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tMixed �nite elements use di�erent approximation spa
es for di�erent dependent variables. Certain
lasses of mixed �nite elements, 
alled 
ompatible �nite elements, have been shown to exhibit a numberof desirable properties for a numeri
al weather predi
tion model. In two-dimensions the lowest orderelement of the Raviart-Thomas based mixed element is the �nite element equivalent of the widely usedC-grid staggering, whi
h is known to possess good wave dispersion properties, at least for quadrilateralgrids. It has re
ently been proposed that building 
ompound elements from a number of triangularRaviart-Thomas sub-elements, su
h that both the primal and (implied) dual grid are 
onstru
ted fromthe same sub-elements, would allow greater �exibility in the use of di�erent adve
tion s
hemes alongwith the ability to build arbitrary polygonal elements. Although the wave dispersion properties of thetriangular sub-elements are well understood, those of the 
ompound elements are unknown. It would beuseful to know how they 
ompare with the non-
ompound elements and what properties of the triangularsub-grid elements are inherited?Here a numeri
al dispersion analysis is presented for the linear shallow water equations in two dimen-sions dis
retised using the lowest order 
ompound Raviart-Thomas �nite elements on regular quadrilateraland hexagonal grids. It is found that, in 
omparison with the well known C-grid s
heme, the 
ompoundelements exhibit a more isotropi
 dispersion relation, with a small over estimation of the frequen
y forshort waves 
ompared with the relatively large underestimation for the C-grid. On a quadrilateral gridthe 
ompound elements are found to di�er from the non-
ompound Raviart-Thomas quadrilateral ele-ments even for uniform elements, exhibiting the in�uen
e of the underlying sub-elements. This is shownto lead to small improvements in the a

ura
y of the dispersion relation: the 
ompound quadrilateralelement is slightly better for gravity waves but slightly worse for inertial waves than the standard lowestorder Raviart-Thomas element.KEYWORDS energy 
onservation; energy propagation; group velo
ity; numeri
al dispersion; mixed orderelements
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1 Introdu
tionTraditionally most global atmospheri
 models used for numeri
al weather predi
tion have used a latitude-longitude grid for dis
retising the equations of motion, though in
reasingly many modelling groups now use(or are developing) some form of quasi-uniform grid. The latitude-longitude grid has many desirable prop-erties su
h as orthogonality, symmetry and a logi
ally re
tangular stru
ture. However, with the in
reasingnumber of pro
essor 
ores expe
ted in future generations of high performan
e 
omputers, the 
ommuni
a-tion bottlene
k implied by the polar singularities in latitude-longitude grids has stimulated the interest in arange of quasi-uniform alternative grids and 
ompa
t numeri
al methods. A number of quasi-uniform gridshave proved popular in the atmospheri
 modelling 
ommunity in
luding: the 
ubed sphere, (e.g. Taylor andFournier, 2010; Ullri
h et al., 2010); subdivision of the i
osahedron using triangular (e.g. Majewski et al.,2002) and hexagonal elements (e.g. Satoh et al., 2008; Skamaro
k et al., 2012; Gassmann, 2013).A range of these quasi-uniform alternatives to the latitude-longitude grid for global atmospheri
 modelsis reviewed in Staniforth and Thuburn (2012). They listed a number of essential and desirable properties foran atmospheri
 model. These 
an be summarised as requiring the dis
retisation to: have good 
onservationproperties; mimi
 
ertain 
ontinuous ve
tor 
al
ulus identities; have an a

urate representation of balan
eand adjustment; be free of unphysi
al modes (either through grid imprinting or 
omputational modes); andhave a

ura
y at least approa
hing se
ond order.Cotter and Shipton (2012) proposed a number of families of mixed �nite elements for quasi-uniformhorizontal grids (where mixed refers to the use of di�erent fun
tion spa
es for the dependent variables, seeAuri

hio et al., 2004 for a review of mixed elements) whi
h preserve a number of the desirable propertiesidenti�ed by Staniforth and Thuburn (2012). These methods rely upon de�ning appropriate fun
tion spa
es
Vi and operator mappings between the spa
es. For example, in two dimensions:

∇⊥ ∇.
V0 −→ V1 −→ V2,

L99

k.∇̃×
L99

∇̃

(1)where the ∇⊥ operator is k ×∇, i.e. the rotation of the gradient operator by 90 degrees anti
lo
kwise withunit ve
tor k pointing out of the plane. The di�erential operators along solid lines map from Vi → Vi+1 e.g.for a ve
tor w ∈ V1, then ∇.w ∈ V2. The di�erential operators along dashed lines map from Vi → Vi−1 inthe weak sense obtained via integration by parts, used in (17) and (25) below, for example the weak gradientoperator ∇̃ maps a s
alar Φ ∈ V2 to a ve
tor ∇̃Φ ∈ V1 and is de�ned as � v.∇̃Φda =
�

v.nΦdl−
�

(∇.v) Φdafor all v ∈ V1. In a shallow water 
ontext the streamfun
tion and potential vorti
ity ψ, q ∈ V0, velo
ity
u ∈ V1 and geopotential Φ ∈ V2. One parti
ular family of �nite element 
omplexes suggested by Cotter andShipton (2012) is the family of Raviart-Thomas elements (RTk) (Raviart and Thomas, 1977) for velo
itypaired with a 
ontinuous bi-polynomial representation of s
alars in V0 (Qk+1) and a dis
ontinuous bi-polynomial representation of s
alars in V2

(
QDG

k

) denoted Qk+1 − RTk − QDG
k , on quadrilaterals. Thelowest order member of this family, Q1 − RT0 − QDG

0 , 
orresponds to the mixed �nite element analogueof the C-grid �nite di�eren
e dis
retisation in that the same number and position of degrees of freedom isobtained. For triangular elements the polynomial spa
e Pk is used instead of the tensor produ
t spa
e Qk. Atthe lowest order both PDG
0 and QDG

0 represent dis
ontinuous �elds that are 
onstant within the element and
an be used inter
hangeably. For notational simpli
ity the 
omplex of fun
tions spa
es Qk+1 −RTk −QDG
kwill be referred by only the ve
tor spa
e RTk from here on.At large s
ales atmospheri
 motion is dominated by balan
e and adjustment. Geostrophi
 and hydrostati
adjustment o

ur through the emission of inertia-gravity and a
ousti
 waves and the dis
rete representationof balan
e 
an be analysed through the dispersion relation of the 
andidate numeri
al s
heme. A C-grid stag-gering, where edge normal velo
ity 
omponents are staggered with respe
t to the mass variable is 
ommonlyused to a
hieve good dispersion properties, (Arakawa and Lamb, 1977). At lowest order 
ompatible mixed�nite elements 
an be viewed as the �nite element generalisation of the C-grid staggering with the �exibilityof using the �nite element methodology to extend the dis
retisation to arbitrary order. Although using higherorder elements improves the dispersion properties for a range of the spe
trum, problems 
an arise, due to thein
reased number of bran
hes of solutions, in the form of spe
tral gaps whi
h 
an manifested themselves astrapped or distorted waves, for example in the RT1 (Staniforth et al., 2013) and spe
tral elements (Melvinet al., 2012) methods. In a 
omplete model of the atmosphere the physi
al parametrisations and boundary2



Figure 1: Primal (solid lines) and dual (dashed lines) grid where primal 
ell 
entres (�lled 
ir
les) are dualverti
es and dual 
ell 
entres (open 
ir
les) are primal verti
es.
onditions 
an for
e at s
ales 
lose the grid s
ale. Therefore, any unusual behaviour, even if near the limitsof resolution, would be of 
on
ern. These problems 
an often be mitigated through various methods su
has partial-mass lumping (Staniforth et al., 2013), modi�ed quadrature (Ullri
h, 2014) or most 
ommonlydi�usion. The dispersion properties of a variety of other mixed elements was dis
ussed by Le Roux (2012)(and referen
es therein) to whi
h the interested reader is referred for a more general dis
ussion of mixed�nite element dispersion properties. At the lowest order on quadrilaterals, there is a one-to-one mapping ofanalyti
al roots to the dispersion relation with the dis
rete bran
hes (i.e. for the shallow water equationsthere are two inertia-gravity wave bran
hes and one Rossby wave bran
h) and therefore spe
tral gaps arenot a problem. However, on non-quadrilateral grids the C-grid staggering leads to a 
hange in the ratio ofvelo
ity to mass degrees of freedom, su
h that there are either too many velo
ity degrees of freedom (as fora C-grid hexagon) or too many mass degrees of freedom (as for a C-grid triangle). This imbalan
e gives riseto spurious 
omputational Rossby (Thuburn, 2008) or inertia-gravity (Danilov, 2010) modes respe
tively.At higher orders the mixed element approa
h allows the degree of freedom ratio to be 
hosen so as to retainthe desired 2:1 ratio, (Cotter and Shipton, 2012), though this is not a su�
ient requirement to obtain gooddispersion properties.A methodology for obtaining mimeti
 dis
retisations of the shallow water equations is presented byCotter and Thuburn (2014) using �nite element exterior 
al
ulus. They propose two methods: termed�primal� and �primal-dual� formulations. The �primal-dual� formulation of Cotter and Thuburn (2014)makes use of elements de�ned on both the primal and dual grid, Fig. 1, in addition to mappings between the
orresponding fun
tion spa
es. As noted in Cotter and Thuburn (2014) the use of a primal-dual formulationhas the advantage over the primal only method of using the dual, dis
ontinuous, representation of potentialvorti
ity, therefore permitting the use of a wider range of dis
ontinuous Galerkin/�nite volume methodsfor 
omputing vorti
ity �uxes. In order to 
onstru
t the primal and dual grid elements we use a methodproposed by Christiansen (2008) (extending the ideas of Bu�a and Christiansen (2007)), whi
h allows theprimal and dual 
ompound elements to be 
onstru
ted out of the same set of sub-elements.In addition this method also has the added bene�t of providing a straightforward method for 
ompoundelements to be 
onstru
ted for arbitrary polygons and this property will be used to 
onstru
t a 
ompound
RT0 element on a hexagonal mesh in addition to the 
ompound RT0 element on a quadrilateral mesh.A 
omparison of the resultant 
ompound elements, with both the C-grid �nite di�eren
e and standardprimal-onlyRT0 elements on quadrilateral grids and with a C-grid �nite di�eren
e s
heme on a hexagonal grid(where there is no standard �nite element formulation), will be the fo
us of this paper. Although the mimeti
properties of the 
ompound �nite elements help to ensure that 
ertain 
onservation and balan
e propertiesare well 
aptured even on quasi-uniform meshes, they do not dire
tly imply a

urate wave dispersion. It istherefore important to 
he
k that their wave dispersion properties are at least as good as those of a C-grid.Investigation of the dispersion properties of the 
ompound elements will be the parti
ular fo
us of this paper;this provides useful insight into both the adjustment in response to imbalan
e and also the presen
e andbehavior of any 
omputational modes. Of parti
ular interest is the group velo
ity, whi
h governs the speed3
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Figure 2: Triangular element with verti
es νi, edges opposite verti
es ei of length li. Tangent and (outward)normal ve
tors to edge ei are denoted ti,ni respe
tively. di is the perpendi
ular distan
e from edge i tovertex i.and dire
tion of propagation of disturban
es. It is well known that the C-grid dis
retisation slows downpropagation su
h that the highest frequen
y resolved mode (the 2h wave, where h is the element width) haszero group velo
ity (
.f, a 
ollo
ated A-grid dis
retisation where the 4h wave has zero group velo
ity and allwaves with wavenumber >2h have a group velo
ity with the wrong sign).The rest of the paper is set out as follows. The P1 − RT0 − PDG
0 �nite element spa
e on triangularelements is reviewed in Se
tion 2. Se
tion 3 des
ribes how the 
ompound elements are formed from thesub-elements and formulates the basis fun
tions on the 
ompound element. The dis
rete linear shallowwater equations are formed in Se
tion 4 for uniform elements. The dispersion properties of the 
ompoundelements are investigated in Se
tion 5 and 
ompared with the well known C-grid �nite di�eren
e and standard

RT0 dis
retisations. Numeri
al simulations are performed in Se
tion 6 to 
on�rm some of the theoreti
alproperties derived earlier, and �nally 
on
lusions are drawn in Se
tion 7.2 P1 − RT0 − P
DG
0 Triangular elementsThe P1 − RT0 − PDG

0 triangular elements have two fun
tion spa
es for s
alars (P1 and PDG
0 ) and onefor ve
tors (RT0). The P1 spa
e 
ontains s
alars that vary linearly within ea
h element and are 
ontinuousbetween elements, there are three degrees of freedom per element lo
ated at the element verti
es and sharedbetween all elements that share the vertex. Ve
tors have 
ontinuous normal 
omponents at element edges(with a 
onstant normal 
omponent along the edge), within the element the ve
tor �eld varies linearly and is
url free. As a result of this the tangential 
omponents are dis
ontinuous at element edges. There are threedegrees of freedom per element for a ve
tor �eld, one per edge, whi
h are shared with elements that share theedge. The PDG

0 spa
e 
ontains s
alars that have a pie
ewise 
onstant representation and one s
alar degreeof freedom per element. The lo
ation of degrees of freedom is therefore the same as for a triangular C-griddis
retisation. For the shallow water equations this results in a 3:2 velo
ity to height degree of freedom ratioand therefore the triangular based RT0 dis
retisation su�ers from the same 
omputational inertia-gravitywave mode as the C-grid (Danilov, 2010; Le Roux, 2012).Consider the triangular element as shown in Fig. 2 with verti
es νi lo
ated at (xi, yi). The bary
entri

oordinates of a point x = (x, y) are given by λ = (λ1, λ2, λ3) where λj = 1 at vertex i = j and λj = 0 atvertex i 6= j, see Coxeter (1989) for details. The basis fun
tions used to 
onstru
t the RT0 elements 
onsistof: pie
ewise linear fun
tions in spa
e V0 that are 
ontinuous between elements
χi (x, y) ≡ λi (x, y) , (2)4



∇χi (x, y) ≡ ∇λi (x, y) = −ni

di

∇.wi (x, y) = 2 ≡ 2ρ (x, y)
k.∇× w (x, y)i = 0

∇⊥χi (x, y) = − ti

di
≡ wk(x,y)−wj(x,y)

lidiTable 1: Useful relationships of the triangular P1 −RT 0 − P0 basis fun
tions.
v1

v2 v3Figure 3: Basis fun
tion w2 for a triangular RT0 element asso
iated with edge 2 as des
ribed in Fig. 2.where i = 1, 2, 3 indi
ates whi
h vertex of the element χi is asso
iated with; ve
tors with 
onstant normal
omponents along edges in V1

wi (x, y) ≡ λj (x, y) lktk − λk (x, y) ljtj , (3)where i = 1, 2, 3 and j and k are 
y
li
 in
rements of i and j respe
tively, as an example w2 is shown inFig.3; and pie
ewise 
onstant fun
tions in the fun
tion spa
e V2

ρ (x, y) ≡ 1. (4)Variables in ea
h fun
tion spa
e 
an be expressed as weighted sums of the appropriate basis fun
tions. Someuseful properties of the basis fun
tions that will be needed in the following se
tions are given in Table 1.3 Compound RT0 elementsThe 
ompound elements are 
onstru
ted by �rst subdividing the polygonal element into a number ofsmaller sub-elements. The number and shape of the sub-elements is 
onstrained by the need to 
onsistentlybuild both the primal and dual grid out of the same set of sub-elements and therefore the overlap area betweenthe primal and dual grid needs to be exa
tly divided into a number of sub-elements. For a polygonal grid theprimal-dual overlap is a quadrilateral, in the form of a kite. Therefore, the sub-elements are required to beeither triangles (by further subdividing the kite) or quadrilaterals. Sin
e any polygonal shape 
an be dividedinto triangles, and triangles are also 
onvenient for approximating 
urved surfa
es (su
h as the sphere) byplanar fa
ets, this 
hoi
e of sub-elements o�ers greater �exibility for future implementation on nonuniformgrids, see Fig. 4. For example, although a hexagon 
ould be sub-divided into only six triangles by joiningea
h vertex to the 
entre of the element, this would be in
onsistent with the 
orresponding subdivision of thedual element triangle, whi
h would be subdivided into three smaller triangles through joining ea
h vertex tothe 
entre of the dual element.To 
onstru
t the basis fun
tions for the 
ompound elements we use the harmoni
 extension ideas ofChristiansen (2008). We wish to 
onstru
t the 
ompound element fun
tion spa
es V
(C)
0 , V

(C)
1 , V

(C)
2 out ofthe larger spa
es of the sub-element fun
tion spa
es V0, V1, V2. For example, to 
onstru
t a basis fun
tion,5



(a) (b)Figure 4: Subdivision of the primal-hexagonal and dual-triangular grids using (a) in
onsistent subdivision(the sub-elements on the primal and dual grid are not identi
al) with 6 sub-elements for the primal-hexagonal
ompound elements, indi
ated by verti
al shading and 3 sub-elements for the dual-triangular 
ompoundelements, indi
ated by horizontal shading and (b) 
onsistent subdivision (the sub-elements on the primaland dual grid are identi
al) using 12 sub-elements for the primal-hexagonal 
ompound elements and 6 sub-elements for the dual 
ompound-triangular elements.
w ∈ V

(C)
1 , where the supers
ript denotes appli
ation to the 
onstru
ted 
ompound element, �rst boundary
onditions are imposed, namely that the normal 
omponent of w is nonzero and 
onstant only along oneedge of the polygonal element. Then the basis fun
tion is extended harmoni
ally into the interior of theelement, that is, to satisfy

∇ (∇.w) ≡ 0, (5)
k.∇× w ≡ 0. (6)Similar 
onstru
tions hold for basis fun
tions in other spa
es. Unfortunately exa
t solutions of (5) and (6)do not generally have analyti
 expressions. However, a dis
rete version of (5) and (6) 
an be solved bydividing ea
h polygonal element into triangular sub elements and using an RT0 �nite element dis
retisationon the spa
e of sub-elements, thus giving a dis
rete harmoni
 extension. Moreover, it 
an be shown that thefun
tion spa
es obtained in this way are 
ompatible (Christiansen, 2008).Consider a 
ompound element made up of n triangular sub-elements Ti, i = 1, .., n, where n = 8 fora 
ompound quadrilateral element and n = 12 for a 
ompound hexagonal element, Fig. 5. A variable isexpanded in terms of 
ompound basis fun
tions in the same way as for a non-
ompound element but withtime dependent 
oe�
ients lo
ated as in Fig 6. Hen
e for variables in the 
ompound fun
tion spa
es V

(C)
i thatwe wish to 
onstru
t: (ψ, u, Φ) ∈

(
V

(C)
0 , V

(C)
1 , V

(C)
2

) the expansions are
ψ (x, t) =

nvert∑

k=1

ψk (t)χ
(C)
k (x) , (7)

u (x, t) =

nedge∑

k=1

uk (t)w
(C)
k (x) , (8)

Φ (x, t) = Φ (t) ρ(C) (x) , (9)where (χ(C)
k , w

(C)
k , ρ(C)

) are the 
ompound basis fun
tions and nvert and nedge are the number of externalverti
es and edges on the 
ompound element respe
tively, i.e. both nvert and nedge are 4 for a quadrilateral6
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(b)Figure 5: (a) Quadrilateral element made up of 8 triangular RT0 elements, T1, .., T8, the 
ompound elementis formed by gluing the sub-elements together. Arrows indi
ate lo
ations of the velo
ity basis fun
tions w
(j)
iasso
iated with ea
h sub-element j. (b) Similar 
onstru
tion 
an be made for a 
ompound hexagonal elementusing 12 triangular RT0 elements. Note the 
onvention that edge 1 of the sub-element is on the outer edgeof the 
ompound element. 7
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ation of velo
ity and geopotential degrees of freedom on the 
ompound elements for (a)quadrilaterals and (b) hexagons.or 6 for a hexagon. The 
ompound basis fun
tions are then written as a linear 
ombination of the sub-elementbasis fun
tions

χ
(C)
k (x) =

n∑

j=1

nverts∑

i=1

α
(j)
i χ

(j)
i (x) , (10)

w(C) (x) =
n∑

j=1

nedges∑

i=1

β
(j)
i w

(j)
i (x) , (11)

ρ(C) (x) =

n∑

j=1

γ(j)ρ(j) (x) , (12)where n is the number of sub-elements, and nverts and nedges are the number of verti
es and edges on asub-element, whi
h for the triangles used here are always 3, (see Fig. 5 for lo
ations of the w
(j)
i sub-elementbasis fun
tions). For the right hand side sub-element terms the supers
ript refers to the sub-element indexand the subs
ript refers to the edge or vertex of the sub-element whi
h follows the 
onvention that edge1 lies on the edge of the 
ompound element and the edge index in
reases in the anti
lo
kwise dire
tion,and vertex i is opposite edge i. The sub-element basis fun
tions ψ(j)

i , w
(j)
i and ρ(j) take their usual valueinside sub-element j and are zero outside of it. It remains then to �nd the 
oe�
ients α, β and γ for ea
h
ompound basis fun
tion, this is done through imposing dis
rete versions of (5) and (6) along with boundary
onditions.For a V2 �eld ea
h sub-element (j) has a 
onstant value ρ(j), therefore to ensure the 
ompound elementbasis fun
tion is 
ontinuous a
ross sub-element boundaries requires

γ(j) ≡ const = 1, ∀j = 1, .., n. (13)Therefore 
ompound basis fun
tion, ρ(C) = 1 is 
onstant throughout the 
ompound element, as for a standardnon-
ompound RT0 element.To form the 
ompound V1 basis fun
tions three sets of 
onstraints are applied. First, the normal �uxalong ea
h edge of the 
ompound element is required to be 
ontinuous and 
onstant, requiring
β

(i)
1 di = β

(j)
1 dj = 0, or const, (14)8



where β(i)
1 , β

(j)
1 are the 
oe�
ients of the expansion (11) along a 
ompound element edge, and di, dj are theperpendi
ular distan
es from the 
orresponding verti
es to the edges of the sub-element. For a 
ompoundbasis fun
tion w

(c)
k then β

(i)
1 di = const if edge 1 of sub-element i is a se
tion of 
ompound edge k and

β
(i)
1 di = 0 otherwise, (see 
aption of Fig. 5) . Se
ond, mimi
king the non-
ompound element, the divergen
ewithin the 
ompound element is required to be 
onstant, this is equivalent to enfor
ing (5). Using Table 1and (11) this 
an be expressed as

3∑

i=1

s
(j)
i β

(j)
i (t) =

3∑

i=1

s
(k)
i β

(k)
i (t), ∀j, k = 1, .., n, (15)with s(j)i = ±1 being the sign of ∇.w(j)

i . The �nal 
onstraint on the V1 basis is that, mimi
king k.∇×w = 0,and equivalent to enfor
ing (6), a measure of vorti
ity is required to vanish inside the 
ompound element.The vorti
ity is given by ξ = k.∇ × w(C). However the 
url of the velo
ity is not de�ned and so the weakform of the vorti
ity is used and it is demanded that this weak formulation of vorti
ity vanishes inside the
ompound element. For a test fun
tion χ ∈ V0 (note that χ /∈ V
(C)
0 for the 
ompound element fun
tionspa
e V

(C)
0 whi
h is a subset of V0) the 
onstraint that an integrated measure of the vorti
ity vanishes overthe 
ompound element ec, 
an be expressed as�

ec

χξds ≡
�

ec

χ
(
k.∇̃ × w(C)

)
ds = 0. (16)Evaluating the 
url in the weak sense by integrating by parts this be
omes

−
�

ec

∇⊥χ.w(C)ds = 0. (17)Taking χ lo
ated at the 
entre of the 
ompound element, yields, using Table 1
−

n∑

j=1

�
Tj

∇⊥χ.
3∑

i=1

(
β

(j)
i w

(j)
i

)
ds =

n∑

j=1

�
Tj

t
(j)
1

d
(j)
1

.

3∑

i=1

(
β

(j)
i w

(j)
i

)
ds = 0, (18)where t

(j)
1 is the tangent ve
tor to the edge of sub-element j lying on the boundary of the 
ompound element.Using (14), (15) and (18) the values of β 
an be determined for ea
h 
ompound basis fun
tion. Note thatwhen the 
ompound elements are 
onstru
ted in this way, (1) holds for V

(C)
0 , V

(C)
1 , V

(C)
2 ,For the quadrilateral element in Fig 5 (a) the 
ompound velo
ity basis fun
tion asso
iated with edge 1,Fig 6 (a), is:

w
(C)
1 d

(C)
1 ≡ 1

4

[(
3w

(8)
2 − 2w

(8)
3

)
+
(
4w

(1)
1 − 3w

(1)
3

)
+
(
4w

(2)
1 − 3w

(2)
2

)
+
(
3w

(3)
3 − 2w

(3)
2

)

+
(
2w

(4)
3 − w

(4)
2

)
+
(
w

(5)
3

)
+
(
w

(6)
2

)
+
(
2w

(7)
2 − w

(7)
3

)]
, (19)where d(C)

1 is the perpendi
ular distan
e from the 
ompound edge 1 to the 
enter of the element, i.e. halfthe element width. The other 
ompound basis fun
tions, w(C)
j , j = 2, .., 4, 
an be obtained in sequen
e from

w
(C)
k , k = 1, .., 3 by in
reasing the sub-element index by 2 (modulo 8) and multiplying by −1. In additiona normalisation has been applied so that for a unit element w

(C)
j .n

(C)
j = 1 along edge j. Fig. 7 (a) shows

w
(C)
1 in the 
ompound element. Note, that even for a uniform 
ompound element on a plane, as 
onsideredhere, this results in a 
onsiderably di�erent set of basis fun
tions to the non-
ompound RT0 element on aquadrilateral where the equivalent to (19) would be

w
quad
1 ≡ (x− x−)

x+ − x−
i, (20)where x+ and x− indi
ate the positions of the right- and left-hand edges of the element respe
tively.9



(a) (b)Figure 7: Compound basis fun
tions for a (a) 
ompound quadrilateral (19), and (b) 
ompound hexagon (21).For the hexagonal element in Fig. 5 (b) the 
ompound basis fun
tion asso
iated with edge 1, Fig 6 (b),is:
w

(C)
1 d

(C)
1 =

1

6

[(
6w

(1)
1 − 5w

(1)
3

)
+
(
6w

(2)
1 − 5w

(2)
2

)
+
(
5w

(3)
3 − 4w

(3)
2

)
+
(
4w

(4)
3 − 3w

(4)
2

) (21)
+
(
3w

(5)
3 − 2w

(5)
2

)
+
(
2w

(6)
3 − w

(6)
2

)
+
(
w

(7)
3

)
+
(
w

(8)
2

)
+
(
2w

(9)
2 − w

(9)
3

)

+
(
3w

(10)
2 − 2w

(10)
3

)
+
(
4w

(11)
2 − 3w

(11)
3

)
+
(
5w

(12)
2 − 4w

(12)
3

)]
,and w

(C)
j , j = 2, .., 6 
an again be obtained in sequen
e from w

(C)
k , k = 1, .., 5 by in
reasing the sub-elementindex by 2 (modulo 12) and multiplying by −1 and the same normalisation as used for the quadrilateralelements has been applied. Fig. 7 (b) shows w

(C)
1 in a hexagonal 
ompound element.In prin
iple the pre
eding method 
ould be applied to 
reate a primal grid made of 
ompound triangularelements (where ea
h 
ompound triangle is subdivided into six sub-elements), however, applying the 
on-straints in this se
tion, the resulting 
ompound element, for a uniform subdivision, inherits the same basisfun
tions and hen
e dispersion properties as the non-
ompound triangular RT0 element that was analysedby Le Roux et al. (2008); Le Roux (2012).It is worth noting that for regular geometry it is possible to form the 
ompound elements by hand,however, for a more general geometry this would be very time 
onsuming and would not be re
ommended,instead it is suggested to apply the 
onstraints numeri
ally.For the linear shallow water equations 
onsidered here the 
ompound V

(C)
0 �eld is not needed and so the
omputations for the 
ompound basis fun
tions χ(C) are omitted, though the pro
ess for 
omputing themfollows a similar method to the V

(c)
1 and V

(c)
2 �elds.4 Dis
rete equationsThe 2D 
ontinuous linear shallow water equations on an f−plane are
∂Φ

∂t
+ Φ0∇.u = 0, (22)

∂u

∂t
+ ∇Φ + fu⊥ = 0, (23)10



with 
onstant referen
e geopotential Φ0. Rewriting these in the weak form, introdu
ing test fun
tions ρ and
w in the geopotential and velo
ity spa
e respe
tively and integrating over a domain Ω ∈ R

2 yields�
Ω

ρ
∂Φ

∂t
da+ Φ0

�
Ω

ρ∇.uda = 0, (24)�
Ω

w.
∂u

∂t
da−

�
Ω

Φ∇.wda+

�
Ω

fw.u⊥da = 0, (25)where the ∇Φ term in (25) is evaluated in the weak sense and has been integrated by parts where periodi
boundary 
onditions have been assumed. Substituting (8) and (9) into (24) and (25) and integrating over the
ompound elements gives the element-wise dis
rete equations. The spatially dis
rete equations are writtenin matrix-ve
tor form as a sum over ea
h element-wise dis
rete equation, whi
h are
∑

e

MΦ
∂Φ̂(e)

∂t
+ Φ0Dû

(e) = 0, (26)and ∑

e

Mu

∂û(e)

∂t
−DT Φ̂(e) + F û(e) = 0, (27)for the 
ontinuity and momentum equations respe
tively. Φ̂(e) and û(e) are the ve
tors of geopotential andvelo
ity degrees of freedom for element e respe
tively. Ea
h 
ompound element e has a single geopotentialdegree of freedom asso
iated with it, and either 4 (for quads) or 6 (for hexagons) velo
ity degrees of freedom.The element degree of freedom ve
tors are therefore.
Φ̂(e) ≡ [Φ] , (28)

û
(e)
quad ≡

[
u+, u−, v+, v−

]T
, (29)

û
(e)
hex ≡

[
u+, u−, v+, v−, w+, w− ]T

. (30)The velo
ity 
omponents u, v, w point in the x1, x2, x3 dire
tions respe
tively (see (37) & (46) below) andthe supers
ripts indi
ate whether the 
omponent points out of (+) or into (−) the element. In addition thereis a 1-1 mapping between these 
omponents and u(c)
j as used in Fig. 6 given by

[
u+, u−, v+, v−

]
≡
[
u

(c)
1 , u

(c)
3 , u

(c)
2 , u

(c)
4

] (31)
[
u+, u−, v+, v−, w+, w−] ≡

[
u

(c)
1 , u

(c)
4 , u

(c)
2 , u

(c)
5 , u

(c)
3 , u

(c)
6

] (32)for quadrilaterals and hexagons respe
tively. In addition: Mu andMΦ are the mass matri
es; D is the matrixasso
iated with the divergen
e operator; its transposeDT is the matrix asso
iated with the gradient operatorand F is the operator asso
iated with fk×. These are given for uniform elements of width h in Appendix A.Note that the resulting operator matri
es for both a C-grid �nite di�eren
e and an RT0 based dis
retisation(using both 
ompound and, on quadrilaterals, regular basis fun
tions) di�er only in the velo
ity mass matrix
Mu. This is true for both the quadrilateral and hexagonal based methods. See Appendix A for details.5 Dispersion AnalysisThe dis
rete dispersion relation for both quadrilateral and hexagonal 
ompound elements using the samemethodology as Thuburn (2008) and Staniforth et al. (2013) is adopted. Begin by seeking solutions of theform

Φ = P exp [i (k.x − ωt)] , (33)
u± = U exp [i (k.x − ωt)] , (34)
v± = V exp [i (k.x − ωt)] , (35)
w± = W exp [i (k.x − ωt)] , (36)with x ≡ (x, y) , k ≡ (k, l) . 11
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(d)Figure 8: Normalised (ωh/√Φ0

) dispersion relation for gravity-wave equations, (f ≡ 0): (a) Exa
t solution,(b) C-grid �nite di�eren
e, (
) standard quadrilateral RT0 element and (d) 
ompound quadrilateral RT0element. Contour interval 0.25. Solid bla
k 
ontour shows the e�e
tive resolution, the region within whi
hthe dispersion relation error ≤ 1%.5.1 Quadrilateral ElementsIt is 
onvenient to work in terms of 
oordinate dire
tions normal to element edges, therefore, for quadri-lateral elements de�ne
(x1, x2) ≡ (x, y) , (37)
(k1, k2) ≡ (k, l) . (38)Substituting (33)-(35) into (26) and (27) with the mass matrix Mu as given in Appendix A (A.4) for the
ompound elements and using (37)-(38) gives

−ωP + 2
Φ0

h
[S1U + S2V ] = 0, (39)

− 1

12
ω
([

7C2
1 + 5

]
U − S2S1V

)
+ 2S1

P

h
+ ifC1C2V = 0, (40)

− 1

12
ω
([

7C2
2 + 5

]
V − S1S2U

)
+ 2S2

P

h
− ifC1C2U = 0 (41)with Sj ≡ sin (kjh/2) and Cj ≡ cos (kjh/2) with j = 1, 2. Writing this in matrix form results in




−ω 2Φ0

h
S1 2Φ0

h
S2

2S1

h
− 1

12ω
(
7C2

1 + 5
)

1
12ωS1S2 + ifC1C2

2S2

h
1
12ωS1S2 − ifC1C2 − 1

12ω
(
7C2

2 + 5
)





P
U
V


 = 0, (42)
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(
)Figure 9: Normalised (ω/f) dispersion relation for inertia-wave equations (Φ0 ≡ 0): (a) C-grid �nite di�er-en
e, (b) standard quadrilateral RT0 element and (
) 
ompound quadrilateral RT0 element. Contour interval
0.1. Solid bla
k 
ontour shows the e�e
tive resolution, the region within whi
h the dispersion relation error
≤ 1%..
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tions of the gravity wave (a-b) and inertia-wave (
-d) limits.
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yielding the dispersion relation
ω

{
−
( ω

12

)2 [(
7C2

2 + 5
) (

7C2
1 + 5

)
− S2

2S
2
1

]
+ f2C2

1C
2
2 +

1

3

Φ0

h2

[
S2

2

(
7C2

1 + 5 + S2
1

)
+ S2

1

(
7C2

2 + 5 + S2
2

)]}
= 0(43)whi
h has solutions:

ω = 0,±12

√
1
3

Φ0

h2 [S2
2 (S2

1 + 7C2
1 + 5) + S2

1 (S2
2 + 7C2

2 + 5)] + f2C2
1C

2
2

[(7C2
2 + 5) (7C2

1 + 5) − S2
2S

2
1 ]

. (44)Note the presen
e of the ω = 0 root is guaranteed by the mimeti
 properties of the s
heme, even on non-regular meshes. For small (kh, lh) it 
an be veri�ed that
ω ∼ 0,±

{
ω0 +

1

96ω0

[
3Φ0

(
k4 + l4

)
+ 2Φ0k

2l2 − 5f2
(
k2 + l2

)]
h2 +O

(
h4
)}

, (45)with ω0 =
√

Φ0 (k2 + l2) + f2, providing a useful 
he
k on the 
orre
tness of (44) and showing that s
hemeis se
ond order a

urate on the regular grid used here.For pure gravity waves (f ≡ 0) the positive non-zero root of (44) is shown in Fig. 8 (d) along with the (a)exa
t, (b) C-grid �nite di�eren
e and (
) non-
ompound RT0 quadrilateral element results for 
omparison.The 
ompound element, panel (d), 
an be seen to improve upon the isotropy of the dispersion relation
ompared with both the C-grid, panel (b), and the non-
ompound RT0 element, panel (
) at least for small
k. For pure inertia waves (Φ0 ≡ 0) the positive non-zero root of (44) is shown in Fig. 9, again along withthe C-grid �nite di�eren
e and non-
ompound RT0 quadrilateral element results for 
omparison. In this
ase the exa
t solution is unity and is therefore omitted. Here, all three methods produ
e very similarresults, although frequen
y for the RT0 elements drops o� more slowly than the C-grid method. Cross-se
tions of Figs 8 and 9 along 
entroid-edge and 
entroid-node sli
es are shown in Fig 10. The 
entroid-edgesli
es (panels (a) and (
)) are the dispersion relations that would be obtained for a 1d model. For gravitywaves the 
ompound element redu
es the overestimation of the frequen
y, in
reasing the a

ura
y for largewavenumbers. This result is partially reversed for inertia waves where underestimation of the frequen
yin the standard RT0 element is made worse in the 
ompound method. The 
entroid-node sli
es show thatfor gravity waves (panel (b)) the standard and 
ompound elements produ
e the same overestimation of thefrequen
y whilst for inertia waves (panel (d)) the 
ompound element again in
reases the underestimation ofthe of frequen
y slightly when 
ompared to the standard elements.The x-
omponent of the group velo
ity ∂ω/∂k for the gravity wave equation is shown in Fig. 11. Both
RT0 methods exhibit overshoots in the group velo
ity, although the overshoot is greatly redu
ed for the
ompound element, Max (Cg) ≈ 1.2 at (kh, lh) =

(
2atan

(
3/

√
5
)
, 0
), 
ompared to the standard element,

Max (Cg) ≈ 1.4 at (kh, lh) = (2π/3, 0). Due to symmetry the same maximum values are found for the y
omponent if kh and lh are swapped. It should be noted that Cg −→ 0 at k = kmax for all three s
hemes.5.2 Hexagonal ElementsAs before it is 
onvenient to work in terms of dire
tions normal to element edges and so for hexagonalelements
(x1, x2, x3) ≡

(
x,−1

2
x+

√
3

2
y,−1

2
x−

√
3

2
y

)
, (46)

(k1, k2, k3) ≡
(
k,−1

2
k +

√
3

2
l,−1

2
k −

√
3

2
l

)
. (47)Substituting (33)-(36) into (26)-(27) with the mass matrix Mu from the 
ompound elements and using(46)-(47) yields

−ωP +
4

3

Φ0

h
(S1U + S2V + S3W ) = 0, (48)14
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(d)Figure 11: Normalised group velo
ity for the gravity-wave equations: (a) Exa
t solution (b) C-grid �nitedi�eren
e, (
) non-
ompound quadrilateral RT0 element and (d) 
ompound quadrilateral RT 0 element. Solidbla
k lines indi
ate the zero 
ontour. All plots show the x−
omponent of group velo
ity, the y−
omponent
an be obtained by rotation of -90 degrees. Contour interval 0.1.
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(
)Figure 12: Normalised (ωh/√Φ0

) dispersion relation for gravity-wave equations (f ≡ 0): (a) Exa
t solution,(b) C-grid �nite di�eren
e, (
) 
ompound hexagonal RT0 element. Contour interval 0.25. Solid bla
k 
ontourshows the e�e
tive resolution, the region within whi
h the dispersion relation error ≤ 1%.
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ω
[
C1U + C̃3V + C̃2W

]
+ 2S1

P

h
+
(
Ĉ3V − Ĉ2W

)
= 0, (49)

ω
[
C2V + C̃1W + C̃3U

]
+ 2S2

P

h
+
(
Ĉ1W − Ĉ3U

)
= 0, (50)

ω
[
C3W + C̃2U + C̃1V

]
+ 2S3

P

h
+
(
Ĉ2U − Ĉ1V

)
= 0. (51)with

C̃p ≡ − 1

108
(−28CqCr + 10Cp) , (52)

Ĉp ≡ i

3
√

3
f (2CqCr + Cp) , (53)

Cp = − 1

108

(
50 + 40C2

p

) (54)where p = 1, 2, 3 and q, r are 
y
li
 in
rements of p and q respe
tively. Writing (48)-(51) in matrix formgives 


−ω 4
3

Φ0

h
S1

4
3

Φ0

h
S2

4
3

Φ0

h
S3

2S1

h
ωC1 ωC̃3 + Ĉ3 ωC̃2 − Ĉ2

2S2

h
ωC̃3 − Ĉ3 ωC2 ωC̃1 + Ĉ1

2S3

h
ωC̃2 + Ĉ2 ωC̃1 − Ĉ1 ωC3







P
U
V
W


 = 0. (55)This 
an be solved to give the dispersion relation (whi
h is omitted for brevity). There are four roots
orresponding to two inertia-gravity waves solutions and two Rossby modes (one of whi
h is spurious, aswith the C-grid dis
retisation due to the 3:1 velo
ity to geopotential degree of freedom ratio). For small

(kh, lh) it 
an again be veri�ed that
ω ∼ ±0,±

{
ω0 +

1

288ω0

(
k2 + l2

) [
8Φ0

(
k2 + l2

)
− 9f2

]
h2 +O(h4)

}
, (56)with ω0 =

√
Φ0 (k2 + l2) + f2 as before, providing a useful 
he
k on the 
orre
tness of (55) and showingthat, as with the quadrilateral elements, the s
heme is se
ond order a

urate on regular grids. Again thepresen
e of the ω = 0 root is guaranteed by the mimeti
 properties of the s
heme. The se
ond zero rootis the 
omputational Rossby mode that due to the f-plane approximation made here degenerates to a zerofrequen
y mode. Thuburn (2008) analysed the impa
t of this extra root in the dispersion relation andThuburn et al. (2013) investigate the impa
t of it on a numeri
al simulation showing that if the potentialvorti
ity adve
tion is well handled then the 
omputational mode has little e�e
t.For pure gravity waves (f ≡ 0) the positive non-zero root of (55) is shown in Fig. 12 along with the exa
tand C-grid �nite di�eren
e results for 
omparison. The limits of the domain are given by the �rst Brillouinzone of the hexagonal latti
e and 
an be pra
ti
ally determined by observing where the dispersion relationstarts to repeat itself; the wavenumber ranges are lh ∈

(
− 2√

3
π, 2√

3
π
) and kh ∈

(
− 4

3π + |lh|√
3
, 4

3π − |lh|√
3

).Both the 
ompound RT0 and C-grid dis
retisations show improved isotropy 
ompared with the equivalentquadrilateral dis
retisations, and again this is improved in the 
ompound element 
ase 
ompared with theC-grid. Cross-se
tions of Figs 12 and 13 along 
entroid-edge and 
entroid-node sli
es are shown in Fig14. In 
ommon with both the standard and 
ompound quadrilateral elements, the 
ompound hexagonalelement overestimates the frequen
y for large wavenumbers for gravity waves 
ompared with the C-gridwhi
h underestimates the frequen
y. However, the estimation error in the 
ompound element is smalleras 
an be seen from the 
ompound dispersion relation lying 
loser to the exa
t solution. As with thequadrilateral elements, the 
ompound RT0 elements exhibit spuriously high frequen
y waves, though this ismu
h redu
ed 
ompared with the quadrilateral elements, as shown in Table 2.For pure inertia waves (Φ0 ≡ 0) the positive non-zero roots are shown in Fig. 13, again along with theC-grid �nite di�eren
e results for 
omparison. In this 
ase the exa
t solution is unity and so is not shown.17
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(f)Figure 15: Normalised group velo
ity for the gravity-wave equations: (a)-(
) x-
omponent & (d)-(f) y-
omponent, with (a) & (d) exa
t solution, (b) & (e) C-grid �nite di�eren
e and (
) & (f) 
ompound hexagonal
RT0 element. Solid bla
k lines indi
ate the zero 
ontour. Contour interval 0.1.

S
heme ωnum
max /ω

exact
maxQuad C-grid 0.6366Quad RT0 1.103Compound Quad RT0 1.103Hex C-grid 0.585Compound Hex RT0 1.012Table 2: Ratio of maximum numeri
al frequen
y to maximum exa
t frequen
y ωnum

max /ω
exact
max for the gravitywave equations with quadrilateral and hexagonal elements. These maxima o

ur at the 
orners of the plotsin �gures 8 and 12, that is at kh = lh = ±π for the quadrilateral elements and at kjh = 4π/3 for hexagonalelements where j = 1 or 2 or 3 and kj is given by one of (47).
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S
heme E�e
tive resolution ε = 0.01 E�e
tive resolution ε = 0.1Gravity Waves Inertia Waves Gravity Waves Inertia WavesQuadrilateral C-Grid 10.1h 22.20h 4.65h 6.97hQuadrilateral RT0 10.47h 13.02h 4.7h 4.50hQuadrilateral Compound RT0 9.15h 14.46h 4.14h 4.88hHexagonal C-Grid 9.17h 20.27h 4.22h 6.30hHexagonal Compound RT0 8.83h 11.21h 4.07h 3.80hTable 3: E�e
tive resolution for gravity-wave and inertia-wave dispersion with error levels ε = 0.01, 0.1 ofthe di�erent spatial dis
retisations.As with the quadrilateral elements, there is less di�eren
e between the dis
retisations for the inertia-wavelimit, but again the 
ompound element frequen
y de
ays more slowly than the C-grid. In 
ontrast with thegravity wave 
ase both the 
ompound and C-grid methods underestimate the frequen
y, although again theerror for the 
ompound element is smaller than the C-grid.The x− and y−
omponents of the group velo
ity are shown in Fig. 15. Again the 
ompound elementsshow a spurious speeding up of some waves with Max (Cg) ≈ 1.3, o

urring at (kh, lh) ≈ (2.42, 0). In 
ontrastwith the quadrilateral elements there are now small regions of wavenumber spa
e where a 
omponent of thegroup velo
ity ve
tor spuriously 
hanges sign for both the C-grid and RT0 dis
retisations, this means thatwavepa
kets in these regions will have a 
omponent in either the x or y dire
tion that travels in the wrongdire
tion. These regions are however both small in extent and at the limits of the resolvable resolution, inaddition the magnitude of the group velo
ity in these regions is small and so the e�e
t on the a

ura
y ofthe model is likely to be small, 
.f. a 
ollo
ated A-grid method where (in 1-dimension) half the spe
trumhas the wrong sign of group velo
ity and of up to the same magnitude as the exa
t solution. Additionallysin
e these regions of negative group velo
ity are for small s
ale waves and sin
e nonlinear models generallydissipate on the small s
ales this will likely further redu
e the impa
t of these regions of negative groupvelo
ity.5.3 E�e
tive ResolutionTo try to quantify the a

ura
y of the numeri
al s
hemes at approximating the 
ontinuous equations thee�e
tive resolution of ea
h dis
retisation is 
omputed. The e�e
tive resolution is de�ned to be the resolutionat whi
h the numeri
al s
heme 
an be 
onsidered to have a

urately resolved the �ow. To quantify this,the de�nition of Ullri
h (2014) is used: for a given error level ε, the shortest resolved wavelength λ is somemultiple of the grid spa
ing λ = bh su
h that
∣∣∣∣
h√
Φ0

(ωnumerical − ωexact)

∣∣∣∣ ≤ ε. (57)For ε = 0.01 and ε = 0.1, whi
h 
orrespond to the numeri
al solution being within 1% and 10% respe
tivelyof the exa
t solution, the e�e
tive resolutions for the di�erent s
hemes are listed in Table 3. These areobtained numeri
ally from Figures 8, 9, 12 and 13 by �nding the point at whi
h the inequality (57) fails tohold. This shows that for pure gravity waves there is a small in
rease in a

ura
y (of the order h/2−h) fromusing the 
ompound elements. For pure inertia waves the improvement over the C-grid methods is mu
hgreater, but for quadrilaterals the e�e
tive resolution when using 
ompound elements is a
tually slightlyworse than with non-
ompound elements. The e�e
tive resolution 
ontour 
orresponding to ε = 0.01 isalso shown in Figs. 8-9 and 12-13 as a solid bla
k line, where the more isotropi
 nature of the 
ompoundquadrilateral elements and the hexagonal methods 
an be seen.5.4 Variable Rossby radiusSo far all the results presented have been for the two ends of the inertia-gravity wave spe
trum, eitherpure gravity waves (f ≡ 0) or pure inertia waves (Φ0 ≡ 0) . However, in pra
ti
e we are interested in the19
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(d) Rd/h = 2Figure 16: Normalised dispersion relation (ω/f) for hexagonal 
ompound elements with a variably resolvedRossby radius, ranging from Rd/h = 1/20 (
oarse resolution) to Rd/h = 2 (well resolved).propagation of mixed inertia-gravity waves for a range of values of the Rossby radius Rd =
√

Φ0/f . FollowingLe Roux (2012) four values of the normalised Rossby radius are 
hosen Rd/h = 1/20, 1/3, 1, 2 ranging froma 
oarse resolution Rd/h = 1/20 of the Rossby radius up to a well resolved radius Rd/h = 2. The dispersionrelation for the hexagonal 
ompound element is shown in Figure 16 and 1D sli
es along lh = 0 for boththe hexagonal 
ompound elements and C-grid dis
retisation are shown in 17. In 
ommon with the earlierresults when the Rossby radius is well resolved the 
ompound elements a

urately represent the dispersionrelation whilst for poorly resolved wavenumbers the representation is less good as was found with pure inertiawaves. However 
ompared with the C-grid dis
retisation the 
ompound elements do a mu
h better job formoderately resolved Rossby waves Rd/h = 1/3, 1. A similar representation is found for the quadrilatetralelements (not shown).6 Numeri
al SimulationsTo test the theoreti
al predi
tions of the previous se
tions numeri
al integrations are performed. Thequestion we are primarily interested in answering is what is the e�e
t of the small improvement in thedispersion properties predi
ted by the previous analysis? Additionally, we are interested if there is anysigni�
ant 
hange in the a

ura
y of the model and �nally whether any of the improvement to the dispersionproperties that were analysed on a uniform Cartesian mesh 
arry over to a quasi-uniform spheri
al mesh.For a more general dis
ussion of the performan
e of these methods on a standard set of spheri
al shallowwater test 
ases the interested reader if referred to Thuburn et al. (2013) and Thuburn and Cotter (2015).To perform the numeri
al integrations a 
entred semi-impli
it time dis
retisation is used. Equations (26)and (27) 
an be 
ombined, yielding
A+yn+1 = A−yn, (58)20
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(
)Figure 19: Goepotential pro�les for numeri
al integration using a 
entred impli
it timestepping method for(a) quad C-grid, (b) quad RT0 elements and (
) quad 
ompound RT0 elements. Contour intervals 0.1m2/s2.
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(b)Figure 20: Goepotential pro�les for numeri
al integration using a 
entred impli
it timestepping method for(a) hexagonal C-grid and (b) hexagonal 
ompound RT0 elements. Contour intervals 0.1 m2/s2.where y =
[
Φ̂, û

]T and
A± ≡

[
MΦ ±∆t

2 Φ0D
∓∆t

2 D
T Mu ± ∆t

2 F

]
. (59)The 
omponents of the system matrix A± for a uniform orthogonal grid are given in Appendix A. Due tothe small size of problems investigated here the system of equations (58) is solved exa
tly using Guassianelimination, but for larger problems a iterative solver su
h as Congjugate gradient 
ould instead be used.6.1 Uniform elementsTo test the 
onvergen
e of the numeri
al s
heme equation (58) is initialised with a steady state analyti
alsolution de�ned via the streamfun
tion

ψ (x, t = 0) = ψ0 exp

(
−x

2 + y2

a2

)
. (60)The balan
ed velo
ity �eld is therefore

u (x, t = 0) = ∇⊥ψ (x, t = 0) , (61)22



and the supporting initial geopotential �eld is given by
Φ (x, t = 0) = fψ (x, t = 0) . (62)This initial 
ondition is integrated for a period of 10 days on a uniform domain of size 3000 km× 3000 kmfor di�erent resolutions. A timestep of ∆t = 600 s is used. Note we are primarily interested in e�e
ts ofthe spa
e dis
retisation but the 
hoi
e of time dis
retisation would also be expe
ted to have some smallin�uen
e on the results in Figs. 19 and 20; to avoid this the timestep has been 
hosen suitably small so thatthe temporal errors are small and as a 
he
k, redu
ing the timestep further by a fa
tor of 10 produ
es novisible di�eren
e to the results. The 
onstants ψ0 ≡ Φ0 = 102 m2/s2 and f = 10−4 s−1, a = 4 × 105 m. The
onvergen
e of the l2 (Φ) error for ea
h s
heme with various element widths in the range h = 25 − 400 kmis shown in Fig. 18. All s
hemes show the se
ond-order 
onvergen
e expe
ted on a regular grid with thehexagonal based methods exhibiting a slightly smaller 
oe�
ient. (Note, however, that on nonuniform gridsthese methods are all, at best �rst-order).The dispersion properties 
an be observed by removing the support of the initial velo
ity �eld, u (x, t = 0) =

0, from the initial state (62) along with redu
ing the width of the Gaussian (60) to a = 2h. Integrations areperformed with a 
onstant element width h = 50 km and run until t = 30 hours. The unsupported initial Φ�eld proje
ts energy onto a wide spe
trum of inertia-gravity waves that propagate radially from the 
entralperturbation a

ording to the appropriate dispersion relation. The �nal Φ pro�les are shown in Fig. 19 forthe quadrilateral elements and Fig. 20 for the hexagonal elements. The e�e
ts of the in
rease in the groupvelo
ity for a given wavenumber k, 
ompared to the exa
t value Cg = Φ0k√
Φ0k2+f2

, for the RT0 dis
retisations
an 
learly be seen from the lo
ation of the outermost 
ontours parti
ularly in 
ontrast with the de
rease inthe group velo
ity for the C-grid s
hemes. The greater isotropy of the 
ompound quadrilateral elements 
analso be seen in the marginally more 
ir
ular 
ontours of Fig. 19 (
) 
ompared with the other dis
retisations.In 
ontrast the hexagonal C-grid �nite di�eren
e s
heme is already very isotropi
, so the di�eren
es observedin the hexagonal elements, Fig. 20 (b) are mu
h smaller.6.2 Spheri
al domainsTo 
ompare the performan
e of the 
ompound element method with a standard �nite volume C-gridmethod in a more realisti
 setting, the 
ompound element model of Thuburn and Cotter, 2015 is 
omparedwith the �nite volume model of Thuburn et al., 2013 on both 
ubed sphere grids and i
osahedral grids. Bothmodels simulate the nonlinear shallow water equations on the sphere using a mimeti
 dis
retisation withsemi-impli
it time stepping and swept area forward in time adve
tion s
hemes on both the primal and dualgrid. The 
onvergen
e and a

ura
y of the various s
hemes 
onsidered here are dis
ussed in some detailin Thuburn et al., 2013, for the C-grid s
hemes, and Thuburn and Cotter, 2015 for the 
ompound elements
hemes, in the 
ontext of quasi-uniform spheri
al grids and the interested reader is referred to these papersfor more details. The i
osahedral mesh is generated following Heikes and Randall (1995a,b) (but withoutthe twist) and the 
ubed sphere is based upon the equi-angular 
ubed sphere of Ron
hi et al. (1996) butwith a single step of the smoothing des
ribed in Thuburn et al. (2013). The appli
ation of the 
ompound�nite element method to these spheri
al grids is presented in Thuburn and Cotter (2015) and the interestedreader is referred there. To mimi
 the planar dispersion test of Se
tion 6.1 the geopotential �eld is initialisedwith a Gaussian perturbation and the initial wind �eld is set to zero
Φ (λ, φ, t = 0) = Φ0

{
1 +

1

10
exp

[
−
( r
a

)2
]}

, (63)
u (λ, φ, t = 0) = 0, (64)with
r = cos−1 [sinφ0 sinφ+ cosφ0 cos (λ− λ0)] , (65)the great 
ir
le distan
e on a unit sphere from the point (λ0, φ0) = (4π/5, π/4), the perturbation half-widthis a = 1/25 and Φ0 = 102 m2/s2. The test is run on a non-rotating sphere for 12 hours with a timestep of

∆t = 112.5 s. The results, using both a high resolution (221184 fa
es) 
ubed-sphere and lower resolution
ubed-sphere (3456 fa
es) and i
osahedral (2562 fa
es), are shown in Figure 21. As with the planar results23



the most obvious di�eren
e between the 
ompound elements and the �nite volume results is the speed of wavepropagation. Compared to the high resolution results the bulk of the wave in the �nite volume methods hasbeen retarded, su
h that there are still a number of 
ontours 
lose to the initial lo
ation of the wave, whilstthe �nite element method has sped the wave front up. To ease 
omparison of the propagation speed a great
ir
le line has been added to ea
h �gure 
orresponding to the leading edge of the high resolution solution. In
ontrast to the planar results it is very di�
ult to observe any in
reased 
ir
ular symmetry in the 
ompoundelement results 
ompared with the equivalent �nite volume ones and it is likely that any potential slightimprovement has been hidden by the larger s
ale errors 
aused by using a non-uniform-non-orthogonal grid,and the added 
omplexity of the nonlinear terms. As with the previous results the hexagonal grid methodsgenerally produ
e better results showing better symmetry in the resulting wave form even though they arebeing nominally run at a lower resolution (∼ 75% of the number of 
ells as the 
ubed-sphere runs), though,due to the extra velo
ity points there are approximately the same number of total degrees of freedom on thetwo grids.6.3 Computational CostThe 
omputational 
ost of the 
ompound element method 
ompared to other methods is hard to analyseas it is dependent upon the parti
ular appli
ation, implementation and ar
hite
ture being used. Neverthelessa broad outline of some of the potential 
osts 
an be given. For the method used here, the 
omputational
ost mainly 
onsists of 
onstru
ting the matri
es MΦ, Mu, D, F and inverting the A+ matrix. Sin
e all ofthese matri
es are 
onstant in time they 
an be 
omputed on
e at set up and then stored. This methodis the same for all the numeri
al s
hemes 
onsidered here with the added simpli�
ation that for the C-gridmethods the velo
ity mass matrix (Mu) is diagonal. Sin
e the matri
es are pre
omputed the only additional
ost of using the 
ompound element method is to 
ompute the element matri
es, whi
h involves applying the
onditions in Se
tion 3 to ea
h sub-element. As this is a one-o� setup 
ost it means that the 
omputational
ost of ea
h method is similar.For a more 
ompli
ated appli
ation, su
h as for the nonlinear shallow water equations or 3D Eulerequations equations it may be
ome impra
ti
al to pre
ompute and store a large number of operators athigh resolution (though this is exa
tly what is done in Thuburn and Cotter (2015)). In whi
h 
ase, ifthe quadrature is performed on the �y, then ea
h evaluation of a �eld on the grid will involve evaluationat quadrature points for all the sub-elements of ea
h element instead of just the full element, i.e for aquadrilateral 
ompound element it would be ne
essary to 
ompute fun
tions in ea
h of the 8 triangularsub-elements instead of just the single quadrilateral element as for the standard RT0 implementation. Inbroad terms the number of �oating point operations for evaluating a fun
tion on a grid of n 
ells will risefrom n evaluations on a quadrilateral/hexagonal element to 8n or 12n evaluations on triangular elements fora quadrilateral or hexagonal grid. This 
ost will be somewhat mitigated by the smaller number of operationse.g fewer quadrature points needed for evaluation on a triangular element.7 Con
lusionsThe dis
rete harmoni
 extension method of Christiansen (2008) has been used to build polygonal 
om-pound RT0 elements from a number of triangular sub-elements, su
h that the primal and dual grid elementsare 
onstru
ted from the same sub-elements. It was found that even for uniform quadrilateral elements theobtained dis
retisation di�ers from the standard RT0 dis
retisation and inherits elements of the underlyingtriangular geometry. For the linear shallow water equations 
onsidered here only two 
ompound fun
tionspa
es V1, V2 are required and so the 
onstru
tion of the third spa
e V0 has not been do
umented, thoughthe same method 
an be applied, see also Thuburn and Cotter (2015).The dispersion properties of the 
ompound elements in both the gravity- and inertia-wave asymptoti
limits have been investigated and 
ompared with the well-known C-grid dis
retisations on uniform hexagonalgrids and with both the C-grid and non-
ompound RT0 elements on uniform quadrilateral grids. The
ompound elements are found to have a more isotropi
 dispersion relation, whi
h is most noti
eable on aquadrilateral grid and improves upon the standard C-grid and RT0 methods. Additionally, on quadrilaterals,the overshoots in the dispersion relation for high frequen
y waves with the RT0 elements, that manifeststhemselves as spuriously fast moving waves, have been signi�
antly redu
ed. The 
ompound hexagonal24
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(f) FEM I
osahedronFigure 21: Evolution of a narrow Gaussian hill using �nite volume and 
ompound �nite element methodson spheri
al grids. (a) Initial height pro�le on high resolution 
ubed sphere (221184 fa
es) (b) Final heightpro�le on high resolution 
ubed sphere (221184 fa
es) using 
ompound �nite elements. Final height pro�leson (
) 
ubed sphere grid (3456 fa
es) and (d) i
osahedral grid (2562 fa
es) using a �nite volume method.Final pro�les with 
ompound �nite element methods on 
ubed sphere (e) and i
osahedral grids (f) at thesame resolution as (
) & (d). In all plots Contour intervals are every 50 m, and every 100 m is shown in abold line. For 
omparison a great 
ir
le line lo
ated at the front of the high resolution wave is shown withdiamond markers. 25



elements again have a more isotropi
 dispersion relation than the C-grid equivalent, though the di�eren
ehere is less marked. In 
omparison with the C-grid, the 
ompound element is more a

urate for large wavenumbers with a slight overestimation of the frequen
y 
ompared with a large underestimation. Comparingthe �nite volume and �nite elements in a more 
ompli
ated spheri
al gravity-wave dispersion test the leadingorder di�eren
e is the propagation speed of poorly resolved waves and any in
reased isotropy of the �niteelement method is mu
h harder to dete
t.The bene�ts of these 
ompound elements have to be weighed against the in
reased 
ost asso
iated witha denser mass matrix for the momentum equation, (A.5) & (A.9) even on an orthogonal grid where the uand v velo
ity 
omponents would not normally be expe
ted to 
ouple. This 
ost 
an be lessened when usingan impli
it s
heme due to the need to invert a system matrix, of whi
h the mass matrix forms but a part.In addition the 
ost of 
omputing the redu
tion from the sub-element sten
il to the 
ompound element onemust be in
luded, but for a time independent grid this 
an be in
luded as a one-o� pre-pro
essing 
ost.Compound elements provide a way of 
onstru
ting 
ompatible �nite element spa
es on general polygonalgrids, su
h as hexagons, as well as primal and dual families of 
ompatible �nite element spa
es, and thusbroaden the options available for developing geophysi
al models with desirable 
onservation and balan
eproperties. We have demonstrated here another advantage of 
ompound elements, whi
h is that their wavedispersion properties are as good as, and in nearly all 
ases a small improvement on, those of analogous�nite di�eren
e or standard �nite element s
hemes.A
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A Element Matri
esThe matrix operators for a single element/
ell on a uniform grid are given here for quadrilateral andhexagonal elements where the element width is hA.1 Quadrilateral ElementsFor the 
ontinuity equation the mass matrix is the 1x1 matrix
MΦ ≡ h2, (A.1)the divergen
e operator is

D ≡ h
[

1, −1, 1, −1
]T
, (A.2)and the Coriolis matrix is

F ≡ fh2

4




0 0 −1 −1
0 0 −1 −1
1 1 0 0
1 1 0 0


 . (A.3)The momentum mass matrix di�ers, depending upon the dis
retisation (C-grid, RT0, 
ompound RT0), Fora C-grid dis
retisation the mass matrix is the appropriate identity matrix, h2I4. For a regular quadrilateral

RT0 element the mass matrix is
Mu ≡ h2

6




2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2


 , (A.4)whilst for a 
ompound RT0 element it is

Mu ≡ h2

48




17 7 −1 1
7 17 1 −1
−1 1 17 7
1 −1 7 17


 . (A.5)A.2 Hexagonal ElementsFor the 
ontinuity equation the mass matrix is again a 1x1 matrix

MΦ ≡
√

3

2
h2, (A.6)the divergen
e operator is

D ≡ h√
3

[
1, −1, 1, −1, 1, −1

]T
, (A.7)and the Coriolis matrix is

F ≡ h2f

18




0 0 −1 −2 1 2
0 0 −2 −1 2 1
1 2 0 0 −1 −2
2 1 0 0 −2 −1
−1 −2 1 2 0 0
−2 −1 2 1 0 0



. (A.8)The momentum mass matrix again di�ers, for a C-grid dis
retisation the momentum mass matrix is theidentity matrix, (h2/

√
3
)
I6. For the 
ompound hexagonal RT0 element mass matrix is

Mu ≡ h2

108
√

3




35 10 −7 −2 −7 −2
10 35 −2 −7 −2 −7
−7 −2 35 10 −7 −2
−2 −7 10 35 −2 −7
−7 −2 −7 −2 35 10
−2 −7 −2 −7 10 35



. (A.9)28


