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This paper is concerned with the classical, well-studied problem of convective insta-
bilities in rapidly rotating, self-gravitating, internally heated Boussinesq fluid spheres.
Sanchez, Garcia and Net (2016, J. Fluid Mech., 791, R1) recently found, unexpectedly
via careful numerical simulation, that non-magnetic convection in the form of axially
symmetric, equatorially antisymmetric torsional oscillation is physically preferred in a
special range of small Prandtl number for rapidly rotating fluid spheres with the stress-
free boundary condition. We derive an asymptotic solution describing convection-driven
torsional oscillation – whose flow velocity and pressure are fully analytical and in closed
form – that confirms the result of the numerical analysis and is in quantitative agreement
with the numerical solution. We also demonstrate, through the derivation of a different
asymptotic solution, that convection-driven torsional oscillation cannot occur in rapidly
rotating fluid spheres with the no-slip boundary condition.

1. Introduction

Many planets are nearly spherical, rapidly rotating and marked by the presence of
sizable liquid cores confined in their deep interiors where buoyancy forces drive convec-
tion against viscous and ohmic dissipations. Motivated by geophysical and astrophysical
applications, the problem of convective instabilities in rapidly rotating, self-gravitating,
internally heated Boussinesq fluid spheres – which is characterized by the Rayleigh num-
ber R, the Prandtl number Pr and the Ekman number E – has been studied for many
decades (see, for example, Chandrasekhar 1961; Roberts 1968; Busse 1970; Soward 1977;
Zhang 1994; Jones et al. 2000; Dormy et al. 2004).
After formulating the mathematical problem by Chandrasekhar (1961), Roberts (1968)

derived an asymptotic solution for 0 < E ≪ 1 that is axially nonsymmetric and equa-
torially antisymmetric; Busse (1970) found an asymptotic solution that is axially non-
symmetric and equatorially symmetric and represents the physically preferred mode of
convective instabilities in rapidly rotating spheres; Soward (1977) raised an important
question whether the critical Rayleigh number for the onset of convective instabilities
can be provided by the Roberts-Busse local asymptotic solution; Zhang (1994) derived
an asymptotic solution with the stress-free boundary condition in the form of axially
nonsymmetric and equatorially symmetric, azimuthally traveling thermal-inertial waves
that is valid for 0 < E ≪ 1 and small Prandtl numbers, which was extended to the
no-slip boundary condition (Zhang 1995) (see also Busse & Simitev 2004); and Jones et
al. (2000) modified the Roberts-Busse local analysis by resolving the cylindrical radial
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structure of the convective flow, which was extended to the geometry of rotating spheri-
cal shells by Dormy et al. (2004). The existing asymptotic studies apparently point to a
consensus that the preferred mode of convective instabilities in rapidly rotating spheres
with 0 < E ≪ 1 is axially nonsymmetric, equatorially symmetric, and in the form of
azimuthally traveling waves.

It comes as a surprise when Sanchez et al. (2016) recently reveals, via careful numerical
simulation under the poloidal and toroidal decomposition, that convection in the form
of torsional oscillation – a non-magnetic flow that is axially symmetric (invariant under
rotation about the axis of rotation), equatorially antisymmetric, and temporally oscilla-
tory (in the form of oscillatory fluid motion), which is referred to as torsional convection
in this paper – can be physically preferred in a special range of small Prandtl number in
rapidly rotating spheres with the stress-free boundary condition.

This finding immediately raises two important questions that need to be addressed.
The first is that, since torsional convection is found via complicated numerical simulation
in rotating spheres with small Ekman and Prandtl numbers, whether or not there exists
a simple asymptotic solution for torsional convection in rapidly rotating spheres with
0 < E ≪ 1. The second is that, since torsional convection is found in rotating spheres
with the stress-free boundary condition, whether or not it is also preferred with the no-slip
boundary condition. This paper attempts to address the above questions by deriving two
different asymptotic solutions for torsional convection, one for the stress-free condition
and the other for the no-slip condition, in rapidly rotating fluid spheres with 0 < E ≪ 1.

In what follows we begin by presenting the governing equations of the problem in §2,
which is followed by the asymptotic analysis/result for the stress-free condition in §3 and,
then, by the asymptotic analysis/result for the no-slip condition in §4. A summary and
some remarks are given in §5.

2. Mathematical formulation

Consider a Boussinesq fluid sphere of radius ro with constant thermal diffusivity κ,
thermal expansion coefficient α and kinematic viscosity ν. The fluid sphere rotates uni-
formly with constant angular velocity ẑΩ in the presence of its own gravitational field
−γr, where γ is a positive constant and r is the position vector. The whole sphere is
heated by a uniform distribution of heat sources (see, for example, Chandrasekhar 1961;
Roberts 1968; Busse 1970; Soward 1977; Jones et al. 2000; Sanchez et al. 2016), produc-
ing the unstable conducting temperature gradient −βr, β being a positive constant. The
problem of convection is governed by the dimensionless equations:

∂u

∂t
+ u · ∇u+ 2ẑ× u = −∇p+ RΘr+ E∇2u, (2.1)

(Pr/E )

(
∂Θ

∂t
+ u · ∇Θ

)
= u · r+∇2Θ, (2.2)

∇ · u = 0, (2.3)

where Θ represents the deviation of the temperature from its static distribution, p is the
total pressure, and u is the velocity of convection in spherical polar coordinates (r, θ, ϕ)

with unit vectors (r̂, θ̂, ϕ̂). In deriving (2.1)–(2.3), we have employed ro as the length
scale, 1/Ω as the unit of time and βr4oΩ/κ as the unit of temperature fluctuation Θ. The
three non-dimensional parameters, the Rayleigh number R, the Prandtl number Pr and
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the Ekman number E , are defined as

R =
αβγr4o
Ωκ

, Pr =
ν

κ
, E =

ν

Ωr2o
.

The amplitude of convection in this study is assumed to be sufficiently small in order to
neglect the nonlinear terms in (2.1) and (2.2).
Two different sets of boundary condition are considered in the asymptotic analysis.

The first is perfectly conducting (isothermal), impenetrable and stress-free conditions
given by

∂(ϕ̂ · u/r)
∂r

=
∂(θ̂ · u/r)

∂r
= r̂ · u = Θ = 0 at r = 1; (2.4)

and the second is no-slip and isothermal conditions described by

ϕ̂ · u = θ̂ · u = r̂ · u = Θ = 0 at r = 1. (2.5)

We first derive an asymptotic solution of (2.1)–(2.3) at 0 < E ≪ 1 describing torsional
convection for stress-free condition (2.4) and, then, extend the asymptotic analysis to
that for no-slip condition (2.5).

3. Asymptotic solution for the stress-free condition

Our asymptotic analysis is based on an assumption that torsional convection in rapidly
rotating spheres is dominated by spherical inertial oscillation while buoyancy forces ap-
pear only at the next order to drive it against viscous damping. This assumption leads
to an asymptotic expansion for 0 < E ≪ 1 in the form

u = [u0(r, θ) + (ũ+ û)] ei 2σt, (3.1)

p = [p0(r, θ) + (p̃+ p̂)] ei 2σt, (3.2)

Θ = Θ0(r, θ)e
i 2σt + . . . , (3.3)

σ = σ0 + σ1, (3.4)

where i =
√
−1, σ denotes the half frequency (the frequency ω = 2σ) of torsional con-

vection with 0 < |σ| < 1, û, p̂ and σ1 represent small perturbations, caused by viscous
effects, to the leading-order solution u0, p0 and σ0, and satisfy |û| ≪ |u0| and |σ1| ≪ |σ0|,
and ũ denotes a weak viscous boundary flow on the bounding spherical surface due to
stress-free condition (2.4).
Substitution of asymptotic expansion (3.1)–(3.4) into (2.1)–(2.3) yields the leading-

order problem that describes non-dissipative thermal-inertial oscillation and is governed
by the equations

i 2σ0u0(r, θ) + 2ẑ× u0(r, θ) +∇p0(r, θ) = 0, (3.5)(
∇2 − i 2σ0Pr

E

)
Θ0(r, θ) + r · u0(r, θ) = 0, (3.6)

∇ · u0 = 0, (3.7)

subject to the boundary conditions

r̂ · u0 = Θ0 = 0 at the spherical bounding surface r = 1.

It can be shown, after some manipulations, that solutions of (3.5)–(3.7) are expressible
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as

p0 =
k∑

i=0

k−i∑
j=0

Ckijr2(i+j)+1σ2i
0 (1− σ2

0)
j sin2j θ cos2i+1 θ, (3.8)

r̂ · u0 = − i

2

k∑
i=0

k−i∑
j=0

Ckij
[
σ2
0(2i+ 2j + 1)− (2i+ 1)

]
×

[
r2(i+j)σ2i−1

0 (1− σ2
0)

j−1 sin2j θ cos2i+1 θ
]
, (3.9)

θ̂ · u0 = − i

2

k∑
i=0

k−i∑
j=0

Ckij
[
2jσ2

0 cos
2 θ + (2i+ 1)(1− σ2

0) sin
2 θ

]
×

[
r2(i+j)σ2i−1

0 (1− σ2
0)

j−1 sin2j−1 θ cos2i θ
]
, (3.10)

ϕ̂ · u0 =
1

2

k∑
i=0

k−i∑
j=0

Ckijr2(i+j)σ2i
0 (1− σ2

0)
j−1 (2j) sin2j−1 θ cos2i+1 θ, (3.11)

Θ0 =
∑
l,q

2πPl(cos θ)jl(βlqr)

[(βlq)2 + 2 iσ0Pr/E ]

∫ π

0

∫ 1

0

r · u0Pl(cos θ)jl (βlqr) r
2 sin θ dr dθ,(3.12)

where jl denotes the spherical Bessel function of the first kind, Pl is the Legendre function,
βlq with q = 1, 2, 3, . . . are solutions of jl (βlq) = 0 and ordered such that 0 < βl1 < βl2 <
βl3 < . . ., k = 1, 2, 3, . . . can be regarded as a parameter of the solution which is to be
determined by the next-order problem, Ckij is defined as

Ckij =
(−1)i+j [2(k + i+ j) + 1]!!

2j+1(2i+ 1)!!(k − i− j)!i!(j!)2
,

and σ0 is a solution of

k∑
j=0

{
(−1)j [2(2k − j + 1)]!

j![2(k − j)]!(2k − j + 1)!

}
σ
2(k−j)
0 = 0, (3.13)

which has 2k real distinct solutions within 0 < |σ0| < 1 and is also to be determined by
the next-order problem. The method for deriving Ckij and σ0 can be found in Zhang et
al. (2001).
For a given E and Pr , evidently, the solution (p0,u0,Θ0) associated with the unknown

values of k and σ0 is not determined by the leading-order problem. Its determination is
through the solvability condition of the next-order problem described by

2 iσ0 (ũ+ û) + 2ẑ× (ũ+ û) +∇ (p̃+ p̂) = RrΘ0 + E∇2 [u0 + ũ]− i 2σ1u0, (3.14)

∇ · (ũ+ û) = 0, (3.15)

subject to the stress-free boundary condition

r̂ · (ũ+ û) = 0 and r̂×∇×
(
u0 + ũ

r2

)
= 0 at r = 1,

where we have neglected higher-order terms such as E∇2û since 0 < E ≪ 1 and |û| ≪
|u0|, but the boundary-layer flow ũ, albeit weak, must be retained such that (u0 + ũ)
satisfies the stress-free boundary condition. At this order, thermal effects are coupled
with the non-dissipative thermal-inertial oscillation, driving torsional convection against
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(a) (b)

Figure 1. The Rayleigh number R plotted as a function of the Prandtl number Pr at E = 10−4:
(a) for the stress-free condition and (b) for the no-slip condition. The curve labeled with A
represents solutions for retrogradely traveling waves with the azimuthal wavenumber m = 1;
the curve B for axisymmetric torsional oscillation; the curve C for progradely traveling waves
with m = 1; and the curve D for retrogradely traveling waves with m = 2. The mode D is not
preferred with the stress-free condition and, hence, is not shown in (a)

viscous dissipation. Since equation (3.14), whose right-hand side is related to the leading-
order solution (u0,Θ0), is inhomogeneous, it requires a solvability condition whose real
part, after making use of the stress-free condition, yields an expression for the Rayleigh
number R:

R = E


∫ π

0

∫ 1

0
|∇ × u0|2r2 sin θ dr dθ − 2

∫ π

0

[
|u0|2

]
r=1

sin θ dθ

Real
[∫ π

0

∫ 1

0
(r · u∗

0Θ0) r2 sin θ dr dθ
]

 , (3.16)

where f∗ denotes the complex conjugate of f and

Real

[∫ π

0

∫ 1

0

(r · u∗
0Θ0) r

2 sin θ dr dθ

]
=

∑
l,q

2πβ2
lq

(βlq)4 + (2σ0Pr/E )2

×
∣∣∣∣∫ π

0

∫ 1

0

r · u0Pl(cos θ)jl(βlqr)r
2 sin θ dr dθ

∣∣∣∣2 . (3.17)

The physically preferred solution (p0,u0,Θ0) corresponds to the smallest Rayleigh num-
ber R, denoted by the critical Rayleigh number Rc, at which convective instabilities can
occur, which is determined by minimizing R in (3.16) over a manifold of u0 and Θ0 with
different values of k and σ0.

After determining the critical Rayleigh number Rc together with the values of k and
σ0 using (3.16), the imaginary part of the solvability condition is then used to calculate
the critical half-frequency σc via the expression

2σc = 2σ0 +
RcImag

[∫ π

0

∫ 1

0
(r · u∗

0Θ0) r
2 sin θ dr dθ

]
∫ π

0

∫ 1

0
|u0|2r2 sin θ dr dθ

, (3.18)

where

Imag

[∫ π

0

∫ 1

0

(r · u∗
0Θ0) r

2 sin θ dr dθ

]
=

∑
l,q

−2π(2σ0Pr/E )

(βlq)4 + (2σ0Pr/E )2
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(a) (b)

(c) (d)

Figure 2. (a)–(b) Contours of the radial flow r̂ · u and (c)–(d) contours of the azimuthal flow

ϕ̂ · u in a meridional plane at two different oscillation states of torsional convection in rapidly

rotating spheres. Solid contours indicate r̂·u > 0 (or ϕ̂·u > 0) while dashed contours correspond

to r̂ · u < 0 (or ϕ̂ · u < 0)

×
∣∣∣∣∫ π

0

∫ 1

0

r · u0Pl(cos θ)jl(βlqr)r
2 sin θ dr dθ

∣∣∣∣2 , (3.19)

which is always negative, suggesting that viscous effects always reduce the size of σ0. Evi-
dently, the asymptotic solution (3.16)–(3.19) is valid only for 0 < E ≪ 1 with sufficiently
small Pr .

The result of the asymptotic solution obtained from (3.16)–(3.19) for torsional con-
vection is fully consistent with that of the recent numerical simulation (Sanchez et al.
2016). Figure 1(a) presents some typical asymptotic solutions obtained at E = 10−4 for
different values of Pr . Of three curves in Figure 1(a), the curve labeled with A represents
an asymptotic solution for non-axisymmetric, equatorially symmetric, retrogradely trav-
eling waves with the azimuthal wavenumber m = 1, the curve C for progradely traveling
waves with m = 1, and both the curves A and C are computed according to the asymp-
totic formula given by Zhang (1994) for non-axisymmetric traveling waves. The curve B,
calculated using (3.16) with k = 1 and σ0 = 1/

√
5, represents the new branch of tor-

sional convection that is physically preferred in the range 7.0×10−4 6 Pr 6 1.35×10−3.
The structure of torsional convection is displayed in Figure 2 at two different states of
oscillation. Asymptotic relations (3.16)–(3.18) at different values of E also show largely
similar behaviours, reaffirming the numerical finding (Sanchez et al. 2016) that the most
unstable mode of convection for Pr/E ≈ 10 and 0 < E ≪ 1 is in the form of torsional
oscillation. Moreover, the leading-order asymptotic solution for the pressure p and the
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velocity u of torsional convection is given by

p = +
3

2

(
1− 2r2 +

5

3
r2 cos2 θ

)
r cos θ cos[(2/

√
5)t], (3.20)

r̂ · u = −3
√
5

4

(
1− r2

)
cos θ sin[(2/

√
5)t], (3.21)

θ̂ · u = −3
√
5

4

(
2r2 − 1

)
sin θ sin[(2/

√
5)t], (3.22)

ϕ̂ · u = −15

8
r2 sin 2θ cos[(2/

√
5)t], (3.23)

which perhaps represents the simplest analytical solution of thermal convection in rapidly
rotating fluid spheres with 0 < E ≪ 1. It is remarkable that a physically realizable
solution of rotating convection in spherical geometry can be analytically so simple.

It should be noticed that the asymptotic solution given by (3.16)–(3.19) is also rea-
sonably accurate. As a typical example for E = 10−4 and Pr = 10−3, asymptotic
relations (3.16)–(3.19) give rise to Rc = 0.782 and σc = 0.447 while our fully numer-
ical simulation, using a similar spectral method discussed by Zhang (1992), produces
Rc = 0.760 and σc = 0.447. Even for a moderately small Ekman number E = 10−3 with
Pr = 0.01, (3.16)–(3.19) still yield the most unstable mode of torsional convection with
Rc = 7.82 and σc = 0.444 while our numerical analysis gives Rc = 7.33 and σc = 0.444.
They demonstrate that a good quantitative agreement is achieved between the numer-
ical simulation and the analytical solution. In short, expressions (3.16)–(3.19) together
with (3.20)–(3.23) constitute the complete asymptotic solution of torsional convection in
rapidly rotating fluid spheres with the stress-free condition for 0 < E ≪ 1.

4. Asymptotic analysis for the no-slip condition

Whether torsional convection is also physically preferred in rapidly rotating spheres
with the no-slip boundary condition can be answered by performing a similar, but more
complicated, asymptotic analysis. The asymptotic expansion at 0 < E ≪ 1 for the no-slip
boundary condition is still given by (3.1)–(3.4) but needs to be interpreted in a different
way. While û and p̂ represent small interior perturbations to the leading-order solution
u0 and p0, ũ denotes a strong viscous boundary flow with |ũ| = O(|u0|) and an explicit
solution for both the viscous boundary layer ũ and its influx is required in the asymptotic
analysis of the no-slip problem.

Substitution of asymptotic expansion (3.1)–(3.4) into (2.1)–(2.3) produces the leading-
order interior problem describing non-dissipative thermal-inertial oscillation, which re-
mains the same as that for the stress-free condition. At the next order, however, the
governing equations for the secondary flow û in the interior of the sphere become

2 iσ0û+ 2ẑ× û+∇p̂ = RrΘ0 + E∇2u0 − i2σ1u0, (4.1)

∇ · û = 0, (4.2)

where higher-order terms, such as E∇2û, are neglected and the interior secondary flow
û is subject to the boundary condition

r̂ · û = influx at the outer edge of the viscous boundary layer ũ .

It can be shown, through a standard manipulation (Greenspan 1968), that the boundary-
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layer solution ũ on the bounding surface of the sphere takes the form of

ũ(r, θ) = −1

2
[u0 − i r̂× u0]r=1 e

γ+
0 ξ − 1

2
[u0 + i r̂× u0]r=1 e

γ−
0 ξ, (4.3)

where ξ = (1− r)/
√
E with 0 < E ≪ 1 and

γ+
0 (θ) = −

[
1 +

i(σ0 + cos θ)

|σ0 + cos θ|

]
|σ0 + cos θ|1/2 ,

γ−
0 (θ) = −

[
1 +

i(σ0 − cos θ)

|σ0 − cos θ|

]
|σ0 − cos θ|1/2 .

The boundary-layer solution (4.3) breaks down at the critical latitude, θc = cos−1(σ0),

where the thickness of the layer changes from O(E 1/2) to O(E 2/5) (Stewartson and
Roberts 1963). But it is anticipated that the existence of the critical latitude does not
significantly affect the primary properties of convection at 0 < E ≪ 1 because the influx
from this small singular region is insignificant compared with the dominant influx from
the rest of the spherical boundary layer.
With the boundary layer flow ũ given by (4.3), an analytical expression for its influx

can be written as

(r̂ · û)r=1 =
i
√
E

2 sin θ

{ d

dθ

[
sin θ

γ+
0

(Uθ + Uϕ)

]
+

d

dθ

[
sin θ

γ−
0

(Uθ − Uϕ)

]}
, (4.4)

where

Uθ(θ) = − i
[
θ̂ · u0(r, θ)

]
r=1

and Uϕ(θ) =
[
ϕ̂ · u0(r, θ)

]
r=1

are real and functions of θ. Expression (4.4) is required in deriving the solvability con-
dition required for inhomogeneous equations (4.1)–(4.2), which can be written in the
form ∫ 2π

0

∫ π

0

(p∗0r̂ · û)r=1 sin θ dθ dϕ = R

∫ 2π

0

∫ π

0

∫ 1

0

(r · u∗
0Θ0) r

2 sin θ dr dθ dϕ

−2 iσ1

∫ 2π

0

∫ π

0

∫ 1

0

|u0|2r2 sin θ dr dθ dϕ. (4.5)

Inserting (4.4) into (4.5) and taking its real part, we obtain an expression for the Rayleigh
number R:

R =

√
E

2

∫ π

0

(σ0 + cos θ)

|σ0 + cos θ|3/2
(Uθ + Uϕ)

(
sin θ

dP0

dθ

)
dθ

×
{
Real

[∫ π

0

∫ 1

0

(r · u∗
0Θ0) r

2 sin θ dr dθ

]}−1

, (4.6)

where P0(θ) = [p0(r, θ)]r=1 is a real function of θ, and the integral involving Θ0 is given
by (3.17). The smallest Rayleigh number can be determined by minimizing R in (4.6)
over different p0,u0 and σ0 in connection with different values of k. After determining the
smallest Rayleigh number using (4.6), we then use the imaginary part of the solvability
condition to determine the correction σ1, which is

σ1 =
{
Imag

[
R

∫ π

0

∫ 1

0

(r · u∗
0Θ0) r

2 sin θ dr dθ

]
−

√
E

2

∫ π

0

(
sin θ

dP0

dθ

)
(Uθ + Uϕ)

|σ0 + cos θ|1/2
dθ

}{∫ π

0

∫ 1

0

|u0|2r2 sin θ dr dθ
}−1

, (4.7)
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where the integral involving Θ0 is given by (3.19).
Our extensive calculation, based on asymptotic expression (4.6) over a large manifold

of p0,u0 and Θ0 with different k and σ0, suggests that convection in the form of torsional
oscillation cannot be physically preferred in any parameter regime of the problem; and
this suggestion is also in agreement with our extensive numerical analysis. For the purpose
of easy comparison, four different asymptotic solutions obtained at E = 10−4 for the no-
slip condition are presented in Figure 1(b) for different values of the Prandtl number
Pr : the curve labeled with A represents the asymptotic solution for non-axisymmetric,
equatorially symmetric, retrogradely traveling waves with the azimuthal wavenumber
m = 1, the curve C for progradely traveling waves with m = 1 and the curve D for
retrogradely traveling waves with m = 2, all of which are computed according to the
asymptotic formula given by Zhang (1995) for non-axisymmetric traveling waves; and
the curve B represents the axisymmetric torsional mode calculated from (4.6). It is clear
from Figure 1(b) that the axisymmetric oscillation mode with the no-slip condition, in
contrast to the curve B in Figure 1(a) for the stress-free condition, is not physically
preferred at any values of Pr . Our calculations using different values of E show largely
similar behaviours, suggesting that the type of velocity boundary condition plays a critical
role in determining the primary properties of convection for small Pr in rapidly rotating
spheres with 0 < E ≪ 1.

5. Summary and remarks

We have derived two asymptotic solutions for convection-driven torsional oscillation
in rapidly rotating fluid spheres with the stress-free and no-slip boundary conditions; we
have shown that the asymptotic solution described by (3.16)–(3.19) and (3.20)–(3.23)
is in satisfactory quantitative agreement with the corresponding numerical solution; we
believe that the convective flow given by (3.20)–(3.23) represents the simplest analyti-
cal solution in closed form in rotating spherical convective systems with 0 < E ≪ 1;
and our asymptotic analysis confirms, as suggested by the recent numerical simulation
(Sanchez et al. 2016), that convection in the form of axially symmetric and equatorially
antisymmetric torsional oscillation is physically preferred for 0 < E ≪ 1 in a special
range of small Prandtl number with the stress-free boundary condition. However, our
asymptotic analysis indicates that torsional convection cannot be physically preferred in
rapidly rotating spheres with the no-slip boundary condition, revealing an essential role
played by the velocity boundary condition. Of course, this does not rule out the possible
relevance of the equatorially antisymmetric torsional mode in the nonlinear regime as
indicated by the result of direct numerical simulation (Landeau and Aubert 2000).
A satisfactory quantitative agreement achieved between the asymptotic and numerical

results in turn validates the hypotheses/approaches adopted in our asymptotic analy-
sis: the leading-order velocity and pressure of torsional convection for 0 < E ≪ 1 are
dominated by spherical inertial oscillation; the temperature is passively driven by the in-
ertial oscillation and, hence, the leading-order problem describes non-dissipative thermal-
inertial oscillation; there exist no simple general asymptotic scalings for 0 < E ≪ 1 and,
consequently, we have to tackle a set of partial differential equations that govern the
problem; and different types of velocity boundary condition require different asymptotic
approaches.
An interesting but intriguing property is that the convection-driven oscillatory flow u0

cannot generate, through its nonlinear interaction, any mean zonal flow in the vicinity
of convective instabilities in rapidly rotating fluid spheres. This is because the Reynolds
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stress in connection with u0 is

ϕ̂ · (u0 · ∇u∗
0 + u∗

0 · ∇u0) =

(
i

σ0

)
ϕ̂ ·

[
u0 ×

∂u∗
0

∂z
− u∗

0 ×
∂u0

∂z

]
≡ 0

where 0 < |σ0| < 1. It is therefore important to understand the weakly and strongly
nonlinear properties of torsional convection through either perturbation analysis or direct
nonlinear numerical simulation in the parameter regime suggested by the asymptotic
analysis in this paper. Finally, it is worth mentioning that the convective flow described
by (3.21)–(3.23) – which is simple, time-dependent, fully analytical and in closed form –
makes it highly desirable to study if this flow is capable of sustaining dynamo action in
rapidly rotating spheres. Since the solution (3.21)–(3.23) represents a physically realizable
convective flow in rotating spherical geometry for 0 < E ≪ 1, its corresponding dynamo
solution offers valuable insight into the basic generation mechanism of planetary fields.

KZ is supported by Leverhulme Trust Research Project Grant RPG-2015-096, by
Macau FDCT grants 007/2016/A1 and 001/2016/AFJ, and by the CAS grant XDB18010203.

REFERENCES

Busse, F.H. 1970. Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441-460.
Busse, F. H. and Simitev R. 2004. Inertial convection in rotating fluid spheres. J. Fluid Mech.

498, 23-30.
Chandrasekhar, S. 1961. Hydrodynamic and hydromagnetic stability. Clarendon Press, Ox-

ford.
Dormy, A.M., Soward, A.M., Jones, C.A., Jault, D., Cardin, P. 2004. The onset of

thermal convection in rotating spherical shells. J. Fluid Mech. 501, 43-70.
Greenspan, H. P. 1968. The Theory of Rotating Fluids. Cambridge University Press.
Jones, C.A., Soward, A.M. and Mussa A.I. 2000. The onset of thermal convection in a

rapidly rotating sphere. J. Fluid Mech. 405, 157-179.
Landeau, R. and Aubert, A. 2000. Equatorially asymmetric convection inducing a hemi-

spherical magnetic field in rotating spheres and implications for the past Martian dynamo.
Phys. of Earth and Planet. Interiors 185, 61-73.

Roberts, P.H. 1968. On the thermal instability of a rotating–fluid sphere containing heat
sources. Phil. Trans. R. Soc. Lond. A263, 93-117.

Sanchez, J., Garcia, F. and Net, M. 2016. Critical torsional modes of convection in rotating
fluid spheres at high Taylor numbers. J. Fluid Mech. 791, R1.

Stewartson, K. and Roberts, P. H. 1963. On the motion of liquid in a spheroidal cavity of
a precessing rigid body. J. Fluid Mech. 17, 1-20.

Soward, A. M. 1977. On the finite amplitude thermal instability of a rapidly rotating fluid
sphere. Geophys. and Astrophys. Fluid Dyn. 9, 19-74.

Zhang, K. 1992. Spiralling columnar convection in rapidly rotating spherical fluid shells. J.
Fluid Mech. 236, 535-556.

Zhang, K. 1994. On coupling between the Poincaré equation and the heat equation. J. Fluid
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