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Abstract 
 

The central thesis of this project is that damage caused by reactive nitrogen 

species, e.g. 3-nitrotyrosine (Tyr-NO2), constitutes a marker of disease 

progression/severity. A new sensitive electrochemiluminescence ELISA was 

optimised and validated for Tyr-NO2 measurement, giving a lower limit of 

quantification of 0.04 nM BSA-NO2, intra- and inter-assay CVs of 6.5% and 

11.3%, an average recovery of 106 ± 3% and average linearity 0.998 ± 0.001.  

Nitrative stress, carbonyl stress and C-reactive protein (CRP) concentrations 

were measured before and after major elective surgery. CRP measurements 

confirmed the induction of an inflammatory response. Median serum Tyr-NO2 

levels increased post-surgery to a median (inter-quartile range) value of 0.97 (0 

– 1.7) fmol nitrated BSA (BSA-NO2) equivalents/mg protein compared with a 

pre-surgery level of 0.59 (0 – 1.3) fmol BSA-NO2 equivalents/mg protein 

(p<0.05). Oxidative damage was confirmed by serum protein carbonyl levels 

(p<0.05). 

In a second pre-/post- surgery study, patients who developed sepsis 

postoperatively had significantly higher serum Tyr-NO2 levels one day prior to 

diagnosis (median (IQR) 4.5 (1.65 – 8.21) fmol BSA-NO2 equivalents/mg 

protein) compared to patients without sepsis (1.2 (0.74 – 5.97) fmol BSA-NO2 

equivalents/mg protein; p<0.05). Tyr-NO2 levels have not previously been 

measured before clinical diagnosis. However, Tyr-NO2 did not improve upon 

CRP as a diagnostic marker (area under the curve: Tyr-NO2 0.69 versus CRP 

0.88). 

Nitrate (NO3¯) supplementation in healthy smokers was also studied. Plasma 

Tyr-NO2 levels were unaltered by supplementation or smoking status. Salivary 

nitration was unaffected by smoking and decreased with NO3¯ 

supplementation: the median (IQR) pre-supplementation was 0.67 (0.31-1.14) 

and post-supplementation was 0.43 (0.12-0.61) pmol BSA-NO2 equivalents/mg 

protein. Ozone-based chemiluminescence was utilised for nitrite (NO2¯) and 

NO3¯ measurement as indicators of ˙NO production. Plasma and salivary NO2¯ 

and NO3¯ concentrations increased significantly with NO3¯ supplementation 

(p<0.05).  
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In contrast to published studies, brain frontal lobe Tyr-NO2 levels were not 

higher in dementia: the median (IQR) levels in dementia were 0.29 (0.19-0.57) 

and in non-dementia controls were 0.3 (0.22-0.55) pmol BSA-NO2 

equivalents/mg protein. However, the median brain tissue NO2¯ concentration 

was significantly higher in the Alzheimer’s disease group (p<0.05). Western 

blotting revealed that nitration was predominantly in a few select proteins, with 

TOF-MS/MS analysis suggesting haemoglobin is one of these proteins.  

Measurement of nitrative stress using ozone-based chemiluminescence and an 

electrochemiluminescence-based-ELISA overcomes earlier methodological 

flaws, such as low sensitivity. Detection of total Tyr-NO2 in different 

inflammatory states indicates that its measurement could have potential as a 

marker of disease, but measurement of nitration in specific proteins 

may be more informative than total Tyr-NO2. 
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Chapter 1  

Introduction 

1.1. The Inflammatory Response 

Inflammation is a physiological response to infection or injury and is non-

specific in nature. In particular, acute inflammation acts to remove pathogens 

and repair damaged tissue. The cardinal signs of the inflammatory response are 

heat, redness, swelling, pain and loss of function (Punchard et al, 2004). Many 

non-infectious diseases involve an inflammatory response (e.g. autoimmunity, 

cardiovascular disease, and some neurodegenerative diseases); this 

pathological inflammation often causes tissue damage, exacerbating the 

disease state (e.g. plaque formation in atherosclerosis (Willerson and Ridker, 

2004; Lalkhen and McCluskey, 2008)). 

Inflammatory signals are activated when pattern recognition receptors (PRRs), 

such as Toll-like receptors, found on leukocytes resident in the tissue or 

circulating in the blood, bind either alarmins/danger associated molecular 

patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) (de 

Jong et al, 2010; Newton and Dixit, 2012). Alarmins and DAMPs are host 

molecules that are produced or exposed as the result of tissue or cell damage, 

e.g. heat shock proteins (Castellheim et al, 2009). PAMPs are molecules that 

are found on a variety of pathogens but not within the host, e.g. 

lipopolysaccharide (LPS). Recognised by the toll-like receptor 4, LPS is an 

endotoxin found only on the outside of gram-negative bacteria and can induce a 

lethal immune response in mammals (Salomao et al, 2012). Recognition of 

these molecules is non-specific, i.e. recognition is an innate immune response 

(Castellheim et al, 2009). Activation of PRRs leads to the release of cytokines 

and acute phase proteins (synthesised in the liver and released into the blood 

stream) along with the activation of cascade systems such as complement 

(Figure 1.1) (de Jong et al, 2010). 
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Figure 1.1: Basic overview of the inflammatory response 

Briefly, inflammation is initiated by the presence of pathogens or damaged host tissue. The 
diagram above shows a wound that has penetrated the layers of skin and been infected with 
bacteria. Macrophages and neutrophils have been recruited to the area of injury/infection. These 
cells release pro-inflammatory cytokines (see section 1.2) and reactive oxygen species (see 
section 1.3). Pro-inflammatory cytokines and ROS will then act as signals for further response, 

such as IL-6 activating the acute phase response, and ˙NO causing vasodilatation (Gabay and 

Kushner, 1999; Gruys et al, 2005; Lalkhen and McCluskey, 2008).  
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The innate immune response involves the recruitment of monocytes (e.g. 

macrophages) and polymorphonuclear cells (e.g. neutrophils) to sites of 

infection or damage (Newton and Dixit, 2012). These cells carry out many 

important functions to aid in the removal of pathogens, clearance of dead cells 

and tissue repair (Fujiwara and Kobayashi, 2005; Kolaczkowska and Kubes, 

2013). During pathogen clearance, phagocytic cells (e.g. macrophages and 

neutrophils) undergo an oxidative burst (Slauch, 2011; Chen and Junger, 2012), 

which involves the assembly of the nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase complex in the cell membrane, catalysing the 

reduction of oxygen to the free radical superoxide anion (O2˙¯) (Figure 1.2A) 

(Chen and Junger, 2012). O2˙¯ dismutates to hydrogen peroxide (H2O2) by one 

of the three superoxide dismutase (SOD) isoforms (Figure 1.2B) which are 

expressed in different cellular locations; the mitochondria (SOD2), the 

cytoplasm (SOD1) and extracellularly (SOD3) (Fukai and Ushio-Fukai, 2011). 

H2O2 is able to pass through the cell membrane, whereas O2˙¯ cannot, and 

H2O2 acts in a bacteriostatic manner in the surrounding tissue (Dunnill et al, 

2015). H2O2 may also be utilised in reactions that produce further reactive 

oxygen species (ROS) (Costa et al, 2005).  Inflammatory signals also lead to 

the activation of inducible nitric oxide synthase (iNOS), an enzyme that 

catalyses the production of the free radical nitric oxide (˙NO) from the amino 

acid, L-arginine (Figure 1.2C) (Lirk et al, 2002). The production of these free 

radicals/ROS will aid the destruction of the engulfed pathogen (Roos et al, 

2003) and act as secondary messengers, aiding wound healing (Dunnill et al, 

2015). ˙NO also acts as a vasodilator, increasing blood flow to the affected area 

(Salvemini and Marino, 1998) and contributing to the swelling associated with 

inflammation. The ROS and free radicals released during inflammation are 

discussed further in section 1.3. 
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1.2. Inflammatory mediators: cytokines, the acute phase response and 

complement 

Cytokines  

Cytokines are a vital part of inflammation and immunity with a diverse range of 

functions such as inducing fever, stimulating the acute phase response and 

migration of white blood cells (Borish and Steinke, 2003; Dinarello, 2007). 

Cytokines are not purely pro-inflammatory, as some induce the resolution of 

inflammation and promote tissue repair, e.g. IL-10 (Borish and Steinke, 2003). 

There are many families of cytokines, such as interleukins, interferons and 

tumour necrosis factors (Dinarello, 2007).  

The levels of circulating cytokines can be affected by several factors, including 

the time of day and diet. Cytokines typically have a short lifetime and immune 

cells have been shown to continue secreting cytokines in whole blood samples. 

Figure 1.2: Enzymatic production of reactive oxygen species during inflammation 

During inflammation concentrations of the following ROS are increased (A) superoxide anion 

production is catalysed by the NADPH oxidase, (B) hydrogen peroxide production catalysed 

by a SOD isoform and (C) nitric oxide production catalysed by inducible NOS. 
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Both of these factors can lead to over- or under-reporting the levels of 

circulating cytokines present in whole blood (Zhou et al, 2010).  

Acute phase response 

The acute phase response (APR) is a term to describe a systemic innate 

immune response to injury or infection (Gruys et al, 2005). The APR leads to 

increases in circulating pro-inflammatory cytokines and non-specific host 

defences, fever and changes in serum protein concentrations (Suffredini et al, 

1999; Gruys et al, 2005). These proteins, which fluctuate in concentration 

during the course of the inflammatory response, are referred to as acute phase 

proteins (APPs) and are divided into two groups: the positive APPs, which are 

defined as proteins whose plasma concentration increases by at least 25% 

during inflammatory illnesses (Table 1.1 for examples)  and the negative APPs, 

which show a >25% decrease in plasma concentration, such as, albumin, 

transferrin, retinol binding protein and factor XII (Gabay and Kushner, 1999). 
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Table 1.1: Well-known positive acute phase proteins and their roles 

The plasma concentration of the proteins detailed below increases during the acute 

phase response (Suankratay et al, 1998; Gruys et al, 2005; Eklund et al, 2012; 

Murakami et al, 2012). 

Protein Role/s 

Fibrinogen Coagulation 

α1-Protease inhibitor Anti-proteases 

Caeruloplasmin Transport protein 

C-reactive protein (CRP) Binds bacteria/activates complement 

Serum amyloid A 

Induces cytokine 

synthesis/chemotactic for neutrophils 

and mast cells 

Procalcitonin 

Stimulates release of pro-

inflammatory cytokines from 

monocytes 

 

These positive acute phase proteins are often used as biomarkers of 

inflammation, providing information on disease risk, progression or response to 

treatment. However, they are non-specific and will increase with any 

inflammation, not just the pathological inflammation associated with the 

disease.  

C-reactive protein (CRP) is produced by the liver in response to inflammatory 

signals (e.g. IL-6) and binds to PAMPs/DAMPs, such as phosphocholine. It can 

also bind to C1q to activate the complement cascade (Marnell et al, 2005). 

Healthy adult CRP levels are approximately 0.8 mg/L (Povoa, 2002) and these 

levels can increase 1000-fold within 24-48 hours of an inflammatory insult 

(Volanakis, 2001). A study by Colley et al (1983) found that, following surgery, 
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there was a 6-8 hour delay before the acute phase proteins CRP and fibrinogen 

increased in the blood. This was confirmed by Li et al (2004) who found 

increases in CRP were first measurable at 6 hours in patients receiving renal 

angioplasty with a stent. They do however disagree on when CRP levels peak 

in the blood, with Colley et al (1983) reporting 48 hours and Li et al (2004) 

reporting 24 hours, which could be due to the different surgeries patients 

underwent (i.e. elective surgeries, such as unilateral hernia repair, against renal 

angioplasty with a stent). CRP has a half-life of approximately 19 hours and 

levels will decrease rapidly following resolution of the inflammation (Hofer et al, 

2012). Fibrinogen was shown to peak at 96 hours (Colley et al, 1983). An 

elevated erythrocyte sedimentation rate, i.e. the rate at which erythrocytes 

sediment in an hour (the amount of clear plasma at the top of the tube is 

measured), is also considered a marker of inflammation and is often measured 

alongside CRP. However, although measuring erythrocyte sedimentation rate is 

an inexpensive and simple test, it is affected by patient gender and age 

(Olshaker and Jerrard, 1997; Feldman and Sbong, 2014).  

As well as indicating acute inflammation, as the result of trauma or infection, 

CRP can also be used alongside other markers (such as cholesterol) to 

determine a person’s risk of cardiovascular disease, with levels greater than 3 

mg/L indicating a high risk of a heart attack or stroke (Ridker, 2003).  

Complement 

The complement system consists of three activation pathways for 30 plus 

plasma and membrane proteins, which react in a cascade-like manner, 

amplifying the response. These pathways result in (a) opsonisation of 

pathogens (aids phagocytosis), (b) chemoattraction of white blood cells and (c) 

formation of membrane attack complexes in some bacteria (Dunkelberger and 

Song, 2009).  

Complement proteins are also positive APPs (Jain et al, 2011). Complement 

proteins C3 and C4 are measured clinically to diagnose and monitor immune 

complex diseases (such as systemic lupus erythematosus), where a decrease 

in serum levels is observed (Egner, 2000; Birmingham et al, 2010).   
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1.3. Inflammatory mediators: reactive oxygen/nitrogen species  

As has already been described (section 1.1), recruitment and activation of 

immune cells, such as macrophages and neutrophils also leads to the 

production of free radicals and ROS/RNS (see Table 1.2 for examples). Free 

radicals are defined as a species containing at least one unpaired electron. The 

use of the terms ROS and RNS covers both these free radicals and their 

reactive derivatives that do not have an unpaired electron (Halliwell, 2001).  

Table 1.2: Reactive oxygen species produced during inflammation 

Examples of ROS and RNS produced during inflammation (Guzik et al, 2003). These 

ROS and RNS aid in the destruction of pathogens and act as signals for the 

recruitment of more immune cells. However when produced in large amounts (or when 

antioxidant mechanisms are compromised) these species can cause modifications of 

macromolecules in the body, e.g. lipids, DNA and proteins (Pacher et al, 2007). 

 

 

 

 

 

 

 

 

 

 

The ROS and RNS generated during inflammation are involved in redox 

signalling and aid pathogen removal (Winrow et al, 1993; Roos et al, 2003; 

Dunnill et al, 2015). However, these species are also able to react with, and 

modify, cellular components such as the fatty acid membrane and proteins. To 

protect themselves, cells have antioxidant defences which may be enzymatic 

(e.g. catalase and glutathione peroxidase), or scavengers (e.g. glutathione and 
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coenzyme Q) (Halliwell, 1996; Rizzo et al, 2010). Oxidative stress is the term 

used to describe an imbalance between ROS and antioxidant capacity, leading 

to the oxidative modification of cellular components and tissue damage (Sies, 

1997; Halliwell and Whiteman, 2004). Oxidative stress has been linked to many 

different diseases with an inflammatory component, such as neurodegenerative 

diseases (Giasson et al, 2000; Butterfield et al, 2006a), cardiovascular 

pathology (Beckman et al, 1994b; Shishehbor et al, 2003), autoimmunity 

(Avalos et al, 2007; Szabó-Taylor et al, 2013) and cancer (Reuter et al, 2010; 

De Sanctis et al, 2014).  

Oxidative modifications of proteins can be viewed as just a marker of disease 

activity. However, there is increasing evidence that oxidative modifications are 

an active component of the disease, perpetuating the pathology. For example, 

modifications of proteins may result in a loss or gain of activity, such as; 

impairment of actin polymerization following oxidation of actin (Dalle-Donne et 

al, 2001), a decrease in manganese superoxide dismutase enzyme activity 

following nitration of the enzyme (MacMillan-Crow et al, 1998), increased 

platelet aggregation following the oxidation of fibrinogen (Azizova et al, 2007) 

and increased peroxidase activity following the nitration of cytochrome C 

(Cassina et al, 2000). Another possibility is the generation of an autoimmune 

response to the altered molecule (Cooke et al, 1997; Griffiths, 2008; Kurien and 

Scofield, 2008; Ryan et al, 2014). For example, type II collagen modified by 

ROS can act as an autoantigen in rheumatoid arthritis (Nissim et al, 2005). This 

is thought to be due to modifications forming neo-epitopes that bypass 

tolerance and stimulate lymphocytes (Eggleton et al, 2008; Eggleton et al, 

2013). It has been suggested that this immune response to the neo-epitope 

could then lead to the activation of an immune response against the native 

(unmodified) molecule (Gauba et al, 2011), via the phenomenon of “epitope 

spreading”.  

White blood cell infiltration of a wound (e.g. neutrophils) is at its most rapid in 

the first 12 hours (Kim et al, 2008) and has been shown to peak at 12 hours 

post-surgery (Colley et al, 1983). From this, it can be inferred that the 

respiratory burst and ROS release begins at the site of inflammation within the 

first 12 hours. As there is a 6-8 hour delay in acute phase protein release 

(Colley et al, 1983; Li et al, 2004) that does not peak until at least 24 hours (Li 
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et al, 2004) it can be hypothesised that levels of oxidative stress, and the 

markers associated with it, will peak earlier than markers associated with the 

acute phase response.  

Numerous studies have investigated whether oxidative stress markers could be 

used as biomarkers in disease (reviewed in Griffiths et al (2002); Frijhoff et al 

(2015)) and some of the well-studied markers are discussed in section 1.5.  

1.4. Biomarkers of disease 

The World Health Organisation describe a biomarker as “any substance, 

structure, or process that can be measured in the body or its products and 

influence or predict the incidence or outcome of disease” (WHO, 2001). 

Biomarkers can range from a non-invasive imaging biomarker, e.g. measuring 

brain atrophy by magnetic resonance imaging, to proteins in bio-fluids, e.g. tau 

levels in the cerebrospinal fluid (Anoop et al, 2010). 

Biomarkers are vital not only in obtaining information on aspects of the disease 

process but also in drug development, where they can be used to assess the 

efficacy of treatment. Biomarkers can have clinical utility if they identify human 

individuals at risk of disease, improve diagnosis of disease or allow monitoring 

of disease activity. From a practical stand point, a biomarker also needs to be in 

an easily accessible tissue, something that can be measured on a large scale 

and economically viable.  

A perfect diagnostic biomarker would accurately identify all individuals with the 

disease AND all individuals without the disease. However, many clinical 

diagnostic tests often produce false positives (wrongly identifies healthy 

individuals as diseased) and/or false negatives (wrongly identifies diseased 

individuals as healthy) (Lalkhen and McCluskey, 2008). How well a test 

performs is often described in terms of sensitivity and specificity and these may 

be plotted on a receiver operator characteristics (ROC) curve (Figure 1.3).   

Sensitivity refers to the test's ability to correctly identify diseased individuals, the 

higher the sensitivity the lower the rate of false negatives (Equation 1.1). 

Specificity is the test's ability to correctly identify individuals without the disease, 

the higher the specificity the lower the rate of false positives (Equation 1.2). A 

ROC curve plots sensitivity against 1-specificty, the area under the curve (AUC) 
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is then calculated to determine the test’s overall accuracy, an AUC of 1.0 

represents a perfect test and an AUC of 0.5 represents a test that has no ability 

to discriminate between those with and without disease (Figure 1.3) (Lalkhen 

and McCluskey, 2008). 

Equation 1.1: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Equation 1.2:  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

  

Figure 1.3: Receiver operator characteristics (ROC) curves 

ROC curves for an ‘excellent’ biomarker, area under the curve (AUC) = 0.95, a ‘fair’ 

biomarker, AUC =0.7, and biomarker that has no diagnostic ability, AUC =0.5, 

(Brubaker, 2008; Lalkhen and McCluskey, 2008). 
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1.4.1. Markers of oxidative stress and their measurement 

Several pathologies are associated with oxidative stress. To investigate these 

associations, measurements of the redox state of a specific tissue or the whole 

body is required. Due to the transient nature of most ROS and RNS, they 

cannot be measured directly in vivo. Therefore, oxidative stress has been 

investigated by a few different approaches, such as by measuring the 

abundance/activity of enzymes that produce ROS/RNS, by measuring 

antioxidant defences and by measuring ROS/RNS-induced modifications. 

Below is a brief overview of some oxidative stress markers and their 

measurement in human inflammatory diseases. 

Isoprostanes are primarily formed by the peroxidation of the fatty acid, 

arachidonic acid and are isomeric with prostaglandins (Rokach et al, 1997). F2-

isoprostanes are considered one of the most reliable biomarkers of oxidative 

stress in vivo as they are chemically stable and specific for lipid peroxidation 

(Montuschi et al, 2004). It has been suggested that isoprostanes may have a 

pathophysiological function, as they assert biological activity, e.g. 15-F2t-

isoprostane is a potent vasoconstrictor (Montuschi et al, 2004) (Figure 1.4A). 

Immunoassays for isoprostane measurement have been developed 

commercially but validation with mass spectrometry is advised (Frijhoff et al, 

2015). Elevated isoprostanes have been associated with several human 

diseases, such as cardiovascular disease (Davies and Roberts, 2011) and 

Alzheimer’s disease (Montine et al, 2002). 

Protein carbonylation is the result of many reactions that give rise to the 

formation of aldehyde and ketone moieties on proteins (Figure 1.4B). The 

addition of a carbonyl group may be due to direct oxidation of amino acid 

residues or via a secondary reaction, such as binding of aldehydic lipid 

oxidation products (Dalle-Donne et al, 2006a; Frijhoff et al, 2015). The amino 

acids often affected are lysine, arginine, and proline. These residues are often 

located at metal binding sites and are thus prone to metal-catalysed oxidation 

(Stadtman, 1992; Dalle-Donne et al, 2003a). Protein carbonyls are very stable 

and considered a good marker of oxidative stress (Griffiths, 2000). Carbonyls 

are usually detected following derivatization with 2,4-dinitrophenylhydrazine 

(DNP), which can then be detected with an anti-DNP antibody in an ELISA or 
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with spectrophotometry (Frijhoff et al, 2015). Protein carbonyls have been found 

to increase in Alzheimer’s disease (Sultana et al, 2010), chronic obstructive 

pulmonary disorder (Kirkham et al, 2011)  and with major trauma (Winterbourn 

et al, 2000). However, they are a broad marker of oxidation rather than a sign of 

any particular ROS/RNS generation (Dalle-Donne et al, 2003b).  

“Thiols” can refer to low molecular weight thiols (e.g. glutathione, Figure 1.4C) 

or thiol groups (-SH) on the amino acid cysteine. Oxidation of cysteines within a 

protein may affect the protein function; however glutathione (GSH) acts as an 

antioxidant as it scavenges ROS (forming oxidised glutathione; GSSG) (Frijhoff 

et al, 2015). The GSH:GSSG ratio has been used as a marker of oxidative 

stress in several diseases, e.g. paediatric tumours (Zitka et al, 2012), breast 

cancer (Yeh et al, 2006) and amnestic mild cognitive impairment (Sultana et al, 

2008). However, cysteine thiols are unstable as they are readily chemically 

reduced. Additionally, changes in GSH levels may be due to a 

nutritional/metabolic imbalance rather than oxidative stress (Frijhoff et al, 2015).  

Normal cellular metabolism results in background levels of DNA and RNA 

oxidation, which are increased following oxidative stress. DNA/RNA oxidation 

may result in base or sugar modifications, single or double strand breaks or 

cross-linking with proteins (Cooke et al, 2000; Cooke et al, 2003). Single 

deoxynucleotides and DNA chains can both be oxidised. The former will not be 

incorporated into DNA chains and the latter should be removed from the DNA 

chain by DNA glycosylases (to avoid mutagenic potential) (Cooke et al, 2000). 

The guanine moiety is particularly vulnerable to oxidation and 8-oxo-7,8-

dihydroguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-

oxodG, Figure 1.4D) are the most studied of the oxidative lesions caused to 

DNA (Loft et al, 2012; Frijhoff et al, 2015). Urinary excretion of 8-oxoGua and 8-

oxo-dG was positively associated with risk of lung cancer and oestrogen 

receptor positive breast cancer respectively (Loft et al, 2012; Loft et al, 2013). 

Urinary excretion of oxidised RNA guanine (8-oxoGuo) has also been shown to 

predict long-term mortality in those with type 2 diabetes (Broedbaek et al, 

2011). These modifications to DNA and RNA are excreted in urine, can be 

measured by ELISA or HPLC-MS and are stable over time, thus achieving 

many of the criteria needed from a clinical biomarker (Cooke et al, 2000; Frijhoff 

et al, 2015). 
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Figure 1.4: Markers of oxidative stress 

The above are the chemical structures for the following oxidative stress markers. (A) 15-F2-isoprostane. (B) Carbonyl 

(aldehyde and ketone). (C) Glutathione. (D) 8-oxo-7,8-dihydro-2′-deoxyguanosine. (E) Nitrite and nitrate. 
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Nitrite (NO2¯) and nitrate (NO3¯) are often measured as markers of nitric oxide 

(˙NO) production (Figure 1.4E) (Hood et al, 1998; Kleinbongard et al, 2003). 

NO2¯ is usually measured by employing the Griess reaction. By reducing NO3¯ 

to NO2¯, prior to the Griess reaction, NO3¯ levels can also be measured 

(Tsikas, 2007). The ‘Griess reagents’ are sulfanilic acid and α-naphthylamine. 

Under acidic assay conditions, NO2¯ reacts with sulfanilic acid to form a 

diazonium ion (Figure 1.5). This then couples with α-naphthylamine, creating a 

red azo dye which can be measured by absorbance (Tsikas, 2007).  

 

 

Ozone-based chemiluminescence is considered a more sensitive method than 

the Griess reaction for the measurement of NO2¯ in biological samples, but is 

less widely available (MacArthur et al, 2007; Nagababu and Rifkind, 2010). This 

method measures ˙NO, requiring that both NO2¯ and NO3¯ are chemically 

reduced prior to measurement. ˙NO is subsequently reacted with ozone to form 

“excited state” nitrogen dioxide. As nitrogen dioxide returns to the ground state, 

a single photon is emitted which is detected and measured, by a photomultiplier 

tube (Figure 1.6), allowing the quantification of NO2¯ or NO3¯ (MacArthur et al, 

2007; Piknova and Schechter, 2011).  

An additional consideration, when measuring these markers, is that NO2¯ and 

NO3¯ plasma levels do not just reflect endogenous ˙NO production but also 

dietary ingestion of these metabolites (Miller et al, 2012; Ashworth et al, 2015). 

For example, green leafy vegetables and beetroot are high in NO3¯. Therefore, 

it is important to factor diet into the study design and analysis when using these 

Figure 1.5: Griess reaction for measurement of nitrite. 

Nitrite reacts with sulfanilic acid forming a diazonium ion. The diazonium ion then 

couples with α-naphthylamine to create a red azo dye. 
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metabolites as markers of ˙NO production. Additionally, NO3¯ can be reduced 

to NO2¯ e.g. by NO3¯reductases in oral bacteria (Doel et al, 2005) and NO2¯ 

can be reduced to ˙NO e.g. by xanthine oxidase (Zhang et al, 1998). These 

pathways are discussed further in Chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Ozone-based chemiluminescence for the measurement of nitrite 
and nitrate 

Nitrite and nitrate are reduced to nitric oxide prior to ozone-based chemiluminescence. 

Nitric oxide then reacts with ozone to form “excited state” nitrogen dioxide. As the nitrogen 

dioxide returns to the ground state it releases a photon (light) and this is measured. 
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1.5. 3-Nitrotyrosine as a marker of nitrative stress in inflammation 

Tyrosine (Tyr) nitration is considered a marker of nitrative stress and involves 

the removal of a hydrogen atom and the addition of a nitro group (¯NO2) to the 

third carbon of the aromatic ring (Bartesaghi et al, 2007), i.e. the carbon 

adjacent to the hydroxyl group (Figure 1.7), the possible mechanisms for this 

are described later in pathways 1.1. and 1.2. The amino acids tryptophan, 

histidine and phenylalanine can also be nitrated (Alvarez and Radi, 2003). 

Nuriel et al (2011) have shown that tryptophan nitration is less common than 

Tyr nitration due to the different properties of these amino acids, e.g. Trp is 

more hydrophobic than Tyr, and Tyr nitration is the most studied of these 

modifications. The addition of the nitro group causes an increase in mass of 

+45 Da and drop in pKa (from 10 to ~7.5), which can bring a negative charge 

into a protein  (Alvarez and Radi, 2003). Nitration can occur by many pathways 

but always involves reactive oxygen species and has been described as a two-

step process (Souza et al, 2008); 

1) Tyr is oxidised resulting in the tyrosyl radical 

2) A radical-radical reaction occurs between the Tyr radical and nitrogen dioxide 

(˙NO2) 

It is also possible for the Tyr radical to react with ˙NO, followed by further 

oxidation, to yield nitrotyrosine (Tyr-NO2) but this pathway has not been well 

studied (Bartesaghi et al, 2007).  

 

 

 

 

Figure 1.7: Conversion of tyrosine to 3-nitrotyrosine 

The removal of a hydrogen atom and the addition of a nitro group 
(¯NO2) to the third carbon of the aromatic ring of tyrosine results in 3-
nitrotyrosine. The mechanisms are detailed in pathways 1.1. and 1.2. 



18 
 

One widely studied pathway for nitration is the production of the ROS/RNS 

peroxynitrite (ONOO¯). Peroxynitrite is formed by ˙NO and O2˙¯ combining in 

an exceedingly fast radical-radical reaction (rate constant: 1 x 1010 M-1 s-1) 

meaning that ˙NO can outcompete the dismutation of O2˙¯ by superoxide 

dismutases (SODs) (Radi, 2013). ONOO¯ is a nucleophile that can generate 

secondary free radicals, such as ˙NO2. ONOO¯ has a pKa of 6.8 and, as such, 

is present in both the anionic and protonated (ONOOH) form in vivo, making its 

reactivity highly pH dependent (Radi, 2013). The nucleophilic reaction of 

ONOO¯ with carbon dioxide increases the formation of Tyr-NO2 (Alvarez and 

Radi, 2003) via the adduct nitrosoperoxocarbonate (ONOOCO2¯), which 

undergoes homolysis to the secondary free radicals ˙NO2 and carbonate radical 

(CO3˙¯) (Peluffo and Radi, 2007). CO3˙¯ is able to oxidise Tyr, forming a Tyr 

radical that can then react with the ˙NO2 (Pathway 1.1). 

Pathway 1.1: Peroxynitrite mediated tyrosine nitration 

i. ˙NO + O2˙¯           ONOO¯  1 x 1010 M-1 s-1 (Radi, 2013) 

ii. ONOO¯ + CO2     ˙NO2 + CO3˙¯  3 x 104 M-1 s-1 (Lymar and Hurst, 1995) 

iii. CO3˙¯ + Tyr    Tyr˙ + HCO3¯  1.4 x 108 M-1 s-1 (Augusto et al, 2002) 

iv. Tyr˙ + ˙NO2    Tyr-NO2  3 x 104 M-1 s-1 (Lepoivre et al, 2005) 

For a while, Tyr-NO2 was believed to be a specific marker of peroxynitrite 

formation but this has since been disproved (Halliwell, 1997; van der Vliet et al, 

1997), with the major alternate pathway cited involving the enzyme 

myeloperoxidase (MPO – Pathway 1.2). MPO is a haem peroxidase produced 

by immune cells that, in the presence of hydrogen peroxide (H2O2) and nitrite 

(NO2¯), can catalyse the production of both the tyrosyl radical and ˙NO2 

(Bartesaghi et al, 2007).  

Pathway 1.2: MPO mediated tyrosine nitration 

i. H2O2 + MPO  MPO-I + H2O       1.8 x 107 M-1 s-1 (Marquez et al, 1994) 

ii. MPO-I + NO2¯        MPO-2 + ˙NO2      2 x 106 M-1 s-1 (Burner et al, 2000) 

iii. MPO-I + Tyr         MPO-II + Tyr˙      7.7 x 105 M-1 s-1 (Marquez and Dunford, 1995) 

iv. Tyr˙ + ˙NO2  Tyr-NO2  3 x 104 M-1 s-1 (Lepoivre et al, 2005) 

 

Pathways 1.1 and 1.2 are both intrinsically linked to inflammation. ˙NO and O2˙¯ 

production are increased during the phagocytic cells’ oxidative burst (section 
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1.3) and thus ONOO¯ formation is increased during inflammation (Ischiropoulos 

et al, 1992). ONOO¯ has bactericidal activity (Zhu et al, 1992) but is also a 

potent oxidant that not only causes Tyr nitration but lipid peroxidation (Radi et 

al, 1991) and DNA damage (Szabo and Ohshima, 1997). (Szabo and Ohshima, 

1997). MPO is released by activated neutrophils and mediates pathogen killing 

by the production of hypochlorous acid (HOCl), Pathway 1.3 (Hazen and 

Heinecke, 1997; Nauseef, 2014). MPO activity has also been found to cause 

endothelial dysfunction by reducing the bioavailability of ˙NO (Eiserich et al, 

2002). As well as HOCl being involved in 3-chlorotyrosine formation (Domigan 

et al, 1995), HOCl has also been found to cause a loss in both free and protein-

associated Tyr-NO2 in vitro (Whiteman and Halliwell, 1999). The loss occurred 

in a concentration and time dependent manner (Whiteman and Halliwell, 1999) 

and, it has been suggested, that this loss is due to the Tyr-NO2 being 

chlorinated, to form 3-chloro-5-nitrotyrosine (Curtis et al, 2011). If this loss 

occurs in vivo then levels of Tyr-NO2 production could be underestimated when 

HOCl is also being locally generated (Whiteman and Halliwell, 1999). 

Pathway 1.3: MPO generation of hypochlorous acid (HOCl) (Marquez et al, 1994) 

i. H2O2 + MPO    MPO-I + H2O  1.8 x 107 M-1 s-1  

ii. MPO-I + Cl-        MPO-I-Cl-  2.2 x 106 M-1 s-1 

iii. MPO-I-Cl-     HOCl   5.2 x 104 s-1 

When Tyr-NO2 is measured in human samples it is not possible to tell which of 

the above pathways are responsible for the nitration detected. Pfeiffer et al 

(2000) suggested that peroxidase activity may be responsible for more nitration 

than ONOO¯. They showed that, at low concentrations of ONOO¯, the 

formation of dityrosine (a Tyr radical reacting with another Tyr radical) was 

favoured over Tyr-NO2 formation and concluded that this may limit the amount 

of nitration caused by ONOO¯ formation in vivo. ˙NO/O2˙¯ generating systems 

also produced less nitration than bolus addition of authentic ONOO¯ (Pfeiffer et 

al, 2001). When measuring nitration in activated RAW 264.7 macrophages, an 

inconsistency between the time course of ˙NO/O2˙¯ release and Tyr-NO2 

formation was observed, where ˙NO/O2˙¯ peaked far earlier than Tyr-NO2 

formation. Inhibition of nitration by azide and catalase also suggested that 

peroxidase activity was responsible in this system, rather than ONOO¯ (Pfeiffer 

et al, 2001). When Souza et al (1999) nitrated three proteins of a similar size 
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(ribonuclease A, lysozyme and phospholipase A2) in vitro they found that the 

nitration agent they used affected which protein was preferentially nitrated. 

MPO favoured ribonuclease A nitration, whilst ONOO¯ favoured phospholipase 

A2. Bartesaghi et al (2007) observed that ONOO¯-mediated protein nitration 

skews towards Tyr residues deeper in the phosphatidylcholine liposome 

transmembrane than MPO-mediated nitration of protein   residues. They 

suggested that this is due to the difference in where oxidants are formed, as 

ONOO¯ can undergo homolysis within the membrane but MPO oxidants are 

produced outside of the liposome.  

Both of these pathways can nitrate either free Tyr (free Tyr-NO2) or Tyr residues 

within a polypeptide structure (protein-associated Tyr-NO2). It is hard to 

determine whether free Tyr is more susceptible to nitration than Tyr residues in 

vivo, as degradation of nitrated proteins will affect free Tyr-NO2 levels. Free Tyr- 

NO2 levels can affect the levels of protein-associated Tyr-NO2, Eiserich et al 

(1999) found that culturing cells with free Tyr-NO2 (50 µM) led to incorporation 

of the Tyr-NO2 into α-tubulin, as tubulin can be post-translationally modified by 

the removal and addition of Tyr to the carboxyl terminus of the protein (MacRae, 

1997). However, there is no incorporation of the nitrated free amino acid during 

protein synthesis, as Tyr-NO2 cannot be used during this process (Peluffo and 

Radi, 2007). Nitration of tyrosine residues within a peptide appears to show a 

level of specificity, as not all proteins are nitrated and of those that are, only a 

few of the Tyr residues are susceptible to this modification. This does not 

appear to be dictated by the level of aromatic ring exposure (Souza et al, 1999). 

The Tyr residue’s local environment may affect this selectivity and common 

characteristics in this environment are: (1) close proximity to an acidic amino 

acid, (2) the Tyr being positioned on a loop structure and (3) the Tyr being near 

to a transition metal centre (Ischiropoulos, 2003; Bartesaghi et al, 2007). These 

factors may influence the local concentration of nitrating agents and their 

proximity to Tyr residues, for example a metal centre may generate nitrating 

agents that can nitrate proximal Tyr residues (Ischiropoulos, 2003).  

The post-translational modification of proteins by nitration was shown to have 

multiple effects depending on the protein being studied. These effects range 

from being a possible physiological signalling mechanism to being an important 

pathological feature of diseases. Tyr phosphorylation is an important part of 
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signal transduction pathways and some studies have suggested that Tyr 

nitration is also part of cellular signalling (Monteiro, 2002; Yakovlev and 

Mikkelsen, 2010; Jia et al, 2011). For a modification to be considered relevant 

to cellular signalling pathways it must be reversible and some studies have 

found signs of a denitrase activity (Kamisaki et al, 1998; Irie et al, 2003; Deeb et 

al, 2013). Although it is thought to be enzymatic in nature, as the activity is 

decreased by heat and trypsin treatment, the mechanism for this denitration has 

not yet been identified, (Irie et al, 2003; Deeb et al, 2013). Additionally, the 

majority of research describes Tyr-NO2 as a stable product of ONOO¯ 

formation or MPO activity that accumulates during inflammation (Herce-Pagliai 

et al, 1998; Dalle-Donne et al, 2006b). As many studies have shown, and 

continue to show, increased Tyr-NO2 in disease, and without further evidence of 

denitration, the hypothesis that Tyr-NO2 is a cellular signalling mechanism 

cannot yet be upheld.  

There is also evidence to suggest that Tyr-NO2 acts as a ‘signal/tag’ for the 20S 

proteasome, enhancing degradation of modified proteins (Gow et al, 1996; 

Souza et al, 2000b). If the modified protein does indeed experience a higher 

rate of turnover than other, non-modified, proteins then this would affect 

accurate measurement of Tyr-NO2 formation in tissues. However, increased 

Tyr-NO2 levels are observed in many pathologies, suggesting that modification 

of proteins is occurring at a higher rate than protein turnover. This would also 

mean that as inflammation subsides, and the rate of formation decreases, the 

degradation of modified proteins would lead to decreased Tyr-NO2 levels with 

recovery and this has been seen in some studies (Ter Steege et al, 1998; Pirro 

et al, 2007). 

Contrary to the above studies, it has also been suggested that nitration of 

proteins can lead to aggregation of the modified proteins rather than their 

degradation and removal (Souza et al, 2008). The amount of protein oxidation 

occurring has been shown to affect whether proteasome degradation occurs, 

with light damage enhancing degradation and moderate to heavy damage 

inhibiting the proteasome (Davies, 2001; Shringarpure and Davies, 2002; 

Dunlop et al, 2009). Aggregation of nitrated proteins has been seen in 

neurodegenerative diseases, such as Parkinson’s (Giasson et al, 2000) and 

Alzheimer’s disease (Reynolds et al, 2005). Whether nitration of proteins is 
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involved in the disease pathology is unknown, but these studies indicate that 

oxidative and nitrative stress may be a potential therapeutic target. 

Changes to a protein’s 3-dimensional structure and chemical properties may 

also result in a loss of function (Souza et al, 2008) as described for manganese 

superoxide dismutase (MacMillan-Crow et al, 1998). Increased levels of Tyr-

NO2 have been found within cancers (De Sanctis et al, 2014), with one study 

suggesting that the nitration of chemokines within the tumour environment 

hinders their ability to attract tumour specific cytotoxic T cells to the tumour 

(Molon et al, 2011).  However, gain of function has also been observed for 

some proteins, such as cytochrome c (Cassina et al, 2000) and fibrinogen 

(Vadseth et al, 2004). 

Tyr-NO2 has also been linked with autoimmunity (section 1.3), as modified 

proteins can lead to the formation of neo-epitopes that bypass tolerance, i.e. are 

not recognised by the immune system as self (Eggleton et al, 2008; Ryan et al, 

2014). Tyr-NO2 levels in plasma have been found to correlate with disease 

severity or activity in patients with the autoimmune conditions rheumatoid 

arthritis (Misko et al, 2013) and systemic lupus erythematosus (Oates et al, 

1999; Khan et al, 2006) and anti-Tyr-NO2 antibodies have been found in both 

diseases (Khan and Ali, 2006; Khan and Siddiqui, 2006). These observations 

led to the suggestion that Tyr-NO2 may perpetuate the inflammatory response 

and contribute to the pathogenesis of these diseases rather than just being a 

consequence of disease. 

1.5.1. Measuring 3-nitrotyrosine 

In a solution containing only protein, Tyr-NO2 can be measured by UV-visible 

spectrometry. Tyr has an absorption peak (lambda max) at 280 nm. However, 

Tyr-NO2 displays additional peaks at ~357 nm in acidic solutions and at ~430 

nm in basic solutions (Yang et al, 2010). This shift in peak wavelength at 

different pH values is due to the Tyr-NO2 either being in its neutral form at low 

pH or ionized at high pH (De Filippis et al, 2006). 

When dealing with more complex samples (e.g. tissue samples), other 

techniques need to be employed. Published techniques include immunological 

(as anti-Tyr-NO2 antibodies can be raised) and analytical chemistry methods, 
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such as chromatography coupled with various detection systems like mass 

spectrometry. Both these techniques have advantages and disadvantages: 

ELISA methods are high throughput, relatively low cost and do not involve 

extensive sample preparation but have low sensitivity and are semi-quantitative. 

GC/LC-MS/MS is quantitative, highly sensitive and accurate but is low-

throughput, time-consuming and expensive, limiting this method’s usefulness in 

a clinical setting. 

A review of reported Tyr-NO2 levels, in healthy human plasma, is complicated 

due to the methodological differences between studies and a lack of clarity 

when reporting the findings. However, when attempting to compare the healthy 

human plasma levels of Tyr-NO2, it is clear that the literature is highly varied, as 

can be seen in Tables 1.3 and 1.4. 

Table 1.3 details just a small selection of studies measuring Tyr-NO2 in healthy 

human plasma. This comparison is limited, as different units have been used 

across studies making direct comparison near-impossible without further 

details. Furthermore, results may not be directly comparable for ELISA data as 

most studies report a standard equivalence rather than the absolute Tyr-NO2 

concentration, but this is rarely mentioned. It is also important to know whether 

free Tyr-NO2, protein-associated Tyr-NO2 or total Tyr-NO2 is being measured 

and this is not always clearly stated. The two mass spectrometry studies 

produced similar results but are only measuring nitrated albumin rather than 

total protein nitration (Human serum albumin contains 18 Tyr residues 

(Consortium, 2015), Table 1.3). Despite this, nitrated albumin plasma levels of 

approx. 24 nM are higher than the levels reported for total protein-associated 

nitration in three of the five ELISA methods (Table 1.3). Wayenberg et al (2009) 

and Wayenberg et al (2011) measured albumin nitration in the plasma of human 

new-borns by sandwich ELISA and reported results of 7.3 ng nitrated 

albumin/ml and 3.9 ng nitrated albumin/ml respectively. However, due to the 

difference in the units used to report the results (i.e. ng/ml for the ELISA and nM 

for the mass spectrometry) these studies cannot be directly compared. 
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Table 1.3: A comparison of selected studies in which protein-associated 3-

nitrotyrosine levels were measured by ELISA or Mass Spectrometry in the 

plasma of healthy humans 

The studies below are a small example of the literature, selected on the basis that the 

units allowed direct comparison of the results from healthy (i.e. no disease) control 

participants. All the selected studies measured protein-associated Tyr-NO2 in plasma. 

 

 

 

Reference Method 

Plasma protein-

associated Tyr-NO2 

concentrations as 

reported in the original 

paper 

Plasma protein-associated Tyr-

NO2 concentrations expressed 

as nM 

Rossner Jr et al 

(2007) 

Non-

competitive 

ELISA 

856 ± 1989 nmol/l 860 ± 2000 nM 

Sun et al (2007) 
Sandwich 

ELISA 
7.9 ± 7 nmol/l 7.9 ± 7 nM 

Bo et al (2005) 
Sandwich 

ELISA 

Median (range) –  4.78 

(0.04–235.7) nmol/ml 

4800 nM 

(range 40 nM – 235.7 µM) 

Ter Steege et al 

(1998) 

Sandwich 

ELISA 
Undetectable (Limit of Detection 2 nM) 

Ceriello et al 

(2001) 
Indirect ELISA Undetectable ( Limit of Detection 10 nM) 

Tsikas et al 

(2003) 
GC-MS/MS 24 ± 4 nM nitrated albumin 24 ± 4 nM 

Keimer et al 

(2003) 
GC-MS/MS 23.4 nM nitrated albumin 23.4 nM 
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Other ELISA methods have reported high levels of plasma protein nitration, but 

these methods were not included in the table because they measured total 

nitration (i.e. free Tyr-NO2 is also measured) rather than protein-associated 

nitration. Inoue et al (2002) used a competitive ELISA to measure total (free and 

protein-associated) Tyr-NO2 in healthy humans. This study found levels of 

135.4 ± 18.7 nM (35.21 ± 4.87 ng/ml) Tyr-NO2 in healthy humans, contradicting 

three of the five ELISA findings in the table. However, these results represent 

total Tyr-NO2, not just the protein-associated form and this could explain the 

higher levels measured. Bekpinar et al (2005) also used a competitive ELISA, to 

study oxidative and nitrative stress in Behçet’s disease. Tyr-NO2 levels were 

3.67 ± 0.05 ng/ml in healthy controls (approx. 13 nM), this is ten times lower 

than the Inoue et al (2002) findings but comparable to levels of nitrated albumin 

measured in new-borns (Wayenberg et al, 2009; Wayenberg et al, 2011). If the 

higher levels in the competitive ELISA studies are the result of free Tyr-NO2 in 

the plasma, these studies would still not support the data obtained by mass 

spectrometry in Table 1.3. Separate measures of free Tyr-NO2 levels in plasma 

have been obtained by chromatography coupled with several different detection 

methods, such as mass spectrometry, UV detection and electrochemical 

detection (Table 1.4). 

Some investigators have chosen to report the results in relation to total protein 

or Tyr content, allowing for the proportion of nitration to be assessed across 

data sets. Additionally, protein concentration may vary between individuals 

(potentially drastically between those with disease and healthy controls) and 

reporting the results in terms of total protein or Tyr content can account for this 

difference. 
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Table 1.4: A comparison of reported free 3-nitrotyrosine levels in the plasma of 
healthy humans 

The studies below are an example of some of the literature selected on the basis that 

the units allow direct comparison of the results from healthy (i.e. no pathology) control 

participants. All the studies measured free Tyr-NO2 in plasma. (A) Gas chromatography 

separation, (B) Liquid chromatography separation.  

Table 1.4A: Gas chromatography separation 

Authors Method 

Plasma free Tyr-NO2 

concentrations as reported in 

the original paper 

Plasma free Tyr-NO2 

concentrations expressed as 

nM 

Schwedhelm 

et al (1999) 
GC-MS/MS1 2.8 ± 0.84 nM 2.8 ± 0.84 nM 

Keimer et al 

(2003) 
GC-MS/MS1 636.0 (153.0) pM2 0.64 nM (0.15) 

Söderling et al 

(2003) 
GC MS/MS1 0.74 ± 0.30 nM 0.74 ± 0.30 nM 

Tsikas et al 

(2003) 

GC-MS/MS1 

GC-MS1 

GC-MS/MS 

Group aged 51 ± 10 years:  

1.140 ± 0.727 nM 

Group aged 25 ± 3 years: 

2.677 ± 1.540 nM 

Male group aged 26 ± 3 years: 

0.73 ± 0.53 nM 

GC-MS 

Group aged 51 ± 10 years: 

4.463 ± 4.495 nM 

Group aged 25 ± 3 years: 

5.447 ± 2.783 nM 

GC-MS/MS 

Group aged 51 ± 10 years:  

1.1 ± 0.73 nM 

Group aged 25 ± 3 years: 

2.7 ± 1.5 nM 

Male group aged 26 ± 3 years: 

0.73 ± 0.53 nM 

GC-MS 

Group aged 51 ± 10 years: 4.5 ± 

4.5 nM 

Group aged 25 ± 3 years: 

5.5 ± 2.8 nM 

Pannala et al 

(2003) 
GC-MS1 5.44 ± 1.19 nmoles/l 5.4 ± 1.2 nM 

Gaut et al 

(2002a) 

EC-NCI 

GC/MS1 

LC-MS/MS1 

EC-NCI GC/MS 

11 ± 2 nM 

LC-MS/MS  

undetectable 

LOD reported as 39 fmol  

EC-NCI GC/MS 

11 ± 2 nM 

LC-MS/MS 

Not detected 

(Limit of Detection 20 nM) 
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Table 1.4B: Liquid chromatography separation 

Authors Method 

Plasma/serum free Tyr-

NO2 concentrations as 

reported in the original 

paper 

Plasma/serum free Tyr-NO2 

concentrations expressed as 

nM 

Yi et al (2000) LC-MS/MS1 < 4.4 nmol/L 
Not detected 

(Limit of Detection 4.4 nM) 

Thornalley et al 

(2003) 
LC-MS/MS1 6.5 ± 2.5 6.5 ± 2.5 nM 

Ahmed et al 

(2003) 
LC-MS/MS1 9.4 ± 0.4 nM 9.4 ± 0.4 nM 

Ahmed et al 

(2005) 
LC-MS/MS1 <0.4 nmol/l 

Not detected 

(Limit of Detection 0.4nM) 

Kaur and 

Halliwell (1994) 
HPLC – UV 

Undetectable 

(serum) 

Not detected 

(Limit of Detection 200 nM) 

Fukuyama et al 

(1997) 
HPLC – UV Undetectable 

Not detected 

(Limit of Detection 600 nM) 

Fatouros et al 

(2004) 
HPLC-UV 

5.3 ± 0.4 µM 

(older men) 
5300 ± 400 nM 

Ohshima et al 

(1999) 

HPLC 

electrochemic

al detection 

Undetectable 
Not detected 

(Limit of Detection 5 nM) 

Kamisaki et al 

(1996) 

HPLC – 

Fluorescence 

spectrophotom

eter 

31 ± 6 pmol/ml 31 ± 6 nM 

Ohya et al 

(2002) 

853 type 

amino acid 

analyzer 

(Hitachi) 

Undetectable (<0.1 

nmol/mL) 

Not detected 

(Limit of Detection 100 nM) 

Footnotes 

1 Studies took steps to address artefact formation (discussed in the text).  

2 
Data expressed as the median. Values in parentheses represent interquartile 

ranges. 
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UV detection has been coupled with chromatography for the detection of free 

Tyr-NO2 and these studies often have a high limit of detection (LOD), 

suggesting low sensitivity (see Table 1.4B). For example Fukuyama et al 

(1997) used HPLC-UV to measure free Tyr-NO2 in plasma taken from healthy 

individuals, as well as renal failure patients (separated into those with septic 

shock and those without). At a wavelength of 274 nm the LOD was 600 nM, this 

is several orders of magnitude higher than the LOD of methods using tandem 

MS (MS/MS) and ELISA methods (although it is protein-associated Tyr-NO2 

measured by ELISA). Perhaps unsurprisingly, free Tyr-NO2 was undetected in 

healthy plasma. The high LOD did not prevent free Tyr-NO2 being measured in 

the renal failure patients, where levels were exceedingly high (118.2 ± 22.0 µM 

with sepsis and 28.0 ± 12.3 µM without). 

Specificity when measuring Tyr-NO2 in tissue can also be an issue with some 

detection methods, e.g. Kaur et al (1998) used HPLC coupled to a photodiode 

array detector to analyse Tyr-NO2 in brain tissue from various neurological 

disorders; a peak with the same retention time as Tyr-NO2 (that was not 

detected in controls) was produced and could be reduced to aminotyrosine by 

dithionite (an often used criterion for identifying Tyr-NO2). However, when mass 

spectrometry was employed as a detection system it was revealed that this 

peak was not true Tyr-NO2 (the compound was not identified). Other detection 

systems, such as UV and electrochemical detection, were unable to make this 

distinction, confirming that mass spectrometry is a more specific detection 

method. 

Mass spectrometry is considered the most accurate method to quantify Tyr-

NO2. However, there are still several factors to take into account. For example, 

Tsikas et al (2003) measured free Tyr-NO2 in the same samples by either GC-

MS or GC-MS/MS and reported levels to be lower with the tandem MS method, 

e.g. for the age group 51 ± 10 years the results for MS vs. MS/MS were 5.5 ± 

2.8 nM and 1.1 ± 0.73 nM respectively (Table 1.4A).  

A principal consideration when measuring Tyr-NO2 by mass spectrometry is 

artefact formation during acidic sample preparation (Frost et al, 2000; Yi et al, 

2000). Yi et al (2000) compared liquid and gas chromatography (LC and GC) 

and concluded that LC was less likely to lead to artificial formation due to a less 
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extreme pH during sample processing. However, Tsikas and Caidahl (2005) 

suggested that this means compromising on sensitivity, and that the 

methodological steps needed to improve sensitivity to a GC standard would 

increase the risk of artefact formation, thus removing its advantage over the GC 

analysis. Gaut et al (2002a) also compared two methods (electron capture 

negative chemical ionization-GC/MS and LC-electrospray ionization MS/MS) 

and found the GC/MS to be not only 100-fold more sensitive than LC-MS/MS 

but also less time-consuming; generation of Tyr-NO2 during analysis was found 

to be negligible for both methods. However, Duncan (2003) suggested that 

Gaut et al (2002a) were mistaken in their conclusion and that the ‘failings of the 

LC assay’ were due to the system they used, rather than LC being less 

sensitive for Tyr-NO2 measurement. Duncan (2003) recommended a triple 

quadrupole system for improved sensitivity. Other methods employed to prevent 

artefact formation include: avoiding acidic conditions (Frost et al, 2000) and 

removing NO2¯, NO3¯ and Tyr from the sample prior to GC-MS/MS sample 

preparation (Schwedhelm et al, 1999).  

Some mass spectrometry studies do not assess the Tyr-NO2 of the entire 

plasma proteome, for example only looking at albumin (Keimer et al, 2003; 

Tsikas et al, 2003). This is presumably done because of the low abundance of 

Tyr-NO2 in serum/plasma (Radi, 2004) and a desire to remove a lot of 

unmodified Tyr from the sample so that Tyr-NO2 can be detected by the MS/MS 

(discussed further in Chapter 5, section 5.4). Therefore, these results are not 

truly representative of the serum nitration levels as they may be missing large 

portions of the Tyr-NO2 present in the proteome. ELISAs however, are able to 

measure whole samples, without any extensive sample preparation (or risk of 

artefact formation). Coupled with lower cost and higher throughput this makes 

ELISA a more appealing method than MS/MS for measuring large numbers of 

clinical samples. 

Many different sample types have been used when measuring Tyr-NO2 in 

samples, e.g. plasma/serum (Shishehbor et al, 2003; Misko et al, 2013), 

synovial fluid (Kaur and Halliwell, 1994), cerebrospinal fluid (Tohgi et al, 1999; 

Korolainen and Pirttilä, 2009), urine (Tsikas et al, 2012), exhaled breath 

condensates (Hanazawa et al, 2000; Bodini et al, 2006) and tissue biopsies 

(Kaminsky et al, 1999; Sultana et al, 2006).  These studies demonstrate that 
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Tyr-NO2 is formed in many different tissue types in vivo, of which many are 

accessible in a clinical setting with minimal invasiveness. This has led to the 

suggestion that Tyr-NO2 could be measured as a marker of oxidative stress, for 

prognosis or disease monitoring, in clinical studies. 

This thesis expands on the above studies by measuring Tyr-NO2, along with 

other inflammatory/oxidative stress markers, in four inflammatory settings: (1) 

inflammation as a result of trauma/tissue injury (i.e. surgery), (2) NO3¯ 

supplementation in smokers (low level, persistent inflammation) and non-

smokers, (3) an acute, infective inflammatory response (i.e. sepsis), and (4) a 

pathology with a chronic inflammatory component (i.e. Alzheimer’s disease).  

1.5.2. Oxidative/nitrative stress following surgery, an example of acute 

inflammation 

Inflammation and oxidative stress are known to occur following surgery and 

oxidative stress has been the subject of investigation as a factor affecting 

recovery (Rosenfeldt et al, 2013). This is of particular importance in surgery that 

involves ischaemia-reperfusion (e.g. abdominal aortic aneurysm and 

transplantation), where excessive ROS generation, such as O2˙¯, has been 

shown to cause tissue damage (Kaminski et al, 2002; Bonder et al, 2004; 

Granger and Kvietys, 2015).  

Ischemia is a reduction in blood flow to a tissue, resulting in hypoxia, and 

reperfusion is the return of normal blood flow to the affected area. Both of these 

stages can cause tissue damage, termed ischaemia-reperfusion injury 

(Dorweiler et al, 2007; Kalogeris et al, 2012). During the hypoxic period of 

ischaemia, anaerobic metabolism is utilised, decreasing cellular pH and rapidly 

depleting ATP, resulting in decreased active transport of calcium leading to 

calcium overload in the cell (Figure 1.8) (Carden and Granger, 2000; Kalogeris 

et al, 2012). If prolonged, necrosis of the ischaemic tissue occurs, making 

prompt return of blood flow vital. However, this reperfusion also causes 

damage. Reperfusion injury is thought to be due to many factors including 

generation of substantial amounts of ROS and a large inflammatory response 

(Figure 1.8) (Carden and Granger, 2000; Kalogeris et al, 2012). 
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˙NO, O2˙¯, and ONOO¯ have all been cited as influencing the myocardial 

damage observed following an ischaemia-reperfusion injury  event in 

cardiovascular surgery (Zweier and Talukder, 2006; Venardos et al, 2007). ˙NO 

is increased by two pathways during this process: NOS activation, i.e. eNOS 

(activated by haemodynamic stimuli) and iNOS (induced following the activation 

of macrophages), and the chemical reduction of NO2¯ by xanthine oxidase (XO) 

(Zweier and Talukder, 2006). O2˙¯ is produced by NADPH oxidase in infiltrating 

polymorphonuclear cells (PMN) and by uncoupling of NOS, observed when 

arginine or BH4 are depleted (Zweier and Talukder, 2006). As well as acting as 

chemoattractants for more PMNs, these free radicals form ONOO¯ (Pathway 

1.1). It has been suggested that, at physiological concentrations, ONOO¯ is 

potentially cardioprotective during reperfusion as it decreases PMN adhesion 

and XO activity (Nossuli et al, 1998; Lee et al, 2000). However, ONOO¯ can 

also modify many cellular targets, such as inducing protein nitration, as 

previously mentioned (Pathway 1.1). Following ischaemia-reperfusion injury, 

Figure 1.8: Cellular changes arising from ischemia and reperfusion 

Ischemia gives rise to anaerobic metabolism and disruption of cell processes that can 

lead to cell death. However, reperfusion can also cause damage to the cells. 
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increased nitration has been measured in rat heart tissue (Bas et al, 2012) and 

human plasma proteins (Troxler et al, 2004; Zhao et al, 2005; Hui et al, 2012).  

Clinical human studies, using therapies targeting oxidative stress induced by 

surgery, have shown that high doses of antioxidants can decrease tissue 

damage or improve recovery time (Bartels et al, 2004; Arato et al, 2010; Leong 

et al, 2010). Tyr-NO2 may be beneficial in these studies as a marker of protein 

modification linked to ˙NO production. 

Measurement of Tyr-NO2 post-surgery is discussed further in chapter 3. 

1.5.3. Oxidative/nitrative stress in smokers, an example of low-level chronic 

inflammation 

The presence of inflammation and oxidative stress induced by smoking has 

been demonstrated in many studies. Smokers have an accumulation of 

neutrophils and macrophages in their airways (Kuschner et al, 1996; van der 

Vaart et al, 2004; Mehta et al, 2008; Mortaz et al, 2010), as well as increased 

pro-inflammatory signals (Rastrick et al, 2013; Wiegman et al, 2015). Increased 

serum levels of peripheral blood cells, such as neutrophils, are also seen in 

smokers compared to non-smokers (Martins et al, 2013). Additionally, isolated 

peripheral blood cells from smokers were found to produce more H2O2 than 

non-smoker cells (Tanni et al, 2012). Mortaz et al (2010) found that cigarette 

smoke induces TLR9 signalling in isolated human neutrophils; in vivo, this 

signalling would lead to further recruitment of neutrophils. However, Mehta et al 

(2008) suggested that, although there is an influx of immune cells, these cells 

had decreased phagocytic and respiratory burst functions. They suggested that 

this is part of the reason why smokers are vulnerable to recurrent infections. 

Increased markers of oxidative stress have also been measured in smokers, 

compared to non-smokers, e.g. the lipid oxidation product malondialdehyde (Isik 

et al, 2007; Waseem et al, 2012). van der Vaart et al (2004) studied the effects 

of acute smoking and found that there was an increase in exhaled ˙NO and 8-

isoprostane, as well as an increase in O2˙¯ and H2O2 in bronchoalveolar lavage 

fluid. This was accompanied by a brief decrease in blood NO2¯ and NO3¯. 

Decreased antioxidant capacity has also been measured in smokers compared 
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to non-smokers, i.e. a decrease in serum superoxide dismutase, catalase and 

glutathione peroxidase (Waseem et al, 2012).  

Histone deacetylase 2 (HDAC2) was found to be significantly nitrated in the 

peripheral lung tissue of smokers compared to non-smokers and it was shown 

that nitration increased proteasomal degradation (Osoata et al, 2009). HDAC2 

lowers inflammatory gene expression and decreased expression in peripheral 

lung tissue has been observed in chronic obstructive pulmonary disease 

(COPD), a disease where a strong inflammatory response is seen in the 

airways (Barnes, 2009). Smoking is widely linked to COPD, a leading cause of 

morbidity and mortality worldwide (Mannino and Buist). It has also been 

suggested that COPD has an autoimmune component (Agustí et al, 2003). 

Kirkham et al (2011) found that cigarette smoke forms carbonyl adducts on 

proteins and that COPD patients had both an increase in carbonyl modified 

proteins, in the lung and circulation, and the presence of autoantibodies against 

carbonyl modified proteins. As has already been mentioned, a link between 

proteins with oxidative modifications and autoimmunity has been established 

(Griffiths, 2008; Ryan et al, 2014) and as such, smoking-induced protein 

modifications (in addition to carbonyl adducts) could be an important factor in 

COPD pathology.  

1.5.4. Oxidative/nitrative stress in sepsis, as an example of an infective 

inflammatory disease 

Sepsis is an example of an acute infective inflammatory disease. In essence, 

sepsis is a systemic host response to infection that is maladaptive (Vincent and 

Abraham, 2006); involving a dysfunctional level of pro-inflammatory cytokines in 

the circulation followed by a later immunosuppressive stage, caused by an 

increase in anti-inflammatory cytokines (Figure 1.9). This immunosuppressive 

stage has been described as a compensatory anti-inflammatory response 

syndrome and leaves patients vulnerable to a secondary infection (Adib-Conquy 

and Cavaillon, 2008). 
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Figure 1.9: Sepsis disease progression 

Sepsis is maladaptive systemic response to infection, some of the stages and mediators are described above. (1) Innate immune 

cells (macrophages and neutrophils shown) respond to an infection (a bacterial infection is shown but it can be viral or fungal). (2) 

Release of cytokines, chemokines and ROS into the circulation. (3) ROS mediated damage. (4) Tissue damage, organ dysfunction 

and hypotension. (5) Compensatory anti-inflammatory response. 
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A 2006 database review (Harrison et al, 2006) of sepsis in England, Wales, and 

Northern Ireland revealed that ‘the number of admissions to UK critical care 

units with severe sepsis within the first 24 hours of admission is increasing’ 

going from 23.5 % in 1996 to 28.7 % in 2004. Despite a decrease in mortality 

over this time there was an increase in the total number of deaths (~9,000 to 

~14,000) (Harrison et al, 2006). The pathology of sepsis is highly complex and 

heterogeneous and there has been much debate over the definition and 

diagnosis criteria of sepsis, with only 17% of physicians agreeing on any single 

definition in a 2004 survey (Vincent et al, 2009).  

Diagnosing sepsis clinically is far from simple. To begin with, the inflammatory 

response is comparable to a sterile inflammatory response initiated by trauma, 

burns, pancreatitis, etc., in which no infection is involved (and thus 

antimicrobials are ineffective as a treatment). Sepsis is not confined to one type 

of organism (i.e. the pathogen may be viral, bacterial or fungal) or to one 

origination point (i.e. infection may occur anywhere in the body) (Vincent and 

Beumier, 2013). The progression, and outcome, of the response will vary 

depending on the microorganism present and individual characteristics of the 

patient (e.g. age, co-morbidity, etc.) (Vincent et al, 2009). All these factors make 

finding one defining marker of disease next to impossible. Instead, diagnosis 

depends on multiple signs and markers. 

The British Medical Journal Best Practice sets out diagnostic criteria of sepsis 

based on the consensus of a 2001 conference (Levy et al, 2003). Sepsis is 

considered if at least 2 of the following are present in conjunction with infection: 

 Hypothermia (<36°C) or hyperthermia (>38.3°C) 

 Tachycardia (>90 beats per minute) 

 Tachyponea (>20 breaths per minute) 

 PCO2 <4.3 kPa (32 mmHg) 

 Hyperglycaemia in the absence of diabetes (>6.66 mmol/L) 

 Acutely altered mental state 

 White blood cell count <4 or >12 x 109/L 
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The “cytokine storm” produced during sepsis is both an excessive release of 

pro-inflammatory cytokines, in response to infection, and an extreme 

counteractive release of anti-inflammatory cytokines (Chaudhry et al, 2013; 

Schulte et al, 2013). Increased IL-6 has shown a correlation with disease 

severity (r = 0.63, p <0.001, Damas et al (1992)) and persistent overproduction 

of IL-10 is considered a risk factor for a fatal outcome (Chaudhry et al, 2013). A 

pilot study by (Lukaszewski et al, 2008) measured mRNA expression levels for 

a panel of cytokines (IL-1β, IL-6, IL-8, IL-10, TNFα, FasL and CCL2) prior to 

diagnosis of sepsis in intensive care unit patients (ICU - these patients have a 

higher risk of sepsis) and ICU patients without complications (i.e. no sepsis). 

With this data, they were able to produce a successful neural network model for 

predicting which ICU patients would develop sepsis. This is one of the few 

studies that measured markers prior to sepsis diagnosis and, as the 

effectiveness of antimicrobial therapy rapidly decreases following the onset of 

sepsis (Kumar et al, 2006; Weiss et al, 2014), identifying biomarkers to allow for 

earlier diagnosis is a vital area of research. 

The acute phase proteins CRP and procalcitonin have both been studied as 

potential markers of sepsis (Pierrakos and Vincent, 2010). CRP is a well-known 

inflammatory marker routinely measured in clinical settings and has been 

studied as a potential marker for differentiating sepsis from systemic 

inflammatory response syndrome with an area under the curve of 0.94 (Sierra 

et al, 2004). However, some have reported that its ability to distinguish between 

patients with infection and patients with a sterile inflammatory response is not 

discriminatory (Lavrentieva et al, 2007). Increased procalcitonin concentrations 

have been associated with bacterial infections (Delévaux et al, 2003) and some 

studies suggest that procalcitonin is superior to CRP at indicating infection 

during systemic inflammatory response syndrome (Luzzani et al, 2003; Uzzan 

et al, 2006; Kibe et al, 2011). However, some meta-analysis studies have 

suggested that procalcitonin still has a low-to-moderate diagnostic performance 

for the identification of sepsis (Jones et al, 2007; Tang et al, 2007). As a 

prognostic marker, procalcitonin is superior to CRP due to the fact that levels 

decrease far quicker (Standage and Wong, 2011). 

As previously discussed, the inflammatory response leads to the recruitment of 

immune cells and the generation and release of ROS/RNS. Sepsis is no 
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exception to this and extensive evidence of oxidative stress has been observed 

in sepsis (Martins et al, 2003; Santos et al, 2012). This oxidative stress has 

been linked to endothelial dysfunction, aiding progression to septic shock 

(Azevedo et al, 2006; Huet et al, 2011) and damage to mitochondria, leading to 

dysfunction and multiple organ failure – severe sepsis (Figure 1.9) (Victor et al, 

2004; Castellheim et al, 2009). This suggests that oxidative stress is not only a 

result of sepsis but also a pathological feature, which can cause a serious 

deterioration in the patient’s condition. 

High amounts of free radical generation (e.g. ˙NO and O2˙¯) and MPO release 

would increase Tyr-NO2 formation and free Tyr-NO2 has indeed been found to 

be greatly elevated during sepsis (Fukuyama et al, 1997; Ohya et al, 2002). 

Nitration can affect protein function (Radi, 2012) and this too may contribute to 

disease progression. For example, nitration of manganese superoxide 

dismutase (a mitochondrial enzyme) results in a loss of function and thus an 

accumulation of O2˙¯ and further oxidative damage (MacMillan-Crow et al, 

1998; Moreno et al, 2011). 

The presence of Tyr-NO2 in sepsis means it could potentially be used as a 

biomarker for this disease. Indeed, some have suggested that free Tyr-NO2 in 

plasma is associated with sepsis prognosis (Ohya et al, 2002). This is 

discussed further in Chapter 5. 

1.5.5. Oxidative/nitrative stress in Alzheimer’s disease; a chronic disease 

with an inflammatory component 

As life expectancy improves, many countries now have to deal with the health 

consequences of an ageing population, one of which is an increasing 

prevalence of dementia (Sosa-Ortiz et al, 2012). In 2010 it was estimated that 

35 million people worldwide had dementia (Sosa-Ortiz et al, 2012), with 

Alzheimer’s disease (AD) making up approximately 70% of this group (Zhu and 

Sano, 2006). The second largest sub-group is vascular dementia (VaD). 

However, it is thought that a ‘mixed’ dementia (AD with cerebrovascular 

disease) sub-group is underestimated in the population (Kalaria, 2002). 

AD is characterised by three pathological changes in the brain – intracellular 

neurofibrillary tangles (containing the microtubule-associated protein tau), 
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extracellular amyloid-β plaques and loss of synapses (Sultana et al, 2006; 

Reynolds et al, 2007; Reyes et al, 2011), changes that can only be observed 

post-mortem. Neuronal loss and widespread atrophy are also observed (Fox et 

al, 2001). A transition step between healthy ageing and AD is mild cognitive 

impairment and this condition is often studied to observe early physical changes 

in AD (Cenini et al, 2008).  

Neuroinflammation is known to occur in AD and is now being viewed as an 

important pathological factor in disease progression (Heneka et al, 2015). The 

central nervous system has resident innate immune cells (microglia and 

astrocytes) that are activated by DAMPs such as amyloid plaques (Heppner et 

al, 2015) (Figure 1.10). The neurofibrillary tangles and plaques can also 

activate complement pathways and dementia is associated with increased 

levels of cytokines and chemokines that may be released by neurons, as well 

as the resident immune cells (Akiyama et al, 2000). 
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 Figure 1.10: The inflammatory response in dementia 

Amyloid-β acts as a DAMP that activates the brain immune cells; microglia and astrocytes. Once activated these cells release 

cytokines, chemokines and ROS. Neurofibrillary tangles (containing tau) and amyloid plaques can both activate complement 

pathways. Neurons can also release cytokines, chemokines and ROS.  
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An altered antioxidant status has been implicated in dementia. Decreased 

circulating levels of antioxidants have been associated with poor memory 

(Perkins et al, 1999), while increased dietary intake of antioxidants is linked with 

an improved cognitive performance (Masaki et al, 2000). However, prospective 

studies looking at dietary intake of antioxidants and AD risk have had mixed 

results, such as a decreased risk regardless of genotype (Engelhart et al, 

2002), decreased risk only in those that are not a carrier of apolipoprotein E4 

gene (Morris et al, 2002) and no decreased risk at all (Luchsinger et al, 2003). A 

two year controlled clinical study (double-blind, placebo-controlled, randomised 

and multicentre), treating ‘moderate’ AD patients with high dose vitamin E (2000 

IU/day) was performed (Sano  et al, 1997). Although the treatment group saw a 

significant delay in time to the primary outcomes (progression to severe AD and 

death), there was no impact on the rate of cognitive decline. Praticò (2008) 

carried out a review, of clinical studies using antioxidant treatments, and made 

the important point that many studies failed to measure markers of oxidative 

burden in the patients and as such, it is unknown whether the antioxidant drugs 

were decreasing oxidative stress in the central nervous system.  

The species involved in Tyr-NO2 formation are present in the AD brain, e.g. ˙NO 

is produced by neuronal (nNOS), endothelial (eNOS) and inducible (iNOS) nitric 

oxide synthase (Law et al, 2001). Superoxide dismutase (SOD) activity was 

found to be reduced in the AD brain (Marcus et al, 1998). As mentioned earlier 

(see section 1.1 ), SOD is responsible for dismutating O2
• ¯ to H2O2 and 

therefore a loss of activity will lead to an increase in available O2
• ¯ which, in the 

presence of •NO, will lead to ONOO¯ formation leading to nitration of proteins 

within the brain (Good et al, 1996; Castegna et al, 2003; Butterfield et al, 

2007b). An increased expression of MPO has also been observed in the AD 

brain (Green et al, 2004), where MPO appeared to be localised to amyloid 

plaques. Active MPO catalyses the nitration of tyrosine residues in the presence 

of NO2¯ and H2O2 (section 1.5, pathway 1.2). 

An increase in Tyr-NO2 has been observed in AD brains when compared to 

control subjects (Good et al, 1996; Castegna et al, 2003; Sultana et al, 2006; 

Butterfield et al, 2007b; Sultana et al, 2007; Reed et al, 2009). Nitrated tau was 

observed in tangles, with evidence that this could occur early in the disease 

(Butterfield et al, 2007b). However, it has been suggested that tau nitration may 
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have a physiological role, possibly in neuron differentiation (Cappelletti et al, 

2004). 

Nitration of other proteins may affect neuronal survival. For example, nitration of 

the pro-apoptotic protein p53 is suggested to play a part in neuronal cell death 

(Cenini et al, 2008). This protein showed significantly more nitration in specific 

cerebral regions of Alzheimer’s brains compared to age-matched controls 

without a history of dementia, an observation not made in samples from patients 

with mild cognitive impairment (Cenini et al, 2008). Nitration of certain enzymes 

in neurons could also affect the enzymatic function, altering important cellular 

processes such as glucose metabolism and cell survival (Sultana et al, 2006). 

Dildar et al (2010) reported that serum Tyr-NO2 concentrations were no different 

in AD patients when compared to control subjects and that this modification 

might only be observable in the brain. However, the accurate measurement of 

Tyr-NO2 in plasma/serum is currently a matter of debate, as there are widely 

varying levels being reported between research groups (discussed in section 

1.5.1). The method used by Dildar et al (2010) was a commercial sandwich 

ELISA kit with a limit of detection of 2 nM. Even if we assume that plasma Tyr-

NO2 is indeed increased in this pathology, during preparation the samples were 

diluted and, given that Tyr-NO2 is suspected to be present in very low 

concentrations in plasma, this method may have been too insensitive to detect 

Tyr-NO2. Tyr-NO2 in dementia is discussed further in Chapter 6. 

Animal models play a key role in biomedical research, aiding in target discovery 

and validation of therapeutic approaches. Transgenic animal models express 

foreign DNA, e.g. human genes. This technique has been used to produce mice 

with pathological hallmarks of AD pathology, allowing researchers to 

understand some of the mechanisms and the disease progression (Houdebine, 

2007).  There are several mouse models for AD that exhibit some, though not 

all, AD pathology (Morrissette et al, 2009; Elder et al, 2010). Mouse models of 

AD are discussed further in Chapter 6, section 6.1. 

Oxidative stress is observed in the brain of AD mouse models, with some 

studies suggesting that this is an important factor in disease pathology rather 

than a consequence of plaque and tangle formation (Matsuoka et al, 2001; 

Praticò et al, 2001; Kanamaru et al, 2015). Models of AD have the benefit of 
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allowing the time course of the disease to be studied, not just the final hallmarks 

of pathology. For instance, Praticò et al (2001) measured urinary, plasma and 

brain lipid peroxidation levels over several time points in a transgenic mouse 

model (Tg2576) and found that isoprostane levels increased prior to the 

amyloid-β plaque deposition (8 and 12 months respectively). They concluded 

that this indicates oxidative stress helps drive AD pathology rather than being a 

result of the amyloid-β plaque formation. Supporting this hypothesis is the study 

by Kanamaru et al (2015), in which an AD mouse model was crossed with a 

mouse model that exhibits increased oxidative stress. It was found that the 

double transgenic had plaque pathology earlier than the AD single transgenic 

model, implying that oxidative stress accelerates the AD-like pathology. Based 

on the idea that oxidative stress is important in driving AD pathology, Lim et al 

(2001) tested the effect of the antioxidant curcumin on a mouse model of AD. 

They found that both low and high doses reduced the levels of oxidised proteins 

and plaque burden, in brain tissue, compared to untreated mice.  

Although these studies suggest that oxidative stress is central in AD 

progression the results cannot be extrapolated to humans, due to both species 

differences and the fact that mice do not exhibit the full range of AD pathology. 

However, oxidative stress remains an interesting area for therapeutic targeting 

and biomarkers of oxidative stress could help determine the efficiency of 

interventions.  

1.5.6. Further inflammatory conditions where 3-nitrotyrosine may have 

clinical utility  

Various studies have reported the production of Tyr-NO2 in diseases involving 

an inflammatory response and below are a selection of studies that have 

focused on whether Tyr-NO2 is (or has the potential to be) a clinically relevant 

biomarker.  

Gastrointestinal inflammatory conditions 

Intestinal inflammation is observed in inflammatory bowel diseases, i.e. Crohn’s 

disease (CD) and ulcerative colitis (UC). In CD and UC, Tyr-NO2 has been 

detected using semi-quantitative immunohistochemical studies, with little or no 

staining observed in non-inflamed or control tissue (Dijkstra et al, 1998; Perner 
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et al, 2001). Plasma Tyr-NO2 in CD and UC has not been reported, but has 

been reported in coeliac disease, another inflammatory intestinal disorder (Ter 

Steege et al, 1998). In the latter study, Tyr-NO2 was measured using an ELISA 

method, where a decrease in protein-associated Tyr-NO2 was observed 

following a gluten-free diet.  

For clinical purposes, quantitatively assessing a biomarker in an accessible 

human tissue such as plasma is preferable to using gut biopsies for qualitative 

immunohistochemical studies. Therefore, before Tyr-NO2 can be considered as 

a biomarker in gastrointestinal inflammatory disorders it first needs to be 

determined that the plasma concentrations of Tyr-NO2 are: (a) elevated during 

episodes of inflammation and (b) decreased following clinically successful 

therapeutic intervention. The study on coeliac disease (Ter Steege et al, 1998) 

demonstrates, in principle, that plasma protein-associated Tyr-NO2  

concentrations may fall in response to treatment and thereby reflect disease 

activity, but follow-up studies are needed.  

Systemic lupus erythematosus  

Systemic lupus erythematosus (SLE) is an autoimmune disease and involves 

chronic systemic inflammation. The fluxes of ROS/RNS, such as O2˙¯, ˙NO and 

hydroxyl radical are known to increase in SLE (Khan et al, 2006; Wang et al, 

2010). Interestingly, in addition to an increase in protein nitration, anti-Tyr-NO2 

antibodies have been reported in the serum of SLE patients (Khan and Siddiqui, 

2006) and such antibodies are also being investigated as a possible biomarker 

in this disease. Wang et al (2010) used an ELISA to compare serum Tyr-NO2 

concentrations to disease activity score (“SLE Disease Activity Index”, n=72) 

and found levels were significantly higher in patients with a disease activity 

score greater than six (n=44). Avalos et al (2007) suggested that oxidative 

stress is more likely to be associated with renal dysfunction than disease 

activity score. Stein (2010) also suggested that renal function should be taken 

into account, along with smoking status and obesity, when examining potential 

oxidative stress measures in SLE. 

If the correlation between serumTyr-NO2 concentration and disease activity can 

be replicated in further large clinical studies, then Tyr-NO2 could potentially be 

used as a tool for monitoring disease activity in response to therapy. Moreover, 
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if an available ELISA method can be shown to be sensitive enough to detect 

these changes, this would allow high-throughput analysis of patient samples. 

However, it is still unclear whether the measurement of plasma Tyr-NO2 

concentrations provides clinical insight into therapeutic efficacy that is more 

informative than the existing clinical criteria. 

Rheumatoid arthritis 

Rheumatoid arthritis (RA) involves an autoimmune inflammatory reaction within 

synovial joints, which leads to the chronic destruction of the cartilage and bone 

which underlies the synovium (Stamp et al, 2012). Tyr-NO2 staining was 

observed in immunohistochemical staining of the synovium from RA patients 

(Mapp et al, 2001; Sandhu et al, 2003) as well as within RA plasma/serum 

(Kaur and Halliwell, 1994; Misko et al, 2013). Quantification of Tyr-NO2 in 

aspirated samples of knee-joint synovial fluid has demonstrated the importance 

of selecting the correct methodology when measuring Tyr-NO2, as the 

concentrations reported in RA (Kaur and Halliwell, 1994), using HPLC-UV, 

could not be confirmed by LC-MS/MS (Yi et al, 2000). The latter study reported 

Tyr-NO2 to be undetectable in RA synovial fluid. HPLC using electrochemical 

detection has been confounded by an artefact that co-eluted with Tyr-NO2 in 

human brain tissue (Kaur et al, 1998) and this may also be an issue with other 

tissue samples when not using MS to provide an unequivocal structural 

identification of the Tyr-NO2 analyte. 

As well as an increased plasma concentration of Tyr-NO2 in RA patients, 

compared to healthy control participants, studies have demonstrated a fall in 

plasma Tyr-NO2 concentration following treatment with various drugs 

(Nemirovskiy et al, 2009; Misko et al, 2013). Nemirovskiy et al (2009) have 

shown a fall in plasma Tyr-NO2 concentrations in animal models of arthritis 

following administration of experimental iNOS inhibitors. Within human subjects, 

Misko et al (2013) reported a lowering of plasma Tyr-NO2 concentrations after 6 

months of anti-TNF treatment (3774 pg/ml to 2955 pg/ml, n=18), as well as a 

correlation with other RA markers (e.g. the acute phase protein CRP and matrix 

metalloproteinase-3). The method employed was LC-MS/MS and total Tyr-NO2 

was measured (i.e. both protein-associated and free Tyr-NO2). The drop in 

plasma Tyr-NO2 concentration was also associated with a change in the RA 
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disease activity score (DAS28-3 CRP). However, this does not provide any 

more clinically useful information than measuring CRP and future work should 

focus on what new information Tyr-NO2 can provide, if any.  

Chronic obstructive pulmonary disease  

Chronic obstructive pulmonary disease (COPD) involves an abnormal 

inflammatory response in the lungs that becomes chronic and has been shown 

to be coupled with systemic inflammation (Chung and Adcock, 2008). White 

blood cells accumulate in the small airways and alveolar destruction is, in part, 

caused by neutrophils and macrophages. This damage causes the release of 

DAMPs and further inflammation (Barnes, 2004; O'Donnell et al, 2006; Chung 

and Adcock, 2008). The associated oxidative stress is also thought to cause 

activation of pro-inflammatory transcription factors, such as NF-κB (Rahman 

and Adcock, 2006). Increased oxidative stress in COPD may be the result of 

increased MPO levels. Zhu et al (2014) performed a meta-analysis and found 

sputum MPO levels were higher in COPD patients, compared to controls, and 

increased further during exacerbations. MPO is measured as a marker of 

neutrophil activity and could be a potential novel therapeutic target (Zhu et al, 

2014). Increases in MPO could cause an increase Tyr-NO2 levels, which could 

then potentially be measured as a marker of MPO activity. However, 

consideration must also be given to the observed in vitro decrease in Tyr-NO2 

levels in the presence of HOCl, another product of MPO activity (Section 1.5) 

(Whiteman and Halliwell, 1999). 

The majority of research into Tyr-NO2 in COPD has been done by 

immunostaining techniques (Ichinose et al, 2000; Sugiura et al, 2003; 

Ricciardolo et al, 2005; Rytila et al, 2006) with Tyr-NO2 staining determined to 

be greater in the later stages compared to early stages and controls (smokers). 

Of those studies that have used semi-quantitative methods (i.e. ELISA) 

Ricciardolo et al (2005) found free Tyr-NO2 to be higher in bronchoalveolar 

lavage fluid in severe COPD, compared with mild/moderate COPD and patients 

with normal lung function and Footitt et al (2016) found sputum Tyr-NO2 to be 

higher in COPD compared to non-smoking control participants. This suggests 

Tyr-NO2 has potential as a marker of oxidative stress in COPD but further work 
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with quantitative methods is needed before firm conclusions can be drawn from 

Tyr-NO2 measurements in this disorder. 

Cardiovascular Disease 

Atherosclerosis has an inflammatory component, with immune cells such as 

macrophages being active at the site of the atherosclerotic plaque (Chinetti-

Gbaguidi et al, 2011). Many studies have found nitrated proteins within the 

plaque tissue (Beckman et al, 1994b), e.g. LDL (Leeuwenburgh et al, 1997) and 

high MPO levels are associated with cardiovascular disease (Loria et al, 2008; 

Roman et al, 2010). 

Some studies have investigated whether plasma/serum concentrations of Tyr-

NO2 change in response to statin therapy for cardiovascular disease. 

Shishehbor et al (2003) reported an association (from a study using LC-MS/MS) 

between the concentration of plasma protein-associated Tyr-NO2 and coronary 

artery disease (defined as documented myocardial infarction, coronary artery 

bypass graft surgery, percutaneous coronary intervention or a stenosis of 50% 

or greater in a major coronary vessel), as well as a reduction in plasma Tyr-NO2 

following statin treatment. This lowering effect was concluded to be independent 

of the fall in lipid parameters and CRP. Pirro et al (2007) also reported a fall in 

plasma protein-associated Tyr-NO2 (using an ELISA) following rosuvastatin 

treatment in hypercholesterolemia. A drop in plasma protein-associated Tyr-

NO2 concentrations, following statin treatment, being observed by two different 

studies and methods (LC-MS/MS and ELISA) suggests that Tyr-NO2 has 

potential as a biomarker for disease monitoring following therapeutic 

intervention in cardiovascular disease. The former method offers high assay 

specificity and replication but the latter method suggests that a semi-

quantitative high-throughput assay is also applicable in these circumstances. 

However, as with many of the other diseases mentioned, further clinical studies 

are needed to confirm that Tyr-NO2 meets the requirements of a clinical 

biomarker (i.e. high sensitivity and specificity, section 1.4).  

Tyr-NO2 has also been associated with coronary artery disease in pre-diabetes. 

A prospective study by Chu et al (2012) reported an increase in plasma Tyr-

NO2 concentration (measured via ELISA), two hours after an oral glucose 

tolerance test. In those with an abnormal glucose tolerance plasma Tyr-NO2 
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levels were significantly higher in those with coronary artery disease compared 

to those without. Many studies have also been conducted to assess whether 

there is an association between circulating Tyr-NO2 concentration and 

endothelial dysfunction (an important part of cardiovascular disease pathology) 

in diabetes (Mihm et al, 2000; Ceriello et al, 2007; Ceriello et al, 2008).  

In conclusion, the issue of which method to employ for the determination of Tyr-

NO2 in the high-throughput analysis of clinical samples needs be addressed, as 

mass spectrometry is not yet feasible for high-throughput analysis and other 

methods in the literature suffer from methodological flaws or cannot be properly 

assessed due to a lack of detailed methodological information (Duncan, 2003).  

When measuring protein-associated Tyr-NO2, another factor that needs to be 

investigated is the effect of protein turn-over rate on protein-associated Tyr-NO2 

concentration. A fall in protein-associated Tyr-NO2 concentration will only be 

measurable if the nitrated protein is degraded in parallel with a decrease in 

disease activity. As mentioned in section 1.5 there is evidence that nitration of 

certain proteins can enhance proteolytic degradation (Grune et al, 1998; Souza 

et al, 2000a) or inhibit it (Davies, 2001; Dunlop et al, 2009). 

Validation of oxidative stress modifications as useful biomarkers in disease has 

been hindered by methodological flaws.Tyr-NO2 is no exception to this and this 

topic has been reviewed (Griffiths et al, 2002; Tsikas and Caidahl, 2005; Tsikas 

and Duncan, 2014; Frijhoff et al, 2015). There is still much work to be done in 

assessing Tyr-NO2 as a clinically useful biomarker, with more clinical studies 

(e.g. randomised drug trials and prospective cohort studies) assessing 

sensitivity and specificity needed in particular. However, findings so far – at 

least in relation to some inflammatory diseases – have been encouraging, with 

some studies showing that plasma Tyr-NO2 levels correlate with disease activity 

(e.g. high Tyr-NO2 levels were seen in patients with a high SLE disease activity 

index (Wang et al, 2010)) and are decreased following successful therapeutic 

interventions (e.g. as seen with statin treatment in cardiovascular disease 

(Shishehbor et al, 2003)). The question of whether Tyr-NO2 is any more 

informative, in clinical terms, than other markers that are already available, e.g. 

CRP, is still to be addressed. 
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Other post-translational modifications of proteins have been used clinically to 

aid diagnosis, prognosis or disease monitoring. For example, the presence of 

antibodies, in serum, to citrullinated proteins can aid diagnosis of rheumatoid 

arthritis (Schellekens et al, 2000; Luban and Li, 2010). Citrullination is a post-

translational modification caused by peptidylarginine deiminase enzymes, that 

converts arginine residues to citrulline residues (Vossenaar and van Venrooij, 

2004). In diabetes, glycated haemoglobin can be used to assess/monitor a 

person’s glycaemia levels over the preceeding 120 days, an erythrocyte’s 

average lifespan (Bunn, 1981; Goldstein et al, 2004; Nathan et al, 2007). 

Glycation of haemoglobin is an effectively irreversible non-enzymatic 

modification and the glycation is directly proportional to the glucose 

concentration in the surrounding area (Goldstein et al, 2004).  
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1.6. Hypothesis and Aims 

The main hypothesis, which forms the basis of the following research project, is 

that Tyr-NO2 is a clinically relevant biomarker of inflammation. 

Within this project the aims have been to: 

1. Develop and validate a new sensitive ELISA method for the high-

throughput analysis of protein-associated Tyr-NO2 in human samples 

(Chapter 3). 

2. Measure ˙NO metabolites and protein-associated Tyr-NO2 in serum to 

assess nitrative stress following an acute inflammatory response, i.e. 

after surgery (Chapter 3). 

3. To determine whether high dietary NO3¯ ingestion by smokers leads to 

an increase in nitrative stress-induced post-translational modifications of 

proteins (Chapter 4). 

4. Compare protein-associated Tyr-NO2 to CRP as a marker of 

inflammation in patients post-surgery and assess its clinical utility in the 

diagnosis of patients that developed post-surgery sepsis (Chapter 5). 

5. Measure ˙NO metabolites and protein-associated Tyr-NO2 in brain tissue 

to assess nitrative stress in dementia (Chapter 6). 
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Chapter 2  

General Methods 
 

Materials and methods used throughout this project are detailed within the 

following sections and will be referred to throughout this thesis.  

2.1. Materials 

Phosphate buffered saline (PBS; 10mM) (P5368), RIPA buffer, protease 

inhibitor cocktail, bovine serum albumin (BSA) fraction V, bromophenol blue 

sodium salt, sodium dodecyl sulfate (SDS), Ponceau S, N,N,N′,N′-

tetramethylethylenediamine (TEMED), β- mercaptoethanol, methanol, hydrogen 

peroxide (H2O2), manganese (IV) oxide (MnO2), dithiothreitol (DTT), vanadium 

chloride and hydrochloric acid (HCl) were purchased from Sigma-Aldrich 

(Gillingham, UK). 

Glycine, Tris base, zinc sulfate (ZnSO4), glacial acetic acid, Tween-20 and 

ammonium persulfate (APS) were from Fisher Scientific (Loughborough, UK).  

The protein-free blocking buffer, bicinchoninic acid (BCA) assay reagents, pH 

indicator paper and “PageRuler” pre-stained protein ladder were from Thermo-

Fisher Scientific (Cramlington, UK).  

The TGX FastCast acrylamide kit (12%) and nitrocellulose membrane (0.45 µm) 

were from Bio-Rad (Hemel Hempstead, UK). 

The protein carbonyl enzyme immunoassay (EIA) kits were from Biocell 

Corporation Ltd (Auckland, NZ). 

Coomassie Brilliant Blue was from LKB Produkter (Stockholm, Sweden). 

All buffers and reagents were made up in deionised, ultrapure H2O (ddH2O, 

18.2 MΩ/cm) unless otherwise stated.  



51 
 

2.1.1. Antibodies  

Table 2.1: Details of the antibodies used in the ECL ELISA and western blotting 

Antigen Host Conjugation Type 

Supplier 

(product 

number) 

Lot number 
ELISA 

dilution 

Western 

Blot 

dilution 

Nitrotyrosine Mouse - 

Monoclonal Cambridge 

Biosciences 

189542 

0426640-1 1 µg/ml  

Monoclonal 0460908-1  1:1,000 

Nitrotyrosine Mouse Biotin Monoclonal 

Cambridge 

Biosciences 

10006966 

0448074-1 2 µg/ml  

Actin Rabbit - Polyclonal 

Cambridge 

Biosciences 

A300-485A 

A300485A-2  1:5,000 

Mouse IgG Goat IRDye680RD Polyclonal 

LiCor 

926-68070 

C40312-02  1:15,000 

Rabbit IgG Goat IRDye800CW Polyclonal 

LiCor 

926-32211 

C40325-02  1:15,000 

Mouse IgG Goat IRDye800CW Polyclonal 

LiCor  

925-32210 

C40826-04  1:15,000 

Rabbit IgG Goat IRDye680RD Polyclonal 

LiCor 

925-68071 

C41022-02  1:15,000 

Biotin n/a IRDye800CW Streptavidin  

LiCor 

925-32230 

C50226-03  1:5,000 
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2.2. Samples 

Serum: 4ml clotted blood sample was collected at each time point. These were 

centrifuged and the serum stored frozen as a single aliquot (2.0-2.5 ml) at DSTL 

(further details in sections 3.2.1 and 5.1). 

Plasma: Blood was collected in 5ml EDTA vacutainers and spun at 350 g for 20 

minutes, the plasma supernatant was then collected and frozen. 

Human brain tissue homogenates were collected and lysed by the South West 

Dementia Brain Bank (further details in section 6.1). 

Forebrain and cerebellum tissue samples from the brain of transgenic (n=24) and 

wild-type mice (n=14) were collected and snap frozen, then stored at -80°C until 

lysis (further details in section 6.1). 

Plasma, serum and brain samples were stored at -80°C until use. Further 

preparation was method dependent. 

 

2.3. Determination of protein concentration 

The bicinchoninic acid (BCA) assay (Thermo Fisher, Cramlington, UK) was 

used to determine the protein concentration of samples (range 0.06 – 2 mg/ml). 

The BCA assay uses the Biuret reaction (reduction of copper (II) to copper oxide 

(I), in alkali conditions, by the peptide bond), which is then followed by the 

formation of a complex between copper oxide (I) and BCA. This produces a 

deeper purple colour than the Biuret reaction alone and has an absorbance 

maximum at 562 nm (Smith et al, 1985). Bovine serum albumin (BSA) in H2O 

was used for a 6 point standard curve with a range of 0.06 – 2.00 mg/ml. The 

sample was diluted in H2O as necessary to fit within this range (e.g. 

plasma/serum was diluted 1 in 100).  

Clear, flat bottom, 96-well microtiter plates (Sterilin, Fisher Scientific, 

Loughborough UK) were used and 25 µl of the sample/standard was mixed with 

the 200 µl BCA reagent - if the sample volume was limited 10 µl sample was 

used (altering the assay working range to 0.125 – 2 mg/ml). The plate was then 

covered and incubated at 37°C for 30 minutes before measuring the 

absorbance on a Fluostar Optima plate reader (BMG Labtech, Ortenberg, 
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Germany), with a 550-10 excitation filter. Calculated concentrations were then 

multiplied by the samples dilution factor. A typical standard curve from this 

assay is shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel 

electrophoresis) 

Denaturing and reducing conditions were used during SDS-PAGE to separate 

sample proteins by mass. Samples were denatured by addition of Laemmli 

buffer and heating. Laemmli buffer contains SDS and a reducing agent. SDS is 

both denaturing and an ionic detergent that binds evenly to proteins, giving 

them all an equivalent negative charge and allowing separation by mass only in 

the gel. β-mercaptoethanol or DTT were used as a reducing agent; breaking the 

Figure 2.1: BCA assay standard curve 
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disulphide bonds so that proteins are no longer in their tertiary or quaternary 

structures.  

Samples then underwent electrophoresis; this process uses a positive charge to 

draw the proteins through the pores in the polyacrylamide gel. A 12% 

acrylamide gel was used as this has a small pore size, allowing low molecular 

weight proteins to be resolved. The gel was then either stained with Coomassie 

stain or used for a western blot.  

2.4.1. Preparation of gels 

Bio-Rad (Hemel Hempstead, UK) FastCast acrylamide kits and mini-protean 

plates were used according to the manufacturers instructions to make 1.5 mm 

thick gels with 10 wells. Resolving gel was 12% acrylamide and stacking gel 4% 

acrylamide. Kit instructions were followed using the listed reagents (n = number 

of gels):  Stacking gel – 1.5 ml x n Stacker A, 1.5 ml x n Stacker B, 3 µl x n 

TEMED and15 µl x n 10% fresh ammonium persulfate (APS). Resolving gel – 4 

ml x n Resolver A, 4 ml x n Resolver B, 4 µl x n TEMED, 40 x n 10% fresh APS. 

 2.4.2. Sample preparation 

Sample protein concentration was determined by the BCA assay (see section 

2.1) and the required volume (for 60 µg protein per well) was calculated and 

mixed with 8 µl of 5x Laemmli buffer (Laemmli, 1970), the volume was made up 

to 40 µl with H2O. Samples were then boiled at 99°C for 5 minutes and all 40 µl 

were applied to the track. 

Composition of 5x Laemmli buffer: 200 mM Tris (pH 6.8), 10% SDS, 50% 

Glycerol, pinch of bromophenol blue (to colour) and H2O to required volume. 

And one of the following reducing agent (added immediately prior to use): 100 

mM dithiothreitol or 1% β-mercaptoethanol.  

2.4.3. Electrophoresis 

Gels were placed in a Mini Trans-Blot cell (Bio-Rad Hemel Hempstead, UK) and 

the middle reservoir filled with 1x SDS running buffer. Once it was confirmed 

that there was no leaking, the tank was then half filled with SDS-running buffer 

and samples were loaded into the wells. The first well was loaded with 4 µl pre-

stained protein marker. This marker contained proteins of known molecular 

weights (10 – 170 kDa) that had been stained so that their progress down the 
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gel could be observed (Figure 2.2). This marker was used to estimate the 

molecular weight of protein bands obtained from the samples.  

The PowerPac HC (Bio-Rad Hemel Hempstead, UK) voltage was set to a 

constant 70V for the first 20 minutes as proteins passed through the stacking 

gel. This voltage was then increased to a constant 100V until the loading dye 

reached the end of the gel (approximately 90 minutes). The electrophoresis was 

then stopped and the gel removed from the tank. 

Composition of 10x SDS running buffer: 0.25 M Tris base, 1.92 M glycine, 1% 

SDS and H2O to required volume. 

2.5. Coomassie staining 

To visualise protein bands the SDS-PAGE gel was dyed with Coomassie 

Brilliant Blue dye (G25). The staining solution contains methanol, to fix proteins 

by stopping diffusion through the gel, and acetic acid. Within this acidic buffer 

Coomassie can bind to residues within proteins.  

Composition of 1L Coomassie Brilliant Blue staining solution: 500 ml Methanol, 

100 ml Glacial acetic acid, 400 ml H2O and 2.5 g Coomassie Brilliant Blue. 

The gel was incubated in the dye for 2 hours. A de-staining solution (the same 

as the staining solution but without Coomassie Brilliant Blue) was then used to 

remove any of the non-bound dye, after an hours incubation, the destain 

solution was refreshed and then incubated overnight.  All incubations were at 

room temperature with gentle rocking.  

The gel was imaged on a LiCor Odyssey CLx (LI-COR Biosciences UK Ltd 

Cambridge, UK). By comparing band position to the pre-stained protein marker 

a rough estimate of molecular weight for each protein band was achieved.  

This gel image can then be compared to blot images obtained from western 

blots or bands of interest can be excised from stained gels for mass 

spectrometry analysis. An example gel is seen in Figure 2.2, this gel contained 

a molecular weight marker, human brain tissue samples and nitrated bovine 

serum albumin (this acted as a positive control in tandem western blots). 
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2.6. Western blotting 

Western blotting uses antibodies to probe for a certain target antigen within a 

sample, following the transfer of proteins from the SDS-PAGE gel to a 

membrane. This technique was described and named by Burnette (1981) and 

the main principles of the procedure have not changed since. 

2.6.1. Transfer 

Transfer from the SDS-PAGE gel to the membrane (nitrocellulose 0.45 µm) was 

performed using the ‘wet’ tank electrotransfer method. With this method, a 

transfer ‘sandwich’ was created in which the gel and nitrocellulose membrane 

were placed between two sheets of filter paper and transfer pads (all pre-

soaked in cold transfer buffer). It is important to remove air bubbles between the 

gel and membrane before transfer as they will interfere with the process; a roller 

Figure 2.2: A Coomassie stain of brain samples run on an SDS-PAGE gel 

Track 1: molecular weight marker. Tracks 2-7 contain 60 µg human brain tissue 
homogenate. Track 8: nitrated bovine serum albumin (blue arrow, purchased from 
Sigma Aldrich, Gillingham UK). 
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was used for this. The sandwich was then placed in a Mini Trans-Blot cell (Bio-

Rad Hemel Hempstead, UK), with the membrane closest to the anode, along 

with an ice block and magnetic stirrer. A lot of heat is generated during the 

transfer process and this can melt the gel. Therefore, the tank was kept cold 

throughout. The tank was filled with cold transfer buffer and the PowerPac HC 

(Bio-Rad Hemel Hempstead, UK) constant current set to 0.35 A, the gel was set 

to transfer for 60 minutes. Transfer of the pre-stained protein marker from the 

gel to the membrane was used as a marker of a successful transfer. 

Gels were stained with Coomassie (section 2.4) after transfer to confirm that 

proteins had effectively migrated out of the gel. 

Composition of transfer buffer: 50 mM Tris base, 40 mM glycine, 20% methanol, 

0.1% SDS and H2O up to required volume. 

2.6.2. Blocking the membrane 

The nitrocellulose membrane has a high affinity for protein and therefore would 

bind the antibodies if not ‘blocked’ first. Protein-free blocking buffer was used, 

rather than the common BSA blocking solution, as nitrated tyrosine could be 

expected to be present in albumin. The blocking component of this protein-free 

buffer is proprietary but it was able to efficiently block the membrane.  This step 

was performed overnight at 4°C with gentle rocking.  

2.6.3. Antibody incubation 

The antibodies listed previously (Table 2.1) were used, with actin (a 

cytoskeletal protein present in all cells) as a loading control marker. The anti-

actin antibody binds to the γ-actin isoform (Uniprot P63261, MW 41,793 Da), 

with some cross-reactivity for β-actin (Uniprot P60709, MW 41,737).  

The secondary antibodies are conjugated to fluorophores that emit in near-

infrared (NIR) wavelengths (700 and 800 nm). These fluorophores produce a 

signal directly proportional to the antigen and are stable over time. 

The primary and secondary antibodies were both incubated at room 

temperature for one hour with gentle agitation.  
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2.6.3.1. Western blot controls 

Nitrated BSA was used as a positive control, to verify antibody binding. This 

was either commercial or nitrated in-house using peroxynitrite (see section 2.8). 

2.6.4. Imaging 

For imaging the LiCor Odyssey CLx system was used (LI-COR Biosciences UK 

Ltd Cambridge, UK), this platform has an infrared laser for excitation of the NIR 

fluorophores. The Image Studio Lite (LI-COR Biosciences UK Ltd Cambridge, 

UK) software was then used to analyse the images. This software allows for the 

image to be edited (e.g. cropped, flipped, brightened) without changing the 

actual signal intensities (numerical data) collected so that comparisons between 

bands are valid. 

Nitrotyrosine bands were quantified by expression as a ratio of the actin signal. 

An example of a typical blot and quantification can be seen in Figure 2.3.  
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 2.7. Mass Spectrometry 

Details of the applicable sample digestion protocols can be found in the relevant 

chapters. The following HPLC-MS/MS protocol was used for all mass 

spectrometry. 

Digested peptide mixtures were separated by liquid chromatography on an 

Ultimate 3000 system (Dionex, UK). A C18RP pre-column (C18 PepMapTM, 5 

µm, 5 mm x 0.3 mm i.d.  Dionex, UK) was used for capturing and desalting 

peptides, by washing for 4 min with 2% aqueous acetonitrile (0.1% formic acid) 

at 30 µL/min. A C18 nano-HPLC column (C18 PepMapTM, 5 µm, 75 µm i.d. x 

150 mm, Dionex, UK) was then used for separation with a gradient elution 

running from 2%  to 45% aqueous acetonitrile (0.1% formic acid) over an hour. 

The final wash step then ran from 45 % to 90 % aqueous acetonitrile (0.1% 

formic acid) in 1 min.  The system was then washed with 90% aqueous 

Figure 2.3: An example of a NIR western blot 

Red bands are actin positive and green bands nitrotyrosine positive. Signal intensity 
quantification is shown for the two circled bands. Track 1 molecular weight marker. Tracks 2-7 
contain 60 µg human brain tissue homogenate. Track 8 nitrated bovine serum albumin 
monomer (blue arrow) and nitrated aggregate (red arrow) (Enzo Life Sciences, New York 
USA). 
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acetonitrile (0.1% formic acid) for 5 min and then equilibrated with 2% aqueous 

acetonitrile (0.1% formic acid).  

A 5600 Triple TOF mass spectrometer was used for mass spectrometry 

analysis (Sciex, Warrington UK). Peptide ionization was achieved with a spray 

voltage set at 2.4 KV, a source temperature of 150ºC; declustering potential 

was set at 50 V with a curtain set at 15 V. Scans were collected using survey 

high resolution TOF MS mode in positive mode 400 to 1200 da for 200 ms.  

Information-dependent acquisition was used to collect MS/MS data, with the 

following criteria: the 10 most intense ions with +2 to +5 charge states and a 

minimum intensity of 500 counts-per-second were chosen, using dynamic 

exclusion for 20 s, 250 ms acquisition time and rolling collision energy. 

The data analysis is detailed for each project in individual chapters. 

2.8. Protein carbonyl enzyme immunoassay  

Protein carbonyls were measured with an enzyme immunoassay (EIA) kit 

(Biocell PC test, NZ) which utilises derivatization by dinitrophenylhydrazine 

(DNP) and an anti-DNP antibody.  

Kit instructions were followed for high protein concentration samples (i.e. 

serum) and room temperature incubations were performed at 21°C. 

The serum was incubated with a DNP solution for 45 min before dilution in an 

EIA buffer; the samples were then used to coat the plate overnight. The plate 

was then blocked before incubation with a biotinylated anti-DNP antibody. 

Streptavidin-HRP and chromatin reagent were then used for colour 

development. Absorbance was measured at 450 nm, using the Fluostar Optima 

plate reader (BMG Labtech, Ortenberg, Germany). A typical standard curve can 

be seen in Figure 2.4. 
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2.9. Peroxynitrite synthesis 

Peroxynitrite was synthesised as a nitrating agent for in vitro experiments, 

according to the method described by Beckman et al (1994a). Solutions were 

cold and all steps were performed using glass beakers on ice. Three solutions 

(each 50 ml) were made: (1) 0.6 M NaNO2, (2) 0.7 M acidified H2O2 (0.6 M HCl) 

and (3) 1.2 M NaOH. Stock H2O2 concentration was measured (Spectra Max 

M2e, Molecular Devices, USA) prior to use; 3 ml of 100x diluted solution was 

placed into a quartz cuvette and the absorbance was read at 240 nm (extinction 

coefficient 43.6 M-1 cm-1 (Hildebrandt and Roots, 1975)). 

The acidified H2O2 was quickly poured into the NaNO2, immediately followed by 

the NaOH. This results in a yellow solution of diluted peroxynitrite. MnO2 (~15 

mg) was added to deplete excess H2O2 and the solution was then filtered and 

frozen at -20°C. The top layer of this frozen solution was concentrated 

peroxynitrite that thaws rapidly, this layer was collected and aliquoted for later 

use. Concentrations of 200 – 210 mM were routinely achieved when measuring 

Figure 2.4: Protein carbonyls standard curve 

Oxidised protein standards in the range 0.10 – 0.95 nmol/mg protein 

were used in the protein carbonyl assay. 
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the absorbance at 302 nm (extinction coefficient 1670 M-1 cm-1 (Hughes and 

Nicklin, 1968). The aliquots were kept at -20°C for up to 3 months (-80°C for 

longer storage) and the concentration was checked upon defrosting (Equation 

2.1). Aliquots were used within 30 minutes of defrosting. 

Equation 2.1:  

𝑀𝑜𝑙𝑎𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

𝐸𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
 𝑥 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛  

2.9.1. Nitration of protein 

A BSA solution of 2 mg/ml was generated in a bicarbonate based nitration 

buffer. The solution was exposed to 3 mM peroxynitrite (stock diluted to 30 mM 

with H2O), whilst being gently vortexed. The pH of the solution was then 

checked using pH indicator paper (pH 0-14, Fisher Scientific, Loughborough 

UK), to ensure that a neutral pH had been retained. Successful nitration could 

be observed by a change in colour of the solution from clear to a faint yellow. 

Nitration was measured, at pH 10, on a Cary 300 UV-Vis spectrophotometer 

(Agilent Technologies LDA UK Limited, Cheshire UK), using the extinction 

coefficient 428nm = 4200 M-1cm-1 (van der Zee et al, 1977). An example 

spectrum can be seen in Figure 2.5. 

Composition of nitration buffer: 100 mM Potassium phosphate (KH2PO4) and 25 

mM Sodium bicarbonate (NaHCO3). 
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2.10. Ozone-based chemiluminescence (NO2¯ and NO3¯ measurement) 

Nitrite (NO2¯) and nitrate (NO3¯) were measured using a Sievers •NO analyser 

(Sievers NOA 280; Analytix, UK). This method involves the reduction of NO2¯ 

and NO3¯ to •NO which then reacts with ozone to produce luminescence, this 

light was then measured by a photomultiplier tube. An example of the time trace 

is shown in Figure 2.6. 

Five known concentrations of sodium nitrite (0.2 – 10 µM) and sodium nitrate 

(0.5 – 20 µM) were used as standards for NO2¯ and NO3¯ respectively. 

Samples were deproteinized prior to measurement using 0.5 M NaOH and 10% 

zinc sulfate (ZnSO4). The ratio was always 1:2:2 (sample: NaOH: ZnSO4), a 

sample dilution factor of 5, with at least 100 µl sample being used. After addition 

of NaOH and ZnSO4, samples underwent a brief vortex before incubation at 

room temperature for at least 15 minutes. Samples were then centrifuged at 

17,500 g for 5 minutes and the supernatant analysed.  

 

Figure 2.5: UV-visible spectrophotometry spectra of native and nitrated BSA 

The spectra of native BSA (purple) and nitrated BSA (red) were recorded at wavelengths 
between 200 and 500 nm (pH 10). Polypeptides show a peak at 280 nm and nitrotyrosine a 
peak at 428 nm. 
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Aliquots (100 µl) of the deproteinised samples were refluxed in a reaction 

chamber with 1 ml 0.3 M sodium iodide and 4 ml glacial acetic acid (at 35°C) for 

NO2¯ measurement, or with 4ml 0.1 M vanadium III chloride /1M HCl (at 95°C) 

for NO3¯ measurement.  
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Figure 2.6: Time trace for ozone based chemiluminescence, measuring nitrate in 
serum samples. 

Each peak represents an injection of a sample and the area of this peak was calculated 

for comparison to a standard curve. Injection 1 was the blank, injections 2 and 23 were a 

10 µM NO3¯ standard, injections 3-22 were serum samples in duplicate (i.e. 10 samples). 
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Chapter 3  

Validation of a new electrochemiluminescence ELISA for the 

measurement of protein-associated 3-nitrotyrosine 
 

3.1. Introduction 

As discussed in Chapter 1 (section 1.5) the formation of Tyr-NO2 in human 

tissues/bio-fluids is associated with several pathologies which involve a strong 

inflammatory component. For example, plasma protein-associated Tyr-NO2 

concentrations have been shown to be increased in patients with systemic 

lupus erythematosus (Khan et al, 2006), celiac disease (Ter Steege et al, 1998) 

and cardiovascular disease (Shishehbor et al, 2003; Eleuteri et al, 2009), when 

compared to controls (in the aforementioned papers, ‘controls’ being individuals 

with no clinical signs of disease). This is perhaps unsurprising given that the two 

most cited initiators of nitration - peroxynitrite (Skatchkov et al, 1997; Kuhn et al, 

2004) and myeloperoxidase (Gaut et al, 2002b; Sun et al, 2007) - are both 

increased in inflammatory conditions. 

This has led to the suggestion that Tyr-NO2 could be measured as a marker of 

oxidative stress in clinical studies. Some studies have shown that Tyr-NO2 

correlates with disease activity (Ohya et al, 2002; Wang et al, 2010) and 

decreases following treatment (e.g. with the cholesterol reducing drugs statin 

and rosuvastatin in cardiovascular conditions, Shishehbor et al (2003); Pirro et 

al (2007)). 

Evidence supporting oxidative stress modifications as useful biomarkers in 

disease has been hindered by a fragmented literature and Tyr-NO2 is no 

exception to this (Frijhoff et al, 2015). There have been two main approaches to 

quantifying Tyr-NO2 levels in vivo, high-throughput ELISA’s and highly sensitive 

GC/LC-MS/MS. Both of these methods have advantages and disadvantages: 

ELISA methods are high throughput, less costly and do not involve extensive 

sample preparation but have low sensitivity and are semi-quantitative. GC/LC-

MS/MS is quantitative, highly sensitive and accurate but is low-throughput, time-

consuming and expensive - limiting this method’s usefulness in a clinical 

setting.  
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When measuring Tyr-NO2 there are two major methodological issues to 

consider: (1) low concentrations of the analyte and (2) artefactual formation of 

Tyr-NO2 during sample processing (Yi et al, 2000). Mass spectrometry 

measurement of Tyr-NO2 is considered to be the ‘gold standard’, and offers the 

greatest sensitivity, but also has the biggest risk of Tyr-NO2 formation during 

sample preparation.  

For the measurement of a large number of clinical samples an ELISA is a more 

practical method, but for a Tyr-NO2 ELISA to be successful the drawbacks of 

this method need to be addressed. Despite a wealth of studies utilising ELISAs 

for Tyr-NO2 measurement in clinical samples, the literature contains 

inconsistent methodologies and results (as discussed in Chapter 1, section 

1.5.1). For example, along with differences in ELISA design (indirect, 

competitive and sandwich) the standard has also varied; Ter Steege et al 

(1998) used nitrated plasma, where others have used nitrated BSA (BSA-NO2) 

(Khan et al, 1998; Bo et al, 2005; Weber et al, 2012). These ELISA methods 

have reported drastically different values of Tyr-NO2, in the plasma of healthy 

controls, from undetectable, with a LOD of 0.2 nM (Ter Steege et al, 1998), to 

>4000 nM (Bo et al, 2005). Additionally, there is an ambiguity in reported 

results, as many results are reported as absolute concentrations when they are 

in fact standard equivalents. For the authors to report an absolute concentration 

the exact amount of nitrated Tyr residues in the protein standard must be 

known. However, often all that is known/reported is the concentration of the 

nitrated protein standard. Therefore, the presented results are equivalent to the 

protein concentration, not the Tyr-NO2 content. Earlier studies have reported 

the development of ELISA’s for Tyr-NO2 (Ter Steege et al, 1998; Sun et al, 

2007; Weber et al, 2012) and commercial Tyr-NO2 assays are widely available. 

However, an obstacle still to be addressed is poor sensitivity, in that these 

ELISAs are often unable to detect Tyr-NO2 in a high proportion of human serum 

samples. 

Therefore, a high-throughput assay based on a highly sensitive 

electrochemiluminescence (ECL) platform has been developed for Tyr-NO2 

measurement. The base of an ECL ELISA plate contains carbon electrodes 

which transmit the electrical current to the antibody/antigen complex. The 

streptavidin tag is conjugated to a ruthenium complex which undergoes redox 
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cycling, following electrical stimulation, resulting in the production of light 

(Figure 3.1).  

In the present study, our developed ELISA, for protein-associated Tyr-NO2, was 

applied to serum samples from patients undergoing major elective surgery, with 

serum being collected prior to and one day after the surgery as an exemplar of 

the acute inflammatory response in humans.  
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Figure 3.1: Electrochemiluminescence ELISA schematic 

A sandwich ELISA was utilised for the measurement of protein-associated Tyr-NO2. The tag is 

a ruthenium complex that produces light upon electrical stimulation. Tripropylamine (TPA) is 

within the Read buffer and is a co-reactant for light generation. 
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3.2. Materials and methods 

3.2.1. Patient serum samples 

The serum samples were collected in a study approved by the NRES 

Committee South Central (REC ref 06/Q1702/152) and prior informed consent 

to take part in the study was obtained from each individual.  

A clotted blood sample was collected at each time point, these were centrifuged 

and the serum was frozen. 

Serum was collected from 35 individuals (18 male, 17 female; 59 ± 13 years 

old) prior to major elective surgery and again 24 hours after surgery.  

3.2.2. Additional samples 

The assay was also applied to lysed blood cells. These additional samples 

were: 

 Erythrocytes and monocytic cells isolated from healthy human blood (all 

volunteers gave informed consent, and this study was approved by the 

Institutional Research Ethics Committee - approval number 2014/781). 

 U937 cells, a histiocytic lymphoma cell line (Sigma-Aldrich, Gillingham 

UK. ECACC supplied, Lot 11D008). 

3.2.3. Materials 

Ultra-pure water was used for buffer preparations throughout. The following 

reagents were used in addition to those listed in Chapter 2, section 2.1: 

acetonitrile, iodoacetamide, trypsin (proteomics grade), RIPA buffer, protease 

inhibitor cocktail and Percoll (lot 10226958) (Sigma Aldrich, Gillingham UK). 

Dextran (batch DB4311) was from Pharmacosmos, Holbæk, Denmark. 

Methanol (analytical reagent grade), ammonium bicarbonate (analytical reagent 

grade), Formic acid 99% , foetal bovine serum (FBS, lot 41F6547K) and 

HyClone™ antibiotic-antimycotic solution (Lot J140011) were purchased from 

Fisher Scientific, Loughborough, UK. Dulbecco's modified Eagle's medium 

(DMEM), high glucose DMEM, and L-glutamine were obtained from Lonza, 

Wolverhampton UK.  
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The details of the two anti-nitrotyrosine (biotinylated and non-biotinylated) 

antibodies can be found in Table 2.1 (Chapter 2, section 2.1.1). Blocking buffer 

A (BSA), SULFO-TAG-labelled streptavidin and Read Buffer T 4x was 

purchased from Meso Scale Discovery (MSD), Maryland, USA. Nitrated bovine 

serum albumin (BSA-NO2) (Enzo Life Sciences, New York, USA).  

We used standard bind single spot 96 well plates (MSD, Maryland USA) and an 

electrochemiluminescence Sector Imager 2400 (MSD, Maryland USA).  

3.2.4. Validation of the assay 

LLOQ and CV: 

The lower limit of quantification (LLOQ) was defined as the lowest standard with 

a mean accuracy of 80 – 120% and a duplicate variation of <20%. 

The coefficient of variation (CV) was determined by preparing and measuring 

the same sample multiple times within and across plates (n=8). CV% = 

(standard deviation/mean) x 100. 

The inter-assay CV for room temperature incubations compared to a constant 

25°C (Jeio Tech Lab Companion SI-300R shaking incubator, Seoul Korea) was 

also assessed.  

The variation between sample duplicates, at low concentrations of Tyr-NO2, was 

also determined. 

Recovery and linearity: 

A plasma sample was spiked with 1 nM nitrated BSA (BSA-NO2) and diluted to 

four different concentrations (1 in 2, 1 in 5, 1 in 10 and 1 in 20) to determine the 

linearity and recovery of the assay. 

Antibody specificity: 

Pre-incubation of the detection antibody and spiking of the sample, with free 

Tyr-NO2, was performed to assess the antibodies binding affinities.  

Comparison of mass spectrometry and ELISA: 
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BSA (2 mg/ml) in a bicarbonate buffer (25 mM NaHCO3 and 100 mM KH2PO4) 

was exposed to 11 mM peroxynitrite (synthesised according to the method 

described by (Beckman et al, 1994a)) to cause nitration of tyrosine residues 

(Chapter 2, section 2.8). Half of this solution was then exposed to 1 mM sodium 

dithionite to chemically reduce the nitro groups to amino groups (Nikov et al, 

2003). 

Native (unmodified), nitrated and chemically reduced BSA samples were then 

analysed by SDS-PAGE (as described in Chapter 2, section 2.3; β-

mercaptoethanol was used as the reducing agent) and the bands excised and 

trypsin digested based on a previously described protocol (Shevchenko et al, 

2006). Mass spectrometry (MS/MS) analysis involved high pressure liquid 

chromatography (Dionex, UK) coupled to a 5600 Triple TOF mass spectrometer 

(Sciex, Warrington UK) and is detailed in Chapter 2, section 2.6.  

The generated data was then analysed with Mascot Daemon statistical software 

v 2.3.2 (MatrixScience, 2014) with the following settings applied: 

Digestion enzyme: Trypsin 

Fixed modifications: 

 Carbamidomethyl (C) (formed by the iodoacetamide) 

Variable modifications: 

 Oxidation (M) Nitro (Y) Amino (Y) 

Instrument type: ESI QUAD TOF 

Taxonomy: Mammalian  

Charge: 2+, 3+ and 4+ 

Fragment mass tolerance: 0.5 Da 

Peptides were then further examined using Peak View (Version 1.0 

(ABSCIEX)); this was to examine their extracted ion chromatograms (XIC). For 

this, the m/z of the peptides containing either unmodified tyrosine, nitrotyrosine 

or aminotyrosine were entered, along with an XIC range width of 0.1. 

Analysis of this data was based on the assumption that modified peptides would 

be measured with the same sensitivity as the unmodified forms, and therefore 



 

72 
 

the results are an approximation of the nitration occurring. To manually confirm 

the analysis by Mascot, the following criteria were applied: peaks with 

intensities below 1.0 x 104 were excluded and peaks without the mono-isotopic 

peak were excluded as an artefact. The peptide sequence was then confirmed 

by de novo sequencing. For the remaining peaks, the intensities were recorded 

allowing calculation of the total peptide intensity (unmodified + modified) and 

the percentage contribution for each modification calculated.   
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3.2.5. ELISA method 

Buffers 

Blocking buffer (3% blocker A in PBS), dilution buffer (1% blocker A in PBS), 

washing buffer (0.05% Tween-20 in PBS) and 2x Read buffer (50% Read buffer 

T4x, 50% H2O). The primary antibody was diluted in PBS (1 µg/ml). The BSA-

NO2 standard (10 nM), secondary antibody (2 µg/ml) and streptavidin (1:500)  

were prepared in dilution buffer.  

Standard preparation 

Commercial BSA-NO2 was aliquoted into 1000 nM stock solutions 

(reconstituted with distilled water) prior to use. A 1000 nM stock was then 

diluted with dilution buffer to 10 nM to form the top point of the standard curve. 

Dilutions (2.5-fold) were used for the next six standards and dilution buffer was 

used as a blank (standard range 0.04 nM – 10 nM).  

Serum preparation 

Serum samples were defrosted (stored at -80°C) and centrifuged at 14,000 g for 

15 minutes at 4°C, to pellet any debris. The serum was kept cool and diluted 1 

in 5 with dilution buffer immediately prior to use.  

ELISA protocol 

Primary antibody (non-biotinylated) was placed into each well of the plate and 

then incubated at 4°C overnight. The plate was then blocked with 150 µl 

blocking buffer at 25°C for one hour with gentle agitation (these were the 

conditions for all further incubations). Each standard/sample (25 µl) was added 

to the relevant well, with quadruplicate repeats of each, and incubated. A 

biotinylated secondary antibody was used alongside a streptavidin tag coupled 

to a ruthenium complex. Read buffer (150 µl, 2x concentration) was placed into 

each well and the plate immediately read on the MSD Sector Imager 2400.  

The standard curve was plotted and the sample concentrations calculated from 

these known values. Results were expressed as BSA-NO2 equivalents.  
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3.2.6. Additional methods 

Protein concentration was determined by the BCA assay (Chapter 2, section 

2.2). Protein carbonyl content was measured using a commercial enzyme 

immunoassay kit (Chapter 2, section 2.7). C-reactive protein (CRP) was 

measured by myself at the Clinical Chemistry department at the Royal Devon 

and Exeter (RD&E) Hospital, using a standard clinical assay - an 

immunoturbidimetric assay on a Roche Cobas automated analyser (Roche 

Diagnostics, West Sussex UK), with a range of 0.3 – 350 mg/L. In order to 

perform this assay, serum was placed in a reaction cuvette with latex particles 

coated with a monoclonal anti-CRP antibody. Any aggregates formed by the 

binding of CRP to these particles were determined turbidimetrically. Due to the 

low volume of serum available, the CRP test was carried out on a smaller 

volume than usually applied (when doing routine clinical analyses) but 

preliminary tests run by Emily Brewer (RD&E Hospital) confirmed that the 

volume (50 µl) was suitable for testing.  

NO2¯ is oxidised to NO3¯ in the presence of oxyhaemoglobin (Kim-Shapiro et 

al, 2005). As serum was collected rather than plasma, this meant that NO2¯ and 

haemoglobin had a longer amount of time to react. Therefore, only NO3¯ 

concentrations were evaluated. NO3¯ concentration was measured by ozone-

based chemiluminescence (Chapter 2, section 2.9). 

During collection clinical information was recorded for some of these samples 

(e.g. white blood cell count). 

3.2.7. Cell culture and isolation 

U937 cells were cultured in DMEM supplemented with 10% FBS, 4 mM L-

glutamine, and an antibiotic/antimycotic solution (100 units penicillin, 100 µg 

streptomycin and 0.25 µg amphotericin B).  

For the separation of cells from blood, the following protocol was used (Shaw et 

al, 2011): whole blood (5ml) was collected into EDTA tubes and centrifuged (20 

minutes, 350g), and the plasma removed. Red blood cell sedimentation was 

achieved by incubating the cells with dextran (6% w/v), for 30 minutes, room 

temperature. Further separation of cells into mononuclear and 

polymorphonuclear cell types was then accomplished using a discontinuous 
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Percoll gradient (81: 68: 55%). Centrifugation through the gradient (20 minutes, 

720g, 4°C) resulted in mononuclear cells being retained at the upper boundary 

(between the 68 and 55% Percoll) and polymorphonuclear cells at the lower 

boundary (between the 68 and 81% Percoll).  

All cells were lysed in order to measure cellular protein nitration. For this, RIPA 

buffer with a protease inhibitor cocktail was used according to the 

manufacturer’s instructions. Lysate protein content was measured by BCA 

assay (Chapter 2, section 2.2). 

3.2.8 Statistical analysis 

Data sets were tested for a normal distribution using the Shapiro-Wilk’s test and 

the appropriate parametric (two-way ANOVA) or non-parametric test (Wilcoxon 

matched pairs and Kruskal-Wallis) selected accordingly. 
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3.3. Results  

Optimisation and validation of the assay 

The combination, and concentration, of antibodies for the assay had already 

been determined (see Section 2.1.1, Table 2.1).   

The results from assays run at 25°C were more consistent than assays run at 

room temperature (Table 3.1). 

Table 3.1: Temperature dependent variation in the ECL ELISA 

The standard deviation (SD) at room temperature was far higher than when the assay 

was run at a consistent 25°C. 

 Tyr-NO2 (BSA-NO2 equivalents; nM)  

 #1 #2 #3 #4 Mean SD 

Room 
temperature 

1.899 2.578 1.810 0.155 1.610 1.03 

25°C 1.778 1.885 1.745 1.247 1.664 0.28 

 

The CV was determined, at 25°C, for within the assay (intra-assay CV 6.5%) 

and between days (inter-assay CV 11.3%) (Table 3.2). The LLOQ was 0.04 nM 

BSA-NO2, the highest standard used was 10 nM BSA-NO2. 

Table 3.2: Determination of ECL ELISA intra- and inter-assay CV 

The mean and SD of 8 replicates was determined to calculate the CV ((SD/mean) 

x100). 

 Tyr-NO2 (BSA-NO2 equivalents; nM)   

 #1 #2 #3 #4 #5 #6 #7 #8 Mean SD CV% 

Intra-

assay 
1.87 1.80 1.83 1.58 1.82 1.65 1.66 1.88 1.8 0.1 6.5 

Inter-

assay 
2.5 2.67 2.77 2.18 2.45 2.19 2.02 2.67 2.4 0.3 11.3 
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Control plasma samples, spiked with BSA-NO2, revealed that low 

concentrations of Tyr-NO2 (i.e. near the LLOQ) had higher replicate variation 

than samples with higher concentrations (i.e. midway on the standard curve), 

percentage variation 13.8 and 6.1% respectively. As plasma levels of Tyr-NO2 

are known to be low, in healthy individuals, the variation of duplicate and 

quadruplicate measurements, of healthy human plasma (average concentration 

0.09 ± 0.06 nM Tyr-NO2 (BSA-NO2 equivalents; nM)), were compared (Table 

3.3). Variation of <20% was achieved more often with quadruplicate 

measurement than duplicate variation. Therefore, quadruplicate measurement 

was selected for analysis of plasma/serum samples in the ECL ELISA. 

 

Table 3.3: Table comparing duplicate and quadruplicate measurement variation 
in the ECL ELISA 

Plasma samples from healthy volunteers were analysed in the ECL ELISA (average 

concentration 0.09 ± 0.06 nM Tyr-NO2 (BSA-NO2 equivalents; nM)). Quadruplicate 

measurement produced variation of less than 20% more often than did duplicate 

measurement.  

Plasma sample 
Duplicate variation  

(%) 
Quadruplicate variation (%) 

1 20.6 11.1 

2 21.8 37.8 

3 7.6 14.6 

4 18.2 15.5 

5 32.3 42.5 

6 19.2 12.7 

7 39.7 17.1 

8 120.4 12.5 

 

The average linearity and recovery were 0.998 ± 0.001 (n=3) and 106 ± 3% 

(n=4), respectively (Table 3.4). A 1 in 5 dilution was selected for sample 

analysis of serum as a balance between maximising the signal in low 

concentration samples whilst only needing a low volume of sample. 
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Table 3.4: Linearity and recovery for a spiked plasma sample in the ECL ELISA 

Plasma was spiked with 1 nM BSA-NO2 and diluted to 4 different concentrations for 

determination of linearity and recovery. 

 #1 #2 #3 #4 Mean 

Linearity 

(R2) 
0.9987 0.9996 0.9969 

 
0.9984 

Recovery (%) 107 103 108 109 106 

 

Pre-incubation of the secondary antibody with free Tyr-NO2 inhibited the ELISA 

(p = 0.03, Kruskal-Wallis test, n=3). However, when Tyr-NO2 and BSA-NO2 

were competing within the assay, inhibition of the signal did not reach 

significance, despite the concentration of free Tyr-NO2 being in excess of the 

protein associated Tyr-NO2 (free Tyr-NO2 would inhibit the assay signal due to 

the ‘sandwich’ design needing two epitopes), suggesting that the antibody has a 

higher affinity for the protein associated Tyr-NO2. Unmodified BSA was not 

inhibitory (the antibody dilution buffer contains unmodified BSA). 

This method offers far more sensitivity than a colorimetric ELISA (Figure 3.2), 

due to a lower background. 
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Figure 3.2: ECL ELISA vs. Colorimetric ELISA 

The limit of detection of the ECL ELISA was lower than that of the colorimetric ELISA; a 

more relevant physiological range was also covered. R.L.U. relative light units. BSA-NO2, 

nitrated BSA. 
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Comparison to mass spectrometry 

In a preliminary experiment, three BSA samples (native, nitrated and chemically 

reduced) were analysed by mass spectrometry and ECL ELISA (Figure 3.3).  

The percentage modification for 3 peptide sequences (residues confirmed to be 

nitrated by de novo sequencing) was determined by mass spectrometry for 

comparison to the ECL ELISA data. The data (n=1) shows an increase in Tyr-

NO2 in the peroxynitrite exposed sample compared to the native sample in both 

methods. A decrease in signal was then seen for the dithionite treated 

(reduced) sample (Figure 3.3), although the mass spectrometry still shows a 

higher level of nitration than seen in the native BSA sample. The BSA standard 

was also analysed and the three confirmed Tyr-NO2 residues are highlighted in 

Figure 3.4. 
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Figure 3.3: A comparison of mass spectrometry with the ECL ELISA 

The same three BSA samples (see section 3.2.4) were analysed by mass spectrometry 

and ECL ELISA to see if there was agreement in relative nitration levels (n=1). 

P
e
rc

e
n

ta
g

e
 m

o
d

if
ic

a
ti

o
n

d
e
te

c
te

d
 b

y
 m

a
s
s
 s

p
e
c
tr

o
m

e
tr

y

T
y
r-N

O
2

(B
S

A
-N

O
2  e

q
u

iv
a
le

n
ts

; n
M

) b
y
 E

L
IS

A

Native Nitrated Dithionite treated
0

10

20

30

40

50

0

1

2

3

4

5

Mass spec

ELISA



 

82 
 

 

 

Application of the ECL ELISA to pre- and post-surgery serum samples 

Due to natural variations in protein concentration, and a statistically significant 

(p<0.01, Wilcoxon matched pairs) fall in protein concentration post-surgery, 

results were normalised to protein content and expressed as fmol BSA-NO2 

equivalents/mg protein. 

A statistically significant (p<0.05, Wilcoxon matched pairs) increase in serum 

Tyr-NO2 was seen post-surgery (Figure 3.5), median (IQR): 0.59 (0 – 1.3) and 

0.97 (0 – 1.7) Tyr-NO2 fmol BSA-NO2 equivalents/mg protein for pre- and post-

surgery respectively. 

Figure 3.4: Tertiary positions of nitrated residues in the BSA standard 

The figure represents a 3D model of BSA. Tyrosine residues confirmed to be 

nitrated by mass spectrometry (see section 3.2.4) are highlighted in red, blue coils 

represent alpha helices and pink strands are random coils. BSA contains 21 Tyr 

residues, approximately 70% of these residues are buried and 30% exposed. Of the 

Tyr residues highlighted above Tyr 355 and Tyr 364 are both buried and Tyr 424 is 

exposed.  

424 

355 364 
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Median serum CRP levels increased significantly following surgery (p<0.0001, 

Wilcoxon matched pairs). 

Median serum protein carbonyls increased significantly following surgery 

(p<0.05, Wilcoxon matched pairs).  

Some of the samples had data on the white blood cell populations in the blood 

(n = 40, both days combined). A significant increase was seen in total neutrophil 

population number (p<0.001, two-way ANOVA). 

Median (IQR) serum NO3¯ concentrations before surgery were 41.3 (29.1 – 

62.2) µM and a statistically significant (Wilcoxon matched pairs, p=0.0002) 

decrease in the median was observed post-surgery; median (IQR) post-surgery 

28.8 (17.7 – 49.7) µM.  
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Figure 3.5: Median serum nitration levels before and after surgery 

The Tyr-NO2 was measured as per the protocol described in section 3.2.5. The median 

and inter-quartile range are shown (n=35). Serum nitration levels increased following 

major elective surgery (*p= 0.02, Wilcoxon matched pairs). 
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Tyr-NO2 levels in additional samples 

Cellular levels of Tyr-NO2 were investigated to determine whether this fraction 

of blood is more susceptible to nitration than the plasma/serum. Levels of Tyr-

NO2 were far higher in cellular samples compared to the serum, with the highest 

levels being observed in the cell line U937 (Figure 3.6). There was poor 

separation of polymorphonuclear cells during cell isolation, so Tyr-NO2 was not 

measured for this cell population. 

 

 

 

Figure 3.6: A comparison of 3-nitrotyrosine levels in serum and blood cells 

Levels of nitration were far lower in the serum compared to cellular samples. Tyr-NO2 was 

measured as per the protocol in section 3.2.5. Cells collected as per protocol in section 3.2.7. 

RBC (red blood cells), MC (mononuclear cells) and U937 cells (histiocytic lymphoma cell line) 

at a normal glucose (NG - 5.6 mM) and high glucose (HG – 24 mM) concentration. A log 

scale has been used for the y-axis, samples that had undetectable Tyr-NO2 were plotted at 

the LLOQ so as to appear on this log scale. 
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3.4. Discussion 

A sensitive ECL ELISA was developed for the measurement of Tyr-NO2 in bio-

fluids, this assay has an improved LLOQ compared to existing colorimetric 

ELISAs (LLOQ 0.04 nM BSA-NO2, Figure 3.2) as well as good linearity, 

recovery, and specificity. The importance of performing incubations at 25°C was 

shown by comparing the assay variation at room temperature and at 25°C 

(Table 3.1). Agreement on measurement of nitration between methods was 

seen between the ECL ELISA and mass spectrometry for the native and 

nitrated BSA. However, this experiment was only done once and needs to be 

repeated to confirm the level of agreement between the methods. The two 

methods showed disagreement for the relative nitration of the chemically 

reduced BSA, this may have been due to the mass spectrometry being more 

sensitive but could also have been the result of residual dithionite affecting the 

ECL ELISA performance.  

The ECL ELISA was applied to the measurement of Tyr-NO2 in serum from 

patients undergoing major elective surgery, with samples collected before and 

after surgery. This gave us paired samples for before and after an inflammatory 

insult (as confirmed by CRP levels and neutrophil count). NO3¯ concentration 

was measured as another marker of ˙NO production and, despite the initiation 

of an inflammatory response and an increase in Tyr-NO2, the median 

concentration of NO3¯ significantly decreased following the surgery. However, 

this NO3¯ concentration decrease may be accounted for by dilution of the blood, 

such as by intravenous fluids, following surgery. A change in oxidative stress 

status was confirmed by measuring serum protein carbonyl levels. As has 

already been discussed, in Chapter 1 (section 1.5.2), a rise in oxidative stress 

post-surgery has been linked with tissue damage and recovery time (Kaminski 

et al, 2002; Rosenfeldt et al, 2013). As the ROS required for Tyr-NO2 formation 

have been implicated in ischaemia-reperfusion injury (Zweier and Talukder, 

2006), protein nitration may be an ideal marker of ROS production following 

surgery. 

Multiple sample types were also measured by this new ECL ELISA, showing the 

versatility of the assay. These results also show that Tyr-NO2 levels are far 

higher in cellular samples compared to circulating serum levels. The highest 
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results by far were in unstimulated U937 cells, this is a cell line grown at 

atmospheric oxygen concentrations, and could, therefore, be considered to be 

in a constant state of oxidative stress (Halliwell, 2003).  

Tandem mass spectrometry (MS/MS) is considered to be the ‘gold-standard’ 

method for measuring Tyr-NO2 as the method is highly accurate and can 

quantify absolute Tyr-NO2 concentration (Tsikas and Caidahl, 2005; Ryberg and 

Caidahl, 2007; Tsikas and Duncan, 2014). However, this method is not suitable 

for the analysis of a lot of samples (such as in a clinical setting) as it is time-

consuming (low-throughput) and expensive. ELISA methods address these 

issues but are only semi-quantitative and not as accurate. 

Commercial ELISA assays for measuring Tyr-NO2 are available but are unlikely 

to be sensitive enough to detect the low levels of Tyr-NO2 present in serum. 

Some studies using this kind of assay do report Tyr-NO2 levels to be 

undetectable in healthy human plasma (Ter Steege et al, 1998; Ceriello et al, 

2001). However, other studies have reported levels far higher than those 

observed here, even in health (i.e. the absence of inflammation), see Chapter 1, 

section 1.5.1, Table 1.3 (Bo et al, 2005; Rossner Jr et al, 2007). This 

discrepancy cannot be explained with any certainty, but a few possibilities for 

these contradictory results are differences in methodology, antibody binding, the 

standards used and/or the reporting style (e.g. absolute Tyr-NO2 concentration 

or standard equivalents). 

The wide variation in the baseline (i.e. before surgery) serum nitration levels 

(median (IQR): 0.048 (0 – 0.102) nM BSA-NO2 equivalents) was thought to be 

due to the range of medical conditions and general heterogeneity of the sample 

group. There was also a significant (Wilcoxon matched pairs, p = 0.007) drop in 

serum protein concentration following surgery; this was most likely due to the 

use of intravenous fluids during recovery. To account for this change in protein 

concentration Tyr-NO2 levels were adjusted for protein concentration. When this 

was done, a statistically significant difference (Figure 3.5) was observed 

between pre- and post-surgery samples, which was not seen prior to the protein 

adjustment.  

Increased oxidative stress (and nitration) may also lead to an enhanced 

degradation of modified proteins. When the degradation of proteins modified by 
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oxidative stress has been investigated, the 20S proteasome has been found to 

be largely responsible (Davies, 2001; Jung et al, 2014) and peroxynitrite 

modified proteins are degraded faster than unmodified protein (Gow et al, 1996; 

Souza et al, 2000b). When Souza et al (2000b) exposed Cu-Zn superoxide 

dismutase to ONOO¯ nitration of a single Tyr residue was determined to be the 

only structural modification, and degradation by the proteasome was enhanced. 

This suggests that nitrated proteins are marked for degradation and therefore 

more likely to be removed than non-nitrated proteins. Based on this, it seems 

reasonable to speculate that the measured protein-associated Tyr-NO2 

underrepresents the actual level of nitration. However, it should be noted that 

when oxidative stress becomes excessive proteins may cross-link and 

aggregate, preventing them from being degraded and may even bind to and 

inhibit the proteasome (Davies, 2001; Shringarpure and Davies, 2002).  

Radák et al (2003) measured Tyr-NO2 daily in people doing a super-marathon, 

an extreme exercise that induces an inflammatory reaction. The authors noted 

an increase in serum Tyr-NO2 from baseline to day one of the race but then 

levels reached a plateau, despite the increasing intensity of the race. They 

theorised that this was due to nitration and degradation reaching equilibrium. 

However, they did not mention measuring the protein concentration of the 

serum over the course of the race (intense exercise can cause proteinuria), or 

correction of their results for protein content. If a drop in protein concentration 

was seen with each day then adjustment for protein would have shown nitration 

levels increasing rather than remaining constant. However, few studies in the 

literature do this and it may account for some of the discrepancies in results 

between studies. Weber et al (2012) suggested that all samples should be 

diluted to the same protein concentration prior to measurement. This was 

highlighted as a methodological issue (as protein concentration may affect 

assay performance) but would also act as a way of normalising the samples to 

a single protein concentration.  

This study was limited by the large variety of pathologies and surgeries 

encountered within the sample population. Additionally, the patient numbers for 

any one type of surgery were too small to allow analysis of whether a particular 

surgery type is associated with significantly higher levels of Tyr-NO2. The blood 

cell populations were only harvested from healthy volunteers. It is therefore 
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unknown what happens to the levels of Tyr-NO2 in blood cells following 

surgery/inflammation. A further study with fewer patient groups, but with large 

sample numbers for each pathology/surgery, and collection of both serum and 

blood cells, would address these issues. 

3.5. Conclusion 

The ECL ELISA described was able to detect Tyr-NO2 in many of the samples, 

although even with its improved sensitivity some samples were below the 

LLOQ. The assay was also able to measure a statistically significant increase in 

serum Tyr-NO2 following activation of an inflammatory response (i.e. by 

surgery).  

The assay has attempted to not only improve sensitivity but to produce and 

report a valid and robust way to measure Tyr-NO2. However, there is room for 

further improvement of the assay, such as the reporting of results as BSA-NO2 

equivalents rather than as an absolute Tyr-NO2 concentration. This is a flaw 

found in many reported ELISA results and needs to be addressed for published 

research to be accurately compared. 
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Chapter 4  

3-Nitrotyrosine levels in plasma and saliva from healthy human 

volunteers following nitrate supplementation 

4.1. Introduction 

Nitrite (NO2¯) and nitrate (NO3¯) are often used as biomarkers of ˙NO 

production (Chapter 1, section 1.4.1) (Kleinbongard et al, 2003; Tsikas, 2004). 

However, NO2¯ and NO3¯ in the diet affect the concentrations of NO2¯ and 

NO3¯ in the blood (Kelly et al, 2014). It is also now thought that the reactions 

shown in Figure 4.1 can proceed in the reverse direction, meaning the 

traditional nitric oxide synthase (NOS) pathway for ˙NO production is not the 

only means of producing ˙NO, e.g. dietary NO3¯ could lead to ˙NO production 

(Duncan et al, 1995). 

Ingestion of NO3¯ has previously been viewed as harmful, leading to strict 

regulations on the NO3¯ content of water supplies (Johnson and Kross, 1990; 

McKnight et al, 1999). However, there is now evidence to suggest that ingesting 

high levels of NO3¯ may also have beneficial effects (e.g. lowering of blood 

pressure (Lundberg et al, 2006)) and it is thought these effects rely on the 

reduction of NO3¯ to ˙NO (Gilchrist et al, 2010).  

Figure 4.1: Nitric oxide metabolism 

˙NO can be formed by NOS enzymes and oxidised to NO2¯ and NO3¯. 

Alternatively NO3¯ ingested in the diet can be reduced to NO2¯ and ˙NO by 

NO3¯ and NO2¯ reductases respectively (Duncan et al, 1995; Zhang et al, 1998; 

Cosby et al, 2003; Doel et al, 2005; Shiva et al, 2007). 
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Several studies have shown that NO3¯-rich dietary supplementation can 

enhance sports performance in healthy participants by reducing the oxygen cost 

of submaximal exercise and improving exercise tolerance (reviewed by Jones 

(2014) and Affourtit et al (2015)). The NO3¯ itself is thought to be inert but 

ingestion leads to an increase in plasma NO2¯ concentration, for example 

through the NO3¯ reductase activity of bacteria in the mouth (Duncan et al, 

1995; van der Vliet et al, 1997; Doel et al, 2005). The NO2¯ generated by NO3¯ 

reductase activity is then depleted during exercise (Larsen et al, 2007; Kelly et 

al, 2014). Several mechanisms by which NO2¯can affect exercise performance 

have been suggested, such as augmented vasodilation in contracting muscles 

through the generation of ˙NO from NO2¯ by deoxyhaemoglobin (Cosby et al, 

2003), deoxymyoglobin (Shiva et al, 2007) or xanthine oxidase (Zhang et al, 

1998). In the hypoxic conditions of exercising muscles, this will be enhanced, 

whereas the classical ˙NO production pathway (i.e. NOS) will be impaired, as 

oxygen is required for this pathway. However, supplementation in individuals 

with diseases such as diabetes and COPD has not shown a significant effect on 

the oxygen cost of mild exercise (Shepherd et al, 2015a; Shepherd et al, 

2015b).  

Oldreive et al (2001) found that a NO3¯-rich meal did not increase plasma Tyr-

NO2 levels in healthy non-smoking participants. However, neutrophil count and 

serum MPO levels have been found to be higher in smokers compared to non-

smokers (Andelid et al, 2007; Martins et al, 2013). As has been previously 

described (in Chapter 1, section 1.5) MPO can utilise NO2¯ as a substrate, 

leading to the formation Tyr-NO2 (detailed in Pathway 4.1). It could, therefore, 

be hypothesised that smokers ingesting high amounts of NO3¯ may have 

increased serum Tyr-NO2 formation.  

Pathway 4.1: Tyrosine nitration in the presence of NO2¯ and MPO 

i. H2O2 + MPO     MPO-I + H2O  1.8 x 107 M-1 s-1 (Marquez et al, 1994) 

ii. MPO-I + NO2¯        MPO-II + ˙NO2 2 x 106  M-1 s-1 (Burner et al, 2000) 

iii. MPO-I + Tyr     MPO-II + Tyr˙  7.7 x 105 M-1 s-1 (Marquez and Dunford, 1995) 

iv. Tyr˙ + ˙NO2     Tyr-NO2  3 x 104 M-1 s-1 (Lepoivre et al, 2005) 
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Studies have shown that post-translational modifications (PTMs) can lead to the 

formation of neo-epitopes (Karsdal et al, 2010). These epitopes may not be 

recognised as ‘self’ by the immune system and thus, can elicit an immune 

response and auto-antibodies (reviewed by Ryan et al (2014)). An example of 

PTMs creating neo-epitopes is citrullination via the catalysed conversion of 

arginine to citrulline in RA. Arginine is converted to citrulline by removal of the 

imine group and this is catalysed by peptidylarginine deiminases (György et al, 

2006). Within RA patient tissues, citrullinated proteins are a target for 

autoantibodies and this has become an important factor in the diagnosis of the 

disease (Luban and Li, 2010). Autoantibodies that bind nitrated proteins have 

been observed in the autoimmune conditions RA and SLE (Khan and Ali, 2006; 

Khan and Siddiqui, 2006). Therefore, conditions that increase nitration of 

proteins could potentially also increase a person’s risk of auto-antibody 

production. As NO3¯-rich supplements are becoming increasingly popular, it is 

important to determine whether NO3¯ ingestion increases PTMs.  

NO2¯ concentrations in the saliva of healthy humans have been measured at 

30-210 µM (van der Vliet et al, 1997), and these levels rise significantly 

following NO3¯ ingestion; as mentioned above, this is due to NO3¯ reduction by 

the oral microflora (Duncan et al, 1995; van der Vliet et al, 1997; Doel et al, 

2005). One possible fate for this NO2¯ is a reaction catalysed by peroxidases, 

such as MPO, in the saliva (Takahama et al, 2003). Takahama et al (2003) 

observed H2O2/ NO2¯-dependent nitration of salivary proteins in vitro and 

suggested that this reaction could happen in vivo during an immune response. 

Klebanoff (1993) also suggested that the reaction of MPO/H2O2 and NO2¯ 

(Pathway 4.1) may increase bactericidal activity, although he notes that under 

certain conditions (in vitro) NO2¯ inhibits the antibacterial activity of MPO (e.g. 

high [MPO] with low pH). Although nitration of bacterial proteins could aid host 

defences (Takahama et al, 2003), the nitration of host proteins could potentially 

alter protein function (Radi, 2012). Additionally, the NO2¯ that is swallowed will 

become acidified in the stomach and increase the bactericidal activity of gastric 

acid through the generation of reactive nitrogen intermediates that have 

cytotoxic properties  (Dykhuizen et al, 1996; McKnight et al, 1999). 

There has been little research into salivary nitration in vivo, although Ueshima 

et al (2007) measured protein-associated levels of Tyr-NO2, and concluded that 
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the levels of protein-associated Tyr-NO2 in saliva do not interfere with the 

measurement of Tyr-NO2 in sputum from COPD and asthmatic patients; they 

found 0.02 ± 0.01 pmol/ml protein-associated Tyr-NO2 in saliva from COPD 

patients. 

In light of the above mentioned concerns that NO3¯-rich supplements may 

increase nitration, particularly in smokers, and that this can create neo-epitopes 

that are not recognised by the immune system, the plasma and salivary Tyr-

NO2 levels in smokers/non-smokers, who had been administered a NO3¯-rich 

supplementation (beetroot juice), were measured.  
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4.2. Methods 

4.2.1. Study design 

The study used a cross-over design (Figure 4.2) so that each participant 

ingested both the supplement (NO3¯-rich beetroot juice, 70 ml containing 4.2 

mmol NO3¯) and the placebo (NO3¯-depleted beetroot juice, 70 ml containing 

0.04 mmol NO3¯). The depletion of NO3¯ from beetroot juice was done using 

Purolite resin (Gilchrist et al, 2014)). Physiological measures, such as blood 

pressure and exercise performance, were taken along with blood and saliva 

being collected for analysis. Blood was collected in a 5 ml EDTA vacutainer and 

spun at 350 g for 20 minutes. The plasma supernatant was then collected and 

frozen. Saliva was collected by direct void into a container for 5 minutes. 

Subjects were asked to keep a consistent diet throughout the study and 

samples were collected at the start to establish baseline levels. Subjects were 

then randomly assigned a condition (placebo or supplement) for 6 days. The 

juice was taken twice a day (morning and evening) for 5 days and then 140 ml 

(i.e. two doses) was consumed 2 hours before collection of samples on the sixth 

day. A 7-10 day washout period separated the two conditions. The smokers 

were determined to have normal blood pressure, normal respiratory function, 

healthy body mass index and a similar aerobic fitness to the non-smokers. 

There were 17 volunteers (non-smokers n=8, smokers n=9) with 8 females (4 

non-smokers) and 9 males (4 non-smokers). The mean age of all participants 

was 24 (range 18-37) years overall, the mean age within each group was also 

24 years (non-smokers 18-32 years, smokers 18-37 years). All volunteers gave 

informed consent, and this study was approved by the Institutional Research 

Ethics Committee (approval number 2013/539 (rev2)). 
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4.2.2. Electrochemiluminescence-based ELISA for 3-nitrotyrosine 

The protocol described in Chapter 3 (section 3.2.5) was used to measure Tyr-

NO2. Plasma was diluted 1 in 5, with dilution buffer, and measured in 

quadruplicate. Saliva was diluted 1 in 2, with dilution buffer, and measured in 

duplicate. Both were corrected for protein content as determined by the BCA 

assay (Chapter 2, section 2.2). 

Figure 4.2: Nitrate supplementation cross-over study design 

All participants provided samples prior to the study and were then either given the 

placebo (NO3¯-depleted beetroot juice) or supplement (NO3¯-rich beetroot juice) and 

samples were taken again. The participants were then switched to the opposite treatment 

and samples collected again. 
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4.2.3. Assays of nitrite, nitrate, thiocyanate and asymmetric dimethylarginine 

Dr Stephen Bailey (University of Exeter Sport and Health Science) also 

collected data on plasma and saliva concentrations of: NO2¯ and NO3¯ (using 

ozone-based chemiluminescence (see Chapter 2, section 2.9)), thiocyanate 

(using the König reaction (Tsuge et al, 2000)) and plasma asymmetric 

dimethylarginine (using a competitive enzyme immunoassay (Immundiagnostik, 

2009)).  

4.2.4. Statistical analysis 

Nonparametric tests were applied for the statistical analysis of the data 

(Wilcoxon matched pairs, Freidman test and Mann-Whitney test) unless the 

Shapiro-Wilk test indicated that the data were normally distributed (parametric 

test – paired and unpaired t test).   
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4.3. Results 

4.3.1. Plasma 

There was no statistically significant difference in the median plasma nitration 

levels between the non-smokers and smokers prior to supplementation: median 

(IQR) 0.92 (0.67-1.34) and 1.28 (0.77-2.35) Tyr-NO2 fmol BSA equiv./mg 

protein in the non-smokers and smokers respectively (Mann-Whitney p=0.44, 

Figure 4.3A). There was also no statistically significant difference in plasma 

Tyr-NO2 levels between non-smokers and smokers after NO3¯-rich 

supplementation: median (IQR) 0.97 (0.57-1.92) and 1.13 (0.69-2.23) Tyr-NO2 

fmol BSA equiv./mg protein in the non-smokers and smokers respectively 

(Mann-Whitney p=0.37, Figure 4.3B).  

There was no statistically significant change in median plasma Tyr-NO2 levels 

when comparing pre-experiment and post NO3¯-rich supplementation for either 

non-smokers or smokers (Figure 4.4). There was also no statistically significant 

difference between the median levels prior to supplementation and after 

placebo (NO3¯-depleted) supplementation for either subject group. 

Although both groups showed a statistically significant increase in mean plasma 

NO2¯ and NO3¯ concentration following NO3¯-rich supplementation (p=0.007 

and 0.0009 for non-smokers and smokers respectively, paired t-test) (Figure 

4.5) the post-supplementation concentrations were lower in the smokers 

compared to the non-smokers (unpaired t-test: NO3¯ p = 0.005, and NO2¯ p= 

0.04).
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Figure 4.3: 3-Nitrotyrosine levels in the plasma from healthy non-smokers and smokers before and after nitrate-rich beetroot 

supplementation 

The NO3¯-rich supplementation protocol was as described in section 4.2.1. The plasma Tyr-NO2 levels were measured as described in Chapter 3, 

section 3.2.5. The median and IQR values are shown. Non-smokers n=8 and smokers n=9. (A) Non-smokers and smokers before beetroot 

supplementation (Mann-Whitney, p=0.44) and (B) Non-smokers and smokers after NO3¯-rich beetroot supplementation (Mann-Whitney, p=0.37). 

There was no statistically significant difference between the median levels of Tyr-NO2 in the two subject groups either prior to supplementation or 

after NO3¯-rich beetroot supplementation. 
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Figure 4.4: Non-smoker’s and smoker’s plasma 3-nitrotyrosine levels before and after each supplementation condition 

The supplementation protocol was as described in section 4.2.1. The plasma Tyr-NO2 was measured as described in Chapter 3, section 

3.2.5. Non-smokers n=8 and smokers n=8, median and IQR shown. (A) Non-smokers (Freidman test p= 0.53) and (B) Smokers (Freidman 

test p= 0.05). Neither of the subject groups showed a statistically significant change in median plasma Tyr-NO2 levels with NO3¯-depleted or 

NO3¯-rich supplementation.  
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Figure 4.5: Plasma nitrite and nitrate concentrations, in non-smoker’s and smoker’s, before and after nitrate-rich beetroot 
supplementation 

The NO3¯-rich supplementation protocol was as described in 4.2.1, and the salivary NO2¯ and NO3¯ was measured as described in Chapter 

2, section 2.9. The mean and SD are shown.  Open bars represent the non-smokers (n=8), filled (grey) bars represent the smokers (n=9). (A) 

Plasma NO2¯ concentration increased significantly in both groups following supplementation but not with placebo (**p<0.01, ***p<0.001, 

repeated measures ANOVA). After supplementation the smokers had lower concentrations than non-smokers (*p<0.05, unpaired t test). (B) 

Plasma NO3¯ also increased with supplementation in both groups but not with placebo (**p<0.01, ***p<0.001 – repeated measures ANOVA). 

After supplementation the smokers had lower concentrations than non-smokers (**p<0.01, unpaired t test). The data shown was collected by 

Dr S Bailey. 
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4.3.2. Saliva 

There was no statistically significant difference in the median saliva nitration 

levels between the non-smokers and smokers prior to NO3¯-rich 

supplementation (Mann-Whitney p=0.71, Figure 4.6A) or after the NO3¯-rich 

supplementation (Mann-Whitney p=0.23, Figure 4.6B). 

With non-smokers there was a decrease in salivary Tyr-NO2 when comparing 

baseline with post-supplementation (Friedman test p=0.03): median and (IQR) 

0.57 (0.09 – 1.07) and 0.21 (0.03 – 0.52) Tyr-NO2 pmol BSA equiv./mg protein 

for baseline and post-supplementation respectively (Figure 4.7A). The smokers 

had no significant change with NO3¯-rich supplementation (Friedman test 

p=0.08) (Figure 4.7B). However, a statistical difference was seen with post-

testing when comparing the placebo supplementation and the real 

supplementation in the smokers (Dunn’s multiple comparison test p<0.05): 

median (IQR) 0.86 (0.33 – 1.57), 0.995 (0.80 – 1.87) and 0.49 (0.33 – 0.64) Tyr-

NO2 pmol BSA equiv./mg protein for baseline, placebo and real supplement 

respectively. There was no difference between the placebo and baseline Tyr-

NO2 levels in either group.  

There was an increase in mean salivary NO2¯ concentration for both groups 

following supplementation (p=0.004 and 0.0002 for non-smokers and smokers 

respectively, ANOVA repeated measures) (Figure 4.8A). The levels of NO3¯ 

also increased following supplementation in both groups (p<0.0001 for non-

smokers and smokers, ANOVA repeated measures). However, the mean 

concentration was lower in smokers compared to non-smokers (p=0.046, Mann-

Whitney test) (Figure 4.8B).    
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Figure 4.6: 3-Nitrotyrosine levels in the saliva from healthy non-smokers and smokers before and after nitrate-rich beetroot 
supplementation 

The NO3¯-rich supplementation protocol was as described in section 4.2.1, and the salivary Tyr-NO2 was measured as described in 

Chapter 3, section 3.2.5. The median and IQR values are shown: (A) before supplementation - n=8 for each group (Mann-Whitney 

p=0.71), and (B) after supplementation - non-smokers n=8, smokers n=9 (Mann-Whitney p=0.23). There was no difference between 

the two subject groups in either condition. 
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Figure 4.7: Non-smoker’s and smoker’s saliva 3-nitrotyrosine levels before and after each supplementation condition 

The NO3¯-rich supplementation protocol was as described in section 4.2.1, and the salivary Tyr-NO2 was measured as described in Chapter 3, 

section 3.2.5. The median and IQR shown values are shown. (A) In non-smokers there was a significant decrease in Tyr-NO2 levels following 

supplementation, n=8 (Friedman test *p=0.03). (B)  Smokers showed a trend towards a decrease in saliva Tyr-NO2 levels, but this was not 

statistically significant, n=8 (Friedman test p=0.08). However, the post-test showed a statistically significant difference between the placebo group 

and the supplement (Dunn’s multiple comparison test p<0.05). 
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Figure 4.8: Salivary nitrite and nitrate concentrations, in non-smoker’s and smoker’s, before and after nitrate-rich beetroot 
supplementation  

The NO3¯-rich supplementation protocol was as described in section 4.2.1, and the salivary NO2¯ and NO3¯ was measured as described in 

Chapter 2, section 2.9. The median and IQR values are shown.  Open bars represent the non-smokers (n=8), filled (grey) bars represent smokers 

(n=9). (A) Salivary NO2¯ concentrations showed a statistically significant increase following supplementation in both groups but not with the 

placebo (**p<0.01, ***p<0.001, ANOVA repeated measures). (B) Salivary NO3¯ concentrations also showed a statistically significant increase in 

both groups but not with placebo (***p<0.001, ANOVA repeated measures). However, smokers had a lower salivary NO3¯ concentration than non-

smokers (*p<0.05, Mann-Whitney test). The data was collected by Dr S Bailey. 
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4.3.3. Correlations 

There were no statistically significant correlations between plasma nitration and 

plasma NO2¯ or NO3¯ or salivary NO2¯ or NO3¯ levels.  

Plasma thiocyanate negatively correlated with plasma NO3¯ concentration 

(Spearman’s rank correlation r = -0.50, p= 0.04, Figure 4.9A) as did salivary 

thiocyanate and salivary NO3¯ concentration (Spearman’s rank correlation r = -

0.52, p= 0.03, Figure 4.9B). 

Salivary Tyr-NO2 negatively correlated with salivary NO2¯ (Spearman’s rank 

correlation r -0.37, p= 0.008) and this significance was maintained following the 

Bonferroni correction (p= 0.04) (Figure 4.10A). A statistically significant 

negative correlation between salivary nitration and plasma NO2¯ was also 

maintained after the Bonferroni correction (Spearman’s rank correlation r -0.34, p 

= 0.01 after Bonferroni correction) (Figure 4.10B). 

There were no statistically significant correlations between salivary Tyr-NO2 and 

NO3¯ levels in either plasma or saliva.  

Plasma and salivary Tyr-NO2 levels did not show a statistically significant 

correlation with each other. 

Salivary thiocyanate showed a statistically significant correlation with salivary 

Tyr-NO2 (Spearman’s rank correlation r = 0.4, p = 0.005) (Figure 4.11). There 

was no correlation between plasma thiocyanate and plasma Tyr-NO2. 
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Figure 4.9: Inverse correlation of thiocyanate concentrations with nitrate concentrations in plasma and saliva 

NO3¯-rich supplementation and thiocyanate measurement was performed as described in section 4.2.1. (A) Correlation between plasma thiocyanate 

and plasma NO3¯ showed a statistically significant negative correlation (Spearman’s rank correlation r = -0.50, p= 0.04), and (B) correlation between 

salivary thiocyanate and salivary NO3¯ showed a statistically significant negative correlation (Spearman’s rank correlation r = -0.52, p= 0.03). The 

data shown was collected by Dr S Bailey. 
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Figure 4.10: Inverse correlation of salivary 3-nitrotyrosine levels with salivary and plasma nitrite concentrations 

The NO3¯-rich supplementation protocol was as described in section 4.2.1. Tyr-NO2 was measured as described in Chapter 3, section 3.5.2. 

(A) Correlation between salivary Tyr-NO2 levels and salivary NO2¯ concentrations showed a statistically significant negative correlation 

(Spearman’s rank correlation r = -0.37, p= 0.04), and (B) correlation between salivary Tyr-NO2 levels and plasma NO2¯ concentrations 

showed a statistically significant negative correlation (Spearman’s rank correlation r= -0.34, p= 0.01). Nitrite and nitrate data were collected 

by Dr S Bailey. 
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Figure 4.11: Correlation between salivary thiocyanate concentrations and salivary 3-
nitrotyrosine levels 

Thiocyanate was measured as described in section 4.2.1. There was a statistically 

significant positive correlation between salivary thiocyanate concentrations and Tyr-NO2 

levels (Spearman’s rank correlation r = 0.4, p= 0.005). Thiocyanate data were collected by 

Dr S Bailey. 
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4.4. Discussion 

NO3¯ is reduced to NO2¯ in the mouth by microflora-associated NO3¯ 

reductases (Doel et al, 2005) and NO2¯ can be further reduced to ˙NO (Zhang 

et al, 1998; Cosby et al, 2003; Shiva et al, 2007; Ferguson et al, 2013). As both 

˙NO and NO2¯ are involved in Tyr-NO2 formation it is possible that high NO3¯ 

ingestion could lead to increased protein nitration. Oxidative PTMs of proteins 

can create neo-epitopes that are not recognised as ‘self’ and lead to the 

production of auto-antibodies (Griffiths, 2008; Ryan et al, 2014), and anti-Tyr-

NO2 antibodies have been linked with the auto-immune conditions rheumatoid 

arthritis and systemic lupus erythematosus (Khan and Siddiqui, 2006). Smoking 

has been linked to increased carbonylation of proteins, which in turn has been 

suggested to be a contributing factor in a possible auto-immune response in 

COPD (Kirkham et al, 2011). 

This study sought to determine whether ingesting high amounts of NO3¯ 

affected the Tyr-NO2 levels in plasma and saliva, particular with regards to 

smokers. Smokers could potentially have higher levels of Tyr-NO2 formation 

following ingestion of NO3¯ due to increased inflammatory activity, including 

higher levels of serum MPO (Andelid et al, 2007; Martins et al, 2013). 

Within this study, the median plasma Tyr-NO2 levels were comparable in the 

two groups (non-smokers and smokers) prior to NO3¯-rich supplementation, as 

were the plasma NO2¯ and NO3¯ concentrations. Once baseline samples were 

collected, a cross-over study design was used so that participants went through 

both experimental conditions (Figure 4.2). These conditions involved the 

ingestion of either NO3¯-rich beetroot juice or NO3¯-depleted beetroot juice. 

This study was carried out under double-blind conditions to avoid bias.  

The plasma Tyr-NO2 data collected here (Figure 4.3) is in agreement with 

Oldreive et al (2001) and Pannala et al (2003) in that high dietary NO3¯ intake 

does not increase plasma Tyr-NO2 in non-smokers. Plasma NO2¯ 

concentrations increase with NO3¯ ingestion and, as both MPO levels (Martins 

et al, 2013) and H2O2 production are thought to be increased in the blood of 

smokers (Tanni et al, 2012), the substrates and catalysts for Tyr-NO2 formation 

are present.  However, the data collected here have shown that smokers do not 

have a statistically significant increase in median plasma Tyr-NO2 following 
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NO3¯ rich supplementation. It is possible that other reactions involving NO2¯ or 

H2O2 are more likely, or that the increased levels of MPO do not translate to 

increased activity of the enzyme. Although, there was an increase in plasma 

NO2¯ and NO3¯ concentration following NO3¯-rich supplementation the 

smokers did not have the same level of increase in NO2¯ and NO3¯ as non-

smokers (Figure 4.5), this may be due to increased levels of thiocyanate in 

smokers.  

Thiocyanate is an anion produced during detoxification of hydrogen cyanide, 

found in cigarettes, and salivary concentrations of thiocyanate have been used 

as a marker for smoking frequency/duration (Galanti, 1997; Aggarwal et al, 

2013). Thiocyanate and NO3¯ have been shown to have an antagonistic 

relationship for secretion in saliva (Edwards et al, 1954) that is suspected to be 

due to both anions competing for the same receptor. This competition would 

mean higher thiocyanate levels would result in less NO3¯ uptake and a negative 

correlation for both plasma and salivary thiocyanate with NO3¯ confirm this 

(Figure 4.9). 

The values for plasma NO2¯ concentration, in healthy individuals without 

supplementation, obtained by different studies have varied substantially, e.g.  

322 nM (Lauer et al, 2001) and 43 nM (Wylie et al, 2016b). Although there is 

wide variation, several studies have measured concentrations close to 100 nM 

(Larsen et al, 2007; Thompson et al, 2015; Wylie et al, 2016a), and the mean 

concentration within this study, for all participants, was 82 nM. Recorded 

concentrations of plasma NO3¯ have not varied as greatly, with many in the 

range of 25-40 µM (Lauer et al, 2001; Larsen et al, 2007; Thompson et al, 2015; 

Wylie et al, 2016b) and the mean concentration in this study was 30 µM. The 

variation in NO2¯ concentration but not NO3¯ may be due to the rapid reduction 

of NO2¯ to NO3¯ by haemoglobin in whole blood (Moshage et al, 1995), 

meaning that different collection methods may have led to different lengths of 

exposure of NO2¯ to haemoglobin. Differences in detection method may also 

influence the results obtained. 

Like the plasma, the salivary NO3¯ concentrations were significantly higher in 

the non-smokers, compared to the smokers (Figure 4.8B). However, the 

salivary NO2¯ concentrations following supplementation did not differ between 
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participant groups, though both displayed a vast increase from baseline (Figure 

4.8A). Bojić et al (2004) found that the rate of reduction in the NO2¯/ NO3¯ ratio, 

by oral bacteria, decreased with increasing NO3¯ concentration and concluded 

this could be attributed to enzyme saturation by NO3¯. Therefore, the extra 

NO3¯ in the saliva of the non-smokers, compared to the smokers, may make no 

difference to the NO2¯ levels as the enzyme is already saturated. As there is no 

statistically significant difference in the salivary NO2¯ concentrations between 

the groups it would be expected that plasma NO2¯ concentrations would also 

be comparable, between the two groups. However, as already mentioned, the 

median plasma NO2¯ concentration was lower in the smokers than the non-

smokers (Figure 4.5A).  This may be due to the large variation observed, for 

salivary concentrations, as the median, though not significantly lower, is lower 

for the smokers and a higher participant number may have led to a significant 

difference in salivary NO2¯ levels between non-smokers and smokers. 

Alternatively, thiocyanate is a potent catalyst of nitrosation under acidic 

conditions (Boyland and Walker, 1974; Moriya et al, 2002), therefore, in the 

smokers, more of the swallowed NO2¯ may be utilised in this reaction 

decreasing the amount absorbed into the blood. Nitrosation of secondary 

amines in the diet is considered carcinogenic (Hill et al, 1973; Mirvish, 1995). 

Therefore, if the increased thiocyanate in smoker’s saliva leads to increased 

nitrosamine formation following NO3¯ rich supplementation, this would have 

serious health consequences. As mentioned, NO2¯ is rapidly reduced to NO3¯ 

in whole blood (Moshage et al, 1995) but it is unlikely that this has only been a 

factor affecting samples from smokers.  

There have not been as many studies reporting salivary NO2¯ and NO3¯ 

concentrations but as with the plasma, there is variation seen. Pannala et al 

(2003) report salivary NO2¯ levels of 249-483 µM and NO3¯ levels of 204-392 

µM in the hours after a low NO3¯ meal. Doel et al (2004) measured children’s 

salivary NO2¯ and NO3¯ levels and found them to be approx. 100 µM and 1,500 

µM respectively. Sukuroglu et al (2015) looked at patients with periodontal 

disease on different treatments and reported salivary NO2¯ and NO3¯ levels of 

2.9-7.1 µM and 372-478 µM respectively. The average results of this study were 

93 µM NO2¯ and 183 µM NO3¯. Obvious variances in these studies are 

participant age and the absence of periodontal disease, and this could account 
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for some of the discrepancy. Another factor is saliva collection, Doel et al (2004) 

used swabs, Sukuroglu et al (2015) used Lashley cups (parotid gland saliva) 

and Pannala et al (2003) and this study collected saliva by direct void into a 

container over 5 minutes. However, the results here show lower levels of 

salivary NO2¯ than Pannala et al (2003) (93 µM and 249-483 µM respectively) 

but the NO3¯ levels are comparable to the lower end of the Pannala et al (2003) 

studies range (183 µM for this study and 204-392 µM for (Pannala et al, 2003)).  

Salivary Tyr-NO2 levels were also far higher (pmol range) than the levels 

measured in the plasma (fmol range) despite the lower protein concentration. 

This may be due to the higher NO2¯ levels in saliva compared to plasma 

(approx. 1000-fold) as well as peroxidase activity within the saliva. The oral 

cavity contains MPO, released from leukocytes, and salivary peroxidase, 

released from the saliva glands (Ihalin et al, 2006). Additionally, any 

inflammation in the gums (e.g. periodontal disease) will increase MPO activity 

(Cao and Smith, 1989). Ueshima et al (2007) reported 0.02 ± 0.01 pmol/ml 

protein-associated Tyr-NO2 in saliva. This level is roughly a hundred times 

lower than the average level found here (mean 1.69 pmol/ml for both smokers 

and non-smokers at baseline).  However, there were several methodological 

differences that make a direct comparison dubious. For instance Ueshima et al 

(2007) looked solely in COPD patients, who had recently had sputum collected, 

the samples then underwent extensive sample preparation for measurement by 

HPLC-electrochemical detection.  

There was no difference in salivary nitration between the non-smokers and 

smokers (Mann-Whitney p>0.05, Figure 4.6) before or after supplementation. 

However, following ingestion of NO3¯-rich beetroot juice, both subject groups 

had decreased salivary Tyr-NO2 levels; this was only statistically significant in 

the non-smokers (Freidman test p<0.05, Figure 4.7A). However, when the 

placebo group was compared to the supplement group a significant difference 

was seen in the smokers as well (Dunn’s multiple comparison test p<0.05, 

Figure 4.7B). A significant change in salivary Tyr-NO2 between the post-

placebo levels and post-supplement levels but not between baseline levels and 

post-supplement levels is likely due to the placebo samples being less varied 

than the baseline samples.  
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The fact that the Tyr-NO2 levels in the placebo condition (NO3¯-depleted 

beetroot juice) did not differ from baseline levels of Tyr-NO2, suggests that it is 

not  components/antioxidants, other than NO3¯, found in the beetroot juice that 

are responsible for the Tyr-NO2 decrease. The reason for the decreased 

nitration following NO3¯ ingestion is hard to explain; an increase (or no change) 

was expected. Logically a decrease must be the result of either anti-oxidant 

activity or decreased inflammation; although increased turn-over of modified 

proteins is also an option, this seems unlikely.  

Ingestion of NO3¯ has been shown to cause an increase in exhaled ˙NO due to 

the salivary production of ˙NO (Zetterquist et al, 1999). It has been 

hypothesised that salivary production of ˙NO, following ingestion of dietary 

NO3¯, protects the oral cavity and gut from infection (Duncan et al, 1995) and 

Doel et al (2004) have shown that significantly fewer dental caries are observed 

in those with high salivary NO3¯. It could, therefore, be hypothesised that the 

NO3¯-rich supplementation increased salivary ˙NO production, which has then 

decreased the number of pathogenic bacteria in the mouth and thus diminished 

any inflammation and ROS formation e.g. O2 
• ¯ and H2O2. This, in turn, would 

mean less Tyr-NO2 formation as these species are needed alongside the NO2¯ 

and ˙NO for nitration to occur. 

A correlation of Tyr-NO2 levels with thiocyanate concentrations (Spearman 

p<0.01) was seen when all groups/conditions were combined (Figure 4.11). 

Thiocyanate has been shown to decrease the antimicrobial activity of MPO 

(Ihalin et al, 1998). This lends support to the suggestion that Tyr-NO2 levels are 

connected to oral pathogenic bacteria levels and the associated inflammation. 

Further studies are needed, investigating MPO levels/activity in the saliva, along 

with other inflammatory markers, to see if they are indeed affected by a week of 

high NO3¯ ingestion. 
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4.5. Conclusion 

Ingestion of a NO3¯-rich supplementation resulted in a significant increase in 

plasma and saliva NO2¯ and NO3¯ concentration for both groups. However, 

after supplementation, there was a difference between non-smokers and 

smokers for plasma NO2¯ and NO3¯ and saliva NO3¯, where the smokers were 

found to have significantly lower concentrations of each. This is thought to be 

due to the higher levels of thiocyanate in the smokers, which can compete with 

the NO3¯ anion for secretion in the saliva.  

The levels of Tyr-NO2 in healthy plasma were near the limit of quantification and 

appear to be unaffected by high NO3¯ ingestion, regardless of whether the 

participant was a smoker or non-smoker. Salivary Tyr-NO2 levels are far higher 

than plasma levels and were unexpectedly seen to decrease with NO3¯ 

ingestion in smokers. The reason for this is unknown but may be due to 

increased ˙NO production protecting the oral cavity from pathogens and 

reducing inflammation. The fact that there is no increase in plasma Tyr-NO2 and 

a decrease in saliva Tyr-NO2 suggests that NO3¯-rich supplementation, in 

smokers, does not risk an increase in potentially auto-immune PTMs of self-

proteins. 
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Chapter 5  

A time-course study of serum 3-nitrotyrosine levels before and 

after surgery, comparing patients who developed sepsis with 

those who did not 

5.1. Introduction 

Oxidative stress has been implicated in sepsis; examples of ROS/RNS-induced 

processes in sepsis are lipid peroxidation, mitochondrial damage and 

cytotoxicity (Victor et al, 2004). It has been hypothesised that this damage is a 

contributing factor in the organ dysfunction seen in severe sepsis (see Chapter 

1, section 1.5.4 for definition) (Victor et al, 2004; Castellheim et al, 2009). ˙NO is 

thought to play a role in the hypotension observed in septic shock and 

preclinical studies have been performed using non-specific NOS inhibitors (i.e. 

they don’t target a specific isoform). For example, a randomised, double blind, 

placebo controlled study examining the effects of NG monomethyl-L-arginine (L-

NMMA) in humans with septic shock found that L-NMMA improved the blood 

pressure of the patients (Petros et al, 1994). However, they also noted a fall in 

cardiac output that needed to be investigated in larger studies. A randomized, 

double-blind, placebo-controlled multicentre study using the inhibitor NG-

methyl-L-arginine hydrochloride also found blood pressure was improved by 

non-selective NOS inhibition (Watson et al, 2004). However, large clinical trials 

were abandoned due to an increase in mortality in those receiving the drug, 

possibly as a result of decreased cardiac output (López et al, 2004). Although 

lower concentrations of the inhibitor did show an improvement in mortality rates 

the study of NOS inhibitors in sepsis has decreased since the large clinical trials 

were abandoned. Inhibitors that selectively target iNOS have shown 

encouraging results in animal models of sepsis/septic shock (Kadoi and Goto, 

2004; Stahl et al, 2010; Su et al, 2010) but, as far as we are aware, this has not 

yet been investigated in humans with septic shock. 

As previously described (see Chapter 1, section 1.5.), ˙NO undergoes a radical-

radical reaction with O2 ˙¯ to form the ROS, peroxynitrite (ONOO¯). ONOO¯ can 

modify several molecules (e.g. DNA, lipids, enzymes, etc.). An example is  

manganese SOD: nitration of this mitochondrial enzyme causes a loss of 

function, leading to accumulation of O2 ˙¯ in mitochondria (Salvemini and 

Cuzzocrea, 2002). As O2 ˙¯ is not effectively removed this nitration leads to 
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increased formation of ONOO¯ and further oxidative modifications (Salvemini 

and Cuzzocrea, 2002). Since mitochondrial dysfunction may be a significant 

contributor to organ dysfunction (Castellheim et al, 2009), we suggest that 

reactive oxygen species, like ONOO¯, are a factor in sepsis.   We also 

postulated that – whilst therapies directed towards the prevention of nitrative 

stress might be difficult to implement in clinical practice – there could be scope 

for using measures of nitrative stress, such as Tyr-NO2, in the diagnosis and/or 

monitoring of sepsis. For example, some researchers have suggested that the 

concentration of free Tyr-NO2 in plasma is associated with sepsis prognosis 

(Ohya et al, 2002). As nitration is a rapid chemical reaction which modifies 

proteins that are already present, nitrated Tyr may also represent a marker that 

is measurable in the plasma long before other currently-used inflammatory 

markers, such as CRP, which must be synthesised by hepatocytes in response 

to inflammatory signals.  As discussed in Chapter 1 (section 1.5.4), sepsis is 

associated with a high mortality rate and improved/quicker diagnosis is needed 

in order to improve therapeutic efficiency.  

Surgery is a risk factor for septicaemia. In the USA, post-surgery sepsis made 

up 30% of all sepsis patients (Vogel et al, 2009). As part of a collaborative 

project with the Defence Science and Technology Laboratory (DSTL), serum 

samples from a cohort of 51 patients, 26 of whom developed post-surgery 

sepsis, were analysed using the new ECL ELISA (as described in Chapter 3). 

The aim of this study was (a) to determine if protein-associated Tyr-NO2 was 

increased in patients with post-surgery sepsis, compared with patients without 

post-surgery sepsis and (b) to determine whether measurement of Tyr-NO2 is a 

useful addition to the existing set of diagnostic tests and clinical measurements 

currently used to establish the diagnosis of sepsis. 
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5.2. Materials and Methods 

5.2.1. Sample details 

Serum samples were provided by DSTL as 100 µl aliquots. The samples were 

collected as part of a study approved by the NRES Committee South Central 

(REC ref 06/Q1702/152) and informed consent to take part in the study was 

obtained from each individual. 

Serum was collected prior to major elective surgery and then each day 

subsequently until whichever of the following occurred first: 

i. Hospital discharge  

ii. Seven days post-surgery 

iii. Sepsis diagnosis  

Where available, patient blood test results (e.g. white blood cell count) were 

also provided by DSTL. Information on patient group, age and gender are 

detailed in Table 5.1.  

Table 5.1: Patient information 

 No post-surgery sepsis Post-surgery sepsis 

Age in years 

(mean ± SD) 
65 ± 8.6 64 ± 10.1 

Gender 12 female, 13 male 10 female, 16 male 

 

Samples from 51 patients (each with one pre-surgery and at least one post-

surgery sample) were analysed. The patients were split into two groups: those 

with no post-surgery sepsis, i.e. controls, and those with post-surgery sepsis.  
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Those patients who developed sepsis were diagnosed at different time-points 

post-surgery, e.g. some were diagnosed two days after surgery, and others 

were diagnosed five days after surgery (Table 5.2). Therefore, during statistical 

analysis samples were either grouped in terms of ‘days post-surgery’ or ‘days 

prior to diagnosis’. For analysis 2 (Figure 5.1), samples were matched with 

control samples which were at the same time point in terms of the number of 

days since surgery. 

Table 5.2: Post-surgery sepsis patient’s diagnosis time points. 

The delay between surgery and sepsis diagnosis was variable and is summarised in 

the table. 

Days post-surgery that 

sepsis diagnosis 

occurred 

2 3 4 5 6 7 8 

Number of patients 

diagnosed on this day 
7 5 4 3 2 4 1 

 

Figure 5.1: Serum samples, grouping and analysis 

Pre-surgery 
serum 

samples 
(n=51) 

Did not 
develop 
sepsis  
(n=25) 

Developed 
sepsis  
(n=26) 

Analysis 1: data 
grouped by 

number of days 
post-surgery 

Analysis 2: data 
grouped by 

number of days 
before diagnosis 

Surgery: 
Daily 

samples 
taken 
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5.2.2. Electrochemiluminescence-based ELISA for 3-nitrotyrosine 

The Tyr-NO2 content was determined by the ECL ELISA (described in Chapter 

3, section 3.2.5). Samples were diluted 1 in 5 and measured in quadruplicate. 

The protein content was measured using the BCA assay (Chapter 2, section 

2.2) and the Tyr-NO2 levels adjusted to give values expressed as fmol BSA-NO2 

equivalents/mg protein. 

5.2.3. Mass spectrometry  

A subgroup of 10 samples was analysed by mass spectrometry (ESI-QUAD-

TOF-MS/MS). Mass spectrometry is the gold standard measurement for Tyr-

NO2. Therefore, we wished to compare the ECL ELISA with mass spectrometry 

to assess whether the two results were in agreement. The samples selected 

were from both sepsis and control patients with pre-surgery and post-surgery 

time points.  

In-solution digestion was performed (detailed in the following sections) to 

prepare these samples for mass spectrometry analysis. All incubations were at 

room temperature unless otherwise stated. 

5.2.3.1. Materials 

Along with the reagents detailed in Chapter 2 (section 2.1), the following were 

used for preparation of the samples for mass spectrometry. 

Acetonitrile and iodoacetamide were from Sigma Aldrich (Gillingham, UK). 

Methanol (analytical reagent grade), acetic acid (1M lab solution), acetone 

(99+%, extra pure) and formic acid 99% were from Fisher Scientific 

(Loughborough, UK). Rapigest was purchased from Waters (Hertfordshire, UK). 

Trypsin Gold was from Promega (Southampton, UK). 

5.2.3.2. Protein precipitation 

Serum (10 µl) was mixed with ice cold acetone (40 µl), briefly vortexed and then 

incubated for an hour (-20°C). The solution was then spun at 14,000 g (10 

minutes) to pellet the precipitated protein. The supernatant was discarded and 

remaining acetone was left to evaporate from the uncapped tube.  
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5.2.3.3. Preparation for digestion 

The protein pellet was then suspended in 50 mM Tris, 0.1% Rapigest, pH 8.4 

(100 µl). The pellet was fully re-suspended and the pH checked (via pH paper). 

Tris (5 µl, 50 mM), containing 194 mM DTT, (pH 8.4) was then added before 

vortexing the samples and incubating (1 hour). After this, 20 µl of 50 mM Tris, 

containing 184 mM iodoacetamide (pH 8.4), was added and the samples were 

mixed gently before incubation for 1 hour in the dark. Tris (20µl, 50 mM), 

containing 194 mM DTT, pH 8.4 was then added and the samples were again 

incubated for 1 hour. 

Samples were then diluted to approx. 50 µg in 100 µl of 50 mM Tris pH 8.4, 

followed by the addition of 2.5 µl of trypsin (reconstituted in 50 mM acetic acid) 

to achieve a ratio of 1:20 (trypsin: protein). This mixture was then incubated at 

37°C (24 hours) to digest. 

After digestion samples underwent centrifugal evaporation (Jouan RC 10.22) 

until dried. The dry samples were then stored at -20°C until analysis. 

Prior to mass spectrometry analysis samples were suspended in 25µl of eluent 

A (98% acetonitrile and 0.1% formic acid). 

Mass spectrometry was carried out according to the protocol in Chapter 2, 

section 2.6. Analysis of the data was performed using Progenesis QI (Nonlinear 

Dynamics, Newcastle upon Tyne, UK), Mascot Daemon statistical software 

v2.3.2 (Matrix Science, London, UK) and Peak View v1.0 (AB SCIEX, Cheshire, 

UK).  

Progenesis QI was used to compare samples by aligning the total ion 

chromatograms, to compensate for the between-run variation, and quantified 

relative abundance of the peptides (including sequences suspected to be 

nitrated). The software also accessed online databases (i.e. Swiss-Prot 

(Consortium, 2015)) to identify the proteins in the sample. A report was then 

produced detailing the relative abundance of each protein with a statistical 

analysis comparing the different time points for each sample. 

Mascot Daemon (MatrixScience, 2014) was also used to search Swiss-Prot for 

protein identifications. However, this software can only be used to analyse one 
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sample in isolation, rather than comparing peptides across samples. This 

software provided data on the ion score (score of how reliable the data is), 

nitrated peptides and retention time. This data was then used to look at 

extracted ion chromatograms and spectra, for de novo sequencing, using the 

Peak View (ABSCIEX) software. 

5.2.4. Serum CRP measurement 

CRP was measured by an immunoturbidimetric assay, as described in Chapter 

3, section 3.2.6. 

5.2.5. Statistical analysis 

Normality of the data was tested using the Shapiro-Wilk test and determined to 

be non-parametric (p<0.01). Therefore, the Mann-Whitney test, Wilcoxon 

matched pairs and Spearman rank correlation tests were chosen for 

comparison of the data sets. 

A Receiver Operating Characteristic (ROC) analysis allowed calculations of the 

area under the curve (AUC). Sensitivity/specificity of the data sets was also 

determined. 
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5.3. Results 

5.3.1. Increased serum Tyr-NO2 post-surgery 

Figure 5.2 shows that the median levels of serum Tyr-NO2 were increased 

following major elective surgery, compared to pre-surgery levels (median (IQR): 

pre-surgery 1.74 (0.59 – 4.79) and post-surgery 3.00 (1.01 – 7.15) fmol BSA-

NO2 equiv./mg protein. Wilcoxon matched pairs p=0.007). This supports results 

previously reported (Chapter 3, section 3.3). The sepsis and non-sepsis groups 

were combined for the analysis shown in Figure 5.2. 
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Figure 5.2: Pre- and one day post-surgery serum levels of 3-nitrotyrosine 

Tyr-NO2 was measured as described in Chapter 3, section 3.2.5.The figure represents the 

combined data from both sepsis patients and control patients (n=34). The median and 

inter-quartile range (IQR) values are shown. A significant increase in median Tyr-NO2 

levels was observed 24 hours post-surgery (Wilcoxon matched pairs, **p=0.005).  
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5.3.2. Changes in serum Tyr-NO2 over time 

When comparing all time points (Figure 5.3) there were no statistically 

significant differences in the median levels of serum Tyr-NO2 over the time 

course for either group (Kruskal-Wallis p>0.05). The median serum Tyr-NO2 

levels were generally higher in those patients who went on to develop sepsis, 

than in those patients who did not develop sepsis, but this did not reach 

significance (Mann-Whitney, p>0.05). Sepsis patients peaked at day 5 post-

surgery (5.46 fmol BSA-NO2 equiv./mg protein) compared to the non-sepsis 

control group which peaked at day 1 post-surgery (2.37 fmol BSA-NO2 

equiv./mg protein). 

The time course was also plotted in terms of days prior to diagnosis (Figure 

5.4), with controls matched according to the number of days post-surgery that 

the sepsis patients had reached when diagnosis occurred. The post-surgery 

sepsis group had an increase in median serum Tyr-NO2 prior to diagnosis, 

compared to pre-surgery levels, with the peak occurring one day prior to 

diagnosis (Figure 5.4B). However, there was no statistically significant 

difference between the time points (Kruskal-Wallis p=0.29). The matched 

controls also had an increase in median serum Tyr-NO2 levels but this peaked 

in those matched for 3 days before diagnosis, i.e. closer to the surgery (Figure 

5.4A). The levels of serum Tyr-NO2 were significantly higher in the sepsis group 

one day before diagnosis; median values of 4.5 and 1.2 fmol BSA-NO2 

equiv./mg protein for sepsis and controls respectively (Mann-Whitney, p=0.04). 

Individual Tyr-NO2 level time courses, for each patient, can be seen in appendix 

1. 

Serum Tyr-NO2 levels pre-surgery and pre-diagnosis were analysed further in 

the following sections, with a comparison to CRP concentrations. 
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Figure 5.3: Post-surgery time course of serum of 3-nitrotyrosine in patients with and without post-surgery sepsis 

Tyr-NO2 was measured by the protocol described in Chapter 3, section 3.2.5. The median and IQR values are shown for each day in 

the two groups. (A) In the case of patients who did not develop post-surgery sepsis (n=25), there was no statistically significant 

difference between the median values of each time point (Kruskal Wallis p=0.77). Tyr-NO2 levels peaked at one day post-surgery. (B) 

In the case of patients who developed post-surgery sepsis (n=26), there was no statistically significant difference between the median 

values of each time point (Kruskal Wallis p=0.50). Tyr-NO2 levels peaked at day five post-surgery. 
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Figure 5.4:  Pre-diagnosis time course for serum 3-nitrotyrosine in those patients with post-surgery sepsis and their matched controls 

Tyr-NO2 was measured by the protocol described in Chapter 3, section 3.2.5. The median and IQR values are shown for each day in the two groups.  

The patients who did not develop sepsis (controls) were matched according to the number of days post-surgery the sepsis patients had reached 

when diagnosis occurred. (A) No post-surgery sepsis (Kruskal Wallis p=0.67) and (B) Post-surgery sepsis (Kruskal Wallis p=0.29).   
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To compensate for the variation in total levels and individual differences the 

absolute change and percentage change were also analysed. The absolute 

change in serum Tyr-NO2 from pre-surgery to the day before diagnosis was 

determined to be non-significant (Figure 5.5A). Absolute change median (IQR): 

control patients without post-surgery sepsis 0.66 (-0.01 – 1.45) and post -

surgery sepsis patients 1.91 (0.02 – 3.55) fmol BSA-NO2 equiv./mg protein 

(Mann-Whitney p=0.06). Percentage change was also non-significant, control 

patients without post-surgery sepsis 24.3% (-5.5 – 39.1) and post -surgery 

sepsis patients 49.7% (0 – 200) increase (Mann-Whitney p=0.17, Figure 5.5B). 

As all groups were expected to have an increase in Tyr-NO2 following surgery, 

due to the ensuing tissue damage, the serum Tyr-NO2 from day one post-

surgery to the day before diagnosis was also determined (Figure 5.6). When 

assessing absolute change the control patients (no post-surgery sepsis) 

showed a decrease in median Tyr-NO2 levels and the post-surgery sepsis 

patients an increase in median, but this did not reach significance: median 

change (IQR) -0.6 (-2.4 – -0.1) and 0.1 (-0.2 – 6.1) fmol BSA-NO2 equiv./mg 

protein change in Tyr-NO2, for control and sepsis patients respectively (Mann-

Whitney, p=0.052).However, percentage change in Tyr-NO2 levels, over this 

time period, was statistically significant: median (IQR) -27.2% (-59.5 - -9.0) and 

1.4% (-7.8 – 210) for control patients and post-surgery sepsis patients 

respectively (Mann-Whitney, p= 0.02). 

The highest serum Tyr-NO2 levels, for all post-surgery time points, for control 

patients (no post-surgery sepsis) and post-surgery sepsis patients were 21.59 

and 64.60 fmol BSA-NO2 equiv./mg protein respectively. The median peak 

levels were 2.2 (1.1 – 7.2) and 6.1 (2.4 – 11.2) fmol BSA-NO2 equiv./mg protein 

for control and sepsis patients respectively, these medians were not 

significantly different (Mann-Whitney, p = 0.086). 
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Figure 5.5: Absolute and percentage change in serum 3-nitrotyrosine from pre-surgery levels to one day before diagnosis 

Tyr-NO2 was measured by the protocol described in Chapter 3, section 3.2.5. The patients who did not develop sepsis (control group) 

were matched to sepsis patients by the number of days post-surgery the sepsis patients were when diagnosed. The median and IQR 

values are shown. (A) Those that developed sepsis (n=26) did show a higher absolute median increase compared to those that did not 

(n=26), however this was not statistically significant (Mann Whitney, p=0.06). (B) The percentage increase from pre-surgery levels was 

not statistically higher in the post-surgery sepsis (n=23) group compared to the control group (n=19) group (Mann Whitney, p=0.17). 
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Figure 5.6: Absolute and percentage change in serum 3-nitrotyrosine from day one post-surgery levels to one day before diagnosis 

Tyr-NO2 was measured by the protocol described in Chapter 3, section 3.2.5. The patients who did not develop sepsis (control group) were matched 

to sepsis patients by the number of days post-surgery the sepsis patients were when diagnosed. The median and IQR values are shown. (A) The 

post-surgery sepsis group (n=11) show a median increase in serum Tyr-NO2 levels and the control group (n=9) a median decrease, but this was not 

statistically significant (Mann Whitney, p=0.052). (B) The percentage change over this time was statistically significant (Mann Whitney, *p=0.02). 
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5.3.3. Serum 3-nitrotyrosine levels and CRP concentrations pre-surgery  

There was no statistically significant difference in the pre-surgery serum Tyr-

NO2 levels when comparing patients who went on to develop sepsis with those 

who did not (Figure 5.7, Mann-Whitney p=0.53). The median (IQR) values were 

1.66 (0.3-4.3) and 2.33 (0.9-5.1) fmol BSA-NO2 equiv./mg protein for the control 

and sepsis group respectively. Two patients in the sepsis group had very high 

levels of pre-surgery serum Tyr-NO2 (64.6 and 23.6 fmol BSA-NO2 equiv./mg 

protein); both these patients had a gastrectomy, one patient died from sepsis, 

whilst the outcome of the second is unknown. 

In the present study, serum CRP (mg/L) levels were above the reported normal 

value of 0.8 mg/L (0.3-1.7) (median and IQR) (Povoa, 2002) prior to surgery. In 

our study, the serum CRP concentration measured in patients was: 5.00 (1.00-

14.00) mg/L. Additionally, the median levels of CRP pre-surgery in the sepsis 

group were significantly higher than in the non-sepsis (control) group: 8.5 and 2 

mg/L respectively (Figure 5.8A, Mann-Whitney p = 0.013). 

A ROC analysis of pre-surgery serum CRP (mg/L) gave an AUC of 0.7 (Figure 

5.8B). The individuals mentioned above (in Figure 5.7), with high serum Tyr-

NO2 levels, were not amongst those with exceptionally high serum CRP 

concentrations (12 and 3 mg/L) and at the optimal cut-off (>6.5mg/L, 57.7% 

sensitivity and 60.8 % specificity) CRP levels would only have detected one of 

these patients. When serum CRP was adjusted for serum protein (i.e. mg 

CRP/mg protein x 105) values were still significantly different but the p value 

was increased and the AUC was decreased (Mann-Whitney p=0.047, AUC = 

0.66, Figure 5.9).  

Pre-surgery Tyr-NO2 levels did not correlate with age or differ between genders. 

There was a positive correlation between Tyr-NO2 and CRP (mg/mg protein x 

105) (r=0.22, p=0.003) when all data points were pooled into one group. When 

data were separated into patients who developed sepsis and patients who did 

not, there was no correlation between pre-surgery Tyr-NO2 and pre-surgery 

CRP, in either group.  
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Figure 5.7: Pre-surgery 3-nitrotyrosine levels in patients with and without a 
diagnosis of post-surgery sepsis 

Tyr-NO2 was measured as described in Chapter 3, section 3.2.5.The median and IQR 

values are shown. There was no statistically significant difference between the median 

serum Tyr-NO2 levels in patients without a post-surgery sepsis diagnosis (n=25) and the 

median serum Tyr-NO2 levels of patients with a post-surgery sepsis diagnosis (n=26) 

(Mann-Whitney, p=0.53).  
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 Figure 5.8: Pre-surgery CRP (mg/L) concentration in patients without, and patients with, a post-surgery sepsis diagnosis and 
ROC analysis 

CRP was measured by the protocol described in Chapter 3, section 3.2.6. (A) The median and IQR values are shown. The median 

pre-surgery level of CRP was significantly higher in patients who developed post-surgery sepsis (n=26) compared to the median pre-

surgery level of CRP in those who did not (n=25) (Mann-Whitney, *p=0.01). (B) ROC analysis of pre-surgery CRP levels (AUC=0.7). 
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Figure 5.9: Protein corrected pre-surgery CRP (mg/mg protein x105) levels in patients without, and patients with, a post-
surgery sepsis diagnosis and ROC analysis 

CRP was measured by the protocol described in Chapter 3, section 3.2.6 and adjusted for total serum protein concentration. (A) The 

median and IQR values are shown. The median pre-surgery levels of CRP was significantly higher in patients who developed post-

surgery sepsis (n=26) compared to the median pre-surgery level of CRP in those who did not (n=25) (Mann-Whitney, *p=0.047). (B) 

ROC analysis of pre-surgery CRP levels (AUC=0.66). 
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5.3.4. Serum Tyr-NO2 levels and CRP concentrations prior to diagnosis 

One day prior to diagnosis: 

Median serum Tyr-NO2 levels showed a statistically significant increase in the 

post-surgery sepsis group, one day prior to diagnosis, compared to the non-

sepsis control group (matched by the number of days post-surgery sepsis 

patients were when diagnosed), with median values of 4.5 and 1.2 fmol BSA-

NO2 equiv./mg protein, respectively (Figure 5.10A, Mann-Whitney p=0.02). 

ROC analysis of Tyr-NO2 levels one day prior to diagnosis produced an AUC of 

0.69 and a p-value of 0.027 (Figure 5.10B). A cut-off value of ≥1.935 fmol BSA-

NO2 equiv./mg protein gave a sensitivity of 79.2% and a specificity of 58.3%. 

When this cut-off was used the assay was able to predict 19/25 sepsis cases 

that were later diagnosed clinically. When assessing both false negative and 

false positive results, Tyr-NO2 had an accuracy of 70%.  

Serum CRP (mg/L) was also significantly higher in the sepsis group one day 

prior to diagnosis (Figure 5.11A, Mann-Whitney, p<0.0001) and gave an AUC 

of 0.89 and p-value <0.0001 (Figure 5.11B). At the optimal cut-off (>109.5 

mg/L) only three sepsis patients would fail to be diagnosed (87.5% sensitivity 

and 88.5% specificity). The overall predictive accuracy (i.e. the percentage that 

were neither false negative or false positive) was 88%. 

When adjusted for serum protein concentration (CRP mg/mg protein x 105) the 

AUC was increased to 0.9 (a cut-off >168.4 CRP mg/mg protein x 105 gave 

95.8% sensitivity and 62.6% specificity), and 1/25 sepsis patients would have 

been a false negative (overall accuracy 92%). 

Two days prior to diagnosis: 

Two days prior to diagnosis Tyr-NO2 serum levels did not show a statistically 

significant increase in the sepsis group compared to the non-septic control 

patient group: the median (IQR) values in the two groups were 3.12 (1.22–7.64) 

and 2.17 (0.85 – 3.58) fmol BSA-NO2 equiv./mg protein respectively (Mann-

Whitney, p=0.21) (Figure 5.12A). However, median CRP concentrations were 

still significantly higher in the sepsis group compared to the non-sepsis control 

patient group: median (IQR) 347.2 (202.9 – 411.9) and 90.9 (53.8 – 215.4) mg 

CRP/mg protein x105 respectively (Mann-Whitney, p=0.0007) (Figure 5.12B).
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Figure 5.10: Predictive ability of serum 3-nitrotyrosine levels to detect sepsis, one day prior to sepsis diagnosis 

Tyr-NO2 was measured by the protocol described in Chapter 3, section 3.2.5. Patients who did not develop sepsis (control group) were 

matched to sepsis patients by the number of days post-surgery the sepsis patients were when diagnosed. (A) The median and IQR values 

are shown. Median nitration levels were significantly higher in the patients who developed post-surgery sepsis (n= 24) compared to those 

who did not (n=24) (Mann-Whitney, *p=0.02). (B) ROC analysis of Tyr-NO2 levels one day prior to diagnosis (AUC=0.69). 
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Figure 5.11: Predictive ability of serum CRP concentrations to detect sepsis, one day prior to diagnosis 

CRP was measured by the protocol described in Chapter 3, section 3.2.6. The patients who did not develop sepsis (control group) 

were matched to the sepsis patients by the number of post-surgery the sepsis patients were when diagnosed. (A) The median and 

IQR values are shown. Serum CRP concentrations were significantly higher in the sepsis group (n=24) compared to the control 

group (n=25) (Mann-Whitney, ****p<0.0001). (B) ROC analysis of CRP concentrations one day prior to diagnosis (AUC=0.89). 
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Figure 5.12: Serum 3-nitrotyrosine levels and CRP concentrations in sepsis patients, two days prior to diagnosis, compared with matched 
patients who did not develop sepsis 

Tyr-NO2 was measured by the protocol described in Chapter 3, section 3.2.5. CRP was measured by the protocol described in Chapter 3, section 

3.2.6. The patients who did not develop sepsis (control group, n=17) were matched to sepsis patients (n=17) by the number of days post-surgery the 

sepsis patients were when diagnosed. Median and IQR values are shown. (A) There was no statistically significant difference in median serum Tyr-

NO2 levels, between the two groups, two days prior to diagnosis (Mann-Whitney, p=0.21). (B) Serum CRP concentrations were significantly higher in 

the sepsis group compared to the control group (Mann-Whitney, ***p=0.0007).  
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5.3.5. White blood cell counts 

Serum Tyr-NO2 levels did not show a statistically significant correlation with 

total white blood cell count (WBC), neutrophil count or monocyte count in either 

the sepsis group or in the non-sepsis group, or when the groups were 

combined.  

One of the clinical signs of sepsis is a WBC <4 or >12 (x 109/L). To assess the 

sensitivity and specificity of this parameter the data was converted into a score 

of one for any value <4 or >12, with WBC values 4-12 being assigned a score of 

zero. This produced an AUC of 0.7 (p=0.034) for WBC one day prior to 

diagnosis. 

5.3.6. Combining parameters  

The scoring system above was then extended to incorporate the Tyr-NO2 and 

CRP (mg/mg protein x 105) values so that the parameters could be combined 

for ROC analysis. The cut-off points discussed for each individual assay were 

used for scoring, with levels above the relevant cut-off scoring a value of one 

and below the cut-off scoring a value of zero. Therefore, a patient could have 

any score from 0 – 3 (Table 5.3). 

Table 5.3: Parameter scoring system 

Patients were scored depending on their levels of three parameters (Tyr-NO2 levels, 

CRP levels and WBC count) one day prior to diagnosis. 

Parameter Score 

≥1.94 Tyr-NO2 (fmol BSA-NO2 equiv./mg protein) 1 

≥168 mg CRP/mg protein x 105 1 

<4 or >12 x109/L WBC count 1 

Range of possible scores 0 - 3 

 

This combining of parameters gave an AUC of 0.86 (p<0.001), improving the 

sensitivity and specificity of the results from Tyr-NO2 alone or WBC alone but 
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detracting sensitivity and specificity obtained from the results of the CRP 

(mg/mg protein alone x 105) test alone, which (as mentioned above) gave an 

AUC of 0.9. 

When this scoring system was applied to just WBC and Tyr-NO2 levels an AUC 

of 0.73 (p=0.02) was achieved, meaning that these two parameters provided 

better sensitivity and specificity when combined than when either was used 

alone. When the only parameters scored were Tyr-NO2 levels and CRP 

concentration the AUC of 0.82 was produced (p=0.0001). Again this improved 

on using only Tyr-NO2 levels but decreased the sensitivity and specificity of 

CRP concentrations alone.  

5.3.5.1. Net reclassification index (NRI) 

The NRI score determines whether the addition of a marker improves a test’s 

prediction performance. Within this analysis, Tyr-NO2 was added to CRP 

(mg/mg protein alone x 105) to assess whether combining parameters improved 

the prediction of patients who would develop sepsis from samples collected one 

day prior to diagnosis.  

Equation 5.1: Net reclassification index 

𝒏 𝒐𝒇 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒓𝒆𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅

𝒕𝒐𝒕𝒂𝒍 𝒏
−

 𝒏 𝒐𝒇 𝒊𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒓𝒆𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅

𝒕𝒐𝒕𝒂𝒍 𝒏
= 𝑵𝑹𝑰 𝒔𝒄𝒐𝒓𝒆 

 

When combining the CRP test with the Tyr-NO2 test it was seen that the Tyr-

NO2 correctly reclassified 3 patients, one day prior to diagnosis. However, 

combining the tests also incorrectly reclassified 13 patients, resulting in an NRI 

score of -0.2 (Equation 5.1). This means that the prediction of which patients 

would develop sepsis with CRP plus Tyr-NO2 test produced results 20 % worse 

than when just the CRP test was used. 

5.3.7. Mass spectrometry analysis of 3-nitrotyrosine in sepsis 

The mass spectrometry analysis was performed using the Progenesis QI 

software. This software provides relative quantification by comparing protein 

expression and nitration over the time-points for each patient. However, the 

Progenesis QI algorithm was only able to identify a few nitrated residues from 
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data with low scores (suggesting peptide sequencing may be inaccurate). No 

statistical changes over the time-course could be seen for either patient group 

(i.e. sepsis or control), see Table 5.4.  

Table 5.4: Nitrated proteins identified by Progenesis QI 

The identified proteins each contained one sequence predicted to be nitrated. 

Patient Nitrated proteins 

Sepsis patient U1577 

Metastasis-associated in colon cancer 

protein (MACC1) 

Polycomb protein SUZ12 (SUZ12) 

Sepsis patient B1164 

Double stranded RNA binding protein, 

staufen homolog (STAU2) 

Control patient L1292 Complement C5 (CO5) 

Control patient L1287 

Complement C3 (CO3) 

Metastasis-associated in colon cancer 

protein (MACC1) 

 

It was assumed that this result was due to the low percentage of Tyr-NO2 in the 

sample. Therefore, the samples were analysed again using pseudo multiple 

reaction monitoring (MRM) and the Mascot and Peak View software. Pseudo 

MRM is a targeted approach for particular m/z values of selected peptides (m/z 

for parent and nitrated peptide). Peptide sequences from serum albumin (the 

most abundant protein in serum) were targeted. The targeted peptides are 

detailed in Table 5.5 and were selected based on previous work conducted as 

part of this project (see Chapter 3). However, when using this approach no 

nitration of these residues was detected in the serum samples.  
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Table 5.5: Peptide sequences in serum albumin targeted by pseudo MRM MS/MS 

The m/z of the unmodified (parent) and nitrated (modified) peptide were targeted during 

pseudo MRM. Nitration adds a mass of 45 Da, this is then divided by the charge state 

to determine the m/z difference for the modified peptide, compared to the parent 

peptide. 

Location in HSA 

sequence 
Amino acid sequence  

m/z (charge) 

106-117 ETY(NO2)GEMADCCAK 

Parent 717.8994 (+2) 

Modified 740.3494  

161-168 YLY(NO2)EIAR 

Parent 464.2955 (+2) 

Modified 486.7955 

287-298 Y(NO2)ICENQDSISSK 

Parent 722.4044 (+2) 

Modified 744.9044 

348-360 DVFLGMFLY(NO2)EYAR 

Parent 812.4903 (+2) 

Modified 834.9903 

469-490 RMPCAEDY(NO2)LSVVLNQLCVLHEK 

Parent 840.1748 (+3) 

Modified 855.1748 

508-524 RPCFSALEVDETY(NO2)VPK 

Parent 637.7175 (+3) 

Modified 652.7175 
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5.4. Discussion 

The British Medical Journal Best Practice sets out the diagnostic criteria for 

systemic inflammatory response syndrome (SIRS) based on the consensus of a 

2001 conference (Levy et al, 2003). Two of these criteria need to be met for a 

SIRS diagnosis, and infection must be present for a sepsis diagnosis.  

Diagnosis criteria:  

 Hypothermia (<36°C) or hyperthermia (>38.3°C) 

 Tachycardia (>90 beats per minute) 

 Tachyponea (>20 breaths per minute) 

 PCO2 <4.3 kPa (32 mmHg) 

 Hyperglycaemia in the absence of diabetes (>6.66 mmol/L) 

 Acutely altered mental state 

 White blood cell count <4 or >12 x 109/L 

As the criteria for SIRS are non-specific (and will be met by many within the 

intensive care unit), and as infection cannot always be confirmed, other 

biomarkers are needed to determine which treatment is necessary (Vincent et 

al, 2009). CRP and procalcitonin are both used clinically but both have 

questionable specificity (Pierrakos and Vincent, 2010), and differing baselines 

between individuals. This makes changes in time more relevant than a single 

value (Vincent et al, 2011). In a 2010 review of studies looking at sepsis 

biomarkers, 3370 studies were found, in which researchers examined 178 

different markers (Pierrakos and Vincent, 2010); this is a far larger pool of 

potential markers than found in many other diseases, emphasising the complex 

nature of this disease.  

The primary aim of this study was to determine whether serum Tyr-NO2 levels 

were higher in those with post-surgery sepsis, compared to those without. 

Samples were collected from patients prior to, and for several days after, major 

elective surgery and split into two groups; those without post-surgery sepsis 

(n=25) and those with post-surgery sepsis (n=26). Previous studies, showing 

that free Tyr-NO2 is elevated in sepsis, obtained the samples at one time point 

from patients already diagnosed with septic shock, i.e. sepsis plus hypotension 

and did not measure the protein-associated form of Tyr-NO2 (Fukuyama et al, 
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1997; Ohya et al, 2002). Therefore, these results did not show whether protein-

associated Tyr-NO2 was elevated, or if any nitration could be observed prior to 

sepsis diagnosis as reported here. As can be seen in Figure 5.3 the median 

levels of serum Tyr-NO2 were higher in the post-surgery sepsis group for all 

post-surgery time points. Though, due to the large variation in values, there 

wasn’t a significant difference between the groups at any post-surgery time 

point. However, when the time points were changed from days post-surgery to 

days prior to diagnosis a significant difference was observed one day prior to 

diagnosis, with levels being higher in the post-surgery sepsis group compared 

to their matched controls (median and IQR 5.15 (2.38-8.32) and 1.3 (0.79-5.55) 

fmol BSA-NO2 equiv./mg protein respectively, Figure 5.10). Median levels were 

also higher at two and three days before diagnosis (Figure 5.4) but this did not 

reach significance. Absolute and percentage change was also analysed. When 

day one post-surgery was compared to one day before diagnosis a significant 

difference in the percentage change for the post-surgery sepsis and their 

matched controls was observed (Figure 5.6), as the control group was 

decreasing between these time points and the sepsis group was increasing 

between these time points. This data shows, for the first time, that sepsis 

patients have increased nitrative stress prior to sepsis diagnosis. In the case of 

post-surgery sepsis, serum Tyr-NO2 can be seen to rise in the days following 

surgery whereas matched controls subjects have a reduction in nitrative stress 

(following the peak observed immediately post-surgery). Another study that has 

looked at pre-diagnosis markers of sepsis  was Lukaszewski et al (2008) who 

measured the  daily mRNA levels of the cytokines IL-1β, IL-6, IL-8, IL-10, TNFα, 

FasL and CCL2 in intensive care unit patients following high risk procedures. 

Using a neural network they were able to achieve a predictive accuracy of 

94.55% with these 7 markers.  

A delay (even of a few hours) in anti-microbial treatment was found to affect 

sepsis survival rates (Kumar et al, 2006; Weiss et al, 2014), therefore looking at 

potential markers prior to clinical diagnosis is vitally important in developing 

ways to identify sepsis early and improve mortality rates. Therefore, this study 

also sought to determine if serum Tyr-NO2 could be a potentially useful addition 

to the clinical markers of sepsis, i.e. aid a quicker and more accurate diagnosis. 

There was no difference in the pre-surgery levels of Tyr-NO2 between the two 
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groups, suggesting no pre-surgery prognostic value. However, two of the sepsis 

patients did have very high pre-surgery levels of serum Tyr-NO2 (Figure 5.7). 

Both these patients were having a gastrectomy (removal of part or all of the 

stomach). These levels could reflect a high level of inflammation associated 

with their illnesses, or possibly the beginnings of an infection that would develop 

into sepsis; a control patient (i.e. did not develop sepsis) who had a 

gastrectomy had undetectable Tyr-NO2.  

As was also seen in Chapter 3 (section 3.3) there was a wide range in pre-

surgery Tyr-NO2 levels (0 - 64.6 fmol BSA-NO2 equiv./mg protein) and this is 

probably due to the heterogeneous nature of the medical conditions within the 

studied patient population. Ideally, this confounding factor would be removed by 

studying a population with the same medical condition, and undergoing the 

same operation. However, this would not accurately reflect the highly 

heterogeneous nature of sepsis. 

The CRP levels observed at the pre-surgery time-point were higher than would 

be seen in healthy individuals (healthy median 0.8 mg/L (Povoa, 2002)), i.e. if 

there was no acute phase response, as the patients in the present study had a 

wide variety of diseases. A small, but statistically significant (p<0.05), difference 

was seen between the two groups at this pre-surgery time point: the median 

and IQR for the sepsis group was 8.5 (3-18) mg/L and the corresponding values 

for the control (non-sepsis) group were 2.0 (0.85-11) mg/L) (Figure 5.9). This 

could potentially be an indication that these patients were in an inflammatory 

state that predisposed them to sepsis following surgery. Fransen et al (1999) 

and Boeken et al (1998) found that a high pre-operative CRP was a strong 

predictor of post-operative infection, in patients undergoing cardiac surgery. 

Fransen et al (1999) suggested that this could be due to pre-existing chronic 

inflammation dysregulating the immune system in the post-operative period, 

and thereby increasing the risk of infection. High pre-operative CRP has also 

been indicated as a marker of poor prognosis in cancer related surgeries 

(Crumley et al, 2006; Zahlten-Hinguranage et al, 2006; Steffens et al, 2012; 

Steffens et al, 2013). The CRP (mg/L) levels for the two subjects with high pre-

surgery Tyr-NO2 were 3 and 12 mg/L. Therefore, the former subject may not 

have raised any concerns about their pre-operative state, based on CRP (mg/L) 
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alone (cut off >6.5 mg/L), but the Tyr-NO2 levels would have been indicative of 

high levels of inflammation. 

A significant increase in Tyr-NO2 was observed one day after surgery (p<0.01), 

when compared to pre-surgery levels, with the two groups combined (median 

and IQR: pre-surgery 1.7 (0.59 – 4.79) and post-surgery 3.0 (1.01-7.15) Tyr-

NO2 fmol BSA-NO2 equiv./mg protein). However, when the groups were 

separated into no post-surgery sepsis (control) and post-surgery sepsis, 

significant differences only remain for the control group (control p=0.036 and 

sepsis p=0.055). If the sepsis patients were experiencing a dysregulated 

immune response prior to surgery (as suggested by Fransen et al (1999) with 

regard to high pre-operative CRP) then a possible explanation for the smaller 

increase in the sepsis group could be that the pathways, for Tyr-NO2 formation, 

are not as quickly activated post-surgery in these patients as they are in 

controls. This would cause the control group to have a larger increase in 

nitration one day post-surgery compared to those that would go on to develop 

sepsis. 

Ohya et al (2002) suggested that free Tyr-NO2 levels in plasma had prognostic 

value in predicting survival, but this was based on a low patient number (n=12). 

In our study, the samples from one day prior to sepsis diagnosis were analysed 

with control samples matched by the number of days after surgery. As 

mentioned the median serum protein-associated Tyr-NO2 levels were 

significantly higher for the sepsis patients compared to non-sepsis controls 

(Figure 5.10). This is consistent with the fact that the sepsis patients had an 

ongoing/worsening inflammatory response as a result of infection, in addition to 

tissue damage caused by the surgery. Whilst in the non-sepsis control patients 

there is a resolution of the inflammation, purely related to surgery-associated 

tissue damage, as they recover from the surgery (although the time course for 

resolution will vary with medical condition/surgery undertaken). Patient outcome 

was only known for a subset of patients and therefore the prognostic potential of 

serum Tyr-NO2 could not be assessed. Serum CRP concentrations were also 

significantly higher one day prior to diagnosis (Figure 5.11, p<0.0001) and 14 

out 24 (58%) of patients had a WBC count <4 or >12 x 109/L. Tyr-NO2 levels 

were not correlated with WBC count but Tyr-NO2 and CRP (mg/mg protein x 
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105) showed a weak positive correlation (r =0.22, p<0.01) when all data points 

were pooled into one group.  

ROC analysis was performed for each of these indicators (i.e. Tyr-NO2, CRP 

and WBC) alone and in combination to assess the indicators potential as a 

diagnostic tool (determined by the AUC). When analysed alone, the AUC’s for 

each assay were: Tyr-NO2 = 0.69, CRP = 0.88 and WBC = 0.7. Brubaker (2008) 

defined a diagnostic test with an AUC of 0.5-0.75 as ‘fair’ and 0.75-0.92 as 

‘good’ (0.92-0.97 is ‘very good’ and >0.97 is ‘excellent’). With these categories, 

Tyr-NO2 and WBC were ‘fair’ diagnostic tools and CRP was a ‘good’ diagnostic 

tool. When the parameters were scored (see Table 5.3), and combined an AUC 

of 0.86 was produced. Therefore combining the three factors failed to improve 

upon the ‘good’ rating of CRP alone. The NRI score also indicated that 

combining Tyr-NO2 and CRP reduced the diagnostic potential of CRP by 20%. 

CRP levels have previously been measured in a prospective study to 

differentiate SIRS from sepsis, where an AUC of 0.94 was seen (Sierra et al, 

2004). The Sierra et al (2004) study also had a much lower CRP mg/L cut-off 

(80 mg/L) than seen here (109.5 mg/L), this is probably due to our control group 

having background inflammation, from the surgery, and therefore, a higher cut-

off was needed to differentiate between the groups. Other studies have 

suggested that CRP is of limited use for differentiating between those with and 

without infection when a high background inflammatory state is present, such as 

seen with burn patients (Lavrentieva et al, 2007; Barati et al, 2008). 

Due to the fact that Tyr-NO2 formation is strongly associated with 

immune/inflammatory pathways (e.g. O2 ˙¯ production and MPO activation) it 

would be expected that Tyr-NO2 levels would increase vastly in sepsis. 

However, although the median Tyr-NO2 level in sepsis is higher than the non-

sepsis controls, across all days, the only time-point at which this is significant is 

one day prior to diagnosis. This lack of a significant difference is due, in part, to 

the large variation in levels observed; indeed, some patients had non-detectable 

Tyr-NO2 prior to diagnosis. One possible explanation for this is the 

compensatory anti-inflammatory response that can occur in sepsis, where anti-

inflammatory cytokines are up-regulated, lymphocyte number is reduced and an 

immunocompromised state is created (Adib-Conquy and Cavaillon, 2008; Ward 

et al, 2008). During this state, neutrophils have a lowered rate of phagocytosis 
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and intracellular microbicidal activity (Adib-Conquy and Cavaillon, 2008) which 

would be connected with a decreased release of MPO. If free radical production 

is also limited, there would be very little possibility of Tyr-NO2 formation. 

However, low WBC count was not correlated with low serum nitration so it is 

likely other factors are involved in determining the serum Tyr-NO2 levels.  

Capillary leak is also observed as part of sepsis and this involves the loss of 

proteins from the blood into the interstitial space (Yang et al, 2014), making the 

adjustment of Tyr-NO2 for serum protein concentration an important factor. 

However, it may be that the loss of serum albumin (the most abundant serum 

protein) in this way also results in a loss of a large proportion of the nitrated 

tyrosine.  

Mass spectrometry data was unable to provide robust data on the relative 

amount of nitration, or in which proteins nitration occurred. A few low-

abundance proteins were highlighted as containing Tyr-NO2 by Progenesis QI 

(see Table 5.4) the scores from these hits were low suggesting they may not be 

true hits. The proteins identified are also doubtful, for example, all but the 

complement proteins are intracellular proteins, so would not be expected in the 

serum. Additionally, far more nitration (and within more abundant proteins) was 

expected. It is suspected that the inability of the analysis to detect nitrated 

peptides is due to the fact the number of nitrated Tyr residues compared to the 

number of non-nitrated residues in the sample is very small (around 1 in 10,000 

(Radi, 2004)). Additionally, there would have been many sequenced peptides 

that did not contain Tyr at all. This means the modified peptides are hidden by 

the greatly more abundant unmodified peptides and may not get sequenced. 

The low efficiency of mass spectrometry in detecting low abundance PTMs was 

discussed by Zhao and Jensen (2009), and enrichment of the modified peptides 

is often required. Therefore, any future work to identify Tyr-NO2 in human serum 

would require that the nitrated peptides be separated from the non-nitrated 

peptides (e.g. by affinity chromatography) prior to mass spectrometry analysis. 

Such separation procedures would, in themselves, provide additional 

challenges to obtaining quantitative data. 

A targeted pseudo MRM MS/MS approach, in which only serum albumin 

peptides were analysed, was used in an attempt to filter out a large amount of 
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the non-nitrated peptide sequences. However, nitrated sequences could still not 

be identified. This could be due to there still being too much non-modified 

peptide as albumin is the most abundant protein in the serum (approx. 55% 

(Anderson and Anderson, 2002). On the other hand, it might have been 

expected that albumin would be the most nitrated protein due to this high 

abundance and the significant content of Tyr residues within its polypeptide 

sequence.  

This study was limited by the measurement of only one oxidative stress marker. 

Consequently, it is unknown whether other markers of oxidative stress act in a 

similar manner to Tyr-NO2 prior to sepsis diagnosis, following surgery, or if they 

follow another pattern. A further study should therefore measure a panel of 

oxidative stress markers, such as carbonyls and isoprostanes, over the time 

course as well as Tyr-NO2. 
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5.5. Conclusion 

As far as we know this is the first time oxidative stress has been measured in 

sepsis patients prior to diagnosis. The results show that oxidative stress is 

measurable in the days prior to diagnosis and, that a significant difference is 

seen at the time point one day before diagnosis, with the patients who went on 

to develop sepsis having higher levels of Tyr-NO2 than patients who did not 

develop sepsis (matched by number of days post-surgery). 

The patient group analysed here was highly heterogeneous in terms of medical 

conditions and surgeries undertaken. This confounding factor likely contributes 

towards the wide variation in results and overlap between groups for all 

markers. To improve the study of sepsis it has been suggested that the patient 

groups need to be graded, in order to achieve more homogenous populations. 

For this, the PIRO model has been put forward (Vincent et al, 2006; Howell et 

al, 2011; Granja et al, 2013). The PIRO model categorises patients based on 

four factors: Predisposition (e.g. age, pre-existing conditions), Infection (e.g. site 

and whether hospital or community acquired), Response (e.g. temperature, 

heart rate, cardiac output, etc.) and Organ dysfunction (Vincent et al, 2009; 

Howell et al, 2011; Granja et al, 2013). Using this model to score patient 

populations appears to have better predictive value for mortality and intensive 

care unit stay than other scoring systems, i.e. APACHE II (acute physiology and 

chronic health evaluation) (Vincent et al, 2009). In the present study, it was 

observed that serum Tyr-NO2 was not as sensitive a marker for sepsis as CRP. 

However, separation of patients into more homogenous groups using the PIRO 

model, may lead to more informative results being achieved.  

This project had some methodological problems in that a new antibody lot 

number did not perform correctly and this greatly reduced the number of 

samples in the cohort (we were unable to obtain data for approximately 100 

collected patient samples). A larger number of samples would have allowed for 

stratification of samples into groups based on factors such as surgery being 

undertaken or patient outcome, whilst still maintaining a large enough n number 

for robust statistical analysis. 

Despite this heterogeneity the present study did, as mentioned, show that 

sepsis patients had significantly higher levels of Tyr-NO2 than controls one day 
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before diagnosis. This confirms that the aberrant inflammatory response, seen 

in sepsis, causes increased oxidative/nitrative stress. Nitration can then lead to 

dysfunction of the affected proteins and further pathology. 
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Chapter 6  

Nitration in the brain tissue of Alzheimer’s disease models and 

patients 
 

Alzheimer’s disease (AD) is characterised by histopathological features, such 

as senile amyloid plaques and neurofibrillary tangles (Sultana et al, 2006; 

Reynolds et al, 2007; Reyes et al, 2011) and neuroinflammation can be initiated 

by both the amyloid plaques and neurofibrillary tangles (Akiyama et al, 2000; 

Heppner et al, 2015) this is described in Chapter 1 (section 1.5.5). The clinical 

diagnosis of AD is mostly reliant on the exclusion of other causes for the decline 

in cognitive function/dementia and will still only result in a diagnosis of either 

possible or probable AD (McKhann et al, 2011). Neural imaging and 

cerebrospinal fluid (CSF) biomarkers are, at the moment, insufficient for a 

definitive diagnosis and post-mortem neuropathological examination is required 

(McKhann et al, 2011). Additionally, when a probable AD diagnosis is given the 

disease is at a neuropathologically advanced stage, however, it is believed that 

new drugs will be most effective in the early stages when neurodegeneration 

can be slowed, before a severe loss in cognitive function has occurred (Hampel 

et al, 2010). For this reason biomarkers are needed to improve early detection 

of the disease. 

Transgenic  mouse AD models have been developed to aid understanding of 

what causes this disease, the underlying pathology, testing of potential 

therapeutic strategies and for preclinical testing. These models tend to use 

mutations found in familial AD (Morrissette et al, 2009), such as the Swedish 

mutation, which is a double mutation found in a Swedish family that results in 

increased production of amyloid-β (Haass et al, 1995). Many models exhibit 

amyloid pathology but some transgenic lines have been crossed to produce 

mice with both amyloid-β plaques and neurofibrillary tangles. However, it has 

proved difficult to produce a model which displays the full range of AD 

pathology (Elder et al, 2010). As has already been discussed in the introduction 

(Chapter 1, section 1.5.5) oxidative stress has been observed in the brain of 

mouse AD models, and is thought to accelerate the AD pathology observed 

(Lim et al, 2001; Praticò et al, 2001; Kanamaru et al, 2015). Lim et al (2001) 

found that a ˙NO scavenger (curcumin) reduced the plaque burden seen in the 
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brain tissue. This suggests that ˙NO may be an important factor in AD 

pathology.  

All three NOS isoforms are expressed in the human brain, i.e. neuronal (nNOS), 

endothelial (eNOS) and inducible (iNOS) (Law et al, 2001). The 

expression/activity of NOS, along with the role of ˙NO, in AD has been 

extensively studied but inconsistent results have been seen. Norris et al (1996) 

found nNOS mRNA levels were not significantly different in those with AD 

compared to controls with no sign of neurological disease. Yew et al (1999) also 

measured mRNA for nNOS and found that in AD patients the number of 

neurons expressing nNOS mRNA goes down but, those neurons expressing the 

mRNA produce more than seen in non-demented control tissue. However, 

mRNA expression is not the same as protein activity. Dorheim et al (1994) 

found that NOS activity in the brain microvessels is increased with AD, they also 

observed an increase in the expression of both the constitutive (endothelial and 

neuronal) and inducible NOS compared to the brains of non-demented controls. 

To determine ˙NO production in the human brain many have measured NO2¯, 

NO3¯ or NO2¯ plus NO3¯ (NOx). Kuiper et al (1994) and Navarro et al (1996) 

both measured NO2¯ and NO3¯ in the CSF as a way of assessing the ˙NO 

production, in the central nervous system, of living AD patients. Kuiper et al 

(1994) found that levels of these metabolites were lower in the CSF compared 

to the plasma and suggested that, as they are anions, they do not freely pass 

through the blood brain barrier. NO2¯ concentrations were not found to be 

significantly different in AD but NO3¯ concentrations were significantly lower in 

the CSF of AD patients compared to controls free of neurodegenerative 

disease. However, Navarro et al (1996) measured NO3¯ in plasma and CSF 

and found no significant difference between AD and controls. DiCiero Miranda 

et al (2000) measured NOx concentration in post-mortem brain tissue and found 

that they were lower in those with AD compared to non-demented aged 

controls. Whether ˙NO production is neurotoxic or neuroprotective is a matter of 

debate as ˙NO is a neurotransmitter and can be anti-inflammatory (Law et al, 

2001). Malinski (2007) suggests that ˙NO is cytoprotective in the absence of 

O2˙¯, as mentioned (Chapter 1, section 1.5) these radicals react to form 

ONOO¯ which is far more reactive than ˙NO. SOD activity has been found to be 

reduced in the AD brain (Marcus et al, 1998). SOD is responsible for 
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dismutation of O2˙¯ to H2O2, therefore, a loss of activity will lead to an increase 

in available O2˙¯. Additionally, NOS can become uncoupled, for example due to 

decreased levels of its cofactor tetrahydrobiopterin – as seen in AD (Foxton et 

al, 2007) –  and produce O2˙¯ instead of ˙NO. Tyr-NO2 can be formed, as a 

result of ONOO¯ production, and has been shown to be associated with fibrillar 

amyloid-β in mouse models of AD (Matsuoka et al, 2001). Tyr-NO2 has also 

been observed in human AD brain tissue (Good et al, 1996; Hensley et al, 

1998; Calabrese et al, 2006; Butterfield et al, 2007b). 

Two studies were conducted assessing nitrative stress in AD brain tissue.  

(1) Brain tissue samples from transgenic mouse AD models were analysed for 

Tyr-NO2 content to test whether Tyr-NO2 could be measured in these models. 

The number of samples was limited so this project was performed to determine 

whether a further investigation with greater numbers was warranted. Two 

transgenic mouse models were used during this study, Tas-TPM and Tau35. 

Tas-TPM is a double transgenic created by cross-breeding two transgenic lines, 

TAS10 and TPM. These parent models express human amyloid precursor 

protein and Presenilin-1 respectively, each of these genes contain established 

mutations in familial AD (AlzForum, (n.d)). As a result of these mutations the 

mice develop extensive amyloid pathology but they do not develop 

neurofibrillary tangles (AlzForum, (n.d)). The Tau35 mice express low levels of 

a disease-related fragment of human tau, to mimic tauopathy in mice (Wray et 

al, 2008). Tauopathy covers several neurodegenerative diseases with 

hyperphosphorylated/aggregated tau, AD is the most common of these 

(Williams, 2006) and insoluble tau is a large part of neurofibrillary tangles 

(Hanger and Wray, 2010).  

(2) A pilot study measuring products of ˙NO production in the human AD brain 

was conducted. The aim of the study was to determine whether there was an 

increase in nitrative stress in the AD brain, if there was then this would be the 

rationale behind measuring nitration in other tissues that are accessible prior to 

death (e.g. CSF and blood). 
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6.1. Materials and Methods 

Mouse samples 

Forebrain and cerebellum tissue samples from the brain of transgenic (n=24) 

and wild-type mice (n=14) were collected and snap frozen, then stored at -80°C.  

The samples were thawed and homogenised using a 1% SDS lysis buffer (100 

mM NaCl, 10 mM Tris (hydroxymethyl) methylamine (pH 7.6), 1 mg/ml 

aprotinin, PMSF and 1% SDS) and a Retsch Mixer Mill 400. For 

homogensitation, the samples were weighed and lysis buffer added at a 5 µl/mg 

tissue ratio (300 µl buffer was used if this was the greater volume), samples 

were then incubated on ice for at least 20 minutes. Two magnetic beads were 

then used for homogenisation at 25 hertz/second, in 30-second bursts until the 

sample was determined to be homogenised by visual inspection. The sample 

was then pulse centrifuged and the supernatant transferred to a fresh 1.5 ml 

micro-centrifuge tube. Protein concentration of samples was determined by 

BCA (Chapter 2, section 2.2), with a 1 in 20 dilution, samples were then stored 

at -80°C until ready for Tyr-NO2 measurement.  

Human samples 

Human brain tissue homogenates were prepared by the South West Dementia 

Brain Bank (SWDBB). Samples were collected under Brains for Dementia 

Research (BDR) ethics with the informed consent of the individual or a close 

relative. 

Tissue was collected from the frontal lobe of frozen hemispheres of 15 

Alzheimer’s disease, 15 vascular dementia (VaD) and 15 non-dementia controls 

(45 samples in total). The tissue was kept on ice throughout the process. 1% 

SDS lysis buffer (as above) was used at an approximate ratio of 1ml per 200 

mg tissue.  

Approx. 200 mg of tissue was homogenised in a Precellys 24 Homogeniser 

(Stretton Scientific Ltd, Derbyshire UK) using 2.3 mm ceramic beads. The 

samples were homogenised at 3000 g for 15 seconds, then left for 3 minutes on 

ice before the process was repeated. The samples were stored at -80°C until 

collection. 
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After collection, from SWDBB, samples were defrosted and centrifuged at 

14,000 g for 10 minutes and the supernatant placed in 100 µl aliquots and 

stored at -80°C until analysis.  

6.1.1. Electrochemiluminescence-based ELISA for 3-nitrotyrosine 

Tyr-NO2 content of the tissue was measured by the ECL ELISA (Chapter 3, 

section 3.2.5) with a 1 in 10 dilution. As the components of the lysis buffer can 

interfere with the signal produced by the ELISA (Figure 6.1) the standard curve 

was run with an equivalent concentration of lysis buffer to the samples (i.e. 

0.1%).  

The tissue levels of Tyr-NO2 were found to be far higher than serum/plasma 

levels. As the assay showed improved reproducibility, with regards replicate 

variation, at Tyr-NO2 levels midway on the standard curve (see Chapter 3, 

section 3.3) the brain samples were run with duplicate measurements, rather 

the quadruplicate measurements used for the serum/plasma. 

The intra-assay CV for brain tissue was calculated due to all human samples 

being run on two plates, making within assay variation more relevant than 

between assay variation. The intra-assay CV was determined by preparing the 

same human brain sample 8 times and measuring these preparations within 

one plate. 
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Figure 6.1: Loss of ECL ELISA signal from BSA-NO2 in the presence of 1% SDS 

Nitrated BSA was diluted in dilution buffer containing different amounts of SDS, 1% SDS resulted 

in a complete loss of ECL signal (n=1). However, a concentration of 0.1% SDS did not result in 

any signal loss from BSA-NO2. R.L.U. Relative light units (arbitrary). 
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6.1.2. Near infra-red western blotting for nitrated proteins 

Western blotting for Tyr-NO2 was performed to determine (A) the molecular 

weight of the nitrated proteins and, (B) if there was a different pattern of nitration 

between groups. 

Western blotting for Tyr-NO2 was performed (as described in Chapter 2, section 

2.5) to determine the molecular weight of the nitrated proteins. DTT was used 

as the reducing agent and 60 µg of protein was loaded per lane. Actin was used 

as the loading control with an IRDye680RD (red fluorescence) anti-rabbit 

secondary antibody (Chapter 2, Table 2.1).  

Mouse samples 

A biotinylated anti-nitrotyrosine antibody and a streptavidin IRDye800CW 

(green fluorescence) secondary antibody were used for detection of Tyr-NO2 

(Chapter 2, Table 2.1). 

Human samples 

The mouse non-biotinylated anti-nitrotyrosine antibody and anti-mouse 

IRDye800CW (green fluorescence) secondary antibody was used for detection 

of Tyr-NO2 and the anti-actin and anti-rabbit IRDye680RD for the loading control 

(red fluorescence) (Chapter 2, Table 2.1).  

Gels for Coomassie staining (protocol described in Chapter 2, section 2.4) were 

run simultaneously so that bands could be excised for mass spectrometry 

analysis. Quantification of the band signal was done using the LiCor Studio Lite 

software analysis tool. The ratio of the Tyr-NO2 signal to the actin signal was 

then calculated. 

6.1.3. Mass spectrometry 

Human samples 

To identify proteins in the nitrated bands mass spectrometry was performed. 

For this, seven bands corresponding to Tyr-NO2 positive staining were cut from 

a Coomassie gel and digested (Figure 6.12). The actin positive band was also 

cut out to confirm that the anti-actin antibody was binding to actin. 
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6.1.3.1. Materials 

In addition to the materials listed in Chapter 2 (section 2.1) the following 

reagents were used to prepare samples for mass spectrometry analysis. 

Acetonitrile and iodoacetamide and trypsin (proteomics grade), were from 

Sigma-Aldrich (Gillingham, UK). Ammonium bicarbonate (analytical reagent 

grade) and Formic acid 99% were from Fisher Scientific (Loughborough, UK).  

6.1.3.2. In-gel digest 

Relevant bands were excised from a Coomassie-stained gel using a clean 

scalpel. Bands were cut into several pieces (approximately 1mm wide) and 

placed in a 1.5 ml microcentrifuge tube. All incubations were at room 

temperature unless otherwise stated. 

Firstly, gel bands were washed (500 µl, 100 mM ammonium bicarbonate) and 

the tubes incubated on a tube roller (30 minutes). The wash solution was 

discarded and a second wash performed (500 µl, 50% acetonitrile 100 mM 

ammonium bicarbonate), this wash was then discarded. Samples were reduced 

with 150 µl of 100 mM ammonium bicarbonate and 10 µl 45 mM DTT 

(incubated for 30 minutes at 60°C). Samples were cooled to room temperature, 

then alkylated (10 µl 100 mM iodoacetamide) and incubated in the dark (30 

minutes).  

The solvent was then removed and the samples washed (500 µl, 50% 

acetonitrile 100 mM ammonium bicarbonate). The wash was discarded and the 

gel pieces shrunk (50 µl acetonitrile, approximately 10 minutes incubation), the 

solvent was removed and the samples were dried under centrifugal evaporation 

(Jouan RC 10.22).  

A trypsin vial was re-suspended in 25 mM ammonium bicarbonate and used to 

rehydrate gel pieces (just enough to allow gel pieces to swell to the original 

size, approximately 25 µl). The gel pieces were then covered in 25 mM 

ammonium bicarbonate and incubated at 37°C overnight, while digestion took 

place. 

The tubes were then pulse centrifuged to pellet the gel pieces and the 

supernatant transferred to a fresh microtube. The gel pieces were incubated (20 
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µl, 5% formic acid) for 20 minutes at 37°C, 40 µl acetonitrile was then added for 

a further 20 minutes. The samples were pulse centrifuged again and the 

supernatant collected and combined with the previously collected supernatant. 

This combined solution was then dried down using a centrifugal evaporator 

(Jouan RC 10.22) and stored at -20°C until analysis.  

Prior to mass spectrometry analysis samples were suspended in 25 µl of eluent 

A (98% acetonitrile and 0.1% formic acid). 

6.1.3.4. Mass spectrometry analysis 

Mass spectrometry (MS/MS) analysis involved high pressure liquid 

chromatography (HPLC) coupled to a 5600 Triple TOF mass spectrometer.  

The samples were eluted over a 45 minute gradient on a C18 nano-HPLC 

column. Scans were collected for 200 ms. Information dependent acquisition 

was used to collect MS/MS data (10 most intense ions), as described in 

Chapter 2 (section 2.6).  

The generated data was then analysed with Mascot Daemon statistical software 

v 2.3.2 (Matrix Science, London, UK) with the following settings applied: 

Digestion enzyme: trypsin 

Fixed modifications: 

 Carbamidomethyl (C) (formed by the iodoacetamide) 

Variable modifications: 

 Oxidation (M) 

 Nitro (Y) 

Instrument type: ESI QUAD TOF 

Taxonomy: Human  

Charge: 2+, 3+ and 4+ 

Fragment mass tolerance: 0.5 Da 
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6.1.4. Ozone-based chemiluminescence (NO2¯ and NO3¯ measurement) 

Measurement of NO2¯ and NO3¯ in human brain samples was performed by Dr 

Miranda Smallwood (University of Exeter Medical School) as per the protocol in 

Chapter 2 (section 2.9), with the following adaptations: 200 µl of homogenate 

was deproteinised (dilution of 1 in 5). This means that there was 0.2% SDS in 

the samples and the standards were run with this concentration as well. 

Samples were analysed in duplicate. As this analysis was done over several 

days the between assay variation was determined (inter-assay CV 6.1%).  

6.1.5. Statistical analysis 

Following a test of normality (Shapiro-Wilk), non-parametric (Mann-Whitney, 

Kruskal-Wallis and Spearman’s r correlation) or parametric (one way ANOVA 

and two- way ANOVA) testing was applied. Bonferroni correction was applied to 

cases of multiple correlations against the same data set. 
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6.2. Results 

6.2.1. Mouse brain 3-nitrotyrosine levels 

When measuring the overall nitration levels by ELISA there was a statistically 

significant difference between the wild-type (WT) and transgenic (Tg) mice 

(models and brain regions combined; Mann-Whitney p=0.044), with the Tg mice 

having a higher median value: median (IQR) 1.04 (0.72 – 1.53) and 1.36 (1.07 – 

1.97) Tyr-NO2 pmol BSA equiv./mg protein for WT and Tg mice respectively 

(Figure 6.2).  

A comparison of the two models (Tas-TPM and Tau35), showed that the Tau35 

Tg mice had a higher median Tyr-NO2 value, but this did not reach statistical 

significance and animal numbers were low (Tas_TPM WT n=16, Tau35 WT 

n=3, Tas_TPM Tg n= 5 and Tau35 Tg n=12, Kruskal-Wallis p=0.066) (Figure 

6.3).  

The forebrain and cerebellum regions were compared in the WT and Tg mice 

(models combined) but no statistically significant differences were seen 

between regions or between Tg and WT mice within each brain region (Figure 

6.4).  
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Figure 6.2: Brain tissue nitration: wildtype versus transgenic mice 

The median and IQR values are shown. Tyr-NO2 was measured in duplicate by ECL 

ELISA as described in section 6.1.1. Mouse models are described in section 6.1. 

Transgenic mice (n=17) had a statistically significant increase in median nitration 

compared to wildtype mice (n=18) (Mann-Whitney, *p=0.044).  
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Figure 6.3: A comparison of brain tissue nitration in two transgenic mouse models of Alzheimer’s disease 

The median and IQR values are shown. Tyr-NO2 was measured in duplicate by ECL ELISA as described in section 6.1.1. Transgenic 

mouse models are described in section 6.1. The two models were split into Tg and WT samples, this meant the number of samples in some 

groups was small (Tas_TPM WT n=16, Tau35 WT n=3, Tas_TPM Tg n= 5 and Tau35 Tg n=12). Tau35 Tg mice showed the highest median 

levels of nitration but this was not significant (Kruskal-Wallis, p= 0.066).  
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Figure 6.4: 3-Nitrotyrosine levels in the cerebellum and forebrain of wildtype and 
transgenic mice 

The median and IQR values are shown. Tyr-NO2 was measured in duplicate by ECL ELISA as described 

in section 6.1.1. Mouse models are described in section 6.1. There were no significant differences 

between brain region median nitration levels for WT or Tg mice (two-way Anova p=0.82. Cerebellum 

wildtype n=7 and transgenic n=5. Forebrain wildtype n=12 and transgenic n=8).  

T
yr

-N
O

2

 (
p

m
o

l 
B

S
A

-N
O

2
 e

q
u

iv
./
m

g
 p

ro
te

in
)

Cerebellum Forebrain
0

1

2

3

Wildtype

Transgenic



 

166 
 

6.2.2. Nitrated proteins in mouse brain tissue 

Western blots were performed to determine the number, and molecular weight, 

of nitrated proteins in the mouse brain tissue. However, the results were 

affected by the presence of endogenous biotin, which is possibly associated 

with carboxylases, leading to inappropriate binding of the secondary 

streptavidin antibody. Nevertheless, when comparing a blot with the primary 

anti-Tyr-NO2 to a blot run without the primary antibody (this blot showed the 

false binding of the streptavidin), it was observed that the low molecular weight 

bands were not false positives (i.e. not endogenous biotin) as they were not 

present on the second blot (Figure 6.5).  
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Figure 6.5: Western blot for nitrated proteins in mouse brain tissue 

Western blotting protocol described in section 6.1.2. green = nitrotyrosine, red = actin. A biotinylated Ab was used to 

avoid cross reactivity with mouse proteins. However, there was endogenous biotin in the brain tissue (blue arrows) 

and a blocking step is needed prior to Ab incubation. Lane 1 positive control; BSA-NO2 (red arrow), Lane 2 and 3 

transgenic mice cerebellum brain samples (A) Blot without an anti-Tyr-NO2 Ab and (B) blot with an anti-Tyr-NO2 Ab. 

The green bands present in B but not A (green arrows) are thought to be true Tyr-NO2 staining but further work is 

needed.  
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6.2.3. Human 3-nitrotyrosine levels 

Intra-assay CV (n=8) was calculated by dividing the SD, of the concentration, by 

the mean, of the concentration, and multiplying by 100 (Table 6.1). Intra-CV 

was 6.36%. 

Table 6.1: Determination of intra-assay CV for brain tissue analysis 

 
#1 #2 #3 #4 #5 #6 #7 #8 Mean SD CV 

Concentration 
(nM) 

5.19 4.80 4.75 4.62 4.42 4.33 4.37 4.42 4.61 0.29 6.36 

 

The Tyr-NO2 levels were adjusted for sample protein concentration and the 

median and IQR determined for each group (Figure 6.6). No statistically 

significant differences were observed between these median values (Kruskal-

Wallis p=0.97): median (IQR) AD 0.29 (0.19-0.57); VaD 0.36 (0.18-0.40) and 

non-demented controls 0.3 (0.22-0.55) Tyr-NO2 pmol BSA-NO2 equiv./mg 

protein.  

Brain NO3¯ was found to positively correlate with Tyr-NO2 (Spearman’s r = 

0.42, p= 0.03) (Figure 6.7). NO2¯did not correlate with Tyr-NO2 (Spearman’s r = 

0.31, p= 0.19). 

When examining the patient data no association could be found between Tyr-

NO2 levels and patient age, gender, tissue pH or post-mortem interval. 

Nitration in the mouse brain tissue was significantly higher than in the human 

brain tissue: median (IQR) 1.24 (0.98 – 1.71) and 0.32 (0.21 – 0.45) Tyr-NO2 

pmol BSA equiv./mg protein respectively (Figure 6.8). 
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Figure 6.6: 3-Nitrotyrosine levels in brain tissue from human dementia and 
dementia free control volunteers. 

Data represents median and IQR values. Tyr-NO2 was measured in duplicate by ECL ELISA as 

described in section 6.1.1.  All groups showed high variability in Tyr-NO2 levels (all n=15) and 

the median values were not statistically different (Kruskal-Wallis test p>0.05).  
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Figure 6.7: Correlation between 3-nitrotyrosine and nitrate concentration in brain tissue 
from human dementia patients and dementia free control volunteers 

NO3¯ was measured by ozone-based chemiluminescence as described in section 6.1.4. and 

Tyr-NO2 in duplicate by ECL ELISA as described in section 6.1.1. n=45. NO3¯ positively 

correlated with Tyr-NO2, p = 0.03 (with Bonferroni correction) and r = 0.42 (Spearman’s rank 

correlation).   
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Figure 6.8: A comparison of median 3-nitrotyrosine levels in human and mouse 
brain tissue 

The median and IQR values are shown. Tyr-NO2 was measured in duplicate by ECL ELISA as 

described in section 6.1.1. Human samples are as described in section 6.1. and mouse 

models in section 6.1. The mouse brain Tyr-NO2 levels (n=38) were far higher than the Tyr-

NO2 levels in the human brain samples (n=44) (Mann-Whitney ****p<0.0001).  
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6.2.4. Nitrite and nitrate levels in human brain tissue 

Mean brain NO2¯ levels were significantly different between the 3 groups (One-

way ANOVA, p= 0.03) with AD significantly higher than non-demented controls, 

but there was no difference between VaD and either of the other groups (mean 

± SD): AD 0.12 ± 0.05; VaD 0.11 ± 0.03 and non-demented 0.09 ± 0.03 

nmol/mg protein (Figure 6.9A).  

There were no statistically significant differences between groups for median 

NO3¯ levels (Kruskal-Wallis, p= 0.65): AD 2.6 (1.8-4.9); VaD 2.4 (1.9-3.3) and 

non-demented controls 2.1 (1.8-2.3) nmol/mg protein (Figure 6.9B). NO3¯ and 

NO2¯ positively correlated (Spearman’s rank correlation r = 0.53, p= 0.001) 

(Figure 6.10).  

There were no correlations between NO2¯ or NO3¯ with patient age, gender, 

tissue pH or post-mortem interval.  
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Figure 6.9: Nitrite and nitrate levels in human brain tissue from dementia patients and dementia free control volunteers 

NO2¯/ NO3¯ levels were measured by ozone-based chemiluminescence as described in section 6.1.4. and corrected for protein. Data 

represents median and IQR values, n=15 in each group. (A) NO2¯ median level showed a statistical difference, *p=0.03 (Kruskal-Wallis 

test), post-hoc testing (Dunn's Multiple Comparison test) showed the difference to be between the AD and control group. (B) No 

significant differences were found between groups for NO3¯ levels (Kruskal-Wallis, p= 0.65).  
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Figure 6.10: Correlation of nitrate with nitrite in human brain tissue samples from dementia 
patients and dementia free control volunteers 

NO2¯ and NO3¯ levels were measured by ozone-based chemiluminescence as described in section 6.1.4. 

n=45. A statistically significant positive correlation between NO2¯ and NO3¯ was observed, p = 0.001 (with 

Bonferroni correction) r = 0.53 (Spearman’s rank correlation). 
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6.2.5. Nitrated proteins in human brain tissue 

Western blotting did not reveal any qualitative differences between the three 

groups (Figure 6.11). Bands at ~15 and ~18 kDa were nearly always present 

and semi-quantitative analysis was performed for these bands by calculating 

the ratio of the Tyr-NO2 signal to actin signal for each sample. However, neither 

showed a statistically significant difference between groups (Kruskal-Wallis, 

p=0.06 and 0.4 for the 15 kDa and 18 kDa bands respectively). Suspected actin 

cleavage was observed but there was no significant difference, in the signal for 

the cleaved fragments, between the groups (Kruskal-Wallis, p=0.74).  

6.2.6. Mass spectrometry analysis of human brain tissue 

Due to the crude nature of the samples, numerous proteins were identified 

within each Tyr-NO2 positive band, these results were organised by the most 

abundant proteins (emPAI) and the reliability of the MS data assessed (Table 

6.2 A-G). The ion score produced by the Mascot software is the “calculated 

probability that the observed match between the experimental data and the 

database sequence is a random event” With scores >50 indicating identity or 

extensive homology at the p= 0.05 cut off (MatrixScience, 2014).  

The actin positive band MS/MS results reported actin as the most abundant 

protein (ion score of 14,579), confirming that the anti-actin antibody is binding 

appropriately and, that the Mascot Daemon software is able to correctly identify 

the proteins in the gel bands. Table 6.2 A-G represents the bands A-G, 

indicated in Figure 6.12. The top 10 proteins, based on emPAI score, for each 

band is listed; emPAI is a score of protein abundance in the sample. Within 

Table 6.2 A-G the results have been assessed further using the following 

criteria: (1) Is the molecular weight of the identified protein in line with the 

band's position on the coomassie gel? (2) Is the identified protein present in 

adult brain tissue? And (3) Is the ion score high in relation to the other proteins 

identified? For this last criteria the ion scores were placed in numerical order 

(not shown) and the cut-off for removing the lowest 5% determined (ion score 

>775). For each of the three criteria met a score of one was given, resulting in a 

score range of 0-3, with 3 indicating the highest confidence score. Information 

on protein location, Tyr content and function was obtained from the UniProt 

database (Consortium, 2015). 
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Figure 6.11: Western blot for nitrated proteins in human brain tissue from dementia and dementia free controls 

This blot is representative of all the western blots performed (n=5). Lane 1 - molecular weight marker, Lanes 2 and 3 - AD samples, Lanes 4 and 5 - VaD samples, 

Lanes 6 and 7 - Control (no dementia) samples and Lane 8 - positive control; BSA-NO2 (blue arrows show the monomer and an aggregate). Western blotting was 

performed as per the protocol described in section 6.1.2. (A) Tyr-NO2 only staining. (B) Dual staining; red for actin binding, green for Tyr-NO2. (C) Actin only staining 

(red arrows show the bands for the whole protein and cleaved products).  
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Figure 6.12: Location of nitrated bands excised for mass spectrometry 

Seven Tyr-NO2 positive bands were selected (as indicated, A-G) across the three groups, along with an 

actin positive band (loading control, not marked on blot), and excised from a corresponding Coomassie 

stained gel (protocol Chapter 2, section 2.4). These bands were then digested and underwent mass 

spectrometry analysis as described in section 6.1.3. 

1 2 3 4 5 6 7 8 
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Table 6.2A: Mass spectrometry protein identification data for band A (see Figure 6.12). Proteins ordered by emPAI score. 
Protein information from UniProt (Consortium, 2015). 

Band location Proteins identified 
No of Y 

residues 
Ion 

Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 

 
 
 
 
 
 

 
AD >170 kDa 

(resolver/stacker 
interface) 
Band A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Spectrin-β, non-
erythrocytic 

49 8,240 274,439 3 

Interacts with calmodulin in a 
calcium-dependent manner and is 
thus a candidate for the calcium-

dependent movement of the 
cytoskeleton at the membrane. 

(Masliah et al, 
1990; Sihag and 
Cataldo, 1996; 

Fernandez-Shaw 
et al, 1997) 

Pyruvate kinase 9 3,742 57,900 2 

A glycolytic enzyme that catalyses the 
transfer of a phosphoryl group from 

phosphoenolpyruvate (PEP) to ADP, 
generating ATP. Plays a general role in 

caspase-independent cell death of 
tumour cells. The ratio between the 

highly active tetrameric form and nearly 
inactive dimeric form determines 

whether glucose carbons are channelled 
to biosynthetic processes or used for 

glycolytic ATP production. 

(Butterfield et al, 
2006b) 

Spectrin-α, non-
erythrocytic 

41 3,654 284,364 3 

Interacts with calmodulin in a 
calcium-dependent manner and is 
thus a candidate for the calcium-

dependent movement of the 
cytoskeleton at the membrane. 

(Masliah et al, 
1990; Sihag and 
Cataldo, 1996; 

Fernandez-Shaw 
et al, 1997) 

Serum albumin 19 20,012 69,321 2 

Has a good binding capacity for water, 
Ca2+, Na+, K+, fatty acids, hormones, 

bilirubin, and drugs. Its main function is 
the regulation of the colloidal osmotic 

pressure of blood. Major zinc transporter 
in plasma typically binds about 80% of 

all plasma zinc. 

(Altunoglu et al, 
2015) 
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Band location Proteins identified 
No of Y 

residues 
Ion 

Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 
 
 
 

AD >170 kDa 
(resolver/stacker 

interface) 
Band A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keratin type II 
cytoskeletal 

24 689 65,999 0 

May regulate the activity of kinases such 
as PKC and SRC via binding to integrin 

beta-1 (ITB1) and the receptor of 
activated protein kinase C 

(RACK1/GNB2L1). In complex with 
C1QBP is a high-affinity receptor for 

kininogen-1/HMWK. 

 

Haemoglobin-α 3 107 15,248 1 
Involved in oxygen transport from the 
lung to the various peripheral tissues. 

(Ferrer et al, 
2011; Shah et al, 
2011; Chuang et 

al, 2012) 

Creatine kinase 9 1,751 42,617 1 

Reversibly catalyzes the transfer of 
phosphate between ATP and various 

phosphogens (e.g. creatine phosphate). 
Creatine kinase isoenzymes play a 

central role in energy transduction in 
tissues with large, fluctuating energy 
demands, such as skeletal muscle, 

heart, brain and spermatozoa. 

(Bürklen et al, 
2006) 

Myelin proteolipid 
protein 

14 259 30,057 1 

This is the major myelin protein from the 
central nervous system. It plays an 
important role in the formation or 
maintenance of the multilamellar 

structure of myelin. 

(Roher et al, 
2002; Barker et 

al, 2013) 

Dihydropyrimidinase-
related protein 

14 626 62,255 1 

Plays a role in neuronal development 
and polarity, as well as in axon growth 
and guidance, neuronal growth cone 

collapse and cell migration. Necessary 
for signalling by class 3 semaphorins 
and subsequent remodelling of the 

cytoskeleton. May play a role in 
endocytosis. 

(Castegna et al, 
2002) 
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Band location Proteins identified 
No of Y 

residues 
Ion 

Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

AD >170 kDa 
(resolver/stacker 

interface) 
Band A 

V-type proton 
ATPase 

18 544 56,465 1 

Non-catalytic subunit of the peripheral 
V1 complex of vacuolar ATPase. V-

ATPase is responsible for acidifying a 
variety of intracellular compartments in 

eukaryotic cells. 

Mice 
(Chang et al, 

2013; Fu et al, 
2015) 
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Table 6.2B: Mass spectrometry protein identification data for band B (see Figure 6.12). Proteins ordered by emPAI score. 
Protein information from UniProt (Consortium, 2015). 

Band location Proteins identified 
No of Y 

residues 
Ion 

Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 
 
 
 
 

VaD >170 kDa 
(resolver/stacker 

interface) 
Band B 

 
 
 
 
 
 
 
 
 
 
 

Spectrin-β, non-
erythrocytic 

49 7,710 274,439 3 

Interacts with calmodulin in a 
calcium-dependent manner and is 
thus a candidate for the calcium-

dependent movement of the 
cytoskeleton at the membrane. 

(Masliah et al, 
1990; Sihag and 
Cataldo, 1996; 

Fernandez-Shaw 
et al, 1997) 

Haemoglobin-β 3 165 15,988 1 
Involved in oxygen transport from the 
lung to the various peripheral tissues. 

(Ferrer et al, 
2011; Shah et al, 
2011; Chuang et 

al, 2012) 

Myelin proteolipid 
protein 

14 652 30,057 1 

This is the major myelin protein from the 
central nervous system. It plays an 
important role in the formation or 
maintenance of the multilamellar 

structure of myelin. 

(Roher et al, 
2002; Barker et al, 

2013) 

Tubulin-β4A 15 809 49,554 2 

Tubulin is the major constituent of 
microtubules. It binds two moles of GTP, 
one at an exchangeable site on the beta 
chain and one at a non-exchangeable 

site on the alpha-chain. 
(Brion et al, 2001; 
Boutte et al, 2005) 

Tubulin-β 16 776 49,639 2 As above 

Tubulin-β2A 16 738 49,875 1 As above 

Tubulin-α4A 19 497 49,892 1 As above 

Tubulin-α1A 19 551 50,104 0 As above 

Haemoglobin-α 3 127 15,248 1 
Involved in oxygen transport from the 
lung to the various peripheral tissues. 

(Ferrer et al, 
2011; Shah et al, 
2011; Chuang et 

al, 2012) 
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Band location Proteins identified 
No of Y 

residues 
Ion 

Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 

VaD >170 kDa 
(resolver/stacker 

interface) 
Band B 

Sodium/potassium-
transporting ATPase 

24 1,334 112,824 2 

Catalytic component of the active 
enzyme, which catalyzes the hydrolysis 

of ATP coupled with the exchange of 
sodium and potassium ions across the 
plasma membrane. This action creates 
the electrochemical gradient of sodium 

and potassium ions, providing the 
energy for active transport of various 

nutrients. 

(Adav et al, 2014) 
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Table 6.2C: Mass spectrometry protein identification data for band C (see Figure 6.12). Proteins ordered by emPAI score. 
Protein information from UniProt (Consortium, 2015). 

Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass (Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 
 
 
 

 
 

Control >170 kDa 
(resolver/stacker 

interface) 
Band C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Spectrin-β, non-
erythrocytic 

49 6,271 274,439 3 

Interacts with calmodulin in a calcium-
dependent manner and is thus a 

candidate for the calcium-dependent 
movement of the cytoskeleton at the 

membrane. 

(Masliah et al, 
1990; Sihag 
and Cataldo, 

1996; 
Fernandez-
Shaw et al, 

1997) 

Haemoglobin-β 3 147 15,988 1 
Involved in oxygen transport from the 
lung to the various peripheral tissues. 

(Ferrer et al, 
2011; Shah et 

al, 2011; 
Chuang et al, 

2012) 

Spectrin-α, non-
erythrocytic 

41 3,186 284,364 3 

Interacts with calmodulin in a calcium-
dependent manner and is thus a 

candidate for the calcium-dependent 
movement of the cytoskeleton at the 

membrane. 

(Masliah et al, 
1990; Sihag 
and Cataldo, 

1996; 
Fernandez-
Shaw et al, 

1997) 

Haemoglobin-α 3 156 15,248 1 
Involved in oxygen transport from the 
lung to the various peripheral tissues. 

(Ferrer et al, 
2011; Shah et 

al, 2011; 
Chuang et al, 

2012) 

Serum albumin 19 2,928 69,321 2 

Has a good binding capacity for water, 
Ca2+, Na+, K+, fatty acids, hormones, 

bilirubin, and drugs. Its main function is 
the regulation of the colloidal osmotic 

pressure of blood. Major zinc transporter 
in plasma typically binds about 80% of all 

plasma zinc. 

(Altunoglu et al, 
2015) 
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Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass (Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 

Control >170 kDa 
(resolver/stacker 

interface) 
Band C 

Keratin type II 
cytoskeletal 

24 433 65,999 0 

May regulate the activity of kinases such 
as PKC and SRC via binding to integrin 

beta-1 (ITB1) and the receptor of 
activated protein kinase C 

(RACK1/GNB2L1). In complex with 
C1QBP is a high-affinity receptor for 

kininogen-1/HMWK. 

 

Keratin type I 
cytoskeletal 

27 339 62,027 0 Epidermal  

Myelin 
proteolipid 

protein 
14 227 30,057 1 

This is the major myelin protein from the 
central nervous system. It plays an 
important role in the formation or 

maintenance of the multilamellar structure 
of myelin. 

(Roher et al, 
2002; Barker et 

al, 2013) 

Tubulin-α1B 19 83 50,120 1 

Tubulin is the major constituent of 
microtubules. It binds two moles of GTP, 
one at an exchangeable site on the beta 

chain and one at a non-exchangeable site 
on the alpha-chain. 

(Brion et al, 
2001; Boutte et 

al, 2005) 

Keratin type II 
cytoskeletal 2 

18 154 65,393 0 Epidermal  
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Table 6.2D: Mass spectrometry protein identification data for band D (see Figure 6.12). Proteins ordered by emPAI score. 
Protein information from UniProt (Consortium, 2015). 

Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control approx. 60 
kDa 

Band D 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pyruvate kinase 9 16,908 57,900 3 

A glycolytic enzyme that catalyses the 
transfer of a phosphoryl group from 
phosphoenolpyruvate (PEP) to ADP, 

generating ATP. Plays a general role in 
caspase-independent cell death of 
tumour cells. The ratio between the 
highly active tetrameric form and 

nearly inactive dimeric form 
determines whether glucose carbons 

are channelled to biosynthetic 
processes or used for glycolytic ATP 

production. 

(Butterfield et 
al, 2006b) 

Rab GDP 
dissociation 

inhibitor 
25 6,336 50550 2 

Regulates the GDP/GTP exchange 
reaction of most Rab proteins by 

inhibiting the dissociation of GDP from 
them, and the subsequent binding of GTP 

to them. Promotes the dissociation of 
GDP-bound Rab proteins from the 

membrane and inhibits their activation. 
Promotes the dissociation of RAB1A, 

RAB3A, RAB5A and RAB10 from 
membranes. 

(Owen et al, 
2009) 

Dihydropyrimidi
nase-related 

protein 2 
14 7,730 62,255 3 

Plays a role in neuronal development 
and polarity, as well as in axon growth 
and guidance, neuronal growth cone 

collapse and cell migration. Necessary 
for signalling by class 3 semaphorins 

and subsequent remodelling of the 
cytoskeleton. May play a role in 

endocytosis. 

(Castegna et 
al, 2002) 



 

186 
 

Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 
 
 
 

Control approx. 60 
kDa 

Band D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V-type proton 
ATPase 

18 3,254 56,465 2 

Non-catalytic subunit of the peripheral V1 
complex of vacuolar ATPase. V-ATPase 
is responsible for acidifying a variety of 
intracellular compartments in eukaryotic 

cells. 

Mice 
(Chang et al, 

2013; Fu et al, 
2015) 

Haemoglobin-β 3 235 15,988 1 
Involved in oxygen transport from the 
lung to the various peripheral tissues. 

(Ferrer et al, 
2011; Shah et 

al, 2011; 
Chuang et al, 

2012) 
Haemoglobin-α 3 382 15,248 1 As above 

Syntaxin-binding 
protein 1 

23 1,974 67,526 2 

May participate in the regulation of 
synaptic vesicle docking and fusion, 

possibly through interaction with GTP-
binding proteins. Essential for 

neurotransmission and binds syntaxin, a 
component of the synaptic vesicle fusion 
machinery probably in a 1:1 ratio. Can 

interact with syntaxins 1, 2, and 3 but not 
syntaxin 4. May play a role in determining 

the specificity of intracellular fusion 
reactions. 

 

Glucose-6-
phosphate 
isomerase 

14 2,461 63,107 3 

Besides its role as a glycolytic 
enzyme, mammalian GPI can function 
as a tumour-secreted cytokine and an 

angiogenic factor (AMF) that 
stimulates endothelial cell motility. GPI 

is also a neurotrophic factor 
(Neuroleukin) for spinal and sensory 

neurons. 
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Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 

Control approx. 60 
kDa 

Band D 

Heat shock 
protein (60kDa) 

7 1,795 61,016 3 

Implicated in mitochondrial protein 
import and macromolecular assembly. 

May facilitate the correct folding of 
imported proteins. May also prevent 
misfolding and promote the refolding 

and proper assembly of unfolded 
polypeptides generated under stress 

conditions in the mitochondrial matrix. 

 

Alpha-
aminoadipic 

semialdehyde 
dehydrogenase 

14 984 58,450 2 

Multifunctional enzyme mediating 
important protective effects. Metabolizes 
betaine aldehyde to betaine, an important 

cellular osmolyte and methyl donor. 
Protects cells from oxidative stress by 

metabolizing a number of lipid 
peroxidation-derived aldehydes. Involved 

in lysine catabolism. 
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Table 6.2E: Mass spectrometry protein identification data for band E (see Figure 6.12). Proteins ordered by emPAI score. 
Protein information from UniProt (Consortium, 2015). 

Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 
 
 

AD approx. 15 kDa 
Band E 

 
 
 
 
 
 
 
 
 
 

Haemoglobin-β 3 14,423 15,988 3 
Involved in oxygen transport from the 
lung to the various peripheral tissues. 

(Ferrer et al, 
2011; Shah et 

al, 2011; 
Chuang et al, 

2012) 

Haemoglobin-δ 3 9,272 16,045 2 As above (foetal subunit). 

Haemoglobin-α 3 7,804 15,248 3 As above 

Histone H4 4 1,018 11,360 2 
Histones play a central role in 

transcription regulation, DNA repair, DNA 
replication and chromosomal stability. 

(Narayan et al, 
2015) 

Fatty acid binding 
protein 

2 760 14,849 2 
FABP are thought to play a role in the 

intracellular transport of long-chain fatty 
acids and their acyl-CoA esters. 

(Desikan et al, 
2013; Olsson et 

al, 2013) 

Cytochrome C 5 507 11,741 1 

Electron carrier protein. Plays a role in 
apoptosis. Suppression of the anti-

apoptotic members or activation of the 
pro-apoptotic members of the Bcl-2 family 
leads to altered mitochondrial membrane 

permeability resulting in the release of 
cytochrome c into the cytosol. Binding of 

cytochrome c to Apaf-1 triggers the 
activation of caspase-9, which then 

accelerates apoptosis by activating other 
caspases. 
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Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 
 
 

 
 

AD approx. 15 kDa 
Band E 

Profilin-1 5 406 15,045 1 

Binds to actin and affects the structure of 
the cytoskeleton. At high concentrations, 

profilin prevents the polymerization of 
actin, whereas it enhances it at low 

concentrations. By binding to PIP2, it 
inhibits the formation of IP3 and DG. 

Inhibits androgen receptor (AR) and HTT 
aggregation and binding of G-actin is 

essential for its inhibition of AR. 

 

Cystatin B 3 378 11,133 1 
This is an intracellular thiol proteinase 

inhibitor. Tightly binding reversible 
inhibitor of cathepsins L, H, and B. 

Conflicting 
results 

(Žerovnik, 
2009) 

Galectin 1 2 364 14,706 2 

May regulate apoptosis, cell proliferation, 
and cell differentiation. Binds beta-

galactoside and a wide array of complex 
carbohydrates. Inhibits CD45 protein 

phosphatase activity and therefore the 
dephosphorylation of Lyn kinase. Strong 

inducer of T-cell apoptosis. 

 

Profilin-2 7 654 15,036 2 

Binds to actin and affects the structure of 
the cytoskeleton. At high concentrations, 

profilin prevents the polymerization of 
actin, whereas it enhances it at low 

concentrations. By binding to PIP2, it 
inhibits the formation of IP3 and DG. 
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Table 6.2F: Mass spectrometry protein identification data for band F (see Figure 6.12). Proteins ordered by emPAI score. 
Protein information from UniProt (Consortium, 2015). 

Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 
 
 

Control approx. 18 
kDa 

Band F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Peptidyl-prolyl 
cis-trans 

isomerase 
2 4,457 18,001 3 

PPIases accelerate the folding of 
proteins. It catalyses the cis-trans 

isomerization of proline imidic peptide 
bonds in oligopeptides. 

(Thorpe et al, 
2004; Blair et 

al, 2015) 

Histone H2B type 
1C 

5 1,429 13,898 2 

A core component of nucleosome. DNA 
accessibility is regulated via a complex 
set of post-translational modifications of 
histones, also called histone code and 

nucleosome remodelling. 
Has broad antibacterial activity. May 

contribute to the formation of the 
functional antimicrobial barrier of the 

colonic epithelium, and to the bactericidal 
activity of amniotic fluid. 

(Narayan et al, 
2015) 

Histone H2B type 
1B 

5 1,358 13,942 2 

A core component of nucleosome. DNA 
accessibility is regulated via a complex 
set of post-translational modifications of 
histones, also called histone code and 

nucleosome remodelling. 

Haemoglobin-β 3 
 

341 
 

15,988 
1 

Involved in oxygen transport from the 
lung to the various peripheral tissues. 

(Ferrer et al, 
2011; Shah et 

al, 2011; 
Chuang et al, 

2012) 

Peroxiredoxin-V 2 1,443 22,073 2 

Reduces hydrogen peroxide and alkyl 
hydroperoxides with reducing equivalents 
provided through the thioredoxin system. 
Involved in intracellular redox signalling. 
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Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 
 
 
 
 
Control approx. 18 

kDa 
Band F 

 
 
 
 
 
 
 
 
 

 

Nucleoside 
diphosphate 

kinase 
4 494 17,287 2 

Major role in the synthesis of nucleoside 
triphosphates other than ATP. Negatively 
regulates Rho activity by interacting with 
AKAP13/LBC. Acts as a transcriptional 
activator of the MYC gene; binds DNA 

non-specifically. Exhibits histidine protein 
kinase activity 

 

Visinin-like 
protein 

5 
 

355 
 

22,128 
1 

Regulates (in vitro) the inhibition of 
rhodopsin phosphorylation in a calcium-

dependent manner. 

(Lee et al, 2008; 
Luo et al, 2013) 

Gamma-
synuclein 

1 291 13,323 1 

Plays a role in neurofilament network 
integrity. May be involved in modulating 
axonal architecture during development 
and in the adult. In vitro, increases the 

susceptibility of neurofilament-H to 
calcium-dependent proteases (By 

similarity). May also function in 
modulating the keratin network in skin. 
Activates the MAPK and Elk-1 signal 
transduction pathway (By similarity). 

(Mukaetova-
Ladinska et al, 

2008) 

Destrin 4 243 18,493 2 

Actin-depolymerizing protein. Severs 
actin filaments (F-actin) and binds to actin 

monomers (G-actin). Acts in a pH-
independent manner. 

 

Tubulin-β2A 16 1,108 49,875 2 

Tubulin is the major constituent of 
microtubules. It binds two moles of GTP, 
one at an exchangeable site on the beta 

chain and one at a non-exchangeable site 
on the alpha-chain. 

(Brion et al, 
2001; Boutte et 

al, 2005) 
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Table 6.2G: Mass spectrometry protein identification data for band G (see Figure 6.12). Proteins ordered by emPAI score. 
Protein information from UniProt (Consortium, 2015). 

Band location 
Proteins 
identified 

No of Y 
residues 

Ion 
Score 

Protein 
mass 
(Da) 

Confidence 
score 

Protein function 
Information from UniProt 

Affected in 
dementia 

 
 
 
 
 
 
 

 
 
 
 

Control approx. 15 
kDa 

Band G 
 
 
 
 
 
 
 
 
 
 
 
 

Haemoglobin-β 3 11,795 15,988 3 
Involved in oxygen transport from the 
lung to the various peripheral tissues. 

(Ferrer et al, 
2011; Shah et 

al, 2011; 
Chuang et al, 

2012) 

Haemoglobin-δ 3 7,201 16,045 2 As above (foetal subunit). 

Haemoglobin-α 3 6,266 15,248 3 As above 

Histone H4 4 1,132 11,360 2 

Histones play a central role in 
transcription regulation, DNA repair, DNA 

replication and chromosomal stability. 
DNA accessibility is regulated via a 

complex set of post-translational 
modifications of histones, also called 

histone code and nucleosome 
remodelling. 

(Narayan et al, 
2015) 

Cytochrome b-c1 
complex 

7 288 13,522 1 

This is a component of the ubiquinol-
cytochrome c reductase complex 
(complex III or cytochrome b-c1 
complex), which is part of the 

mitochondrial respiratory chain. This 
component is involved in redox-linked 

proton pumping. 

 

Cytochrome c 
oxidase 

4 76 8,776 1 

This protein is one of the nuclear-coded 
polypeptide chains of cytochrome c 

oxidase, the terminal oxidase in 
mitochondrial electron transport. 

(Parker et al, 
1990; Kish et al, 
1992; Maurer et 

al, 2000; 
Cottrell et al, 

2002) 
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Control approx. 15 

kDa 
Band G 

Cytochrome c 5 362 11,741 1 

Electron carrier protein. Plays a role in 
apoptosis. Suppression of the anti-

apoptotic members or activation of the 
pro-apoptotic members of the Bcl-2 family 
leads to altered mitochondrial membrane 

permeability resulting in the release of 
cytochrome c into the cytosol. Binding of 

cytochrome c to Apaf-1 triggers the 
activation of caspase-9, which then 

accelerates apoptosis by activating other 
caspases. 

 

Haemoglobin-γ1 2 1,082 16,130 2 
Sub-unit of foetal Hb. Involved in oxygen 

transport from the lung to the various 
peripheral tissues. 

(Ferrer et al, 
2011; Shah et 

al, 2011; 
Chuang et al, 

2012) 
Haemoglobin-γ2 2 1,036 16,116 2 As above 

Galectin 1 2 378 14,706 2 

May regulate apoptosis, cell proliferation, 
and cell differentiation. Binds beta-

galactoside and a wide array of complex 
carbohydrates. Inhibits CD45 protein 

phosphatase activity and therefore the 
dephosphorylation of Lyn kinase. Strong 

inducer of T-cell apoptosis. 
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6.3. Discussion  

Dementia affects 35 million people worldwide and this figure is expected to rise 

to 65.7 million by 2030 (Sosa-Ortiz et al, 2012). New biomarkers are needed to 

help identify AD pathology in the early stages and to assess drug efficacy in 

clinical trials (Hampel et al, 2010). 

Increased oxidative stress has been observed in dementia, though its precise 

role in pathology is unknown.  Some oxidative stress pathways thought to play a 

role in either initiating or maintaining the damage seen in the brain are: (a) H2O2 

generation by amyloid-β plaques (Bush, 2003; Milton, 2004; Tabner et al, 2005), 

(b) reduced activity of SOD (Marcus et al, 1998; Omar et al, 1999; Esposito et 

al, 2006; Murakami et al, 2011), with increased O2 ˙¯  linked with AD (Guo et al, 

1999), (c) increased ˙NO production (stimulated by amyloid-β (Akama et al, 

1998)) and (d) Increased expression of MPO, which can lead to the generation 

of hypochlorous acid (Crawford et al, 2001; Green et al, 2004). Tyr-NO2 

generation has been reported in AD (Good et al, 1996; Hensley et al, 1998; 

Calabrese et al, 2006; Butterfield et al, 2007b), and the pathways activated 

above are all involved in its production, e.g. the increased O2˙¯ and ˙NO react 

to produce peroxynitrite and MPO catalyses nitration in the presence of NO2¯. 

The data collected from the ‘proof of concept’ mouse study suggests that a 

statistically significant difference in Tyr-NO2 levels can be observed when 

comparing WT and Tg mice (Figure 6.2). This suggests that the AD pathology 

exhibited in these animals leads to an increase in ROS and thus nitration. Other 

authors have reported increased oxidative damage in the brains of animal AD 

models (Smith et al, 1998; Pratico et al, 2001; Sultana et al, 2009).  

There was also a significant difference between the Tau35 model and the Tas-

TPM model (Figure 6.3), with Tau35 producing a higher median nitration. As 

detailed previously, these models produce different pathologies associated with 

AD. The Tau35 model has an expression of insoluble tau and Tas-TPM has 

amyloid pathology. This result needs to be investigated further with a larger n 

number but, it could be hypothesised that the tau pathology is the main 

contributor to increased oxidative stress, rather than amyloid plaques. Given 

that oxidative damage is implicated in AD pathology and can affect multiple 

cellular pathways this would be a very important difference, with implications as 
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to which model is the most relevant. There is evidence that in AD amyloid-β and 

tau interact to increase the others toxicity (Bloom, 2014). Amyloid-β is upstream 

of tau which then feeds back to amyloid-β, creating a toxic loop (Castillo-

Carranza et al, 2015). However, tau has a greater association with cognition 

and memory deficit and is increasingly being considered a more important 

target for AD therapy (Giacobini and Gold, 2013). Therefore, if increased 

oxidative/nitrative stress is associated with tau pathology, rather than amyloid-β 

aggregation, oxidative damage may be an important part of the neurotoxicity 

shown by tau and a target for treatment.  

When separating the samples by all factors, e.g. different models, transgenic, 

wildtype and brain region the number in each group becomes very small. 

However, as a preliminary study, it shows that nitration is detectable within the 

mouse brain for both the wild type and transgenic models.  

The pilot study, on human tissue, did not find a significant difference in nitration 

of frontal lobe brain samples when comparing AD with VaD or non-demented 

controls (Figure 6.6). This challenges the current consensus that AD patients 

are more prone to Tyr-NO2 formation in the brain (Good et al, 1996; Castegna 

et al, 2003; Butterfield et al, 2006a; Sultana et al, 2006; Butterfield et al, 2007b; 

Sultana et al, 2007; Reed et al, 2009). The results reported here also show a 

higher concentration of NO2¯ in the AD brain tissue (Figure 6.9) compared to 

non-demented controls (p<0.05). This contradicts DiCiero Miranda et al (2000), 

who found NOx to be decreased in the frontal cortex of the AD brain compared 

to non-demented age-matched controls. The NOx levels reported by DiCiero 

Miranda et al (2000) are 30.66 ± 3.10 (n = 5) and 56.85 ± 8.26 (n = 7) nmol/g 

tissue for AD and controls respectively. If it is assumed that each of the samples 

measured in our study were exactly 200mg/ml tissue (see homogenization 

protocol, section 6.1), then the levels observed in AD brain tissue were 4 times 

higher than found by DiCiero Miranda et al (2000): 135 nmol/g compared to 31 

nmol/g respectively. DiCiero Miranda et al (2000) used cadmium to reduce 

NO3¯ to NO2¯, followed by measurement using the Griess reagent. However, 

the study reported here used vanadium (III) chloride (at 95°C) to reduce the 

NO3¯, and ozone-based chemiluminescence for measurement. This difference 

in methodology could account for the vast difference in NO3¯ levels measured 

in brain tissue.  
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As both MPO and H2O2 have been shown to be increased in AD (Crawford et 

al, 2001; Bush, 2003; Green et al, 2004; Milton, 2004; Tabner et al, 2005) and 

MPO/H2O2/NO2¯ is a possible pathway for Tyr-NO2 formation (see Chapter 1, 

section 1.5) the increase of NO2¯, in AD, but not Tyr-NO2 would seem 

contradictory. However, there are a few possible explanations: (a) the increased 

MPO expression has not translated to an increase in MPO activity and/or (b) the 

MPO is being inactivated by high levels of H2O2 (Kettle et al, 1993; Olorunniji et 

al, 2009; Paumann-Page et al, 2013).  

Previous methods that have shown a difference in nitration between AD and 

controls groups (mild cognitive impairment  and no dementia) have used 

immunoblot or immunochemistry  to analyse Tyr-NO2 in the brain (Castegna et 

al, 2003; Butterfield et al, 2006a; Sultana et al, 2006; Butterfield et al, 2007b; 

Sultana et al, 2007; Reed et al, 2009). Immunochemistry is not quantitative in 

terms of overall nitration but does highlight tissue localization of Tyr-NO2, which 

may go some way towards explaining the differences in the literature and the 

results reported here.  

The brain region most commonly investigated is the hippocampus, whilst this 

region has shown high rates of atrophy in the early (pre-symptomatic) stages of 

AD (Scahill et al, 2002) other hallmarks such as amyloid deposits and 

neurofibrillary changes are not observed here until later stages (modest in stage 

3, numerous in stage 4) (Braak and Braak, 1991). The progression of AD 

through the brain has been shown to happen in a defined pattern, with different 

regions affected at different stages (Braak and Braak, 1991; Ohm et al, 1995; 

Scahill et al, 2002). Different levels of nitration have also been observed in 

different brain regions of AD patients, with the hippocampus showing very high 

levels (Hensley et al, 1998). Therefore, it may be that the nitrative burden was 

not significantly different between dementia and healthy aged brains within the 

frontal lobe but is within different regions, as shown in other studies.  

Some of the immunoblot studies used trichloroacetic acid (TCA) protein 

precipitation (Sultana et al, 2006; Sultana et al, 2007; Reed et al, 2009) which, 

in light of the increased NO2¯ we have observed in AD, risks increased artefact 

formation during sample preparation in AD (due to the possibility of nitration 

under acidic conditions in the presence of NO2¯) (Ohshima et al, 1990; 
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Shigenaga et al, 1997). A study using HPLC-electrochemical detection 

considered the effect this treatment may have during sample preparation and 

report that incubating tyrosine with NO2¯  and 6% TCA led to less than 0.01% 

Tyr-NO2 formation (Hensley et al, 1998). In vivo levels of serum protein nitration 

is thought to be around 0.01% (Radi, 2004), therefore this level of artefact 

formation in immunoblots (where up to 15% TCA was used) could have a large 

impact on the relative levels of Tyr-NO2 observed between groups. However, 

within this study, brain nitration levels are far higher than serum levels (Chapter 

3), so 0.01% artefact nitration would have a smaller impact on the results. 

Artificial nitration may also affect which proteins are observed to be nitrated, as 

different nitration methods have shown different protein selectivity (Souza et al, 

1999).  

As mentioned, the mouse study (section 6.2.1) found a significant difference in 

brain tissue nitration levels between wildtype mice and transgenic mouse 

models of AD (Figure 6.2). There was also a statistically significant difference in 

median brain tissue nitration when comparing the human and mouse samples 

(Figure 6.8), with the mouse brain showing a higher median Tyr-NO2 levels. 

This disagreement between the human and mouse studies may be due to 

species differences and/or due to the shorter delay in collecting and freezing the 

mouse samples. Protein degradation, for some proteins, will increase over time. 

Therefore, a sample with a long post-mortem interval (PMI) will have more 

degradation than a sample with a small PMI (Ferrer et al, 2008; ElHajj et al, 

2016). However, as results are adjusted for protein content this would only 

affect the results if nitrated proteins were preferentially degraded post-mortem. 

PMI has also been found to effect post-translational modification of proteins, 

though Ferrer et al (2008) found that nitration levels increased after 20 hours. If 

this effect were seen here then the human samples would have had higher 

levels of Tyr-NO2, than the mice, as the mean PMI in humans was 44 hours. 

Additionally, there was no correlation between Tyr-NO2 levels and PMI in the 

human brain tissue. 

Within the human study, western blotting revealed some bands that were 

consistently nitrated in brain tissue; this was also seen in the mouse western 

blots (Figure 6.5). The main Tyr-NO2 positive bands in the human tissue were 

approximately 15 kDa and 18 kDa in size (Figure 6.11). The mouse western 
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blots need to be run with a biotin blocking step, prior to primary antibody 

incubation, due to endogenous biotin. However, the absence of the low 

molecular weight bands, in the blot run without the anti-Tyr-NO2 antibody 

(Figure 6.5), suggests that they are truly nitrated in this tissue as well. When 

analysing the human tissue western blots the median signal ratio (Tyr-

NO2/actin) for the ~15 kDa band was slightly higher in the dementia groups but 

this did not reach significance (Kruskal-Wallis, p = 0.06). The ~18 kDa band had 

a similar median value between groups (Kruskal-Wallis, p= 0.41). 

Several nitrated proteins have been identified in AD by others, such as α-

enolase, triose phosphate isomerase, ATP synthase,  voltage-dependent anion 

channel protein 1 and β-actin (Butterfield et al, 2011).  Here mass spectrometry 

was used to identify the proteins within a selection of human Tyr-NO2 positive 

bands, including the two bands discussed above (Figure 6.12). Due to the 

crude nature of the sample, numerous proteins were identified within each 

band. The data was therefore organised by the emPAI score (score of 

abundance) and the data of the top ten assessed. 

As can be seen from Table 6.2E/G the most abundant protein for bands E and 

G (Figure 6.12 ~15 kDa band, AD and control) was haemoglobin, with multiple 

subunits listed. The haemoglobin (Hb) subunits contain 3 Tyr residues each, are 

the right molecular weight for the band and had high ion scores. Hb has been 

shown to be nitrated by the H2O2/ NO2¯ pathway (Chen et al, 2008) and is 

thought to be a good indicator of overwhelmed anti-oxidant defences in 

erythrocytes (Xiang et al, 2013). α and β neuronal Hb chains have been found 

to be expressed in mouse, rat, and human brain tissue, the functions of this 

neuronal Hb are unknown but its expression is lowered in neurodegenerative 

diseases such as AD (Ferrer et al, 2011). Additionally, both anaemia and 

clinically high levels of Hb have been associated with increased risk of AD and 

cognitive decline in older populations (Shah et al, 2011). Hb has also been 

shown to bind to amyloid-β peptide (Chuang et al, 2012), a site of H2O2 

production (Bush, 2003; Milton, 2004; Tabner et al, 2005). As altered Hb has 

been associated with AD, can be nitrated and is an abundant protein in the 

band, it would suggest that the signal in the western blot is from nitrated Hb. 

However, this makes the assumption that the most abundant protein is the 
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protein that is nitrated when it could be a low abundance protein that is highly 

nitrated. 

If it is Hb that has been nitrated this opens up the possibility that this could be 

measured as a peripheral marker, i.e. in erythrocytes. This has the advantage 

of being a sample that is not only available prior to death but readily available 

through routine practice, where any differences could potentially be used as a 

tool for prognosis, or monitoring disease progression. There has been 

contradictory data regarding the oxidant/antioxidant balance in erythrocytes 

from AD patients, with studies reporting: decreased activity for copper 

containing SOD (Snaedal et al, 1998), increased activity of glutathione 

peroxidase (Annerén et al, 1986) and no differences in activity for copper-zinc 

SOD, seleno-dependent glutathione peroxidase or glutathione reductase 

(Ceballos-Picot et al, 1996), when comparing AD to non-demented controls. 

Delibas et al (2002) measured erythrocyte antioxidant enzyme levels in the 

same dementia patients (described as dementia of the Alzheimer type) 5 years 

apart and found that copper-zinc SOD levels increased and glutathione 

peroxidase levels decreased, they also reported a significant negative 

correlation between erythrocyte malondialdehyde (a measure of lipid 

peroxidation) and a mental state examination. Although contradictory these 

studies suggest that an oxidative imbalance can occur in the erythrocytes of AD 

patients and that therefore Tyr-NO2 may be present, and measurable, in these 

cells. 

Actin was used as a loading control for the western blotting, the main actin band 

is at 45 kDa (expected weight). However, faint staining for actin is also 

observed under the 35 kDa and 15 kDa markers. Cleavage of actin by caspase 

1 is known to produce 31 and 15 kDa fragments, and this cleavage has been 

linked to apoptosis (Mashima et al, 1999). Therefore, the proportion of actin 

cleavage was calculated for each human sample to see if there was a 

difference in cleavage/apoptosis between groups. No significant difference in 

actin cleavage was observed between the groups (Kruskal-Wallis p=0.74).  

A limitation to this study is the use of a single time point, rather than measuring 

nitrative stress over the course of the disease. This is impossible in humans due 

to the use of post-mortem tissue but mouse models can be studied from a time 
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point prior to disease manifestation right through to the advanced stages. 

Additionally, the measurement of other oxidative stress markers, such as 

carbonyls, in combination with Tyr-NO2, nitrite and nitrate would have given a 

more complete picture of oxidative damage occurring in dementia.  

6.4. Conclusion 

Mouse models give insight into underlying pathology during disease 

progression and the testing of potential therapeutic strategies. Identifying a 

marker of oxidative stress that is increased in the transgenic mice, compared to 

wild-type, would allow more information of the disease process to be collected 

and antioxidant drug efficacy to be assessed. 

Although the human study did not show any difference in nitration between the 

three groups (AD, VaD, and no dementia) the fact that particular proteins are 

responsible for the majority of the nitration seen leads us to believe that further 

investigation into what these proteins are, and how they are affected by nitration 

would be worthwhile. Mass spectrometry analysis suggests that one of these 

proteins is Hb. It would be of particular interest if Hb were the nitrated protein 

seen at ~15 kDa, as nitration of Hb in the blood could be measured at different 

stages of AD, in the same person, via a routine blood test. Interestingly there is 

a small amount of evidence that this protein is nitrated in mouse models of AD 

too and could therefore be a marker in animal studies as well. Currently, 

nitration differences in humans with AD have only be measured in brain tissue 

collected post-mortem and in cerebrospinal fluid, a difficult sample to obtain 

(Tohgi et al, 1999). Dildar et al (2010) measured plasma nitration and found no 

difference between AD, VaD, and no dementia. However, it could be that the 

protein of interest had been removed from the blood during sample preparation 

(i.e. the Hb in the erythrocytes). Further work could involve adaption of the 

sandwich ELISA so that the capture Ab binds Hb and the detection Ab binds to 

Tyr-NO2 within the Hb. This would allow for the measurement of nitrated Hb only 

(rather than total) and show if there are any quantitative differences in nitration 

between sample sets, something that cannot be done accurately with a western 

blot. 

As well as identifying the nitrated proteins, future study should determine 

whether, when looking at different brain regions, a difference between AD and 
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non-demented controls does become apparent when quantifying overall Tyr-

NO2 levels by ELISA in humans. 
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Chapter 7  

General Discussion and Future Work 

Oxidative/nitrative stress has been studied in many diseases and it is becoming 

increasingly evident that ROS/RNS mediated damage plays a role in the 

pathology of many, diverse conditions e.g. cardiovascular disease (Shishehbor 

et al, 2003; Eleuteri et al, 2009), neurodegenerative disease (Beal et al, 1997; 

Butterfield et al, 2007a) and dysfunctional immune responses, i.e. autoimmunity 

(Khan et al, 2006; Eggleton et al, 2008) and sepsis (Fukuyama et al, 1997; 

Ohya et al, 2002). Despite many years of research, the accurate measurement 

of oxidative stress is still an area in need of analytical improvement, with many 

markers being non-specific or requiring expensive/time-consuming techniques, 

such as mass spectrometry, for accurate measurement (Frijhoff et al, 2015). 

More clinical studies, such as randomised drug trials or prospective studies, are 

also needed to be able to assess the sensitivity and specificity of oxidative 

stress biomarkers (Frijhoff et al, 2015).  

RNS such as ˙NO and ONOO¯ are upregulated during inflammation and 

damaging levels have been associated with inflammatory diseases (e.g. 

sepsis), chronic diseases with an inflammatory component (e.g. Alzheimer’s 

disease) and tissue insult (e.g. surgery). Tyr-NO2 is becoming an increasingly 

popular marker of RNS production but accurate and valid measurement has 

faced several methodological issues (Herce-Pagliai et al, 1998; Duncan, 2003). 

The gold standard of measurement for Tyr-NO2 is mass spectrometry but this is 

low-throughput and expensive. Commercial ELISAs are available but they have 

low sensitivity, limiting their usefulness when applied to diseased human 

plasma samples. Within this project, a new sensitive ELISA for Tyr-NO2 

measurement was developed. ˙NO production is also measured as a marker of 

nitrative stress, this is often done by measuring its metabolites, NO2¯ and NO3¯. 

Measurement of NO2¯ and NO3¯ is frequently performed using the Griess 

reaction. However, the more sensitive highly validated method of ozone-based 

chemiluminescence was utilised here. 

Within in this project, the aims have been to measure nitrative stress in samples 

with varying inflammatory conditions and to assess the clinical utility of Tyr-NO2. 

A Tyr-NO2 ELISA was developed, based on an electrochemiluminescence 
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(ECL) platform, ECL uses an electrically stimulated chemical reaction to 

produce light and this is then measured. This platform improves the sensitivity 

of the assay, when compared to colorimetric platforms, due to a decreased 

background (Figure 3.2). An ELISA method offers high throughput and requires 

little sample preparation but is semi-quantitative. The method developed within 

this project provided an assay with high sensitivity (LLOQ 0.04 nM BSA-NO2) 

and high reproducibility within and between runs (intra-assay CV 6.5% and 

inter-assay CV 14%). Additionally, the relative nitration of three BSA samples 

(non-modified, nitrated and dithionite treated) was measured by mass 

spectrometry and supported the ELISA results.   

The assay was applied for the measurement of Tyr-NO2 in serum samples from 

patients pre- and post-surgery. The surgery was viewed as an instigator of an 

acute inflammatory response, and this was confirmed by serum CRP 

measurements. Following the surgery/initiation of inflammation a significant 

increase in Tyr-NO2 levels was observed (median (IQR): 0.59 (0 – 1.3) and 0.97 

(0 – 1.7) Tyr-NO2 fmol BSA-NO2 equiv./mg protein for pre- and post-surgery 

respectively). These results are in keeping with the production of ROS during 

inflammation and confirm the assay’s sensitivity, as many of these samples 

were below the LOD of commercial ELISAs for Tyr-NO2 measurement. The 

assay was also successfully applied for the measurement of Tyr-NO2 in blood 

cell lysates. The intracellular levels of Tyr-NO2 were far higher than the 

extracellular serum levels, with the highest levels being found in the cell line 

U937: median Tyr-NO2 levels – serum 0.59, erythrocytes 11.18, mononuclear 

cells 742.96 and U937 cells 3160 fmol BSA-NO2 equivalents/mg protein.  

Our research group has previously performed extensive studies on NO3¯ rich 

supplementation, due to its potential beneficial physiological effects that are 

thought to be a result of the reduction of NO3¯ to ˙NO (Duncan et al, 1995; 

Gilchrist et al, 2010; Jones, 2014). Based on the fact that NO3¯ can be reduced 

to NO2¯ and ˙NO in vivo (Duncan et al (1995); Figure 4.1) we were interested 

in whether increased dietary intake of NO3¯ led to nitration of proteins (i.e. Tyr-

NO2 formation), in the saliva or in plasma. This was studied with a focus on 

smokers, as inflammatory reactions have been shown to be stimulated by 

cigarette smoking, e.g. elevated serum MPO has been observed in smokers 

compared to non-smokers (Martins et al, 2013). Nitration of proteins can affect 
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their function, and oxidative post-translational modifications of proteins can 

create neo-epitopes that have been linked to autoimmune reactions (Ryan et al, 

2014). 

Both plasma and saliva, from healthy individuals, were measured for nitrated 

protein, NO2¯, and NO3¯. Following the NO3¯-rich supplementation both plasma 

and saliva NO2¯ and NO3¯ levels increased significantly (Figure 4.5 and Figure 

4.8). Plasma showed very low levels of Tyr-NO2 (often near the LLOQ) 

regardless of whether the participant was a non-smoker or smoker, or taking 

NO3¯-rich supplementation (non-smokers and smokers after NO3¯-rich 

supplementation: median (IQR) 0.97 (0.57 – 1.92) and 1.13 (0.69 – 2.23) Tyr-

NO2 fmol BSA equiv./mg protein respectively, Figure 4.3). However, saliva 

showed 1000-fold higher levels of nitrated protein compared to the plasma and, 

interestingly, salivary Tyr-NO2 levels were decreased with NO3¯-rich 

supplementation: median (IQR) before and after supplementation: 0.67 (0.31 – 

1.14) and 0.42 (0.10 – 0.59) Tyr-NO2 pmol BSA equiv./mg protein respectively, 

non-smokers and smokers combined. One possible explanation is ˙NO 

production in excess of O2˙ ¯ (so it is not all used in ONOO¯ formation). 

Salivary ˙NO was previously shown to have anti-microbial activity (De Groote 

and Fang, 1995; Duncan et al, 1995) which would lead to less inflammation and 

therefore less MPO activity and O2˙¯ formation, resulting in decreased Tyr-NO2 

formation.  

Future work should investigate whether, following NO3¯-rich supplementation, 

decreased salivary Tyr-NO2 levels did correlate with decreased salivary 

inflammatory markers, such as IL1-β. 

Sepsis is a dysregulated immune response to infection involving pro- and anti-

inflammatory components, e.g. increased levels of circulating pro-inflammatory 

cytokines and reduced lymphocyte numbers (Adib-Conquy and Cavaillon, 

2008). Tyr-NO2 was previously measured in septic shock (Fukuyama et al, 

1997; Ohya et al, 2002), with results suggesting that Tyr-NO2 could have a 

prognostic value (Ohya et al, 2002). To investigate whether increased Tyr-NO2 

levels are seen prior to diagnosis a time course of serum samples was 

collected, from a cohort of patients with and without postoperative sepsis, with 

samples being collected one day before surgery and every day subsequently 
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until diagnosis. At one day prior to diagnosis, the levels of Tyr-NO2 were 

significantly higher in the sepsis group compared to the group which did not 

develop sepsis (controls); the median values were 4.5 and 1.2 fmol BSA-NO2 

equiv./mg protein respectively (Figure 5.4). As far as we are aware, this is the 

first time Tyr-NO2 has been measured prior to a clinical diagnosis of sepsis and 

demonstrates that elevated oxidative/nitrative stress can already be observed at 

this time point when compared to non-septic controls.  

The diagnostic potential of serum Tyr-NO2 was also assessed. When compared 

to serum CRP concentrations, an established marker of inflammation, the Tyr-

NO2 was not as sensitive at differentiating patients who would develop sepsis 

from those who would not (as determined by ROC analysis). Tyr-NO2 levels did 

not show a statistically significant correlation with CRP concentrations. 

Furthermore, when the markers were combined, there was no additive effect on 

specificity and sensitivity (net reclassification index –0.2).  

Sepsis is a highly heterogeneous disease and future work, on a larger number 

of samples, would allow for stratification of samples into groups based on 

factors such as the type of surgery being undertaken or patient outcome. This 

approach has been put forward to improve sepsis definition, with the PIRO 

(Predisposition, Infection, Response and Organ dysfunction) staging model 

suggested as a means of creating more informative groupings (Vincent et al, 

2009; Howell et al, 2011; Granja et al, 2013).This refined grouping would 

provide information on which individuals experience the highest levels of 

oxidative stress. The relationship, if any, between Tyr-NO2 levels prior to 

diagnosis and prognosis should also be assessed.  

Oxidative stress has been implicated in Alzheimer’s disease (AD) pathology and 

Tyr-NO2 has been observed in brain tissue (Castegna et al, 2003; Butterfield et 

al, 2007b; Sultana et al, 2007). We measured Tyr-NO2 in mouse brain tissue 

homogenates and observed that transgenic mouse models of AD had higher 

median values than wildtype mice: median (IQR) 1.36 (1.07 – 1.97) and 1.04 

(0.72 – 1.53) Tyr-NO2 pmol BSA equiv./mg protein respectively.  

We also investigated nitrative stress in human brain tissue homogenates, of 

patients with dementia, compared to age-matched control individuals without 

dementia. Mean NO2¯ levels in the brain tissue were significantly higher in the 
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AD brain compared to the controls (AD and non-demented: 0.12 ± 0.05 and 

0.09 ± 0.03 nmol/mg protein respectively). This suggests an increase in ˙NO 

formation. However, contradictory to published studies (Castegna et al, 2003; 

Butterfield et al, 2007b; Sultana et al, 2007), the data reported here showed no 

difference in total nitration between AD and controls (Figure 6.6). This could be 

due to methodological differences; here a semi-quantitative ELISA was used 

when many investigators have reported differences based on 

immunohistochemistry. The type and range of brain regions investigated could 

also impact on the results achieved by different groups as Hensley et al (1998) 

has shown oxidative damage to vary between different brain regions, for 

example the hippocampus has higher levels than other brain regions. In the 

study reported in this thesis, the levels of nitrated protein in the brain tissue 

were far higher than seen in serum from patients with sepsis, suggesting that 

nitrative modification is at its greatest in tissue rather than in circulation. 

Western blotting of the human brain tissue revealed that much of the nitration 

was in a band at approximately 15 kDa (as well as in a band at approximately 

18 kDa). Mass spectrometry analysis of the bands revealed that haemoglobin 

subunits were abundant within the ~15kDa band (Table 6.2).  

Future work, utilising mass spectrometry, should confirm that the haemoglobin 

within the western blot band is nitrated. If it is, then a further study, using the 

ECL ELISA, would look at red blood cell Tyr-NO2 levels. A blood biomarker of 

oxidative stress in AD would be of huge benefit to the field as (a) it could allow 

monitoring of the disease/treatment efficacy and (b) it could aid diagnosis as, 

currently, a definitive diagnosis can only be obtained upon post-mortem 

examination.  

During this project nitrative stress was measured in multiple sample types, in 

health and disease, using ozone-based chemiluminescence and a new ECL 

assay. These methods were selected for a more robust and validated approach 

to measuring nitrative stress as this field of study has been hindered by 

methodological problems. Further improvements to the Tyr-NO2 ECL assay are 

envisioned. In particular, the generation of a fully quantified standard. The 

current standard is a commercial preparation of nitrated BSA (BSA-NO2). The 

number of nitrated residues on each molecule of BSA is unknown. Therefore, 

results cannot be quantified in terms of the absolute Tyr-NO2 concentration. 
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Instead, the results are displayed as an equivalence to the BSA-NO2 

concentration. While there are further modifications and improvements that can 

be made to the assay, this ‘version 1.0’ has still proven to be useful in 

comparing sample sets and highlighting future directions of study.  For example, 

this project has shown that Tyr-NO2 is increased prior to a diagnosis of post-

surgery sepsis. A further study, with patients staged using the PIRO model, 

would determine if this could be an additional marker of diagnosis/prognosis in 

certain patient populations. Analysis of brain tissue nitration contradicted the 

published literature but, when combined with the blood cell lysate analysis, 

highlighted that the study of intracellular (e.g. blood cells) Tyr-NO2 levels may 

be an overlooked area of research.  

Another important consideration is whether oxidative stress should be 

measured in a ‘broader’ way, i.e. measuring a panel of oxidative stress markers 

in combination rather than just one or two. This approach, whilst time 

consuming and more expensive, would allow for a more complete overview of 

what is happening in different diseases, as different oxidative 

stress/inflammatory pathways will be activated to varying levels and analysing 

just one marker may miss crucial information.  
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Appendix 1  
No post-surgery sepsis group 
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Large bowel resection
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Large bowel resection
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Radical cystectomy
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Large bowel resection

(low anterior resection)
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Large bowel resection
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Oesophagectomy

0 1 2 3 4 5 6 7
0.1

1

10

100

Day

T
y
r-

N
O

2

 (
fm

o
l 
B

S
A

-N
O

2
 e

q
u

iv
./

m
g

 p
ro

te
in

)

Abdominal aortic aneurysm repair
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Abdominal aortic aneurysm repair
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Abdominoperineal resection, hysterectomy, oopheretomy,

resection of nodal mass
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Cholecystectomy
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Post-surgery sepsis 
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Lung resection
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Biliary procedure
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Lung resection
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Oesophago-gastrectomy
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Cystectomy & reconstruction
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Abdominoperineal excision of rectum & end colostomy
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Abdominal aortic aneurysm repair
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Small bowel resection

0 1 2 3 4 5 6 7
0.1

1

10

100

Day

T
y
r-

N
O

2

 (
fm

o
l 
B

S
A

-N
O

2
 e

q
u

iv
./
m

g
 p

ro
te

in
)

Large bowel resection

0 1 2 3 4 5 6 7
0.1

1

10

100

Day

T
y
r-

N
O

2

 (
fm

o
l 
B

S
A

-N
O

2
 e

q
u

iv
./
m

g
 p

ro
te

in
)

Abdominal aortic aneurysm repair
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Liver surgery
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