2014a; Xiao et al., 63 

2015). Excluding the 6-methyl brGDGTs from the regressions, De Jonge et al. 64 

(2014a) developed two new types of equations with a dependence of 5-methyl 65 

brGDGTs on temperature alone; one based on the degree of methylation of 5-methyl 66 

branched tetraethers (!"#!!"! ): 67 

4  !"#!!"! = !" + !" + !"
!" + !" + !" + !!" + !!" + !!" + !!!"  

5  !"# =  −8.57+ 31.45 × !"#!!"!     (! = 231,!! = 0.64,!"#$ = 4.9  !)!   
And another based on a multiple linear regression using the relative abundance of 68 

specific 5-methyl brGDGTs (MATmr). 69 

6  !"#!" = 7.17+  17.1 × !" + 25.9 × !" + 34.4 × !" − 28.6 × !!"   
(! = 231,!! = 0.67,!"#! = 4.7  !)!  

(Note that the calibration statistics (n, R2, and RMSE) given in De Jonge et al. (2014a) 70 

were recently corrected (De Jonge et al., 2016)). 71 

Although the latest calibrations improved the correlation coefficient and root 72 

mean square error (RMSE) of brGDGT temperature and pH proxies, the relatively 73 

large scatter in the global calibration indicates the potential influence of additional 74 

environmental parameters, such as precipitation and soil moisture content (SMC) on 75 

brGDGT distributions (Weijers et al., 2011; Anderson et al., 2014; Ding et al., 2015; 76 

Xiao et al., 2015; Yang et al., 2015; Dang et al., 2016; Lei et al., 2016). For example, 77 

Dang et al. (2016) recently showed that the soil brGDGT distribution changed along a 78 

short transect with varying soil moisture content.  79 

Although previous studies have argued that mean annual temperature (MAT), 80 

soil pH, and precipitation (MAP) are the key environmental parameters influencing 81 

brGDGT distributions in the global soil database, the influences of other parameters 82 

such as growing degree days (GDD) have not been considered in the context of the 83 

global dataset. Further more, although some studies have investigated the impact of 84 

soil moisture on the brGDGT distribution at a regional level (Dirghangi et al., 2013; 85 

Dang et al., 2016), this has not been studied in a global context. This is important as 86 

both soil moisture and GDD are potentially better indicators of the growth 87 

temperature and moisture content experienced by brGDGT-producing bacteria living 88 

in soils (McMaster and Wilhelm, 1997; Gallego-Sala et al., 2010). An additional 89 



source of error can derive from the instrumental temperature data used in calibrations, 90 

because this comprises a mix of global databases and local weather station data and 91 

potentially there is an offset between air temperature and soil temperature (Weijers et 92 

al., 2007b; Peterse et al., 2012). In addition, the existing mineral soil calibrations 93 

indicate a bias in the coldest soils with brGDGT-based temperatures up to 15 °C 94 

higher than observed mean annual air temperature (De Jonge et al., 2014a).  95 

Here we compile and revisit all available soil brGDGTs data from around the 96 

world and calibrate these against a range of environmental parameters obtained from a 97 

simple bioclimatic model (PeatStash) that calculates bioclimatic variables using long-98 

term mean monthly values of temperature, precipitation and the fraction of possible 99 

sunshine hours (Gallego-Sala et al., 2010).  We use this to assess the environmental 100 

controls on brGDGTs in soils and re-define the global soil temperature proxies. 101 

Although several studies advocate the use of local calibrations (e.g., Ding et al., 2015; 102 

Yang et al., 2015), the earth’s climate system was significantly different during the 103 

geological past (e.g., during the Eocene). As such, the application of local calibrations 104 

should remain limited to recent (i.e. Quaternary) sediments when environmental 105 

conditions were likely similar to those covered in the local calibration dataset. For 106 

deep time application, global calibrations are required as these incorporate all 107 

modern-day climate zones. 108 

 109 

2. Material and methods 110 

2.1. Material 111 

We use the distribution of brGDGTs in the global soil dataset compiled by De Jonge 112 

et al., (2014a), based on a sample set generated previously (Weijers et al., 2007b; 113 

Peterse et al., 2012). This is supplemented with data from Chinese soils (Ding et al., 114 

2015; Xiao et al., 2015; Yang et al., 2015; Lei et al., 2016). Although other data sets 115 

containing modern brGDGT distributions in soils exist, these do not separate the 5- 116 

and 6-methyl brGDGTs and were therefore not included. The revised dataset from De 117 

Jonge et al., (2014a) consists of 239 samples from across the globe. We exclude 13 118 

samples either because the altitude of the soil sample was unknown (Peterse, personal 119 

communication December 2015) or because the altitude in PeatStash for that location 120 

was significantly different compared to that of the soil sample and no altitude 121 

correction could be made. Combined with 27 samples from the Qinghai–Tibetan 122 

Plateau (Ding et al., 2015), 27 samples from across the 400 mm isoline of mean 123 



annual precipitation in China (Xiao et al., 2015), 26 samples from Mt. Shennongjia in 124 

China (Yang et al., 2015), and 44 samples from the Henan and Yunnan provinces in 125 

China (Lei et al., 2016), we use a total of 350 soil samples (Fig. 1). The global dataset 126 

consists of data measured in different laboratories. Although there are no data 127 

available for the interlaboratory variation of soil brGDGT-based indices, compiling 128 

data from different laboratories could introduce additional variation. 129 

 130 

2.2. Environmental parameters 131 

We used bioclimatic variables obtained from a simple bioclimatic model (PeatStash). 132 

PeatStash calculates these variables globally with a 0.5 degree spatial resolution 133 

(Gallego-Sala and Prentice, 2013). The calculations are based on long-term mean 134 

climatology data, obtained by interpolating long-term mean weather station 135 

climatology (temperature, precipitation and the fraction of possible sunshine hours) 136 

from around the world for the period 1931-1960 (Climate 2.2 available online 137 

http://www.pik-potsdam.de/~cramer/climate.html). If the altitude of the grid cell was 138 

significantly different (> 250 meter) from that reported for a soil sample, a nearby 139 

grid cell with an altitude difference < 250 m was used for comparison. For soil 140 

altitude transects (e.g., Peterse et al., 2009), we generate temperature transects using 141 

PeatStash, but these could not be used to calculate precipitation or moisture index 142 

across transects. The temperature dataset thus consists of 350 soils, whereas the 143 

dataset for MAP and moisture index consists of 275 soils.  144 

brGDGT distributions were compared to the following climatological data, 145 

obtained using PeatStash (Gallego-Sala et al., 2010; Gallego-Sala and Prentice, 2013): 146 

mean annual air temperature (MAAT), mean warmest month temperature (MWMT), 147 

mean annual precipitation (MAP), moisture index (MI), and growing degree days 148 

above 0 °C (GDD0). The MI is defined as annual precipitation over annual potential 149 

evapotranspiration (P/PET) (Gallego-Sala et al., 2010). MI provides a better measure 150 

of water availability compared to MAP as it takes into account the large difference in 151 

evaporative demand between different climate regimes. Values < 1 are indicative of 152 

dry soils whereas values > 3 are encountered in the wettest areas on earth. GGD0 is 153 

defined as the yearly cumulated daily average temperature of the daily maximum and 154 

minimum temperature for average temperatures > 0 °C. GGD0 is a measure of annual 155 

soil heat accumulation and widely used to predict the timing of biological processes 156 

(Kaplan et al., 2003). A high value is indicative of a (sub)tropical climate and a low 157 



value for polar/tundra climates. At MAAT > 15 °C, GGD0 is linearly correlated with 158 

MAAT following 365 (the number of days in a year) multiplied by MAAT (the mean 159 

annual air temperature at a given location). 160 

 161 

2.3. Statistical methods 162 

Instead of simple linear regression, we use Deming regressions. The advantage of 163 

Deming regressions is that they account for error in both x and y-axis, meaning both 164 

the proxy (e.g. MBT5me’) and environmental parameter (e.g., MAAT) (Adcock, 165 

1878). For this purpose we used RStudio (RStudio Team, 2015) and the Method 166 

Comparison Regression (MCR) package (Manuilova et al., 2014), which are freely 167 

available to download1. The Rscript and data are available in the supplements for 168 

future users. The errors associated with the proxy measurements (e.g. MBT5me’) and 169 

environmental parameters (e.g., MAAT) are independent and assumed to be normally 170 

distributed. In order to calculate the ratio of their variances (δ), needed to calculate a 171 

Deming regression, we assumed that the standard deviation (σ) of the environmental 172 

data MAAT, GDD0, and pH are 1.5 °C, 547.5 °C (365 x 1.5 °C) and 0.25, 173 

respectively. For the brGDGT-based proxies (e.g. MBT5me’) we assumed a σ of 0.05. 174 

This results in a δ of 0.0011 for the MBT5me’/MAAT calibration, 8.3 x 10-7 for the 175 

MBT5me’/GDD0 calibration, and 0.04 for the pH calibrations (see supplementary 176 

information), respectively. Residuals were calculated using 177 

7  !"#$%&'(! = !!"#$%&$' − !!"#$%&'#$ 

The root mean square error (RMSE) for y, the predictive error for the 178 

environmental parameter of interests (e.g., MAAT), was calculated using 179 

8  !"#$! =
(!!,!"#$%&$' − !!,!"#$%&'#$)!!

!!!
! × !

!" 

Where df stands for degrees of freedom, which in this case is n-1.  180 

 181 

3. Results and Discussion 182 

Previous studies suggested that the distribution of brGDGTs in soils is controlled 183 

predominantly by MAAT and soil pH (Weijers et al., 2007b; Peterse et al., 2012; De 184 

Jonge et al., 2014a). Other studies have explicitly focused on the pH dependence of 185 

brGDGTs in the global data set, showing that the relative abundance of 6-methyl 186 
                                                
1 https://www.rstudio.com and https://cran.r-project.org/web/packages/mcr/index.html  



brGDGTs is positively correlated to pH (Ding et al., 2015; Xiao et al., 2015). Guided 187 

by these results we focus on the influence of a range of environmental parameters on 188 

the fractional abundance of brGDGTs.  189 

 190 

3.1 brGDGTs versus temperature 191 

When the fractional abundances of brGDGTs from all 350 samples are plotted versus 192 

mean annual air temperature (MAAT), it is clear that only 5-methyl brGDGTs lacking 193 

cyclopentane moieties (i.e. brGDGT-Ia, -IIa, and -IIIa) are significantly (R2 > 0.2, 194 

p<0.001) correlated to MAAT (Fig. 2). brGDGT-Ia is positively correlated with 195 

MAAT (R2 = 0.38, p<0.001), whereas brGDGT-IIa (R2 = 0.20, p<0.001) and -IIIa (R2 196 

= 0.36, p<0.001) are negatively correlated with MAAT. These values (R2 of 0.38, 197 

0.20 and 0.36) are similar to those reported by De Jonge et al. (2014a) for these 198 

compounds with R2 of 0.34, 0.43, and 0.43, respectively, although the dataset used 199 

here is larger. The correlation between brGDGT-IIa and MAAT is lower in the dataset 200 

used here. Together these results confirm the fundamental dependence of brGDGT 201 

distributions on temperature with lower temperatures associated with a higher degree 202 

of methylation. This was originally proposed by Weijers et al. (2007b) who argued 203 

that additional methyl groups result in a more loose packing of brGDGTs, allowing 204 

bacteria to maintain membrane fluidity at lower temperature, similar to what is seen in 205 

fatty acids synthesized by bacteria (Russell, 1984). 6-methyl brGDGTs and brGDGTs 206 

containing cyclopentane moieties are not significantly correlated to MAAT (R2 < 207 

0.11). 208 

 209 

3.2 brGDGTs versus precipitation and soil moisture index 210 

As observed by Weijers et al. (2007b), the fractional abundances of several brGDGTs 211 

are also significantly correlated to mean annual precipitation (MAP). In our data set 212 

(n= 275) the highest correlations are found for the relative abundance of 5-methyl 213 

brGDGT-Ia (R2 = 0.48, p<0.001) and -IIIa (R2 = 0.21, p<0.001), as well as 6-methyl 214 

brGDGT-IIa’ (R2 = 0.35, p<0.001) and -IIIa’ (R2 = 0.24, p<0.001) (Fig. 2). 215 

Intriguingly, the correlation of brGDGT-Ia with MAP (R2 = 0.48) is higher than that 216 

with MAAT (R2 = 0.38). 217 

Crucially, MAP does not reflect the soil moisture content experienced by soil 218 

bacteria as the latter also depends on evaporation and transpiration. To explore this 219 

further, we compared the brGDGTs distribution to the soil moisture index calculated 220 



by PeatStash (Fig. 2), although we want to stress that this approach does not take into 221 

local variations (e.g. microtopography, etc) that might be important in determining 222 

soil moisture content for a given sample. A soil moisture index of < 1 indicates that 223 

the potential annual evapotranspiration (the combined effect of evaporation and 224 

transpiration) is higher than annual precipitation and hence a dry soil, whereas a value 225 

> 1 indicates the opposite and suggests a wet soil. The correlation of brGDGT-Ia with 226 

soil moisture index is significantly lower (R2 = 0.26, p<0.001) than that observed for 227 

MAP (R2 = 0.48, p<0.001), and the correlation for brGDGT-IIIa drops below 0.2. 228 

Therefore, we suggest that the high correlation between MAP and 5-methyl 229 

brGDGTs-Ia is partly due to the correlation between MAP and MAAT (R2 = 0.51 for 230 

this dataset). In contrast, for 6-methyl brGDGTs (IIa’ and IIIa’), the correlation with 231 

MI is 0.29 and 0.20, respectively (p<0.001), and similar to that of MAP. Taken 232 

together this suggests a control of moisture content on the abundance of 6-methyl 233 

brGDGTs in soils. These results are supported by a recent study from Dang et al. 234 

(2016) who demonstrated that the brGDGT distribution in Chinese soils depends on 235 

soil moisture content with a higher amount of brGDGT-IIa’ and -IIIa' in dry mineral 236 

soils compared to wet mineral soils.  237 

 238 

3.3 brGDGTs versus warmest mean month temperature 239 

Seasonality is not generally considered to impact the brGDGT distribution in soils, 240 

but there is only limited data to support this. A study of several mid-latitude soils 241 

argued against seasonal changes in brGDGT production as: 1) MBT/CBT-derived 242 

temperatures yield similar temperature estimates throughout the year, and 2) the 243 

concentration of brGDGTs remained constant through the year, indicating a slow 244 

turnover time of brGDGT-producing bacteria on the order of ~ 20 years (Weijers et 245 

al., 2011). However, these results do not preclude a systematic bias in brGDGT 246 

production (and therefore environmental influence) towards a particular season in 247 

high-latitude regions, most likely the warm season as bacterial growth is greater at 248 

higher temperature. Indeed, much higher turnover rates (< 2 years) and a bias in 249 

brGDGT distribution towards the warmest month of the year were recently inferred in 250 

a French peatland (Huguet et al., 2013).  251 

To examine the influence of warm season temperature on GDGT distributions 252 

we compared the brGDGT distribution to mean warmest month temperature 253 

(MWMT). The aim was to investigate whether there is a better correlation with 254 



MWMT compared to that observed for MAAT (Fig. 3). However, the correlation 255 

coefficients for MWMT (e.g. R2 for brGDGT-Ia is 0.22) are overall lower than those 256 

for MAAT (R2 for brGDGT-Ia is 0.38), which would suggest that on a global basis 257 

there is no bias towards the warm season in brGDGT distribution. The same results 258 

are obtained when only samples from soils with MAAT < 5 °C are used (Fig. 3). This 259 

is further supported by a recent study that reported no difference in brGDGT 260 

distribution between Chinese soils with contrasting seasonality (Lei et al., 2016).  261 

 262 

3.4 brGDGTs versus growing degree days above freezing 263 

Although our results do not indicate a global bias in seasonality, the season of 264 

brGDGT production could still be dependent upon latitude. For example, bacteria in a 265 

tropical and temperate soil are likely to grow throughout the year with temperatures 266 

always above freezing, whereas those in a high latitude soil could be heavily biased to 267 

those months when soil temperatures are above zero. Indeed, it is hard to envision that 268 

in the high-latitudes, where winters are characterized by subzero temperatures, that 269 

brGDGTs are produced in equal amounts throughout the year. To explore this further, 270 

we compared the brGDGTs distributions to growing degree days above freezing 271 

(GDD0), a measure of the cumulative temperature (in °C) above zero a soil 272 

experiences over the year. 273 

 MAAT has previously been considered to reflect the temperature that soil 274 

bacteria experience. However, this does not reflect the time and intensity at which a 275 

given soil remains above freezing. In temperate and polar climates with MAAT < 15 276 

°C, GGD0 is more indicative of the cumulative heat a soil experiences. For example, 277 

soils from central Kazakhstan and Newfoundland (at 49 °N latitude) both experience 278 

a MAAT of ~3.5 °C. However, Kazakhstan is characterized by a continental climate 279 

with extremely cold winters and hot summers, whereas Newfoundland has a maritime 280 

climate with much less extreme seasonal variation. GGD0 differentiates the two 281 

climates as the warm summers in Kazakhstan lead to a GGD0 for this region of 282 

around 2890 °C (cumulative degrees centigrade above zero over one year), much 283 

higher than the value of 1930 °C for Newfoundland. 284 

As with MAAT, when GDDD0 is compared to the brGDGT distribution only 285 

5-methyl brGDGTs lacking cyclopentane moieties (i.e. brGDGT-Ia, -IIa, - and IIa) 286 

are significantly (R2 > 0.2) correlated (Fig. 3). brGDGT-Ia is positively correlated 287 

with GDD0 (R2 = 0.42, p<0.001), whereas brGDGT-IIa (R2 = 0.24, p<0.001) and -IIIa 288 



(R2 = 0.38, p<0.001) are negatively correlated. These R2 values are slightly higher 289 

than those found for MAAT and higher than those found for MWMT (Fig. 2).  290 

 291 

3.5 Redefining temperature calibrations using !"#!!"!  and Deming regressions 292 

Our results confirm that the degree of methylation is significantly correlated with 293 

temperature, either using MAAT or GDD0. Following previous studies (De Jonge et 294 

al., 2014a; Ding et al., 2015) we calculated the modified methylation index of 5-295 

methyl branched tetraethers !"#!!"!  (see equation 4) and calibrate this against 296 

MAAT and GDD0 using Deming regressions (Fig. 4a and 4d).  297 

This results in the following two Deming temperature regressions: 298 

9  !""#!"#!  ( !) = 40.01 × !"#!!"! − 15.25  (! ! = 350,!! = 0.60,!"#$
= 5.3 !)!  

10  !""! !"#$ = 14344.3 × !"#!!"! − 4997.5 (! = 350,!! = 0.63,!"#$
= 1779 !)  !   

Overall the GDD0 calibration performs slightly better than the MAAT calibration as it 299 

has a slightly higher R2. Although the slope and intercept of MAATsoil are different, 300 

the R2 and RMSE are similar compared to those reported for the MBT5me-MAT 301 

calibration by De Jonge et al. (2014a) (n = 231, R2 = 0.64, and RMSE = 4.9 °C), but 302 

lower compared to those reported by Ding et al. (2015) (n = 249, R2 = 0.70, and 303 

RMSE = 4.7 °C). Nonetheless, there is still significant scatter in our revised 304 

calibrations (Fig. 4b and 4e). Interestingly, the calibrations versus MAAT are 305 

characterized by relatively large residuals at lower temperatures (Fig. 4b). 306 

Specifically, the brGDGT distribution (MBT5me’) overestimates MAAT at lower 307 

temperatures and may be related to a seasonal production bias in high-latitudes sites. 308 

Indeed these low temperature residuals are reduced when GDD0 is applied instead of 309 

MAAT (Fig. 4e).  310 

An additional problem with both calibrations is that !"#!!"!  reaches 1 at a 311 

MAAT of 24.8 °C and GDD0 at 9347 °C, thereby compromising the application of 312 

these calibrations to (sub)tropical settings both in the recent past but especially in the 313 

geological past when terrestrial temperatures were generally higher (e.g., Huber and 314 

Caballero, 2011). 315 

 316 

3.6 Temperature calibrations using multiple linear regressions 317 



As !"#!!"!  reaches 1 at a relatively low MAAT (22.9 °C) in the temperature 318 

calibration of De Jonge et al. (2014a), the authors suggested that a multiple linear 319 

regression (MLR)-based calibration, based upon the fractional abundances of 320 

brGDGTs-Ia, -Ib, -Ic, and -IIa (eq. 6), was a more suitbale choice for paleoclimate 321 

studies.  As such, we have also explored the performance of MLRs in our expanded 322 

mineral soil dataset. The optimal MLRs are  323 

11  !""#!"# !"#$  ( !) = 19.8 × !" + 31.1 × {!"}− 23.4 × !!" + 4.32     (! !
= 350,  !! = 0.62,!"#$ = 4.7 !)!  

12  !""! !"# !"#$

= 6152.9 × !" + 8272.1 × {!"}− 8015.8 × !!" + 2509.4    (!
= 350,  !! = 0.68,!"#$ = 1319)  

Adding additional compounds inflates the p-level of the slopes and intercept to values 324 

> 0.01.The advantage of using a MLR model is that the correlations (R2) improve and 325 

RMSEs decrease compared to the !"#!!"!  calibrations. However, the MLRs 1) reach 326 

saturation (100% brGDGT-Ia) around 24-25 °C, similar to the !"#!!"!  calibration, 2) 327 

do not account for the error in both the proxy and environmental parameter as Deming 328 

regressions do, and 3) are characterized by structural residuals, which are the most 329 

significant at low MAAT (Fig. 4c and 4f). We therefore suggest the !"#!!"!  330 

calibrations (eq. 9 and 10) are the optimal global calibrations. However, the amount of 331 

scatter in the calibration remain large, indicating that additional parameters may 332 

influence the total brGDGT distributions.  333 

 334 

3.7 Temperature calibration excluding samples dominated by 6-methyl brGDGTs 335 

Numerous studies have shown that there is a poor correlation between the methylation 336 

of brGDGTs and MAAT in arid and/or alkaline soils (Peterse et al., 2012; Dirghangi 337 

et al., 2013; Anderson et al., 2014; Zell et al., 2014; Ding et al., 2015; Yang et al., 338 

2015). The reason for the apparent control of moisture (or other related environmental 339 

parameters) on the abundance of 6-methyl brGDGTs is unknown. Soil moisture is 340 

correlated to pH with dry soils predominantly being alkaline. Given that the 341 

abundance of 6-methyl brGDGTs is highly correlated to pH (see Fig. 5 and 342 

supplementary information), this might explain the correlation. In fatty acids, the 343 

position of methyl groups impacts membrane fluidity, with anteiso chains (methyl on 344 

C2 position) inducing a greater degree of fluidity compared to iso chains (methyl on 345 



C1 position) (Denich et al., 2003 and references therein). Potentially the same applies 346 

to brGDGTs, whereby shifting a methyl group from C5 to C6 leads to a greater 347 

membrane fluidity in arid and/or alkaline soils. An alternative explanation could be 348 

that different communities that thrive at different pH and soil moisture content 349 

produce a different distribution of 5- and 6-methyl brGDGTs. 350 

Using a transect of varying soil moisture content (SMC) in Chinese soils, 351 

Dang et al. (2016) demonstrated that SMC has an impact on the distribution of 352 

brGDGTs, in particular 6-methyl brGDGTs . Using the ratio of 6- over 5-methyl 353 

brGDGTs (IR6me) they proposed that MBT’ is only significantly correlated to MAAT 354 

in mineral soils with IR6me ≤ 0.5.  355 

13  !"!!"

= !!!! + !!!! + !!!! + !!!!! + !!!"! + !!!"!
!!!! + !!!! + !!!! + !!!!! + !!!"! + !!!"! + !!!"! + !!!"! + !!" + !!" + !!" + !!!" + !!!" + {!!!"} 

Based on this observation, we evaluated the influence of IR6me on the correlation 356 

coefficient (R2) between MBT5me’ and MAAT (Fig. 6). In the global soil dataset the 357 

correlation coefficient (R2) between MBT5me’ and MAAT decreases significantly 358 

from 0.76 to 0.67 when the threshold for IR6me increases from < 0.5 to < 0.6, similar 359 

to observations from the Chinese soil transect. These results suggest that the 360 

temperature dependence of brGDGTs in soils with a high amount of 6-methyl 361 

brGDGTs over 5-methyl brGDGTs (mainly arid/alkaline soils) is different. 362 

We therefore excluded samples with IR6me > 0.5. From the total of 350 soil samples; 363 

roughly half (177) have IR6me < 0.5, and these are mostly from acidic soils (Fig. 5). 364 

This yields a significant improvement in the correlations between individual 365 

brGDGT-Ia, -IIa, and -IIIa and MAAT (Fig. 7; R2 values of 0.67, 0.68, and 0.51, 366 

respectively) and leads to significantly improved calibrations with higher R2 and 367 

lower RMSEs (Fig. 8). This applies to both Deming (Eq. 14 and 15) and multiple 368 

linear regressions (Eq. 16 and 17). 369 

14  !""#!"#$ !!"  ( !) = 39.09 × !"#!!"! − 14.50  (! ! = 177,!! = 0.76,!"#$
= 4.1 !)!  

15  !""! !"#$ !!"

= 13498.8 × !!"!!"!

− 4444.5 ! = 177,!! = 0.78,!"#$ = 1326  



16  !""#!"# !"#$ !!"  ( !) = 14.7× !" − 31.7 × !!" + 10.0     (! ! = 177,  !!

= 0.77,!"#$ = 3.8 !)!  
17  !"" ! !"# !"#$ !!" = 4881 × !" − 10112 × !!" + 3942     (! = 177,

!! = 0.82,!!"# = 1079)  
Adding additional compounds to the MLRs does not improve the correlations and 370 

inflates the p-level of the slopes and intercept to values > 0.01. As explained 371 

previously, the MLRs do not take the error in both proxy and environmental 372 

parameter into account, only perform slightly better than the !"#!!"!  calibrations, 373 

and the MLR calibration of of MAAT (eq. 16) is characterized by structural residuals, 374 

especially at the low temperature end (Fig. 8c). As such we suggest that the !"#!!"!  375 

calibrations (eq. 14 and 15) are the best choice for paleoclimate reconstructions. 376 

However, both set of calibrations continue to saturate at temperatures of around 24-377 

25 °C, implying that their application to past greenhouse climates has to be 378 

undertaken with caution.  379 

These improvements over earlier calibrations imply that sample sets need to 380 

be screened for the abundance of significant amounts of 6-methyl brGDGTs prior to 381 

MAAT determinations. This will be particular important for archives from (semi-) 382 

arid regions such as loess and paleosols. It is important to note that in paleoclimate 383 

archives such as marine sediments, brGDGTs might be derived from a mixture of 384 

sources. This means that although these archives overall might be characterized by 385 

IR6me < 0.5, there could be a contribution of soils with IR6me > 0.5. 386 

We envision that the ability to calculate growing degree days will be of 387 

particular interest to climate modelers as GDD0 is more indicative of the seasonal 388 

temperature cycle than MAAT, especially at the high latitudes. Information about past 389 

seasonal temperatures and summer intensity is not readily available and provides a 390 

clear advantage of our calibration over other temperature proxies (marine and 391 

terrestrial). 392 

 393 

4. Conclusions 394 

The distribution of brGDGTs in soils has been shown previously to depend on 395 

environmental parameters such as mean annual air temperature (MAAT) and pH, but 396 

significant scatter in the existing calibrations suggests additional controls. Combining 397 

all available data, here we compare the brGDGT distribution to a range of 398 



environmental parameters obtained from a globally integrated data set. In agreement 399 

with previous studies, we demonstrate that the distribution of 5-methyl brGDGTs 400 

depends primarily on temperature. Excluding samples from arid and/or alkaline soils 401 

dominated by 6-methyl brGDGTs significantly improves the correlation with 402 

temperature and growing degree days above zero (GDD0). Guided by these results we 403 

provide new temperature calibrations. These new regressions have significantly 404 

improved correlation coefficients and lower root mean square errors (RMSE) 405 

compared to the existing global calibrations. We suggest that these new calibrations 406 

should be used to reconstruct terrestrial climate during the geological past, but caution 407 

should be taken when applying these calibrations to past greenhouse periods.  408 
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Figure captions 616 

Figure 1; World map with topography and location of soils used in this study, created 617 

using Ocean Data View (Schlitzer, 2015). 618 

 619 

Figure 2; Fractional abundance of the brGDGT-Ia, -IIa, -IIIa, -IIa’, and -IIIa' in the 620 

global soil sample data set versus mean annual air temperature (MAAT, top row), 621 

mean annual precipitation (MAP, middle row), and moisture index (MI, bottom row). 622 

Climatic parameters are obtained using PeatStash. Linear regressions are shown for 623 

those brGDGTs which relative abundance has a linear correlation coefficient (R2) of 624 

at least 0.2. Zero values (below detection limit) are not included. Correlation of other 625 

brGDGTs to these parameters is not significant (R2 < 0.2) and not shown. 626 

 627 

Figure 3; Same as figure 2, but now for mean warmest month temperature (MWMT) 628 

and growing degree days above zero (GDD0). Samples from soils with MAAT < 5 °C 629 

are highlighted in red in the MAAT plots. 630 



 631 

Figure 4; MBT5me’ plotted versus a) mean annual air temperature (MAAT) and d) 632 

growing degree days above 0 °C (GDD0) together with Deming regression (purple 633 

line) and simple linear regression (black dotted line). Also shown are the residuals for 634 

both the Deming (b and e) and multiple linear regressions (c and f). Gray area in the 635 

residual plots indicated missed variation because MBT5me’ reached 1. 636 

 637 

Fig. 5; Histograms of pH values from mineral soils, showing that samples with IR6me 638 

< 0.5 are predominantly from acidic soils. 639 

 640 

Fig. 6: The correlation coefficient (R2) between MAAT and MBT5me’ versus the IR6me 641 

cut-off value as well as number of soils in each dataset. The total dataset (IR6me cut-642 

off = 1) has a R2 of 0.6 and consists of 350 samples.  643 

 644 

Fig. 7; Relative abundance of brGDGT-Ia, -IIa, and -IIIa versus MAAT and GDD0 for 645 

the complete soil data set (black, n=350) and soil samples with IR6me < 0.5 (pink, 646 

n=177). 647 

 648 

Figure 8; MBT5me’ of samples with IR6me < 0.5 plotted versus a) mean annual air 649 

temperature (MAAT) and d) growing degree days above 0 °C (GDD0) together with 650 

Deming regression (purple line) and simple linear regression (black dotted line). Also 651 

shown are the residuals for both the Deming (b&e) and multiple linear regressions 652 

(e&f). Gray area in the residual plots indicated missed variation because MBT5me’ 653 

reached 1. 654 
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