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The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the 

local and regional scales. Here we provide the first empirical data on the commonness, rarity, and 

richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), 

collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors 

roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are 

habitat specialists and only dominant in 1–2 regions of the basin. We discuss some implications of the 

discovery that a small group of species—less diverse than the North American tree flora—accounts 

for half of the world’s most diverse tropical forest. 

Much remains unknown about the Amazonian flora, the world’s richest assemblage of plant species. Here we 

report some unexpected results from a uniquely wide-ranging assessment of the composition and biogeography 

of Amazonian tree communities. Using species-abundance data for adult trees (defined as ≥ 10 cm in diameter-

at-breast-height) collected in individual plots and the geographical distribution of those plots across Amazonia 

(Fig. 1, S1-3), we constructed a rank-abundance distribution (RAD) composed of estimated basin-wide 

population sizes of each of the 4970 valid tree species in the dataset (Fig. 2). The RAD offers four important 

new insights regarding Amazonian tree communities. 

First, it provides the most precise estimates yet of two numbers that have been debated for decades: how many 

trees and how many tree species occur in the ~6 million km2 landscape of Amazonia (1-4). Our estimate of tree 

density yielded a total of 3.9 x 1011 individual trees and a median tree density of 565 trees/ha (Fig. S4). 

Assuming that our population size estimates for the common species are reasonable (Fig. S5) and Fisher's log-

series model fits our data (4), we estimate the total number of tree species in the Greater Amazon to be 

approximately 16,000 (Fig. 2). A second estimate based on the Fisher's alpha scores of all plots yields a similar 

figure: 15,182 species (Fig. S6). 

Second, the RAD suggests that just 227 (1.4%) of the estimated 16,000 species account for half of all individual 

trees in Amazonia. We refer to these species, all of which have estimated populations of >3.7 x 108 adults, as 

‘hyper-dominant' species (see a list of the 20 most abundant species in Table 1 and a full list in Appendix S1). 



These hyper-dominant species form the backbone of the tree communities in individual plots as well, accounting 

for a median of 41% of trees (range = 0-94%, Fig. S5) and 32% of species (range = 0-78%) per plot (Fig. S7).  

Third, all species ranking in abundance from 5000–16,000 are very rare. These species in the tail of the RAD 

have total populations of <106 individuals and together account for just 0.12% of all trees in Amazonia. While 

some of these species may be 'vagrants' spilling over from extra-Amazonian biomes such as the Cerrado and 

Andes, thousands must be Amazonian endemics that run a high risk of going extinct, and many before they can 

even be found and described by biologists. The rarest 5800 species have estimated population sizes of <1000, 

which is sufficient to classify those which are endemic as globally threatened (5). Together these rarest species 

account for just 0.0003% of all trees in Amazonia. Given the extreme unlikelihood of locating a fertile 

individual of one of these species, , whose flowers can be used for species-level identification, we believe that 

discovering and describing the unknown portion of Amazonian biodiversity will be a long-term struggle with 

steeply diminishing returns, and not an easy linear process (6). Indeed, the RAD suggests that floras of even 

well-collected areas may remain half-finished for decades. For example, our data predict that ~4500 tree species 

occur in the Guianas (Fig. S8), but centuries of collecting there have yielded just half that number (7). Some of 

these species may be present among the unidentified species of our plots or as undescribed specimens in 

herbaria (8), but the majority may yet have to be collected. 

Fourth, there are strong similarities between theoretical models of tree species richness in the Amazon (4) and 

our distribution of species abundances based on empirical data. For example, Hubbell et al. (4) used a log-series 

distribution to predict that the most common species in the Amazon should account for 1.39% of all trees. This 

is remarkably close to our estimate for the most common species in our dataset, the palm Euterpe precatoria 

(1.32%). Our estimate of Fisher’s alpha for the Amazon is also extremely close to Hubbell et al.’s modeled 

prediction (754 vs. 743 in (4)). Although these strong correlations between predictions and our dataset suggest 

that the log-series may offer useful insights on the most poorly known tree species in the Amazon (e.g., the 

number of undescribed taxa), they should not be interpreted as evidence for any one theory of how these tree 

communities are structured (9).  

We examined species’ geographic ranges and abundances by plots, regions, and forest types to explore how 

hyper-dominant species differ from other taxa, as a first step towards understanding what makes them so 

successful. Hyper-dominant species have larger ranges than other taxa (Fig. 3a) and reach greater maximum 

relative abundances in plots (Fig. 3b). Most hyper-dominant species (121 out of 227) are habitat specialists (Fig. 



3c) (i.e., they show a strong preference for one of the five major Amazonian forest types: terra firme [53 spp.], 

várzea [26], white-sand forest [16], swamps [14], and igapó [12]). Likewise, most are only dominant within one 

or two forest types. When the study area was divided into six regions (Guiana Shield, NW, SW, S, E, and 

Central Amazonia), most hyper-dominant species (72%) were found to be dominant within only 1 or 2 regions 

(Table 2).  

It is thus important to emphasize that while the Amazonian RAD is dominated by a small suite of species, most 

of those species are only dominant in certain forest types and in certain regions of the basin. Just one species 

qualified as dominant in all six regions (Eschweilera coriacea), no species were dominant in all five forest 

types, and only four species were dominant in four forest types (Euterpe precatoria, Oenocarpus bataua, 

Licania apetala, and Euterpe oleracea). Much more representative of the 227 hyper-dominant species are taxa 

like Siparuna decipiens (112th largest population size overall), only dominant in terra firme forests in SW 

Amazonia, and Eperua falcata (13th), only dominant in the Guiana Shield. Indeed, 59% of hyper-dominant 

species qualify as both dominant in 1 or 2 regions and dominant in 1 or 2 forest types.  

Within each region, an even smaller number of species (72–162) typically accounts for 50% of all individual 

trees, and most of these regional dominants are also hyper-dominant species (Fig. 4a). For example, the data 

suggest that half of all individual trees in SW Amazonia belong to just 62 species, 47 of which are also hyper-

dominant species. The same pattern holds for forest types, which are individually dominated by 24–196 species 

(Fig. 4b). Half of all individual trees in white sand forest belong to just 24 species, 15 of which are also hyper-

dominant species. Because most hyper-dominant species are only dominant in 1–2 regions or forest types, 

however, in any single region or forest type the majority of the 227 hyper-dominant species are not locally 

dominant.  

Given these results, it seems likely that the basin-wide patterns of dominance we describe here arise in part from 

regional-scale patterns of dominance described previously at various sites in upper Amazonia (10, 11). There is 

significant compositional overlap between Pitman et al.’s (10) ‘oligarchies’ in Peru and Ecuador and our hyper-

dominant species, even though those authors’ plots represent just 2.1% of the full ATDN dataset and only 

include terra firme forests. Sixty-eight ‘oligarchs’ of (10) are on the list of 227 hyper-dominant species, 

including 8 of the top 10 most common hyper-dominants. The 250 oligarchic species in (10) account for 26.9% 

of all trees in Amazonia, according to the RAD in Fig. 2. These results suggest that the regional-scale and 

Amazon-wide patterns derive from similar processes.  



Hyper-dominant species occur across the angiosperm phylogeny, with no significant phylogenetic conservatism 

for the maximum estimated population size found within each genus (Blomberg's K (12) = 0.076, p = 0.91). 

Nevertheless, hyper-dominants are more frequent in some families (Appendix S2; Fig. S9). Arecaceae, 

Myristicaceae, and Lecythidaceae have many (~4–5x) more hyper-dominant species than expected by chance, 

while Myrtaceae, Melastomataceae, Lauraceae, Annonaceae, and Rubiaceae have fewer, probably because 

many of their species are shrubs or treelets that do not reach our 10-cm diameter cutoff. In Fabaceae, the most 

abundant and most diverse family in the dataset, the observed number of hyper-dominant species is not 

significantly different from the expected.  

We observed a negative relationship between the number of species in a genus and the frequency of hyper-

dominant species (Fig. S10). This pattern has been observed in several plant communities worldwide, and 

scientists have yet to determine whether it is ecologically informative or an artifact of rank-based taxonomy  

(13, 14). The 227 hyper-dominant species belong to 121 genera, and 68 of these contain more hyper-dominants 

than expected by chance (Appendix S3). The highest number of hyper-dominant species is found in moderately 

diverse Eschweilera (52 species overall; 2.4 hyper-dominant species expected vs. 14 observed), also the most 

abundant genus in the ATDN dataset (5.2% of all stems). Given that the families and genera mentioned here 

dominate Amazonian forests, it remains a key goal to determine why some achieve dominance with a large 

number of mostly rare species (e.g., Inga, Sapotaceae) while others do so with a small number of common 

species (palms), differences that may result from variation in speciation and extinction rates (13-16). And while 

genetics data may reveal some hyper-dominant species to be species complexes, they seem unlikely to overturn 

the fundamental patterns described here (17 and references therein). 

We found no evidence that two key functional traits for trees, seed mass and wood density, vary consistently 

with hyper-dominance. The 227 hyper-dominant species include both shade-tolerant, typically large-seeded 

climax species with dense wood (e.g. Chlorocardium rodiei, Clathrotropis spp., Eperua spp.) and shade-

intolerant, small-seeded pioneers with light wood (e.g. Cecropia spp., Jacaranda copaia, Laetia procera). 

Given that most hyper-dominant species attain very high local densities (>60 trees/ha) somewhere in the plot 

network, we predict that they will be found to be disproportionately resistant to pathogens, specialist herbivores, 

and other sources of frequency-dependent mortality (18, 19). 

Widespread pre-1492 cultivation by humans is a compelling hypothesis to explain hyper-dominance (20). 

Numerous hyper-dominant species are widely used by modern indigenous groups (Hevea brasiliensis, 



Theobroma cacao, and many palms), and some are associated with pre-Columbian settlements (Attalea 

butyracea, A. phalerata, Mauritia flexuosa)  (21-25). On the other hand, most hyper-dominant species are not 

commonly cultivated, many of the most commonly used hyper-dominants (palms) belong to a family that 

appears to have been dominant in tropical South America since the Paleocene (26), and large portions of the 

Amazon Basin do not appear to have been heavily cultivated before 1492 (27).  

The discovery that Amazonia is dominated by just 227 tree species has important practical implications. It 

suggests that roughly half of all fruits, flowers, pollen, leaves, and biomass in the world's most diverse forest 

belong to a very small suite of species, which must therefore account for a large proportion of Amazonian 

ecosystem services, including water, carbon and nutrient cycling. Our data also suggest that it may be possible 

to forecast a significant proportion of the tree community composition and structure of unstudied sites in 

Amazonia with a purely spatial model. While no one should underestimate the importance of the >10,000 rare 

and poorly known tree species in the Amazon (28), an appreciation of how thoroughly common species 

dominate the basin has the potential to greatly simplify research in Amazonian biogeochemistry, plant and 

animal ecology, and vegetation mapping.  

  



Methods 

The ATDN network (29) comprises 1430 tree inventory plots distributed across the Amazon Basin and Guiana 

Shield, hereafter Amazonia (Fig. 1). Plots were established between 1934 and 2011 by hundreds of different 

botanists. Analyses of tree density were performed using the 1346 plots with trees ≥10 cm dbh that remained 

after plots with outlying density values (<100 or >1000 ind./ha), poorly defined areas, or a different diameter 

cutoff level were removed. 

Analyses of composition were performed with a subset of 1170 plots in which all 639,631 free-standing trees 

≥10 cm dbh had been identified with a valid name at the species (86.6%), genus (96.9%), or family (98.9%) 

level prior to our study. We did not compare specimens or re-identify trees from these plots but resolved major 

nomenclatural issues (i.e., synonyms and misspellings) in the existing datasets by cross-checking all names with 

the TROPICOS database (30), via the Taxonomic Name Resolution Service (TNRS, 31) (version October 

2011). For the small proportion of names whose validity could not be determined with those tools, we used The 

Plant List (32). Lianas, bamboos, tree ferns, and tree-sized herbs were excluded from all analyses. Varieties and 

subspecies were ignored (i.e., all individuals were assigned to the species level). While some individuals may be 

misidentified, we assume that this error is within acceptable limits, especially for common species (see 

discussion in OSM). 

The total number of trees ≥10 cm dbh in Amazonia was estimated as follows. First, the study area was divided 

into 567 1-degree-grid cells (DGCs; Fig. 1). We constructed a loess regression model for tree density (stems ha-

1) based on observed tree density in 1195 plots, with latitude, longitude, and their interaction as independent 

variables. The span was set at 0.5 to yield a relatively smooth average. The model was used to estimate average 

tree density in each DGC (DDGC, stems ha-1). The total number of trees in each DGC (NDGC) was then calculated 

by multiplying DDGC by 1,232,100 ha (the area of a DGC close to the equator - the deviation from this area is 

just 2.8% at 14 S and 1.1% at 8 N, our latitudinal range).  

Both empirical (plot data) and interpolated tree densities are illustrated in Fig. S4.  

The total number of trees belonging to each species in Amazonia was estimated as follows. Abundances of all 

valid species were converted to relative abundances for each plot: 

RAi = ni/N, where ni = the number of individuals of species i and N = the total number of trees in the plot 

(including unidentified trees).  



For each of the 4970 species with a valid name we constructed a loess model for RAi, with latitude, longitude, 

and their interaction as independent variables, and a span of 0.2. We used only spatially independent variables, 

since test runs including environmental variables commonly led to predictions of species occurrences in well-

sampled areas where they had never been recorded in plots. For a similar reason (i.e., to keep predictions 

spatially conservative), a smaller span was used than in the tree density analysis. Negative predicted abundances 

were set to 0. The loess model of a species predicted relative abundance in each DGC, yielding a map of its 

predicted variation in relative abundances across Amazonia. The total population size of each species was 

calculated by multiplying its relative abundance in each DGC by the total number of trees in that DGC, and then 

summing these products for all DGCs. 

To reduce the impact of individual plots and quantify uncertainty in the above procedure, a bootstrap exercise 

was carried out. This involved randomly drawing 1000 plots from the 1170-plot dataset (with replacement), and 

calculating the population sizes of all species as described above. This was repeated 500 times, and the 500 

population estimates per species were used to calculate mean estimated population size and 95% confidence 

intervals (i.e., mean ± 1.96 SD).  

To estimate range size we used the same data and methods as (33), standardized with TNRS and updated with 

specimen records from SpeciesLink (34). Species not found in this database were left out of the range size 

analysis (n=842). Worldwide species diversity of genera was estimated by counting accepted species in (32). 

Seed mass and wood density data were obtained from sources described in (35). 

Habitat preference was analyzed by means of Indicator Species Analysis, a permutation test that calculates 

indicator values for each species based on their frequency and relative abundance (36) in the five forest types 

(igapó, terra firme, swamp, várzea, and white sand forest).  

To analyze regional-level dominance, we divided Amazonia into six regions and created a rank-abundance 

distribution (RAD) for each region by summing population sizes in the DGCs they contained. RADs were also 

constructed for each forest type, by summing the individuals of each species in all plots of a given forest type 

and calculating the average density of each species in that forest type. The forest type RADs are thus not based 

on population estimates in DGCs but on the raw abundance data in our plots. A species was considered 

dominant in a given region or forest type if it appeared in the list of species comprising the upper-50% 

percentile of the respective RAD. 



All analyses were carried out with the R software platform (37). For Indicator Species Analysis we used the 

package labdsv. All other permutation tests were custom written. 
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Tables 

 

Table 1. Mean estimated population sizes of the 20 most abundant tree species in Amazonia, and the empirical 

abundance and frequency data on which the estimates were based. Median values for the 207 other hyper-

dominant species and for the 4743 other valid species in the dataset are provided for comparison. Data on all 

species can be found in Appendix S1. 

 

Species  Mean 

estimated 

population 

in the 

Amazon 

SD 

estimated 

population 

(%) 

No. trees in 

dataset 

% of all 

plots where 

present 

Maximum 

abundance 

recorded 

(trees/ha) 

Euterpe precatoria  5.21E+09 9.9 5903 32.7  168 

Protium altissimum  5.21E+09 18.0 5889 15.6  128 

Eschweilera coriacea  5.00E+09 5.6 9047 47.9  28 

Pseudolmedia laevis  4.30E+09 8.9 5285 36.1  121 

Iriartea deltoidea  4.07E+09 13.1 8405 18.5  169 

Euterpe oleracea  3.78E+09 17.5 8572 7.4  397 

Oenocarpus bataua  3.71E+09 10.7 4767 29.9  108 

Trattinnickia burserifolia 2.78E+09 29.4 3023 10  125 

Socratea exorrhiza  2.68E+09 10.8 863 28.6  82 

Astrocaryum murumuru  2.41E+09 11.2 5748 16.7  325 

Brosimum lactescens  2.28E+09 10.0 2234 28.2  106 

Protium heptaphyllum  2.13E+09 32.2 1365 11.3  169 

Eperua falcata  1.95E+09 15.8 1898 10.9  266 

Hevea brasiliensis  1.91E+09 15.5 6031 14.8  179 

Eperua leucantha  1.84E+09 32.3 1453 1.4  282 

Helicostylis tomentosa  1.79E+09 25.6 1948 36.5  89 



Attalea butyracea  1.78E+09 16.2 2561 5.8  73 

Rinorea guianensis  1.69E+09 18.6 1243 13.7  182 

Licania heteromorpha  1.57E+09 14.4 2483 35  173 

Metrodorea flavida  1.55E+09 14.7 1326 7.7  128 

     

Median of other hyper‐

dominant species 

5.79E+08 808 11.4  60 

Median of non‐hyper‐

dominant species 

1.11E+07 15 0.5  5 

 

 

  



Table 2. The number of hyper-dominant species that are also dominant in individual forest types and regions. 

Note that most hyper-dominants only dominate a single forest type, and most are dominant in 1-2 regions. 

Colors are a visual aid to highlight the most frequent cells. 

 

 

  

No. forest types where dominant

0 1 2 3 4 5 Total

0 2 4 0 0 0 0 6

1 17 47 9 0 0 0 73

N. regions 2 9 64 15 3 0 0 91

where dominant 3 2 17 3 2 1 0 25

4 0 12 2 4 1 0 19

5 0 5 1 4 2 0 12

6 0 0 1 0 0 0 1

Total 30 149 31 13 4 0 227



Figure captions 

 

Fig 1. A map of Amazonia showing the location of the 1430 ATDN plots that contributed data to this paper. The 

white polygon marks our delimitation of the study area at a 1-degree grid level (with sub-regions after (38)) and 

consists of 567 1-degree grid cells (area = 6.29 million km2). Orange circles: plots on terra firme; Blue squares: 

plots on seasonally or permanently flooded terrain (várzea, igapó, swamps); Yellow triangles: plots on white 

sand podzols. Background ‘Visible Earth’ (39). More details are shown in Figs. S1-3.  

 

 

Fig 2. A rank-abundance diagram (RAD) showing the estimated Amazon-wide population sizes of 4970 tree 

species (solid line), and an extrapolation of the distribution (dotted line) used to estimate the total number of tree 

species in Amazonia. 

 

 

Fig 3. Characteristics of hyper-dominants. A. Hyper-dominant species (in red) have larger geographic ranges; 

B. Reach higher maximum relative abundances in individual plots (middle); C. and are more likely to be habitat 

specialists (right) than other species (in grey). 

 

  

Fig 4. A. Proportions of the trees in each region belonging to species that are regionally dominant, hyper-

dominant, or neither. B. Proportions of the trees in each forest type belonging to species that are dominant in 

that forest type, hyper-dominant, or neither. White integers show the number of species in each compartment. 
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A short description of our data 

The 1170 tree plots used for compositional analyses were distributed among regions and forest types as shown 
in Figure 1 and Table S1 (see also Figs. S1-S3). Most plots (852) measured 1 ha, 253 were smaller, 61 were 
larger, and 4 were plotless samples (point centered quarter) for which the sampled area was unknown but the 
number of trees was equivalent to that typically found in 0.5-1 ha. 

Table S1. The number of tree plots with compositional data in each of the five forest types and six regions used in the study. 

 

The proportions of tree plots in the ATDN dataset that sample the five forest types are roughly equivalent to the 
proportions of Amazonia covered by those forest types. Várzea and igapó together cover 10% of Amazonia (38, 
40) and account for 19% of our plots. Podzols and arenosols cover 4.6% of Amazonia (38) and account for 6% 
of our plots. Swamps account for 1.8% of our plots, and peatlands are believed to account for approximately 
1.7% of the study area (41).   

We found a total of 4970 valid species, 817 genera, and 122 families in the 1170 tree plots used for 
compositional analyses. Fabaceae, not surprisingly, is the most abundant family, with almost 100,000 individual 
trees and 119 genera, followed by Arecaceae (52,507; 25), Lecythidaceae (46,322; 10), Sapotaceae (40,429; 17), 
Malvaceae (29,424; 36), Burseraceae (28,762; 7), Chrysobalanaceae (28,597; 7), Moraceae (28,069; 19), 
Euphorbiaceae (25,955; 42), and Annonaceae (22,378; 27). Fabaceae are also the most species-rich family, with 
795 species, followed by Lauraceae (311), Annonaceae (289), Rubiaceae (278), Sapotaceae (207), 
Chrysobalanaceae (195), Myrtaceae (176), Malvaceae (168), Melastomataceae (168), and Euphorbiaceae (143). 
Note that Fabaceae has more than twice as many species as the second most diverse family. 

The genera with the largest numbers of individuals were Eschweilera (31,495), Protium (26,131), Pouteria 
(21,852), Licania (21,321), Euterpe (14,802), Inga (14,791), Eperua (10,951), Virola (10,283), Astrocaryum 
(8973), and Lecythis (8505). 

The most species-rich genus was Inga with 134 species, followed by Pouteria (117), Licania (105), Ocotea 
(93), Miconia (92), Guatteria (85), Eugenia (76), Protium (69), Swartzia (67), Ficus (59), and Eschweilera (52). 

We made two adjustments to the names given in TROPICOS (methods). Rollinia was merged with Annona, 
because phylogenetic analysis has revealed it to be nested inside that genus (42). Similarly, Crepidospermum 
and Tetragastris are nested in Protium (Fine & Daly in prep.) and were merged into that genus.  

 

 

 

  

Region IG PZ SW TF VA Total

CA 13 5 4 213 48 283

EA 3 71 30 104

GS 7 47 5 222 8 289

NWA 21 19 4 140 40 224

SA 2 71 18 91

SWA 3 7 133 36 179

Total 47 71 22 850 180 1170



Figure S1. Map of all plots in terra firme forest. Amazonian regions delimited in red after (after 38). 

  



Figure S2. Map of all plots in podzol forest, with the extent of white sand Podzol (Pz) and very poor Arenosol (Ar) soils in yellow 
according to (38, 43). Amazonian regions delimited in red after (after 38). 

Figure S3. Map of all plots in várzea, igapó, and swamp forests, with the extent of floodplain soils (Gleysoils (Gl), Fluvisols (Fl) and 
Histosols (Hs)) in blue according to (38, 43). Amazonian regions delimited in red after (1). 



Estimates of tree density across Amazonia 

 

Figure S4. Left. Stem density (no. of trees ≥10 cm dbh per ha) in 1195 tree plots across Amazonia. The black circles show the empirical 
data (range 112 – 990 trees/ha), while the green background color shows the loess interpolation of plot data for one-degree grid cells (range 
303 – 705). Right. Boxplot of observed stem densities (n = 1195).  

 

Figure S5. Rank-abundance distribution of mean estimated Amazonian population sizes (500 bootstraps of 1000 plots drawn with 
replacement, black dots) and 95% confidence intervals (red dots) for 4970 valid species. Population size is measured as number of trees ≥10 
cm dbh. The inset shows mean estimated population sizes and 95% confidence intervals for the 227 hyper-dominants. Data for all species is 
provided in Appendix S1. For further information on the bootstraps see the section "Testing the validity of the model predictions". and 
Figure S11 below. 

  



Estimating species richness with Fisher’s alpha 

 

Figure S6. If species were randomly distributed across Amazonia and we sampled at random throughout that area, our relative abundance 
distribution would have the same form and the same Fisher’s alpha as the Amazonian RAD. Fisher’s alpha would also reach an asymptote 
after a sufficiently large sample had been made. Because conspecific trees are clumped at various spatial scales (due to seed dispersal, 
preference for soil types) and our sampling was not random, our RAD differs in some respects from the true Amazon-wide RAD. 
Specifically, it underestimates Fisher’s alpha and therefore provides an underestimate of gamma diversity. Left. Fisher’s alpha as a function 
of cumulative plot area, based on 100 randomizations of the plot data. The final Fisher’s alpha value is 754. Right. Species richness as a 
function of the number of trees in Amazonia, calculated as S = FA * ln(1 + N/FA); where FA = Fisher’s alpha (754), and N is the number of 
trees. Even an error of 50% in the number of trees results causes little variation in final species richness. The final (underestimate) of the 
number of tree species in the greater Amazon is 15,182 (N =3.9*1011, FA = 754) (44).  

 

Figure S7. Left. The percentage of trees that belong to the 227 hyper-dominant species at the individual plot level. Black circles show the 
empirical data from individual tree plots, while the green background shows the loess interpolation of plot data for one-degree grid cells. 
Percentages are highest in the low-diversity areas of the Amazon (Guiana Shield and southern Amazon) but decrease towards the edges as 
species from neighboring biomes increase in importance. Right. The percentage of species in each plot that are on the list of the 227 hyper-
dominant species. 
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Table S2. Families with significantly more (hi) or significantly fewer (lo) hyper‐dominant species than expected by chance are few. Palms 
(Arecaceae) have nearly five times more hyper‐dominant species than expected by chance. Some very large and well-known families of the 
Amazon (Fabaceae, Sapotaceae and Chrysobalanaceae) have as many hyper‐dominant species as expected by chance (Appendix S2). 
Family: name according to Tropicos (13), N ind: Number of individuals in 1170 plots used, N species: Number of species in 1170 plots 
used, HyperDom: Number of hyper-dominant species in family/genus observed, HypDomExp: Number of hyper-dominant species in 
family/genus expected (based on 1000 randomizations), ci.lo: lower 95% confidence limit for expected number of hyper-dominant species 
(based on 1000 randomizations), ci.hi: higher 95% confidence limit for expected number of hyper-dominant species (based on 1000 
randomizations), hilo: significant deviation from expected number of hyper-dominants.  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S9 (next page). An illustration of phylogenetic convergence in hyper-dominance among Amazonian tree genera. 
Radial phylogeny is based on two plastid markers and represents the maximum clade credibility topology from Bayesian 
MCMC analysis (Dexter et al., unpubl. Data (45)). Genera in red host at least one HD species. Some genera from our plot 
database were not available for this illustration. 
  

Family N ind N species HyperDom HypDomExp ci.lo ci.hi hilo

Arecaceae 52507 70 15 3.196 ‐0.183 6.575 hi

Lecythidaceae 46332 107 19 4.846 0.698 8.994 hi

Malvaceae 29424 168 15 7.743 2.619 12.867 hi

Burseraceae 28762 94 11 4.186 0.215 8.157 hi

Moraceae 28069 135 11 6.194 1.542 10.846 hi

Euphorbiaceae 25955 143 14 6.496 1.650 11.342 hi

Myristicaceae 21648 57 11 2.564 ‐0.420 5.548 hi

Meliaceae 14134 71 8 3.261 ‐0.269 6.791 hi

Urticaceae 11869 67 7 3.205 ‐0.096 6.506 hi

Violaceae 10814 35 5 1.664 ‐0.816 4.144 hi

Goupiaceae 1670 1 1 0.037 ‐0.333 0.407 hi

Annonaceae 22378 289 4 13.21 6.424 19.996 lo

Lauraceae 18629 311 4 14.26 7.367 21.153 lo

Rubiaceae 11490 277 1 12.678 6.217 19.139 lo

Melastomataceae 8225 168 7.662 2.650 12.674 lo

Myrtaceae 7912 176 8.049 2.717 13.381 lo
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Figure S10. Hyper-dominant species are found more often (101 times) in genera that have few (20) species worldwide than expected by 
chance (59 times, p < 0.001). Hyper‐dominants in red. NB: this figure does not correct for phylogeny nor account for the different ages of 
each genus. 
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Addressing problem 3: taxonomic and identification problems 

Taxonomic and identification problems are widespread in Amazonian tree inventories. However, two 
independent lines of evidence suggest that resolving these problems will not fundamentally alter the patterns 
described for hyper-dominant species.  

First, we observed a consistent relationship in the ATDN dataset between the abundance of a species and the 
likelihood that it had been identified with a valid name. The percentage of identified species in individual plots 
was significantly higher than that of unidentified species-level taxa (87.0 vs. 13% stems/ha, FS = 22,774, p << 
0.001). Furthermore, very common morpho-species are very infrequent in the ATDN dataset. Only 48 of the 
1170 ATDN plots contained a morpho-species that accounted for >10% of all individuals and only 10 plots 
contained a morpho-species that reached >20%. Given that all 227 hyper-dominants reach high local relative 
abundances (Fig. 3b), these numbers suggest that very few currently unidentified species will eventually qualify 
as hyper-dominant species. 

Second, we see strong evidence that taxonomic and identification problems are less severe in hyper-dominant 
species than in other species, in the form of a strong positive correlation between the abundance of a species in 
the field, the number of specimens in herbaria, and the number of fertile specimens (i.e., specimens with flowers 
or fruits) collected during field work. Common species are better represented in herbaria than rare species, 
because individual collectors are more likely to encounter them (46). Common species are also more likely than 
rare species to be collected fertile during the establishment of tree plots. For example, in 25 ATDN plots 
established in eastern Ecuador (47), we found that hyper-dominant species were more likely than other species 
to be collected fertile (27.8 vs. 17.7%). Botanists trying to identify a hyper-dominant species thus have both a 
higher likelihood of matching their field specimens with museum specimens and a broader range of 
morphological features to facilitate identification. 

Addressing problem 4: no use of environmental data 

The model we used to estimate population sizes was a loess function, parameterized exclusively with plot 
location and observed species abundances in plots. This is a very different approach from the most commonly 
used class of species distribution modeling: maximum entropy modeling, or Maxent (48, 49). Maxent uses 
presence-only data fitted to environmental variables of confirmed locations to produce a map of habitat 
suitability. In a Maxent model, a species known to occur under a given set of environmental conditions is 
predicted to occur in all environmentally similar areas, even when those areas are outside of the species' known 
range. Because Amazonian tree species are known to respond strongly to environmental variation, an earlier 
version of our model included climatic data. That version, however, routinely predicted significant populations 
of species in regions of the Amazon where a large number of ATDN plots and other plant collection efforts had 
consistently failed to record those species (i.e., Type I errors were common). Modeling with only latitude and 
longitude as predictive variables is a more conservative option, because it ensures that such errors will be made 
at a much lower frequency and that species will never be predicted far from confirmed records. For the same 
reason we used a span of 0.2; at higher span values species ranges extended too far into areas with no known 
occurrence. Varying span values from 0.2 to 0.5 did not strongly affect population size estimates. Fig. S11 
shows three examples of modeled ranges with a span value of 0.2. 
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Herbaria contributing tropical plant collection records for use in estimating species’ range extents.  

Data were accessed through the Global Biodiversity Information Facility (http://www.gbif.org/) and 
SpeciesLink (http://splink.cria.org.br) in March 2009. 

GBIF: 

1. AIMS - Bioresources Library (OBIS Australia) (http://data.gbif.org/datasets/resource/396) 

2. Andes to Amazon Biodiversity Program (http://data.gbif.org/datasets/resource/56) 

3. Arizona State University (http://data.gbif.org/datasets/resource/1294) 

4. Arizona State University Vascular Plant Herbarium (http://data.gbif.org/datasets/resource/676) 

5. Australian National Herbarium (CANB) (http://data.gbif.org/datasets/resource/47) 

6. Belo Horizonte, Herbario (http://data.gbif.org/datasets/resource/1318) 

7. BioCentro-UNELLEZ (http://data.gbif.org/datasets/resource/1310) 

8. Biologiezentrum Linz (http://data.gbif.org/datasets/resource/1104) 

9. Bishop Museum Natural History Specimen Data (http://data.gbif.org/datasets/resource/54) 

10. BoGART (http://data.gbif.org/datasets/resource/1087) 

11. Botanische Staatssammlung Munchen (http://data.gbif.org/datasets/resource/1289) 

12. Botanischer Garten und Botanisches Museum Berlin-Dahlem, Zentraleinrichtung der Freien Universitat Berlin 

(http://data.gbif.org/datasets/resource/1309) 

13. CABI Bioscience Genetic Resource Collection (http://data.gbif.org/datasets/resource/166) 

14. California Academy of Sciences (http://data.gbif.org/datasets/resource/1352) 

15. California State University, Chico (http://data.gbif.org/datasets/resource/737) 

16. Canadian Museum of Nature Herbarium (http://data.gbif.org/datasets/resource/123) 

17. Centre for Plant Biodiversity Research (http://data.gbif.org/datasets/resource/1340) 

18. CGN-PGR (http://data.gbif.org/datasets/resource/1102) 

19. CIBIO, Alicante:ABH-GBIF (http://data.gbif.org/datasets/resource/251) 

20. CSIRO (http://data.gbif.org/datasets/resource/1283) 

21. DAO Herbarium Type Specimens (http://data.gbif.org/datasets/resource/527) 

22. Database Schema for UC Davis [Herbarium Labels] (http://data.gbif.org/datasets/resource/734) 

23. Database Schema for UC Davis [TGRC] (http://data.gbif.org/datasets/resource/735) 

24. Department of Botany and Microbiology, Ohio Wesleyan University, Delaware, Ohio 

(http://data.gbif.org/datasets/resource/1274) 

25. Desmidiaceae Engels (http://data.gbif.org/datasets/resource/1089) 

26. EASIANET (http://data.gbif.org/datasets/resource/206) 

27. EMBRAPA (http://data.gbif.org/datasets/resource/1262) 

28. Embrapa Amazonia Oriental (http://data.gbif.org/datasets/resource/1288) 

29. EMBRAPA Recursos Geneticos e Biotecnologia - CENARGEN (http://data.gbif.org/datasets/resource/1279) 

30. EURISCO (http://data.gbif.org/datasets/resource/1396) 

31. EURISCO, The European Genetic Resources Search Catalogue (http://data.gbif.org/datasets/resource/1905) 

32. Fairchild Tropical Botanic Garden Virtual Herbarium Darwin Core format 

(http://data.gbif.org/datasets/resource/202) 

33. Field Museum of Natural History (http://data.gbif.org/datasets/resource/1190) 

34. Flora of Japan Specimen Database (http://data.gbif.org/datasets/resource/586) 

35. Florida Atlantic University (http://data.gbif.org/datasets/resource/1320) 

36. Forschungsinstitut Senckenberg (http://data.gbif.org/datasets/resource/1130) 



37. Friedrich-Schiller-Universitat Jena (http://data.gbif.org/datasets/resource/1247) 

38. Fruit and seed collection database (http://data.gbif.org/datasets/resource/1093) 

39. Fundacio CETEC (http://data.gbif.org/datasets/resource/1312) 

40. Gent University (http://data.gbif.org/datasets/resource/1292) 

41. Goteborg University (http://data.gbif.org/datasets/resource/1282) 

42. Gothenburg Herbarium - Types (GBIF:IH:GB:Herbarium) (http://data.gbif.org/datasets/resource/1766) 

43. Harvard University Herbaria (http://data.gbif.org/datasets/resource/1827) 

44. HerbarImages (http://data.gbif.org/datasets/resource/1095) 

45. Herbario (http://data.gbif.org/datasets/resource/566) 

46. Herbario del Instituto de Ecolog¡a, A.C., M‚xico (IE-XAL) (http://data.gbif.org/datasets/resource/1597) 

47. Herbario Nacional de Bolivia (http://data.gbif.org/datasets/resource/1313) 

48. Herbario Universidad de M laga: MGC-Corm¢fitos (http://data.gbif.org/datasets/resource/259) 

49. Herbarium (UNA) (http://data.gbif.org/datasets/resource/775) 

50. Herbarium Barroso (http://data.gbif.org/datasets/resource/1281) 

51. Herbarium Descoigns (http://data.gbif.org/datasets/resource/1299) 

52. Herbarium Fromm-Trinta (http://data.gbif.org/datasets/resource/1354) 

53. Herbarium hermogenes (http://data.gbif.org/datasets/resource/1297) 

54. Herbarium Pederson (http://data.gbif.org/datasets/resource/1270) 

55. Herbarium S.C.H. Barrett (http://data.gbif.org/datasets/resource/1334) 

56. Herbarium Sigrid Liede (http://data.gbif.org/datasets/resource/1277) 

57. Herbarium Specimens of Museum of Nature and Human Activities, Hyogo Pref., Japan 

(http://data.gbif.org/datasets/resource/1798) 

58. Herbarium Stace (http://data.gbif.org/datasets/resource/1302) 

59. Herbarium Taylor (http://data.gbif.org/datasets/resource/1355) 

60. Herbarium Universitat Ulm (http://data.gbif.org/datasets/resource/1224) 

61. Herbarium Webster (http://data.gbif.org/datasets/resource/1346) 

62. Herbier de la Guyane (http://data.gbif.org/datasets/resource/1436) 

63. Ilha Solteira, Herbario (http://data.gbif.org/datasets/resource/1266) 

64. Institut Botanic de Barcelona, BC (http://data.gbif.org/datasets/resource/299) 

65. Institut de Recherche pour le Developpement (IRD) (http://data.gbif.org/datasets/resource/1265) 

66. Institut fur Allgemeine Botanik (http://data.gbif.org/datasets/resource/1263) 

67. Instituto de Botanica (http://data.gbif.org/datasets/resource/1252) 

68. Instituto de Botanica Darwinion (http://data.gbif.org/datasets/resource/1295) 

69. Instituto de Botanica del Nordeste (http://data.gbif.org/datasets/resource/1287) 

70. Instituto de Pesquisas Cientificas e Tecnologicas do Estado do Amapa (http://data.gbif.org/datasets/resource/1246) 

71. Instituto Nacional de Pesquisas da Amazonia (http://data.gbif.org/datasets/resource/1141) 

72. Internation Botanical Collections (S) (http://data.gbif.org/datasets/resource/1983) 

73. IPK Genebank (http://data.gbif.org/datasets/resource/1851) 

74. Jardi Botanic de Valencia: VAL (http://data.gbif.org/datasets/resource/238) 

75. Jardim Botanico do Rio de Janeiro (http://data.gbif.org/datasets/resource/1273) 

76. Johannes Gutenberg-Universitat (http://data.gbif.org/datasets/resource/1301) 

77. Lichen Herbarium Berlin (http://data.gbif.org/datasets/resource/1097) 

78. Lichen herbarium, Oslo (O) (http://data.gbif.org/datasets/resource/1067) 

79. LPT (http://data.gbif.org/datasets/resource/1306) 

80. Ludwig-Maximilians-Universitat (http://data.gbif.org/datasets/resource/1291) 



81. Lund Botanical Museum (LD) (http://data.gbif.org/datasets/resource/1028) 

82. Manaus, Herbario da Universidade do Amazonas (http://data.gbif.org/datasets/resource/1249) 

83. MEXU/Plantas Vasculares (http://data.gbif.org/datasets/resource/780) 

84. Missouri Botanical Garden (http://data.gbif.org/datasets/resource/621) 

85. Museo Ecuatoriano de Ciencias Naturales (http://data.gbif.org/datasets/resource/1268) 

86. Museu Botanico Municipal (http://data.gbif.org/datasets/resource/1239) 

87. Museu Paraense Emilio Goeldi (http://data.gbif.org/datasets/resource/1235) 

88. Museum National d'Histoire Naturelle, Paris (http://data.gbif.org/datasets/resource/1146) 

89. Nationaal Herbarium Nederland (http://data.gbif.org/datasets/resource/1211) 

90. Nationaal Herbarium Nederland, Leiden University branch (http://data.gbif.org/datasets/resource/1275) 

91. Nationaal Herbarium Nederland, Utrecht University branch (http://data.gbif.org/datasets/resource/1242) 

92. National Botanic Garden Belgium - Albertian Rift Rubiaceae (ENBI wp13) 

(http://data.gbif.org/datasets/resource/90) 

93. National Botanic Garden Belgium - Myxomycetes (http://data.gbif.org/datasets/resource/88) 

94. National Museum in Prague (http://data.gbif.org/datasets/resource/1324) 

95. Naturhistorisches Museum Wien (http://data.gbif.org/datasets/resource/1157) 

96. NSW herbarium collection (http://data.gbif.org/datasets/resource/968) 

97. Old Dominion University (http://data.gbif.org/datasets/resource/1296) 

98. Online Zoological Collections of Australian Museums (http://data.gbif.org/datasets/resource/623) 

99. Orchid Herbarium Collection (http://data.gbif.org/datasets/resource/1495) 

100. Paleobiology Database (http://data.gbif.org/datasets/resource/563) 

101. Phanerogamie (http://data.gbif.org/datasets/resource/1506) 

102. Planetary Biodiversity Inventory Eumycetozoan Databank (http://data.gbif.org/datasets/resource/1515) 

103. Plants of Papua New Guinea (http://data.gbif.org/datasets/resource/969) 

104. Pontificia Universidad Catolica del Ecuador (http://data.gbif.org/datasets/resource/1258) 

105. Pontificia Universidad Catolica Madre y Maestra (http://data.gbif.org/datasets/resource/1341) 

106. Real Jardin Botanico (Madrid), Vascular Plant Herbarium (MA) (http://data.gbif.org/datasets/resource/240) 

107. Royal Botanic Gardens, Kew (http://data.gbif.org/datasets/resource/629) 

108. Royal Ontario Museum (http://data.gbif.org/datasets/resource/1348) 

109. Ruhr-Universitat Bochum (http://data.gbif.org/datasets/resource/1317) 

110. SANT herbarium vascular plant collection (http://data.gbif.org/datasets/resource/222) 

111. SERNEC - University of North Carolina at Chapel Hill - Plants (http://data.gbif.org/datasets/resource/895) 

112. Smithsonian Institution (http://data.gbif.org/datasets/resource/1250) 

113. Species of Eastern Brazil Vascular Plant Specimens (http://data.gbif.org/datasets/resource/729) 

114. SysTax (http://data.gbif.org/datasets/resource/1875) 

115. Systematic Botany and Mycology Laboratory, USDA/ARS (http://data.gbif.org/datasets/resource/1264) 

116. The AAU Herbarium Database (http://data.gbif.org/datasets/resource/224) 

117. The Deaver Herbarium, Northern Arizona University (http://data.gbif.org/datasets/resource/678) 

118. The Myxomycetes Collections at the Botanische Staatssammlung Munchen - Collection of Hermann Neubert 

(http://data.gbif.org/datasets/resource/1443) 

119. The Natural History Museum (http://data.gbif.org/datasets/resource/1172) 

120. The System-wide Information Network for Genetic Resources (SINGER) 

(http://data.gbif.org/datasets/resource/1430) 

121. The University of Hong Kong Herbarium (http://data.gbif.org/datasets/resource/724) 

122. Type herbarium, Gottingen (GOET) (http://data.gbif.org/datasets/resource/1494) 



123. UCD Botanical Conservatory (http://data.gbif.org/datasets/resource/739) 

124. ULNM (http://data.gbif.org/datasets/resource/1300) 

125. United States National Herbarium (http://data.gbif.org/datasets/resource/1248) 

126. United States National Plant Germplasm System Collection (http://data.gbif.org/datasets/resource/1429) 

127. Universidad de Buenos Aires (http://data.gbif.org/datasets/resource/1345) 

128. Universidad de Costa Rica (http://data.gbif.org/datasets/resource/1184) 

129. Universidad de M laga: MGC-Algae (http://data.gbif.org/datasets/resource/1864) 

130. Universidad de Murcia, Dpto. Biolog¡a Vegetal (Bot nica), Murcia: MUB-HEPATICAE 

(http://data.gbif.org/datasets/resource/1522) 

131. Universidad de Oviedo. Departamento de Biolog¡a de Organismos y Sistemas: FCO 

(http://data.gbif.org/datasets/resource/245) 

132. Universidad Nacional Autonoma de Mexico (http://data.gbif.org/datasets/resource/1322) 

133. Universidad Nacional de Colombia (http://data.gbif.org/datasets/resource/1290) 

134. Universidad Nacional de Loja (http://data.gbif.org/datasets/resource/1284) 

135. Universidad Polit‚cnica de Madrid, Dpto. Biolog¡a Vegetal, Banco de Germoplasma 

(http://data.gbif.org/datasets/resource/1521) 

136. Universidade de Brasilia (http://data.gbif.org/datasets/resource/1272) 

137. Universidade de Sao Paulo (http://data.gbif.org/datasets/resource/1311) 

138. Universidade Estadual de Campinas (http://data.gbif.org/datasets/resource/1255) 

139. Universidade Federal de Juiz de Fora (http://data.gbif.org/datasets/resource/1260) 

140. Universidade Federal de Mato Grosso (http://data.gbif.org/datasets/resource/1254) 

141. Universidade Federal de Santa Catarina (http://data.gbif.org/datasets/resource/1335) 

142. Universidade Federal do Maranhao (http://data.gbif.org/datasets/resource/1305) 

143. Universidade Federal do Parana (http://data.gbif.org/datasets/resource/1337) 

144. Universidade Federal do Rio Grande do Sul (http://data.gbif.org/datasets/resource/1280) 

145. Universitat Wien (http://data.gbif.org/datasets/resource/1286) 

146. Universitat Zurich (http://data.gbif.org/datasets/resource/1276) 

147. University of Aarhus (http://data.gbif.org/datasets/resource/1349) 

148. University of Alabama (http://data.gbif.org/datasets/resource/1316) 

149. University of Calicut (http://data.gbif.org/datasets/resource/1343) 

150. University of California (http://data.gbif.org/datasets/resource/1245) 

151. University of California Botanical Garden DiGIR provider (http://data.gbif.org/datasets/resource/1412) 

152. University of Michigan (http://data.gbif.org/datasets/resource/1285) 

153. University of Texas at Austin (http://data.gbif.org/datasets/resource/1243) 

154. University of Victoria (http://data.gbif.org/datasets/resource/1261) 

155. University of Wisconsin Oshkosh (http://data.gbif.org/datasets/resource/1293) 

156. USDA (http://data.gbif.org/datasets/resource/1342) 

157. Vanderbilt University (http://data.gbif.org/datasets/resource/1241) 

158. Vascular Plant Collection - University of Washington Herbarium (WTU) 

(http://data.gbif.org/datasets/resource/126) 

159. Vascular Plant Type Specimens (http://data.gbif.org/datasets/resource/731) 

160. Wageningen University (http://data.gbif.org/datasets/resource/1267) 

161. Westfalische Wilhelms-Universitat (http://data.gbif.org/datasets/resource/1271) 

 



SpeciesLink: 

1. Banco de DNA do Jardim Botânico do Rio de Janeiro Carpoteca UFP 

2. Coleção de Fanerógamas do Herbário do Estado "Maria Eneyda P. Kaufmann Fidalgo" 

3. Coleção de plantas medicinais e aromáticas 

4. Herbário - IPA Dárdano de Andrade Lima 

5. Herbário "Irina Delanova Gemtchújnicov" 

6. Herbário Central da Universidade Federal do Espírito Santo VIES  

7. Herbário da Escola Superior de Agricultura Luiz de Queiroz 

8. Herbário da Universidade Estadual de Campinas 

9. Herbário da Universidade Estadual de Londrina 

10. Herbário da Universidade Estadual de Ponta Grossa 

11. Herbário da Universidade Federal de Sergipe 

12. Herbário Dárdano de Andrade Lima 

13. Herbário de Ilha Solteira 

14. Herbário de São José do Rio Preto 

15. Herbário Dimitri Sucre Benjamin 

16. Herbário do Departamento de Botânica, SPF-IB/USP 

17. Herbário do Instituto Agronômico de Campinas 

18. Herbário do Museu Botânico Municipal 

19. Herbário Dom Bento Pickel 

20. Herbário Dr. Roberto Miguel Klein 

21. Herbário Graziela Barroso 

22. Herbário Jaime Coelho de Moraes 

23. Herbário Lauro Pires Xavier 

24. Herbário Mogiense 

25. Herbário Pe. Camille Torrand 

26. Herbário Prisco Bezerra 

27. Herbário Professor Vasconcelos Sobrinho 

28. Herbário Rioclarense 

29. Herbário Sérgio Tavares 

30. Herbário UEM 

31. Herbário UFP - Geraldo Mariz 

32. Herbário UFRN 

33. INPA - Coleção de Madeiras - Xiloteca 

34. INPA-Carpoteca - Carpoteca 

35. INPA-Herbario - Herbário 

36. MBML-Herbario 

37. SPFw - Xiloteca do Instituto de Biociências da Universidade de São Paulo 

38. UPCB - Herbário do Departamento de Botânica 

39. Xiloteca "Profa. Dra. Maria Aparecida Mourão Brasil" 

40. Xiloteca Calvino Mainieri 

41. Xiloteca do Jardim Botânico do Rio de Janeiro 

  



Appendices 

S1 species.data 

Basic information for all 4970 valid species. 

Accepted_family: Family according to Tropicos (30) 

Accepted_genus: Genus according to Tropicos (30) 

Accepted_species: Species according to Tropicos (30) 

n.ind: Number of individuals in ATDN database for 1170 plots 

n.plots: Nr of plots (of 1170) in which the species is present 

maxabund: Nr of individuals per ha in the plot where the species has it highest abundance 

est.ind: Population size based on 1 run with all 1170 plots 

population.mean: Mean population size of 500 runs with 1000 plots (with replacement) 

population.sd: SD of population size of 500 runs with 1000 plots (with replacement) 

species.relmax: Fraction of individuals in the plot where the species has it highest dominance 

IV.maxcls: Forest type in which species has highest IV-value (1 = igapó, 2 = podzol, 3 = swamp, 4 = terra 
firme, 5 = várzea) 

IV.indcls: IV value  

IV.pval: p value for IV value 

 

S2/S3 Families/Genera 

Family/Genus: name according to Tropicos (30) 

N ind: Number of individuals in 1170 plots used 

N species: Number of species in 1170 plots used 

HyperDom: Number of hyper-dominant species in family/genus observed 

HypDomExp: Number of hyper-dominant species in family/genus expected (based on 1000 randomizations) 

ci.lo: lower 95% confidence limit for expected number of hyper-dominant species (based on 1000 
randomizations) 

ci.hi: higher 95% confidence limit for expected number of hyper-dominant species (based on 1000 
randomizations) 

hilo: significant deviation from expected number of hyper-dominants 
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