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Abstract A new hybrid optimizer, called genetically adaptive leaping algorithm for approximation and
diversity (GALAXY), is proposed for dealing with the discrete, combinatorial, multiobjective design of Water
Distribution Systems (WDSs), which is NP-hard and computationally intensive. The merit of GALAXY is its
ability to alleviate to a great extent the parameterization issue and the high computational overhead. It
follows the generational framework of Multiobjective Evolutionary Algorithms (MOEAs) and includes six
search operators and several important strategies. These operators are selected based on their leaping
ability in the objective space from the global and local search perspectives. These strategies steer the
optimization and balance the exploration and exploitation aspects simultaneously. A highlighted feature of
GALAXY lies in the fact that it eliminates majority of parameters, thus being robust and easy-to-use. The
comparative studies between GALAXY and three representative MOEAs on five benchmark WDS design
problems confirm its competitiveness. GALAXY can identify better converged and distributed boundary
solutions efficiently and consistently, indicating a much more balanced capability between the global and
local search. Moreover, its advantages over other MOEAs become more substantial as the complexity of the
design problem increases.

1. Introduction

Water Distribution Systems (WDSs) are one of the essential city infrastructure systems. They convey potable
water through a network of pipes (and other elements) from treatment plants to households, commercial,
and industrial users. Ideally, water is to be supplied continuously, at adequate pressure and flow, while satis-
fying microbial and chemical quality standards. Water Distribution Systems are designed not only to meet
peak demands in the future, but also to ensure efficient operation over short time periods (e.g., a day or a
week). A new WDS, especially if it consists of a large network of elements, normally requires substantial
financial investment. Therefore, it is necessary to perform capital and operational cost analyses and consider
a number of candidate solutions to determine the best overall solution to implement.

Historically, the design of WDSs relied mainly on engineers’ knowledge and experience to meet all require-
ments. However, apart from trivial problems, this is not sufficient to cope with designing large and complex
networks, especially for cities undergoing rapid urbanization. A number of optimization algorithms, such as
linear and nonlinear programming, were initially used to address this problem [Alperovits and Shamir, 1977;
Kim et al.,, 1994; Schaake and Lai, 1969]. This was followed by heuristic methods, such as Evolutionary Algo-
rithms (EAs), including the most commonly used Genetic Algorithms (GAs), Particle Swarm Optimization
(PSO), and Differential Evolution (DE), to name a few [Simpson et al., 1994; Suribabu and Neelakantan, 2006;
Zheng et al.,, 2014a]. The interest in optimization has been complemented by the developments in network
modeling, which is used to check that the WDS is or will be operating to the required standard. A freely
available modeling tool EPANET [Rossman, 2000], which is the basis of a number of commercially available
software, is regarded as an “industry standard” by the worldwide water community.

Applying optimization, especially EAs to solve the optimal design of WDSs requires hydraulic simulations to
predict WDS behavior, which is normally done via EPANET Programmer’s Toolkit [Farmani et al., 2005; Fu
et al., 2012]. Different problem formulations have been presented to optimize WDS design. For example, the
least cost design of WDS was a dominating formulation used by the initial adopters by focusing on the min-
imization of capital costs. However, this was later criticized mainly due to least cost solutions failing to
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capture all decision makers’ concerns and other performance criteria for the assessment of WDSs
[Engelhardt et al., 2000; Walski, 2001]. This was followed by the introduction of multiobjective formulations,
which have received more attention in recent years. Consequently, this trend has stimulated the use of
Multiobjective Evolutionary Algorithms (MOEAs) for the design of WDSs, such as the elitist nondominated
sorting genetic algorithm Il (NSGA-II) [Deb et al., 2002].

However, the main criticisms of these MOEAs related to the robustness, accuracy and parameterization
issues [Hadka and Reed, 2012; Kollat and Reed, 2006]. That is, they usually require a large number of function
evaluations and multiple runs to find near-optimal solutions. Additionally, individual parameters of these
algorithms should be fine-tuned, which is generally based on rules of thumb and/or trial-and-error
approaches, thus being computationally expensive for large and/or complex design problems.

Recently, several hybrid algorithms have been proposed in order to improve the effectiveness and efficien-
cy of EAs or MOEAs by combining different algorithms and/or strategies into a unified framework. The ideas
of hybridization for the WDS design problems can be generally divided into three categories: (i) those using
different techniques to provide a good initial population (rather than randomly generated), such as the
heuristic-based, local representative cellular automata approach [Keedwell and Khu, 2005] and the graph
decomposition based approach [Zheng et al., 2014b]; (ii) those combining various EAs, MOEAs or local
search methods during the evolutionary process; such as the Borg MOEA [Wang et al., 2015] and the hybrid
Pareto archived dynamically dimensioned search method [Asadzadeh and Tolson, 2012] (iii) those imple-
menting the search space simplification (or reduction) before optimization, such as the dual-stage multiob-
jective optimization method [Zheng and Zecchin, 2014].

The comparative studies [Asadzadeh and Tolson, 2012; Hadka and Reed, 2013; Raad et al,, 2011; Reed et al., 2013;
Zheng et al, 2014a, 2014b; Zheng and Zecchin, 2014] have shown that they can outperform the mainstream
MOEAs on various test functions and benchmark problems in different fields. Following on from these works, this
paper presents a new hybrid algorithm termed genetically adaptive leaping algorithm for approximation and
diversity (GALAXY), and compares its performance in solving the multiobjective WDS design problems with three
well-known MOEAs from the literature, including the recently proposed Borg MOEA [Hadka and Reed, 2013].

The remainder of this paper is organized as follows. First, the multiobjective design of a WDS is formulated.
Then, the GALAXY method is described in detail followed by a brief introduction to the representative
MOEAs. Next, the benchmark problems used in this paper are given, and the experiments are set up. After
comparing the results obtained from each algorithm, conclusions are drawn at the end.

2. Multiobjective Design of WDSs

Real-world applications of optimal WDS design often involve diverse criteria (e.g., cost, reliability, water
quality), which are normally in conflict with each other. Thus, design is intrinsically multiobjective [Fu et al.,
2013]. However, many previous studies focused on the two-objective optimal design of WDSs, considering
the minimization of the total costs and maximization of system benefits [Farmani et al., 2005; Ostfeld et al.,
2014; Raad et al., 2009, 2011]. Given the focus on optimization methods’ comparison analysis conducted
here (rather than formulating new WDS design approach), the two-objective approach was adopted.

In this paper, the total costs only include the initial capital expenditure for pipes (e.g., purchase, transporta-
tion, and installation) since they account for the major part of investment. The system benefit is assessed by
a surrogate measure of network reliability, also known as network resilience (denoted as /,,), which takes
both the nodal surplus head and the uniformity of pipes connected to that node into account [Prasad and
Park, 2004]. Resilience I, has shown to be a suitable indicator compared to its alternatives [Raad et al.,
2010]. The mathematical formulations of the objective functions are shown in equations (1-3):

np
minimize Cost= Z Uc (D) XL; (1)
i=1

X5 U ("’j‘erq>
(S0, Qe+ S8 ) = S, QH

maximize [,=

where
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noj .
i=1 Dj

- npjxmax {D; } ®)

j
and U, is the unit pipe cost as a function of its diameter D;; L; is the length of pipe i; I, is the network resil-
ience; nn is the number of demand nodes; U, Q; H;, and H;* are the uniformity, demand, actual head, and
minimum head of node j, respectively; nr is the number of reservoirs; Q, and Hy are the discharge and actual
head at reservoir k; npu is the number of pumps; P; is the power of pump i; y is the specific weight of water;
npj is the number of pipes connected to node j; and D; is the diameter of pipe i connected to node .

Discrete pipe diameters are decision variables, which are expressed via the diameter option indices to facili-
tate the coding scheme. In other words, a candidate design solution is a vector of integer values, which
range from one up to the number of commercially available sizes. Therefore, the decision variables are of
consecutive integer type, leading to the integer coding scheme as a natural choice.

The constraints for the two-objective WDS design problem can be explicit or implicit. The former are consid-
ered as soft constraints, i.e., can be violated during the search process. They normally relate to the hydraulic
performance of a network. Nodal pressures at demand nodes and flow velocities in pipes are considered as
soft constraints in this work + [Reca et al., 2008]. The latter are the hard constraints that must be satisfied
during optimization. They require solving conservation of mass and energy to determine the network’s
pressure heads, and are automatically satisfied by using the EPANET hydraulic solver.

3. Hybrid Algorithm: GALAXY

The majority of modern MOEAs were created following the principles of Darwinian evolution, i.e., the surviv-
al of the fittest and adaptation to the environment. Padhye et al. [2013] presented a unified approach to EAs
in the context of real-parameter optimization of unimodal problems, called Evolutionary Optimization Sys-
tem (EOS). The EOS includes four key steps, which are Initialization, Selection, Generation, and Replacement.
First, an initial population is randomly generated. The solutions are then evaluated using the objective func-
tions. Second, the parents are selected from the population and offspring are produced. Then, the fitness of
the offspring is evaluated using the objective functions. If some of them dominate the members of the cur-
rent population, the dominated individuals are replaced by these offspring. This procedure is implemented
repeatedly until a certain stopping criterion is satisfied. The EOS framework is also suitable for MOEAs, but
the Selection step needs to adapt to the multiobjective perspective.

3.1. Pseudocode of GALAXY

In theory, it is possible to propose a hybrid algorithm by altering any or all of the key EOS steps. However,
the current version of GALAXY implements hybridization only at the Generation and Replacement steps
because they play a key role in the evolutionary process. The pseudocode for GALAXY is illustrated in Figure
1 and the development of main components is explained in following subsections. It is also worth noting
that GALAXY is not just an optimization method but more of a framework as it provides basic structure for
creation of other hybrid algorithms.

3.2. Search Operators of GALAXY

Typically, an MOEA intrinsically balances two aspects of EA optimization, which are known as exploration
and exploitation [Blum and Roli, 2003]. The former is aimed at searching the space globally in order to iden-
tify the near-optimal regions. In contrast, the latter attempts to conduct a fine-grained local search in order
to improve the quality of current solutions. As such, an ideal process (see Figure 2a) would first focus the
search on the exploration aspect; then it would gradually switch from exploration to exploitation to locate
the global optimum. In addition, it is important to realize that these two aspects are mainly achieved at the
level of search operators. To design a powerful hybrid algorithm, several questions naturally arise, such as:
what kinds of operators should be selected and what criteria are used for selecting search operators?

To address the first question, a diverse selection of operators is preferred because it is likely that a single
operator cannot be both effective and efficient for a wide range of applications. Therefore, a combined use
of different operators should perform better on a variety of problems. Hence, an “optimized” portfolio of
these operators is expected to facilitate search and yield satisfactory outcome. However, the answer to the
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GALAXY Method
Inputs: population size (N), number of function evaluations (NFEs)
Outputs: Pareto approximation set (4S), Pareto approximation front (4F)

Initialization:
Generate the initial population of N individuals randomly in the specified variable domains.

Initialise the quotas* of six search operators equally such that (ijl N,=N).

Evaluation:
Evaluate the objective function values of the initial population (by using hydraulic
simulations).
Rank the population using the non-dominated sorting procedure [Deb et al., 2002].
Update the current number of function evaluations (i.e., set / = N).
‘While / <= NFEs
Selection:
Choose all the members in the current population for the Generation step.
Generation:
ForJ=1t06
Produce N candidate solutions from the current population using operator J.
Select N, offspring randomly from candidate solutions and save them to the offspring
set.
End
Check whether the solutions in the offspring set are within the specified variable ranges.
Evaluation:
Evaluate the objective function values of the solutions in the offspring set.
Replacement:
Combine the current population and the offspring set as an intermediate population of size
2N.
Implement the duplicates handling strategy.
Rank the intermediate population using the non-dominated sorting procedure.
If the number of individuals in the top rank <= N
Implement the normal replacement via the crowded-comparison operator [Deb et al.,
2002].
Else
Implement the e-replacement strategy.
End
Form the next population of size N.
Update the quotas* of search operators according to their contributions to the next
population.
Update the current number of function evaluations (i.e., set / =7+ N).
End
Set the current population as 45S.
Set the objective function values of the current population as AF.

Note: *A quota of a search operator refers to the number of offspring it is allowed to produce for
the next generation.

Figure 1. Pseudocode of GALAXY.

second question is not trivial and normally requires a trial-and-error approach to determine the criteria for
selecting operators.

Vrugt and Robinson [2007] proposed an advanced hybrid algorithm, known as AMALGAM, and four search
operators were involved including GA, PSO, DE, and Adaptive Metropolis search. These operators them-
selves have been found to be effective and efficient on a wide range of applications. However, when deal-
ing with discrete combinatorial optimization problems, their capabilities cannot be guaranteed. For
example, Wang et al. [2014] found that AMALGAM was occasionally performing worse than NSGA-Il because
not all operators worked well when dealing with discrete variables. This is, however, expected as solving a
discrete combinatorial optimization problem is quite different from solving a continuous, real-valued
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Exploitation

Effectiveness

Exploration

Search Process

(a) An ideal search process (b) Schematic of the ‘leaping’ ability

Figure 2. Main concerns of selecting search operators.

problem. In particular, the values of decision variables are restricted to integers, thus the fractional part of
decision variable values are omitted during the evaluation of objective functions. In other words, these
algorithms have to explore solutions at a limited interval (at least equal to 1) in the search landscape. There-
fore, their behaviour is not as ‘smooth’ as that in solving continuous problems, and appears to be “leaping”
in both the objective and the decision variable spaces.

Consequently, when developing a hybrid algorithm to discrete problems, it is of great importance to employ
search operators that are good at “leaping” in the global or local sense. Figure 2b illustrates this “leaping” con-
cept in more details. The black solid circles denote the targeted solutions in the Pareto-optimal front (PF);
whereas the gray solid circles denote the solutions obtained in the Pareto approximation fronts. The light
gray circles represent the solutions obtained by the operator with good ‘leaping’ ability in the local sense; in
contrast, the dark gray circles are the solutions obtained by the operator with good “leaping” ability in the
global sense. The approximation front identified at generation t is annotated as AF,. It can be seen that solu-
tions identified by the operator good at global search (exploration) move rapidly toward the boundary solu-
tions in the PF. While solutions found by the operator good at local search (exploitation) approach slowly to
the solutions in the PF. As such, a combined use of search operators which are good at exploration and exploi-
tation is anticipated to drive the hybrid algorithm toward the PF quickly and consistently. To this end, up to
six search operators are deployed in GALAXY according to their “leaping” ability in the search space.

There exist many search operators with different features dedicated for solving continuous problems in the
literature. Each may require a number of parameters to be set before use. When adapting those to discrete
problems, it should be born in mind that if the individual parameters are retained in the hybrid framework
they may impose severe parameterization problems. Therefore, to keep the number of parameters to the
minimum possible level, only the most effective elements of these operators are identified and imple-
mented in GALAXY. This is achieved by solving a variety of benchmark WDS design problems using each
operator alone and monitoring its performance in both visual and statistical ways.

3.2.1. Turbulence Factor (TF)

The turbulence factor was previously used in PSO within AMALGAM. It samples a uniformly distributed ran-
dom vector on the interval between [—1,1] and perturbs each decision variable (see equation (4)). By apply-
ing this operator, each decision variable will be increased or decreased with equal chance. Although the TF
is very simple and has no parameter to tune, it is found to be highly efficient thus enabling a superfast glob-
al search at the initial stage of optimization.

X 1= |Xi+Rr @ X! 4)

where X! is a vector of decision variables at generation t. Ry is a random vector whose each element is uniformly
sampled between [—1,1]. ® is a vector based product. | *] is an operator that rounds down to the nearest integer.
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3.2.2. Differential Evolution (DE)

DE is a popular stochastic algorithm because of its simplicity yet efficiency [Storn and Price, 19971. It itera-
tively improves a candidate solution by using weighted differences between other randomly sampled solu-
tion vectors. DE has been proven elsewhere to exhibit rotationally invariant nature, which means that it can
cope with the strong interdependencies among decision variables. Equation (5) shows a basic form of DE
where three randomly selected solutions are used for illustration. Note that K and F were originally uniform-
ly generated numbers between (0.2, 0.6) and (0.6, 1.0), respectively, which encompassed the recommended
values (i.e, K=0.4 and F = 0.8), as reported by lorio and Li [2004]. Herein, K and F are eliminated (made
equal to 1) in order to satisfy the integer coding scheme

Xt =X (X X)) +F (0 X) ©

where X?, X°, and X¢ are three randomly selected individuals from current population, and they must be dif-
ferent from each other and from X..

3.2.3. Simulated Binary Crossover for Integers (SBXI) and Uniform Mutation (UM)

In NSGA-II, Simulated Binary Crossover (SBX) and Polynomial Mutation (PM) play a major role in the reproduction
of population. They were originally developed for solving continuous problems, and the spread of children from
their parents is determined by an exponential function. Distribution of density for this function is controlled by
an index for SBX and PM, respectively. However, it was observed in the trial runs that SBX and PM did not work
well in the discrete search space. Hence, SBXI and UM are proposed to replace them and fit in the GALAXY meth-
od and the integer coding scheme. Equations (6) and (7) show how SBXI and UM are implemented. The mutation
rate is equal to the inverse of the number of decision variables (1/ND), which is the most recommended value for
mutation [Goldberg, 1989]. As a result, SBXI and UM have no parameters to be fine-tuned:

{x;’+1 =X¢+randi[0, (X?—X7)], u<05 ©
6

XP,,=XP—randi[0, (X?—X¢)], u>0.5
X!, ,=randi[LB, UB],u < 1/ND 7)

where randifa,b] is a uniformly distributed random integer between [a,b]. u is a uniformly sampled random
number between (0,1). UB and LB are upper and lower bounds on decision variables. X{ and Xf’ are parents
generated by applying the tournament selection.

3.2.4. Gaussian Mutation (GM)

Since the mutation operator alone was observed to show satisfactory performance in the trial runs, GM is
also introduced into the GALAXY framework. It differs from UM in the distribution of randomly sampled val-
ues in the domain of decision variables. In particular, a discrete Gaussian distribution (also known as normal
distribution) is adopted as shown in equation (8). The probability of mutation for each decision variable is
equal to 1/ND. In addition, ¢ is set to a tenth of the range of decision variables because it can prevent a
majority of random numbers being generated outside the available pipe sizes.

t+17

; +
X . .= {LB uB +oXrandn ® XtJ (8)

where ¢ is a scaling factor which is equal to %. randn is a vector of random numbers drawn from the
normal distribution between (0,1) with the same size of X;.

3.2.5. Dither Creeping (DC)

To facilitate an intensified local search, a new operator, known as the dither creeping mutation [Zheng et al.,
2013], is introduced in the GALAXY framework, which combines the creeping mutation [Dandy et al., 1996]
and dither mutation strategy [Das et al., 2005] to solve discrete pipe sizing problem. The original DC is char-
acterized by a variant probability of mutation (denoted as P,,) for each individual, which is uniformly sam-
pled from within a small range centered about 1/ND. Moreover, the pipe size is changed to the nearest
smaller or larger diameter option, depending on the probability of downward variation (denoted as P,).
Zheng et al. [2013] revealed that a GA with DC but without crossover outperformed its counterparts for a
range of benchmark design problems.

Note that here the original DC is modified by yielding the probability of dither creeping at the level of
gene, rather than at the level of chromosome. This is expected to bring more perturbation to each

WANG ET AL.

GALAXY: A NEW HYBRID MOEA FOR WDS DESIGN 6



@AG U Water Resources Research 10.1002/2016WR019854

Dither Creeping

P, : probability of dither creeping mutation;

dezn’: and R;::f : lower and upper bounds of probability of dither creeping
mutation;

N and ND: population size and number of decision variable;

P, : conditional probability of downward variation;

X : decision variable i at generation 7;

Dmin and D,_,:lower and upper bounds of diameter option;

rand: a uniformly distribution random number sampled between (0,1);
Fori=1,2,...,.N

Forj=1,2, ..., ND

Jj _ pmin J max min
I)dcm - l)dcm + rand X (])dcm - ])dcm )
If rand’ < P]

dem
It rand" <= P,
i i
Xt+] = maX[Dmin>Xt - 1]
Else
i
Xt+l
End If
End If
End For

End For

=min[D,__, X! +1]

Figure 3. Pseudocode of DC.

solution. On the other hand, an interesting feature of DC lies in the fact that the direction of creeping can
be simply controlled by P,. More specifically, using a smaller P, steers the population toward the high
cost region (also high in network resilience); whereas using a larger P, pushes the population toward the
low cost region. This characteristic can be very useful if a particular region of PF is of greater interest,
although this results in losing the whole picture of the PF. Consequently, P, of the modified DC is uni-
formly sampled between (0,1) rather than fixed at 0.5 as in the original one, in which case the size of each
pipe has an equal chance to be enlarged or reduced. Figure 3 illustrates the flowchart for the modified
DC operator.

The reasons for selecting TF, DE, SBXI, UM, GM, and DC as search operators for the GALAXY method are
threefold. First, their nature and behaviors are distinct from each other, which makes it possible for each to
serve as the main driving force at different search stages. Second, DE and SBXI generate offspring by com-
bining the information passed by other solutions; while the others work on an individual solution indepen-
dently and perturb the solution at the level of gene. Therefore, the difference in operators in producing
solutions may prevent GALAXY from getting trapped at local optima. Third, from the viewpoint of leaping
ability, TF, DE, and SBXI are more likely to identify better solutions globally at early generations. In contrast,
UM, GM, and DC emphasize local variations, being good at fine-tuning current solutions. As a result, a syner-
gistic effect is anticipated by using a combination of six such operators to ensure a good balance of explora-
tion and exploitation throughout the search.

3.3. Strategies of GALAXY

In addition to a careful selection and adaptation of search operators, several strategies are incorporated
into the GALAXY method, which also have great impact on its performance. The following subsections
explain these strategies in greater details.
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A 3.3.1. Hybrid Replacement Strategy
In MOEAs, the Replacement procedure plays

O - e-dominating solutions - , ! ,
a crucial role in steering the population

3 < - e-dominated solutions toward the PF. As shown in Figure 1, a
- O hybrid replacement strategy is imple-
g N mented in the GALAXY framework. Specifi-
é D cally, after the creation of an intermediate
o o) population (/) using the unique solutions in
-0 : the current population (P,) and the off-
8 D spring (O,), the individuals are ranked using
@ (‘) C the fast nondominated sorting [Deb et al.,
8 OB 2002]. If the number of individuals in the
= ‘A top rank is no greater than the population
° O size, the normal replacement is carried out
= O as in NSGA-Il. However, if the number of

o 7 ' individuals in the top rank exceeds the

~ population size, the e-replacement is car-
ried out instead, in which the nondomi-
nated solutions in the first front are sorted
once again based on the e-dominance con-
cept [Deb et al., 2005]. Therefore, the ¢-non-
dominated solutions are copied into the
next population (P, ;). If there are still free spaces left, some ¢-dominated solutions are also selected which
have smaller distances to the ideal global optima.

Network Resilience (to be maximized)

Figure 4. Concept of &-dominated sorting.

Figure 4 depicts the e-dominance concept in more details. First of all, the boundary solutions in the first
front are identified and used to construct the 2-D boxes with ¢; as the side length in the ith objective. The
value of ¢; is calculated by equation (9). Note that the boundary solutions must be included in the next pop-
ulation. Therefore, the number of candidate solutions to be selected is N—2. In Figure 4, the solid circles rep-
resent e-dominating solutions (e.g., B and C); while the dashed circles represent e-dominated solutions (e.g.,
A and D). The gray area indicates the region dominated by e-dominating solutions. Since the number of
nondominated solutions in the 2-D boxes is larger than N-2, they are first compared using the e-domination
concept. The e-dominating solutions are then included in the next population. If there are remaining spaces,
the e-dominated solutions with smaller Euclidean distances to the global optimum (i.e., the lower-right cor-
ner in Figure 4) are also chosen. As a result, this hybrid replacement strategy ensures that the nondomi-
nated solutions in the first front, which are near the global optima, are preserved, and a good diversity of
these solutions is also achieved

f_max _f_min
N2 ©

where ¢; is the side length of each box in the ith objective. and f,f“i” are maximum and minimum values

of the ith objective, respectively. N is population size.

max
f i

This hybrid replacement strategy is used to preserve the nondominated solutions which may have reached
the PF. In other words, the ¢&-dominance comparison is employed to overcome the shortcoming of the
crowding distance based sorting, which aims to achieve a relatively uniform spread at the price of losing
the solutions on the PF. Actually, for a discrete combinatorial optimization problem, it is rare that the PF is
uniformly distributed. Therefore, the crowding distance based sorting, which was proposed for solving con-
tinuous problems, may become problematic.

On the other hand, the ¢-replacement procedure implemented in GALAXY differs from the traditional -
dominance comparison in two aspects. First, it does not require any user-specified ¢ precision for each
objective. Instead, the ¢ precisions are determined internally according to the extent of solutions in the first
front. Second, it allows some ¢-dominated solutions to be selected, rather than being completely removed,
provided that they are close to the global optima.
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3.3.2. Genetically Adaptive Strategy

GALAXY adopts the genetically adaptive strategy first proposed in AMALGAM to take full advantages of six
search operators. First, the offspring pool Q, of size N is created from the initial population Py using six search
operators simultaneously, with each operator contributing nearly the same number of individuals (i.e., N/6).
Next, a combination of the parents (Py) and the offspring (Qp), namely Ry (size 2N), is produced and ranked via
the fast nondominated sorting procedure [Deb et al., 2002]. A number of individuals, N, from R, are then select-
ed based on the e-replacement strategy, forming the population for the next generation. Finally, the number of
individuals that is allowed to produce by each search operator is determined according to the reproductive rate
(ratio of the children alive to the children created) in the previous generation (see equation (10)).

When a search operator fails to contribute even a single individual in the current population, the one-child
policy is applied in the next round to release maximum reproductive chances. Specifically, it borrows one
opportunity from the topmost operator in the previous round. If two of six operators fail, each of them bor-
rows one opportunity from the two topmost operators, and so on. Therefore, the most successful operator
is always favored by getting the highest number of offspring in the reproduction process, and no operator
is completely discarded even though it exhibits the worst performance.

G
L BN

where Ni is the number of offspring generated by operator i at generation t. Pﬁ is number of offspring con-
tributed by operator i at generation t. ns is number of search operators.

3.3.3. Global Information Sharing Strategy

This strategy was first mentioned by Vrugt and Robinson [2007], but was not explained in detail. The essen-
tial idea is to share the current population among each search operator in the Generation step. In particular,
each operator generates the same number of candidate solutions, which is equal to the population size,
rather than just the number of individuals it is allowed to produce. This permits the not-so-good operators
to benefit from the high-quality solutions contributed by other operators. Then, a number of offspring,
which is determined by the genetically adaptive strategy, are chosen at random from the candidate solu-
tions produced by each operator. This partially explains why the global information sharing strategy differs
from a random search, and the preservation of elitism is mainly achieved at the Replacement step. The glob-
al information sharing strategy allows the search operators with poor performance in previous generations
to recover subsequently, thus increasing their opportunities to contribute better solutions in the later run.
Note that this strategy can be only realized in the generational framework.

3.3.4. Duplicates Handling Strategy

It is worth noting that there is a much higher possibility that duplicate solutions will be generated in the
context of discrete combinatorial problems than in real-parameter continuous situations. Consequently, the
possibility of discovering more and/or better solutions is wasted because some solutions are repeated in
the population. Furthermore, the actual number of nondominated solutions is less likely to reach the popu-
lation size at the end of the search. Some researchers [Chaiyaratana et al., 2007; Crepiniek et al., 2013] have
suggested discarding duplicate individuals to improve the overall performance (mainly for diversity) of EAs.
Hence, a “unique solution strategy” is applied in GALAXY after the combination of the offspring and the cur-
rent population as shown in Figure 1. This strategy is aimed at checking and removing duplicate solutions
that exist in the population thereby accommodating more individuals with potentially better fitness. This
strategy is also believed to prevent premature convergence of the population.

3.3.5. Constraint Handling Strategy

GALAXY applies a penalty-free, constrained-domination strategy [Deb et al., 2002] to deal with infeasible sol-
utions due to its simplicity and effectiveness. It eliminates the use of penalty function and works as follows.
Assuming that two solutions (A and B) are randomly chosen from the population for comparison, solution A
is selected if: (i) A has a less constraint violation than B; or (ii) A dominates B when both are feasible solu-
tions. Otherwise, one of them is chosen at random.

Ni=Nx (10)

4, Baseline MOEAs

The baseline MOEAs used in this work are NSGA-Il, e-MOEA [Deb et al., 2005] and Borg [Hadka and Reed,
2013]. NSGA-Il is arguably the most popular MOEA and is regarded as an “industry standard” algorithm,

WANG ET AL.

GALAXY: A NEW HYBRID MOEA FOR WDS DESIGN 9



@AG U Water Resources Research 10.1002/2016WR019854

which has been successfully applied to a variety of fields. NSGA-Il features a fast nondominated sorting
approach, implicit elitist selection method based on Pareto dominance rank and a secondary selection
method based on crowding distance, which significantly improves its performance on difficult multiobjec-
tive problems. Moreover, it provides a constraint-handling technique to deal with constrained problems
efficiently and supports both binary and real coding representations.

Unlike NSGA-Il, &-MOEA is a steady state MOEA in which only one solution is generated per iteration. It
incorporates the concept of e-dominance [Laumanns et al., 2002], being able to preserve a good representa-
tion of the PF in terms of convergence and diversity. At the beginning, a population is initialized randomly
and the nondominated solutions are retained in an archive. Next, a solution is created via SBX and PM using
two parents each of which is selected from the population and the archive. Then, Pareto dominance and ¢-
dominance are used to check this solution for acceptance or rejection by the population and the archive,
respectively. The preceding procedure is repeated until a stopping criterion is met.

Borg, using &-MOEA as its outer framework, employs six search operators simultaneously and implements
several advanced strategies concurrently, including e-dominance, e-progress (a measure of convergence
speed), adaptive population sizing, and randomized restart. The methodology proves to be a flexible and
robust hybrid optimizer by covering a large area of high-performing parameterizations [Hadka and Reed,
2012]. Due to the space limit, readers are referred to [Hadka and Reed, 2013] for greater details.

The reasons for choosing these three MOEAs are as follows. NSGA-Il has been widely used as a benchmark
MOEA in water engineering [Farmani et al., 2005; Kollat and Reed, 2006; Raad et al., 2009], and it serves as
the prototype of GALAXY in terms of the generational algorithmic framework. e-MOEA was introduced after
NSGA-II featuring a steady state algorithmic framework and the e-dominance concept, which was successful
in finding well-converged and well-distributed solutions for a variety of test problems [Deb et al., 2005].
Borg, as a hybrid optimizer, further enhances ¢&-MOEA by using the multiple recombination operators as
well as a suite of sophisticated runtime strategies. In contrast, GALAXY uses both the nondominated sorting
and the ¢-dominance based sorting in the Replacement step, and differs from baseline MOEAs, especially
from Borg, mainly at the implementations of the multioperator search (tailored for the WDS design) and
hybrid replacement strategies. Therefore, the comparison between GALAXY and three selected baseline
MOEAs can help verify the effectiveness and efficiency of this new hybrid optimizer. In addition, NSGA-II, -
MOEA and Borg implement the real coding scheme and the decision variables are rounded down to the
nearest integers when being evaluated in the objective function. Note that this is different from the
approach implemented in Creaco et al. [2010], in which the search operators were modified to suit the prob-
lem with integer variables.

5. Benchmark Problems

The performance of GALAXY is tested on a representative subset from the library of benchmark problems
collected from the literature [Wang et al., 2015]. In particular, the BakRyan network [Lee and Lee, 2001], the
Hanoi network [Fujiwara and Khang, 1990], the Pescara and the Modena networks [Bragalli et al., 2008], and
the Balerma network [Reca and Martinez, 2006], are presented to illustrate the capability of GALAXY on a
wide scale of WDS design problems. A summary of these benchmark problems is given in Table 1. More
information about these benchmark problems, readers are referred to http://tinyurl.com/cwsbenchmarks/.

Table 1. Summary of the Formulations of Benchmark Problems

No. of Design Criteria
Options Search
Scale Problem DVs per DV Space - [ Vinax
Small BakRyan 9 11 236 X 10° Yes No No
Medium Hanoi 34 6 2.87 X 10%° Yes No No
Intermediate Pescara 99 13 1.91 X 10'"° Yes Yes Yes
Large-1 Modena 317 13 132 X 1033 Yes Yes Yes
Large-2 Balerma 454 10 1.0 X 10%° Yes No No

“Note: DV is decision variables. P, is minimum pressure head requirement. P, is maximum pressure head requirement. V., is
maximum flow velocity.
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6. Experimental Setup

6.1. Algorithmic Setup

It is well established that parameter settings play an important role in MOEAs. These parameters can be
divided into two groups, i.e., general and specific ones. General parameters include those that are common
for various algorithms, like N and NFEs; whereas the specific parameters involve those only employed by a
particular algorithm.

For the settings of general parameters, readers are referred to the computational budget subsection. These
settings are adjusted according to the complexity of different WDS design problems, and kept the same
among four algorithms. The individual parameters of each algorithm are selected based on the results of
sensitivity analyses, using the DC operator and NSGA-II, respectively, and are specified as follows. Borg fol-
lows the recommended settings provided in Wang et al. [2015].

GALAXY actually needs to specify only one extra parameter, which is the range of P, used in the DC oper-
ator (see Figure 3). The range was considered from 0.1 to 0.9 at a step of 0.1. It was found that the perfor-
mance of DC on various cases was not sensitive to the setting of this range, as the maximum relative
deviation among four indicators (see section 6.2) was less than 0.9% on average. Therefore, the range of
P4cm is set to 0.7 based on an overall best performance.

The distribution indices of SBX and PM control the spread of offspring from their parents. Lower values of
the distribution index increase the probability of generating solutions far away from the parents [Deb et al.,
2002]. As such, different distribution indices, i.e., 1, 5, 10, 15, 20, were tested for SBX and PM separately to
confirm the best option from 25 possible combinations. It was found that keeping the distribution indices
as 1 for both SBX and PM generally returned the best results; consequently, this setting is adopted for both
NSGA-Il and ¢-MOEA.

The probabilities of various mutation operators and SBX follow the recommended values in the literature,
which are 1/ND and 0.9, respectively [Deb et al., 2002; Goldberg, 1989].

6.2. Search Performance Indicators

To facilitate a comprehensive comparison between GALAXY and baseline MOEAs, both quantitative perfor-
mance indicators and graphical approaches are used in a complementary manner. The former provides an
explicit way to assess the quality of solutions, while the latter illustrates the performance visually and intui-
tively in the objective space. Recall that there are mainly two distinct goals in multiobjective optimization:
(1) to approximate the PF as close as possible (convergence); and (2) to maintain a good spread of solutions
in the objective space (diversity). Ideally, a good algorithm is expected to discover the solutions lying on
the PF and well distributed over the entire objective space.

Four metrics, that is generational distance [Veldhuizen, 1999], unary hypervolume [Zitzler and Thiele, 1999],
unary additive ¢-indicator [Zitzler et al.,, 2003], and ¢-performance [Kollat and Reed, 2005], are employed to
evaluate the convergence and diversity of solutions obtained by different MOEAs. Generational distance
(denoted as Igp) measures an average distance of the nondominated solutions in the Pareto approximation
front (denoted as AF) from those in the Pareto reference front (denoted as RF). Unary hypervolume
(denoted as /) calculates the ratio of the volume of hypercube (in the objective space) dominated by solu-
tions in the AF to that by solutions in the RF. Unary additive ¢-indicator (denoted as /) seeks the minimum
distance that the AF must be translated in order to completely dominate the entire RF. ¢-performance
(denoted as Icp) accounts for the proportion of solutions that are discovered within a user-specified ¢-dis-
tance (see Table 2) from the RF. These ¢ precision values are determined by a trial-and-error approach,
which are considered sufficient to differentiate the improvements in the objective space. These values are
also adopted when ¢-MOEA is executed. The main features of these indicators are given in Table 3. Note
that the qualified solutions (in the AF) considered for calculating the aforementioned metrics must be feasi-
ble and belong to the first rank. In other words, the inferior and infeasible solutions are omitted from the
evaluation.

The prerequisite of computing aforementioned metrics is a known RF. To this end, Wang et al. [2015]
applied five state-of-the-art MOEAs to find the best-known approximation of the true Pareto front for the
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Table 2. ¢ Precision Values

First Objective: Cost Minimization Second Objective: I,
(in Millions Unit) Maximization (-)
Benchmark Problem Cost™®t Cost™°" g [erst (= en
BakRyan 0378 1.389 0.001 0 1 0.001
Hanoi 1.803 10.970 0.1 0 1 0.001
Pescara 1.346 19.004 0.01 0 1 0.001
Modena 1.989 28.083 0.01 0 1 0.001
Balerma 0.724 21.642 0.01 0 1 0.001

Note: The Cost®®** and Cost"°™! for each case are obtained by setting the decision variables (i.e., pipe diameters) to the minimum
and maximum commercially available sizes, respectively. [/°™* and /ge“ are extreme cases, which are determined by the definition of /,,
(see equation (2)).

benchmark problems used in this paper, given a massive computational budget. Therefore, these best-
known solutions to each problem are used to construct the RF.

In addition to comparing the ultimate performance of GALAXY with baseline MOEAs using four metrics,
their dynamic performances are also taken into consideration to further demonstrate some interesting and
potentially important information during the search history. Zitzler et al. [2002] emphasized the importance
of tracing the performance of an algorithm over time. This would help to identify the differences on conver-
gence speed and premature convergence (or stagnation). The abovementioned indicators have already
been used to evaluate the dynamic performance in some comparative studies [Fu et al., 2012; Kollat and
Reed, 2006].

The graphical approach is based on the empirical attainment function (EAF) tool [Lopez-Ibanez et al., 2010],
which is capable of estimating the attainment function [Fonseca et al., 2001] using the data collected from
several independent runs. It demonstrates the boundaries of attainment surface detected by an algorithm
and highlights the performance differences between two competing algorithms. This feature is very attrac-
tive when comparing the performance of MOEAs as it properly addresses their stochastic nature.

In each EAF plot (see Figure 6), the performances of two algorithms are plotted side by side and four types
of information are demonstrated: (1) best attainment surface obtained by both algorithms (lower solid
lines); (2) worst attainment surface obtained by both algorithms (upper solid lines); (3) median attainment
surface of each algorithm (dashed lines); and (4) differences of EAFs between two algorithms. Such differ-
ences are encoded using discrete levels of gray color: the darker an area is plotted, the larger the difference
exists there.

6.3. Computational Budget

In order to ensure a fair comparison between GALAXY and baseline MOEAs, a sufficient computational bud-
get in terms of the NFEs is determined by applying NSGA-II to benchmark problems extensively. Its dynamic
performance using four metrics was monitored, thus picking a suitable budget to confirm the convergence
of NSGA-II. Specifically, a budget was determined so that the improvement of the NSGA-II's convergence
was less than a threshold (0.5% herein), implying that more computation was not necessary. Therefore,
25,000 and 50,000 NFEs are used for the BakRyan and the Hanoi problems and 100,000 NFEs for the Pescara
problem with a population size of 100. For the Modena and Balerma problems, such a budget is much
more difficult to identify due to the huge search space. As a result, a total number of 400,000 NFEs with a
doubled population size (i.e., 200) is applied instead. In addition, for each problem 30 independent runs are
implemented using different random seeds.

It is also worth noting that there are a num-

Table 3. Main Features of the Selected Performance Indicators ber of possible criteria for comparing differ-

Metric Type Range  Normalization  Ideal Value . K
b d ent algorithms. For example, using an
leo Convergence [0,00) - max(1-lop, 0) L identical/similar CPU time is another alterna-
v Convergence [0,1] N/A 1 K .
and diversity tive. However, the GALAXY algorithm pro-
o Convergence [0,00)  max(1-l,, 0) 1 posed here is developed in the Matlab

and consistency

environment, thus being much slower com-
Igp Convergence [0,1] N/A 1 ! 9

pared to baseline MOEAs that are coded in C
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language. Despite of this, it is important to point out that the hydraulic simulations nested inside the opti-
mization loop account for the majority of CPU time. By using the MEX-file technique supported in Matlab,
this time-consuming part can be implemented much more efficiently. Thus, the real runtime needed by
GALAXY has been substantially shortened and is comparable with baseline MOEAs (see supporting informa-
tion Table S1). On the other hand, the main computational overhead within GALAXY stems from the Pareto-
dominance sorting, which has a theoretical computational complexity of O(MN?), where M is the number of
objectives and N is the size of population. This is the same as for NSGA-II, implying that GALAXY can be as
fast as NSGA-Il if developed in C language. As such, this work considers the identical NFEs rather than the
absolute CPU time as the criterion for comparison purposes.

7. Results and Discussion

The statistical results obtained by GALAXY and three comparison MOEAs, after 30 independent runs given
different computational budgets for five design problems, are shown in the Box and Whisker plots in Figure
5.In each plot, the central line represents the median, and the edges of each box are the 25th and 75th per-
centiles. The most extreme data are linked by whiskers, but those considered outliers are plotted individual-
ly with plus symbols. Recall that the performance indicators have been normalized to fall between 0 and 1
with a larger value indicating better achievement.

It is evident that GALAXY outperformed NSGA-II, e-MOEA, and Borg for all five cases according to Iy, and Igp,
which confirm its superior capability in terms of convergence and diversity. The advantages of GALAXY turn
out to be more significant as the problem becomes more complex. For the BakRyan problem, it obtained
nearly 25% better /rp compared to the baseline MOEAs; while for the Hanoi problem the differences accord-
ing to Igp rise to 39%, 111% and 99% beyond NSGA-II, e-MOEA and Borg, respectively. GALAXY was the only
algorithm that successfully identified the solutions close enough to the Pareto RF of the Pescara problem
(as indicated by Igp), given just one-tenth of the computational budget (i.e., 1 million NFEs) used to obtain
the corresponding best-known PF [Wang et al., 2015]. Consequently, there is a lack of results in terms of Igp
for the baseline MOEAs for Pescara (plotted as short lines instead). Similarly, no box plot for Modena and
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Figure 5. Box and Whisker plots of statistical results evaluated by different indicators for each design problem (A1-GALAXY; A2-NSGA-II;
A3-e-MOEA; A4-Borqg).
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Figure 6. EAF plots of GALAXY versus baseline MOEAs for the Modena problem.

Balerma is provided because all the
algorithms failed to capture the solu-
tions near the best-known PFs within
the specified precision. Surprisingly,
GALAXY successfully identified some
boundary solutions (shown as outliers
in the lower-right subgraph of Figure
5) for the Balerma problem, which has
a substantially larger search space
compared to that of Modena. In addi-
tion, GALAXY clearly outperformed the
baseline MOEAs for all design prob-
lems except for Hanoi according to /.,
in which NSGA-Il got a slightly better
median (about 0.2%). Although there
is a reverse trend in the lower-left sub-
graph, all four algorithms achieved
quite similar levels of /gp with the max-
imum relative difference of the
medians below 0.8%. This is because
baseline MOEAs only converged better
to the region with the network resil-
ience less than 0.85 (see supporting
information Figure S9). In contrast,
GALAXY was able to converge suffi-
ciently along the entire best-known PF,
effectively covered the region with the
network resilience greater than 0.85.

The comparisons of the four algo-
rithms for solving the Modena prob-
lem, one of representative large
problems (see Table 1), are next ana-
lyzed in detail. It is obvious from Figure
6 that GALAXY was capable of discov-
ering boundary solutions both in the
region of low cost and high network
resilience compared with the baseline
MOEAs. This can be attributed to the
usage of some operators emphasizing
efficiency (e.g., TF, SBXI, and DC) that
are good at global and local search.
NSGA-II and &-MOEA obtained a set of
more converged solutions than those

by GALAXY around the “knee point” of the best-known PF. A probable explanation for this phenomenon is
that the combination of SBX and PM tends to drive the population toward this particular area at the price of
losing the whole picture of the PF. Remember that the goal of multiobjective optimization is twofold: (1) to
approximate the PF as close as possible; and (2) to extend the distribution as wide as possible. Therefore,
without giving any further information and guidance for the final decision making, a set of better con-
verged and wider spread solutions are generally preferred.

It is also worth noting that NSGA-Il, e-MOEA and Borg were actually less efficient in exploring the search
space, because the current best-known PF of the Modena problem ranges from 2.54 to 24.82 million euros
[Wang et al., 2015]. However, the baseline MOEAs reported the solutions between 2.98 and 5.18 million
euros on average, which covers less than 10% of the cost spectrum. In contrast, GALAXY captured nearly
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15% of the cost spectrum (from 2.69 to 5.89 million euros) including both lower and higher cost regions.
This means many more alternatives can be presented to decision makers.

From the dynamic performance perspective, GALAXY was superior to other MOEAs in terms of /g, especially
from the middle to the end of the search history (as shown in supporting information Figures S3 and S6).
However, the other indicators are not shown in this way because the differences in performance are not
easily identified. In addition, the variations in terms of the usage probability of each search operator within
GALAXY and Borg are traced and demonstrated in Figure 7. The blue line in the center represents the mean
and the gray range denotes the envelope of variations.

In GALAXY, three local search operators, namely UM, GM, and DC, turned out to be the dominating factors
which steered the optimization progress, with the overall usage probabilities of about 25%, 22%, and 41%
on average, respectively. The other operators, which are good at global search, e.g., TF, DE, SBXI, controlled
the generation of new offspring mainly at the very beginning of the evolutionary process, and took effect
occasionally until the end of search. In particular, the DE operator seemed to be inefficient for dealing with
the problem of high dimensionality (317 decision variables), and this may be attributed to low selection of
parents when it was originally implemented. In contrast, by using the tournament selection of parents, the
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Figure 7. (top) Variations of search operators within GALAXY and (bottom) Borg for the Modena problem.

WANG ET AL.

GALAXY: A NEW HYBRID MOEA FOR WDS DESIGN 15



@AG U Water Resources Research 10.1002/2016WR019854

SBXI operator was frequently employed (more than 10%) in the first one tenth of generations; however,
after that it became less efficient compared to other local search operators and its usage probability
declined continuously till the end. Moreover, there is a clear trend that GALAXY shifted the computational
resources from operators good at exploration (e.g., TF, DE, and SBXI) to those good at exploitation gradually,
switching the search directions from global to local automatically (no parameters to be tuned). This pattern
of behavior is anticipated when developing the GALAXY method, and is verified in solving the discrete WDS
design problems.

By contrast, the PCX operator in Borg consistently dominated the other five operators throughout the opti-
mization. Its usage probability jumped sharply to over 80% after about 200 generations and remained sta-
ble above 70%. On the contrary, the SBX, DE, SPX, and UNDX operators were suppressed till the end. Similar
to its counterpart in GALAXY, the UM operator consistently accounted for over 10% of the usage probability
from the middle to the end of search history.

Again, it is worth emphasizing that GALAXY is substantially different from Borg, although they both incorpo-
rate six operators. The main differences are threefold: (i) GALAXY is based on the generational algorithmic
framework as NSGA-II, while Borg follows the steady state model proposed in &-MOEA; (i) GALAXY com-
bines the fast nondominated sorting and the ¢-dominance based sorting in the Replacement step, which
ensures a higher level of elitism preservation (as indicated by Igp). In contrast, Borg only uses the &-domi-
nance for acceptance of solutions in the archive; (iii) GALAXY employs six search operators which are select-
ed based on their leaping ability in the objective space of the WDS design problems; consequently, the
behavior of these operators are quite similar across different design problems. However, the leading opera-
tors in Borg change from case to case, and seem to be unpredicted. More importantly, GALAXY tailors the
operators to suit the discrete problems by eliminating a number of setup parameters, thus being robust on
a wide range of cases. Borg, on the contrary, has a total of nine individual parameters, which obviously
increases the complexity of parameterization when applied to different problems.

Results for other cases are provided in supporting information, including the comparisons of EAF plots and
the dynamic variations of search operators within two hybrid optimizer. Additionally, the dynamic perform-
ances in terms of /¢ for the BakRyan and the Hanoi problems are also supplied to illustrate the differences
among the four algorithms.

8. Conclusions

This paper develops a new hybrid MOEA, termed GALAXY, for solving the multiobjective WDS design prob-
lems. It incorporates six search operators and features several important strategies for dealing with discrete
combinatorial optimization problems. The performance of GALAXY has been tested on five representative
benchmark design problems with increasing complexity in terms of search space size, and is compared to
NSGA-Il and ¢-MOEA, as well as Borg, a very efficient hybrid optimizer recently reported, via four quantita-
tive metrics and the EAF tool. The aforementioned indicators are recorded as the optimizations progress
which enables a fair comparison from diversified perspectives.

The results reveal that GALAXY can outperform the baseline MOEAs by finding better converged and dis-
tributed solutions especially near the extremities of each objective. For all five cases, GALAXY is superior to
NSGA-II, e-MOEA, and Borg evidently and consistently in terms of /., and Igp, as verified by identifying over-
whelmingly better Iy than its competitors for the Hanoi and Pescara problems. This indicates a much more
balanced capability between exploration and exploitation without introducing parameters to control this in
the search process. In addition, it achieves better or very similar I, and Igp metrics compared to the other
algorithms. More importantly, GALAXY’s advantages over traditional methods become more highlighted
when solving more complex WDS design problems with higher dimensionalities. In addition, it is worth
emphasizing that GALAXY is a dedicated optimizer for solving combinatorial problems with discrete
variables.

The success of GALAXY is mainly credited to the implementation of the multioperator search, which is tai-
lored for the WDS design problems, and the hybrid replacement strategies. In particular, TF, DC, and SBXI
guide the search at the early stage due to good leaping abilities in the global sense; in contrast, UM, GM,
and DC strengthen the local search by fine-tuning the solutions found in the near-optimal region. The
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hybrid replacement strategy combines the power of Pareto-dominance and ¢-dominance concepts, thus
maintaining a good balance between exploration and exploitation and preventing global optima from
being lost. In addition, a subtle modification made to the original genetically adaptive strategy adjusts the
best portfolio of six operators and ensures a consistently robust search capability. The global information
sharing increases the probability of not-so-good operators to contribute high-quality solutions subsequent-
ly. Checking and removing duplicates periodically helps to further improve the convergence and diversity
of final solutions.

The practical value of GALAXY lies in the fact that it alleviates the parameterization problem of MOEAs to
great extent. The effective ingredients of each operator are identified and tailored to suit the discrete nature
of WDS design problems. As a result, GALAXY actually needs to specify only two general parameters (i.e.,
population size and NFEs) before execution, thus being an easy-to-use and efficient tool for researchers and
practitioners in the water community. It is also worth highlighting that GALAXY is not just a hybrid MOEA
but a general framework to facilitate other search operators, which provides a better chance to create
strengthened MOEAs later.

There is still much future work to be investigated based on the GALAXY method. First, it is important to make
in-depth comparisons with other state-of-the-art hybrid methods like AMALGAM and DDMO [Zheng and
Zecchin, 2014] for solving WDS design problems, and using newly developed performance metrics [Zheng et al.,
2016]. This will help understand why and at what extent the hybridization and/or other associated strategies
affect the overall performance of these hybrid algorithms. Second, some recent publications are recommending
using the many-objective (more than three) formulations [Fu et al,, 2013; Kasprzyk et al., 2012]. The increase in
the number of objectives is envisaged to further complicate the search space, thus making the task even harder.
Therefore, a systematic study on this aspect using GALAXY and other MOEAs is anticipated to uncover new find-
ings. Third, the underlying reasons why some global search operators (e.g., TF and DE) are inefficient after the
early stage, especially for solving larger WDS design problems, need to be further investigated. This can be use-
ful in further improving the current version of GALAXY by allowing longer and more efficient global search. Last
but not least, GALAXY, as a hybrid framework, can be used to test other existing search operators and create
potentially stronger ones for large and complex WDS design problems in the real world.
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