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Abstract—Data dissemination is a fundamental service offered
by low power wireless networks. Sender selection is the key to
the dissemination performance and has been extensively studied.
Sender impact metric plays a significant role in sender selection
since it determines which senders are selected for transmission.
Recent studies have shown that spatial link diversity has a
significant impact on the efficiency of broadcast. However, the
existing metrics overlook such impact. Besides, they consider
only gains but ignore the costs of sender candidates. As a
result, existing works cannot achieve accurate estimation of
the sender impact. Moreover, they cannot well support data
dissemination with network coding, which is commonly used
for lossy environments. In this paper, we first propose a novel
sender impact metric, namely γ , which jointly exploits link
quality and spatial link diversity to calculate the gain/cost ratio
of the sender candidates. Then we develop a generic sender
selection scheme based on the γ metric (called γ-component) that
can generally support both types of dissemination using native
packets and network coding. Extensive evaluations are conducted
through real testbed experiments and large-scale simulations.
The performance results and analysis show that γ achieves
far more accurate impact estimation than the existing works.
In addition, the dissemination protocols based on γ-component
outperform the existing protocols in terms of completion time
and transmissions (by 20.5% and 23.1%, respectively).

I. INTRODUCTION

Low power wireless networks have gained increasing
importance for a variety of civil and military applications. A
low power wireless network consists of a large number of
small and inexpensive wireless nodes that integrate sensing,
computation, and wireless communication capabilities [1]–[4].
Bulk data dissemination is used to disseminate a large data
object to all network nodes reliably in a multi-hop manner.
It is one of the key enabling services for software update,
surveillance video distribution, etc. in low power wireless
networks [5]–[7].
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Existing dissemination protocols typically divide a large
data object into multiple pages to enable the multi-hop pipeline
transfer, and use the three-way handshake mechanism (ADV-
REQ-DATA) to ensure data consistency. While some protocols
[8]–[10] use native packets, others [11]–[14] use network
coding to enhance the dissemination performance. However,
the coding/decoding incurs considerable delay overhead.
Network users choose whether to use coding based protocol
or not, according to the wireless conditions. Specifically,
when there is much spatial diversity, coding based protocols
are preferred. Otherwise, native packets based protocols are
preferred.

For both types of dissemination, sender selection plays
a critical role for the transmission/delay performance, and
has attracted much research attention [9], [10], [15]. The
underlying principle of sender selection is to choose the best
sender in a neighborhood that is expected to have the most
impact in transmission. The sender impact metric is the key to
select the best sender. MNP [9] uses the number of receivers
as the selection metric. ECD [10] takes a step forward by
considering link quality as well as the number of receivers.
UFlood [15], a dissemination protocol for mesh networks,
jointly considers the number of receivers, link quality and bit
rate. When applied in low power networks, UFlood has the
same sender selection metric with ECD since the bit rate is
fixed.

Recent studies [16]–[19] show that packet receptions on
adjacent wireless links much often correlated, which is
different from the long held assumption of independent
receptions. We observe that link correlation implicitly plays
an important role on the efficiency of a sender’s transmission
by affecting the reception statuses at receivers. Consider that
a sender transmits a page of packets to multiple receivers. In
case that the sender’s outbound links are strongly correlated,
the receivers will exhibit similar reception statuses (i.e., if one
receiver receives a packet, others are more likely to receive it,
and vice versa). Consequently, re-transmission will be more
efficient as the receivers are likely to request the same packets.
In contrast, in case of weak link correlation, a sender should
re-transmit more packets since each receiver may request
different packets. Considering the lossy nature of low power
wireless links, the re-transmission overhead is a critical criteria
for sender’s efficiency. Although the use of network coding can
partially reduce the negative impact of weak link correlation,
we observe that the impact on node reception statuses still
greatly affects the transmission efficiency (Section III.B).

Unfortunately, the existing sender selection mechanisms
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overlook the impact of link correlation, resulting in inaccurate
sender selection and inefficient dissemination. In this paper,
we exploit link correlation to design a novel sender selection
scheme. We first propose a novel sender selection metric,
named γ factor (γ for its sharp emission lines), which formally
models the expected packet-level gain/cost ratio for each
potential sender. We utilize the reception statuses in REQ
messages received by a sender to extract link correlation and
transmission progress information. The information, combined
with link quality, is then used to estimate the utility of
each requested packet to send, i.e., the number of successful
receptions per packet transmission. This is different from
the existing designs since they consider only the expected
receptions but overlook the total number of transmissions.
Under this estimation, γ is able to achieve accurate sender
selection consistently with various link conditions, while the
existing metrics of MNP, ECD and UFlood can achieve the
same accuracy only under special conditions with weak link
correlation.

We then propose a generic sender selection scheme based on
the γ factor, named γ-component, which can be easily adopted
in the existing dissemination protocols for accurate sender
selection. We incorporate γ-component with two popular
dissemination protocols—Deluge [8] and Rateless Deluge
[11], and conduct extensive experiments to evaluate the effect
of γ factor. The results show that 1) γ yields more accurate
sender selection by 155.2%, 36.1% and 29.2% compared to the
metrics used in Deluge, MNP, and ECD/UFlood, respectively.
2) By incorporating γ-component into Deluge and Rateless
Deluge, the number of transmissions and completion time are
reduced by 20.5% and 23.1%, respectively.

The major contributions of this paper include:
• An accurate sender selection metric (i.e., γ) is proposed

for efficient bulk data dissemination. The new metric
takes into account both link quality and link correlation.

• A lightweight and generic sender selection scheme
based on γ , namely γ-component, is developed and
incorporated into data dissemination for improving the
protocol performance.

• Extensive testbed and simulations studies are conducted.
The performance results demonstrate that γ is a more
accurate sender selection metric and γ-based protocols
outperform the existing protocols.

The remainder of this paper is organized as follows. Section
II introduces the related work and background. Section III
deserves the motivation of our work. Section IV presents
the γ factor in detail. Section V presents the γ-component
and its incorporation with existing protocols. Section VI
evaluates the performance of dissemination protocols based
on γ-component. Finally, Section VII concludes this paper.

II. RELATED WORKS & BACKGROUND

In this section, we first outline an overview of the existing
bulk data dissemination protocols for low power wireless
networks, and then present the details of the most related
works, with a particular focus on sender selection.

We classify the existing bulk data dissemination protocols
into two categories: protocols using native packets and

protocols based on network coding. Network users choose
whether to use coding based protocols or not, according to the
network environmental conditions [20]. When there is much
spatial diversity such as indoor environment, complex terrain,
etc., coding based protocols are preferred. Otherwise, non-
coding protocols are preferred.

Next, we provide more details for the most related works,
with special focus on sender selection.

A. Native packets based dissemination

1) Deluge: Deluge is the standard bulk data dissemination
protocol used in TinyOS [21]. It first segments a large object
into multiple pages, each of which consists of multiple packets.
It then transmits a page in one batch. NACK-based three-way
handshake mechanism is used for ensuring reliability. Each
node periodically broadcasts ADV messages to announce how
many pages it can provide. If a node receives ADV messages
that contain more pages, it randomly selects a sender to
transmit REQ messages. The REQ messages contain bitmaps
indicating the lost packets, such that the senders can transmit
the requested packets. However, considering that different
senders may be largely different in the transmission efficiency,
the random selection may increase the overhead in terms of
transmissions and delay.

2) MNP and ECD: MNP [9] and ECD [10] use a
more accurate sender selection algorithm to improve the
dissemination performance. In MNP, each sender counts for
the number of unique requests it has received (using a reqCtr
counter). The sender with the largest reqCtr will be selected
and will start transmitting data packets. The rationale of MNP
is clear: the sender with the largest reqCtr will likely serve
more requesters, resulting in faster dissemination.

ECD further considers link quality. The sender with a large
number of requesters and good link quality to those requesters
will be favored. ECD selects senders with fewer transmissions
compared to MNP. Formally, let u denote a sender, Nreq

u denote
the set of requesters of u, and quv denote the link quality from
u to v. The sender selection metric used in MNP is calculated
as

εMNP = |Nreq
u | (1)

while the sender selection metric used in ECD is

εECD = ∑
v∈Nreq

u

quv (2)

B. Coding based dissemination

1) Rateless Deluge and SYNAPSE: Both Rateless Deluge
[11] and SYNAPSE [12] apply network coding to improve
the dissemination performance in lossy environments. Rateless
Deluge employs random linear code while SYNAPSE employs
Fountain code. Instead of transmitting native packets, Rateless
Deluge transmits encoded packets. Upon receiving a specified
number of encoded packets, the receiver can decode the
packets. Due to resource limitation of a low-power node, both
the sender and receiver share the same seed for generating a
sequence of random coefficients so that the message overhead
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of the coefficients can be avoided. Encoding can only be
performed on native packets. As such, the decoding cost may
have a large impact on the performance since a forwarding
node must decode a page of packets before it can prepare
encode and transmit packets to the next hop. The random
sender selection algorithm used in both Rateless Deluge and
SYNAPSE is similar to the one in Deluge.

2) UFlood: UFlood [15] is a dissemination protocol
combining both network coding and sender selection in
wireless mesh networks. It addresses the problem of reliable
dissemination of multiple packets to all network nodes.
Different from Rateless Deluge and SYNAPSE, UFlood can
encode encoded packets (e.g., encoded packet of the 2nd
generation, 3rd generation, ...). The additional cost of the
design includes the coefficients into the encoded packets.
While it may be reasonable for wireless mesh nodes, it may
not be affordable for low-power wireless nodes. UFlood uses
the following sender selection metric.

εUFlood = ∑
v∈Nall

u

quv,bu ·bu · Iuv (3)

where Nall
u is the set of all neighboring nodes (not only

requesters), bu is the optimal bit rate chosen by u, and Iuv is
the variable indicating whether u’s transmission is useful to v.

It is worth noting that UFlood does not employ the
ADV-REQ-DATA handshake. Instead, each UFlood node
periodically exchanges feedback messages containing a bit
vector (only affordable in mesh networks), which indicates
its own received and missing packets. As a result, Iuv plays
an important role to identify whether quv should be accounted
in u’s utility: When node u receives feedback messages from
node v, node u checks whether it has useful packets for node
v. If yes, Iuv is set, and then quv is accounted for u’s utility.
This is equivalent to the case that node v sends an REQ
message to node u such that quv is accounted for u’s utility.
Hence, Eq. (3) essentially calculates the sum of quv,bu ·bu for
all requesters. Besides, when applied in low power wireless
networks equipped with 802.15.4 radios, bu can be neglected
since the bit rate cannot be adaptively changed. Therefore, the
metric used in UFlood can be re-written as:

εUFlood = ∑
v∈Nall

u

quv,bu ·bu · Iuv

= ∑
v∈Nreq

u

quv,bu ·bu

=bu · ∑
v∈Nreq

u

quv,bu

(4)

We can see that εUFlood is essentially bu times of εECD.
When using εUFlood as the sender selection metric, for the
same contending senders, if a sender has the largest impact
value of εUFlood , it will also have the largest impact value of
εECD. The selected sender will be identical for both metrics.
As such, we use εECD to denote both ECD’s and UFlood’s
metrics in the following sections for simplicity. There are
some more recent works [22], [23] that exploit constructive
interference for dissemination. For example, the work [22]
achieves far more efficient dissemination than Deluge by
using both constructive interference and network coding. The
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Fig. 1: A motivating example with native packets.

establishment of constructive interference and the flooding
structure may require stringent time synchronization.

C. Short summary

Existing sender selection metrics evaluate a sender by
calculating the expected number of receivers of the sender.
There are two factors that introduce errors to these metrics:
(i) They only consider the gain (i.e., the number of receivers)
without considering the cost (i.e., the number of transmissions
by the sender). A sender that have many neighboring nodes
with weak links can be selected by these metrics, as the sum
of its outbound link qualities can be large. However, such a
sender’s transmissions may not be efficient as it may require
a large number of transmissions to cover its neighbors. (ii)
They fail to consider link correlation or reception statuses at
receivers. As to be demonstrated in Section III, link correlation
greatly affects the transmission efficiency of a sender by
impacting the reception statuses at receivers. In contrast, γ

can (i) essentially calculate the gain/cost ratio of a sender and
(ii) effectively make use of node reception statuses to exploit
link correlation when evaluating a sender’s effectiveness.
Moreover, γ consistently achieves accurate sender selection in
various conditions while other metrics can achieve the same
accuracy only under special conditions. Besides, γ can be used
for dissemination in both radio-always-on networks [8]–[10]
and low-duty-cycled networks [24].

III. MOTIVATING EXAMPLES

In this section, we use two examples to clearly present the
motivation of our works.

A. Dissemination protocol using native packets

Figure 1 shows an example in which S1 and S2 are two
potential senders while N1, N2 and N3 are three receivers.
S1 and S2 intend to cover N1, N2 and N3 with a page of 10
packets. The quality for each directional link is indicated using
a percentage. The percentages below S1 and S2 indicate the
corresponding link correlation: the link correlation between
S1→N1 and S1→N2 is 100%, indicating that when the
transmission over S1→N1 fails, the transmission over S1→N2
also fails. The link correlation between S2→N2 and S2→N3
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Fig. 2: A motivating example with network coding.

is 0, indicating that when the transmission over S2→N2 fails,
the transmission over S2→N3 can succeed.

In each transmission round, the senders transmit all missing
packets of the receivers in a batch. For example, if S1 intends
to cover N1, it will transmit all N1’s missing packets according
to the received REQ from N1. At the end of the first round
transmission, the reception statuses of the receivers in a given
page are indicated by the blocks below, where a black block
denotes a missing packet and a white block denotes a received
packet. We can see that due to the impact of link correlation,
N1 and N2 have the same missing packets while N2 and N3
have no common missing packets. The receivers respond with
request (REQ) messages (carrying bit vectors indicating the
reception statuses) for the missing packets.

We examine the performance of the existing sender selection
metrics. Using εECD, S2 will be first selected as the sender.
This is because the impact of S2 (εECD(S2) = 0.9+0.5 = 1.4)
is larger than the impact of S1 (εECD(S1) = 0.5 + 0.5 =
1). After selected as a sender, S2 starts transmitting the
requested data packets to N2 and N3. The expected number
of transmissions to cover N2 and N3 is 1

0.9 +
5

0.5 = 11.1. Note
that we call a node covered only when it has received the
whole page of packets. When N2 and N3 are both covered,
N1 still has missing packets. To cover N1, S1 needs 5

0.5 = 10
transmissions. The total number of transmissions to cover all
the receivers is 10+11.1=21.1.

When the random selection algorithm and MNP’s metric
are used, we cannot decide the sending priority of S1 and S2.
Because both S1 and S2 have 2 receivers such that εMNP = 2
for both senders. Actually, S1 is the better one to be first
selected. When S1 is selected, as N1 and N2 are requesting
the same five packets, the expected number of transmissions
to cover N1 and N2 is 5

0.5 = 10. Then N3 still needs 1 packet
and S2 needs to cover N3 with 1

0.9 = 1.1 transmissions. The
total number of transmissions to cover all the receivers is
10+1.1=11.1 < 21.1.

With this example, we conclude that considering link quality
alone cannot accurately estimate a sender’s impact.

B. Dissemination protocols using network coding

Figure 2 shows a similar example in which S1 and S2 are
two potential senders while N1, N2 and N3 are three receivers.
When network coding is used, an encoded packet transmission
is useful to a node as long as the node did not receive a
sufficient number of encoded packets (i.e., 10 encoded packets
in the example) [11] [12]. As a result, the reception statuses
of the receivers are indicated by the number of missing
packets, instead of a request bit vector. The numbers inside
the rectangles indicate how many encoded packets are needed
by the corresponding receiver to recover a given page. Another
difference is that the number of transmissions by the sender
is decided by the worst link from the sender to the receivers.

After the first round of transmission, the receivers receive
some packets while still needing a certain number of packets
to decode an entire page.

We also examine the performance of the existing sender
selection algorithms. Using ECD’s metric (or UFlood’s met-
ric), S2 will be first selected as a sender. This is because the
impact of S2 (εECD(S2) = 0.5+0.9 = 1.4) is larger than that
of S1 (εECD(S2) = 0.5+ 0.5 = 1). As a packet transmission
is useful to a node as long as the node has not received a
sufficient number of packets, the number of transmissions is
decided by the worst link, i.e., S2→N2. The expected number
of transmissions of S2 to cover both N2 and N3 is 5

0.5 = 10.
After that, N1 still needs five encoded packets. To cover N1,
S1 should transmit 5

0.5 = 10 packets. In total, the number of
transmissions to cover N1, N2 and N3 is 10+10=20.

Similarly, both the random selection algorithm and MNP’s
metric cannot decide the sending priority of S1 and S2 in this
example. Actually, S1 is the better one to be first selected.
When S1 is selected, as N1 and N2 both request five packets,
the expected number of transmissions to cover N1 and N2 is
5/0.5=10. After that, S2 needs only 1

0.9 = 1.1 transmissions to
cover N3. The total number of transmissions is 10+1.1=11.1
< 20.

From both case studies, we conclude that link correlation
affects the performance of bulk data dissemination protocols
by affecting the reception statuses of receivers and it should
be incorporated into the metric design in the sender selection
algorithm for evaluating the effectiveness of a sender’s
broadcast.

IV. THE γ FACTOR

Based on the above observation, we design γ , an accurate
sender selection metric incorporating both link quality and
reception statuses (i.e., bit vectors in REQ messages). The key
idea of γ is to utilize the node reception statuses to accurately
estimate the expected gain/cost ratio of a potential sender (i.e.,
the average expected number of receptions for each requested
packet transmission). γ favors senders with the better link
quality and stronger link correlation.

In general, γ can be calculated as follows:

γi =
Gi

Ci
(5)

where Gi is the gain (i.e., the expected packet receptions) of
node i, and Ci is the cost (i.e., the number of transmissions)
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of node i. Next, we present the calculation of γ for both non-
coding and coding based dissemination.

A. Notations

The notations are listed as follows.
• µ[i] denotes the reception utility of the i-th packet.
• γu denotes node γ value of u.
• Nall

u denotes the set of neighboring nodes of node u.
• Nreq

u denotes the set of nodes who have sent requests to
node u.

• |Nu| denotes the size of Nu, i.e., the number of nodes that
have sent requests to node u.

• quv denotes the link quality from node u to node v.
• Rvu denotes the request vector from node v to node u.
• |Rvu| denotes the length of Rvu. For example, |Rvu|= 48

in Deluge since a default Deluge page consists of 48
packets.

• Rvu[i] denotes the i-th bit of Rvu. The value 1 denotes
the corresponding packet is lost at v and needs to be
retransmitted by u and 0 denotes the corresponding packet
is correctly received at v.

• Ru denotes the combined request vector at node u.
• |Ru| denotes the length of Ru.
• Ru[i] = ∨v∈NuRvu[i]. If Ru[i] = 1, the i-th packet in the

current page needs to be (re-)transmitted.
• nv denotes the number of missing packets of node v within

the receiving page.

B. Description of γ

We describe the calculation of γ in detail for both native
packets and network coding based dissemination. When a
potential sender receives requests from its receivers, we
calculate γ to evaluate the effectiveness of the sender. A larger
γ indicates a more effective sender, of which the transmissions
are likely to be more efficient.

1) γ for dissemination with native packets: We first
calculate the expected number of receptions for each requested
packet of a sender, and then calculate γ for the sender.

Intuitively, when a packet is useful to more receivers, the
packet’s transmission is more beneficial. Hence, we define the
utility of a packet to be the expected number of the receptions
at all the neighboring nodes that need the packet. Suppose
the i-th packet in the current page is requested, the reception
utility is

µ[i] = ∑
v∈Nu

Rvu[i] ·quv (6)

It is worth noting that only receptions at receivers who
have requested the i-th packet (i.e., Rvu[i] = 1) are included
in the calculation since other receivers have already received
the packet (Rvu[i] = 0) and thus the packet is useless to those
receivers.

As sender u needs to transmit each packet i with Ru[i] = 1,
the total number of transmissions is M = ∑

|Ru|
i=1 Ru[i]. We define

the average number of receptions for each packet transmission
as γ to reflect the gain/cost ratio as follows:

γu =
∑
|Ru|
i=1 Ru[i] ·µ[i]

M
(7)

The cost is the number of transmissions M, and the benefit
is the sum of utilities of all requested packets. It is obvious
that a larger γ value means a more effective potential sender
with higher gain/cost ratio. We revisit the example in Figure
1, with Eq. (7), γS1 = 1 and γS2 = 0.57 < γS1. Hence, the better
sender S1 is selected with γ .

2) γ for dissemination with network coding: γ works the
same way for network coding based protocols, i.e., the average
utility of each packet transmission. The key difference is that
when network coding is used, a packet is useful for more
receivers as compared to that with native packets, which partly
reduces the impact of link correlation. This significantly affects
the calculation of γ for dissemination with network coding.

When network coding is employed, a packet is useful to
a receiver as long as the receiver did not receive sufficient
number of linear-independent encoded packets. As a result,
a sender needs to send a total number of M = max(v∈Nreq

u ) nv
packets, which are the cost of the sender.

Now we estimate the gain of the M transmissions. For each
transmission, we consider the following two cases for the
transmission utility of the i-th packet transmission (1≤ i≤M).

(1) For receiver k with nk ≥ i (i.e., the number of the missing
packets of node k is larger than that of i, which means the i-th
packet is useful to node k if the packet is linear-independent
with the received packets), the utility of packet to k is quk×
(1− pl), where pl denotes the probability that the encoded
packet is linear-dependent with the received packets and can
be calculated according to [11]. When using the default setting
of random linear code in Rateless Deluge, pl = 0.00392.

Hence, the utility to all these receivers with nk ≥ i is:

µ1[i] = ∑
k:nk≥i

quk(1− pl) (8)

(2) For receiver k with nk < i, the i-th packet is useful to
node k only if k has not received nk packets during the previous
i-1 transmissions. We denote Pi−1(k) as the probability that
node k has not received nk packets after i-1 transmissions.
It is the sum of probabilities that k receives 0 up to nk− 1
packets.

Pi−1(k) =
nk−1

∑
m=0

(
i−1

m

)
·qm

uk · (1−quk)
i−1−m (9)

The utility to all these receivers with nk < i is:

µ2[i] = ∑
k:nk<i

Pi−1(k) ·quk(1− pl) (10)

Hence, the utility of the i-th packet is the sum of utilities
to both the above kinds of receivers:

µ[i] = µ1[i]+µ2[i] (11)

According to the definition of γ , we calculate γ as follows:

γu =
∑

M
i=1 µ[i]

M
(12)
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Let us revisit the example shown in Figure 2, with Eq. (12),
γS1 = 1 and γS2 = 0.699998≈ 0.7 < γS1, and the better sender
S1 is selected with γ .

We can see that γ does not directly exploit link correlation
for impact modeling. Instead, it uses the reception statuses
at receivers to estimate the expected number of receptions
for each requested packet. While link correlation provides an
estimation of the number of common missing packets, the
reception statuses directly provide the ground truth of the
number of common missing packets (which is affected by
link correlation). Hence, our calculation based on the reception
statuses is reasonable and more accurate. As a result, γ favors
the senders with strong correlated outbound links.

V. THE γ -COMPONENT

In this section, we present γ-component, a generic sender
selection scheme for bulk data dissemination. We first present
the designs of two essential modules to enable γ based sender
selection: γ estimation and transmission contention. We then
integrate these two modules into γ-component (i.e., sender
selection implementation based on γ). Finally, we apply γ-
component to both Deluge and Rateless Deluge (namely γ-
Deluge and γ-Rateless Deluge).

A. γ Estimation

Before each round of transmission during the dissemination,
the γ values of potential senders are updated for sender
selection. According to Eq. (7) and Eq. (12), a sender needs
to collect reception statuses and link quality information for γ

estimation. We first discuss how to obtain these information.
(1) Obtaining Rvu and nv. We get Rvu and nv in the

REQ message sent by uncovered nodes when missing packets
are detected. There are two differences between γ’s REQ
mechanism and Deluge’s REQ mechanism. First, multiple
potential senders overhear the REQ message and may be
responsible for sending requested packets in REQ that is
not designated for them. This enlarges the set of potential
senders so that we select the best one. Second, we note that in
Deluge [8], a REQ message may be suppressed if another REQ
message for the same page is overheard. This mechanism,
however, will lead to biased estimation in our protocol design.
For this reason, we require that the uncovered nodes send REQ
messages unless there is an ongoing page transmission.

The setting of the estimation period for sending and
receiving REQ messages depends on the time window during
which nodes randomize the transmissions of REQ messages
(as will be discussed in Section V.A.3). If the time window is
too small, the probability of REQ collisions will increase. On
the other hand, if the time window is too large, it will cause a
long dissemination delay. In this paper, we set the estimation
period to be consistent with Deluges default settings in order
for a fair comparison.

(2) Obtaining quv. To estimate link quality, we incorporate
the LEEP link estimation protocol [25] into our design. LEEP
is a passive link estimation protocol that can be invoked in
proactive protocols to update neighbors’ link quality. It has
shown to be effective in many protocols [10], [26], [27]

We attach the LEEP header (containing a seqno) to ADV,
REQ, and DATA messages. Each node uses these messages
to estimate the inbound link quality from neighboring nodes.
Note that DATA messages are broadcasted in a batch to
all neighboring nodes and can be used for inbound link
estimation. This process effectively calibrates estimated link
quality via control-plane messages. Moreover, we attach
the LEEP footer (containing node IDs and their inbound
link quality) to ADV messages. Therefore, the outbound
link quality can be obtained by periodically exchanging the
inbound link quality encompassed in the ADV messages.

Combining the requests sent by uncovered nodes and the
link quality to the requesters, we can estimate a sender’s
impact according to Eq. (7) when using native packets or
Eq. (12) when using network coding.

(3) REQ collection. The requirement that all uncovered
nodes send REQ messages may lead to REQ collisions,
especially in dense networks. The impact of REQ collisions
is two-fold:
• For γ estimation, the REQ collisions will lead to

incomplete feedback collection, which will lead to
inaccurate sender impact estimation and sender selection.

• The REQ collisions may cause large delay, which
might balance the reduced transmission delay by sender
selection.

Density aware REQ mechanism
To deal with the REQ collisions, we propose a density

aware REQ mechanism. The key idea is to adjust the REQ
timer according to the network density to keep the collision
probability under a threshold. We first model the relationship
between REQ timer and the collision probability as follows.

Suppose there are N contending nodes in a neighborhood,
and we denote the REQ timer as TREQ. According to [28], the
REQ attempt probability is Pa = 2

TREQ+1 . The probability of
a successful transmission of N contending nodes in a timer
duration is the probability that only one node attempts to send
an REQ in the timer period,

Ps = NPa(1−Pa)
N−1 (13)

The probability that no nodes attempt to send an REQ in the
timer duration is,

Pn = (1−Pa)
N (14)

With the above probabilities, we can calculate the collision
probability in the timer duration as follow.

Pc = 1−Ps−Pn (15)

We can see that the collision probability increases along
with the network density. Then, we set the collision probability
Pc to be under a threshold Cthr, and we can get the relationship
between number of contending nodes and the timer duration
as follows.

N · 2
1+TREQ

·(1− 2
1+TREQ

)N−1+(1− 2
1+TREQ

)N =1−Cthr (16)

When we set Cthr to be a constant, e.g., 0.5%, the REQ
backoff timer can be obtained according to the network density
with Eq. (16).
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Fig. 4: The 8×10 testbed.

We also set a threshold T hreq for the REQ timer to avoid
too large timer delay in very dense networks. As a result, the
REQ backoff timer is min(T hreq, TREQ).

Another challenge for γ estimation is how to align the
estimation periods of different nodes within a neighborhood.
If the senders’ estimations start at different time, the result
would be unfair. To address this problem, we adopt a similar
approach as in [10]. We attach a pendingPktNum field to
each data packet, indicating the number of remaining packets
that the sender intends to transmit. With this information and
the expected transmission time for a single packet, we can
estimate the end time of the ongoing page transmission.

B. Transmission Contention

All nodes that overhear the REQ messages and have the
requested page are potential senders. We should select the best
sender in the potential senders, which has the largest γ value.

There are two alternatives for transmission contention: ac-
tive contention and passive contention. (1) In active contention,
potential senders exchange control messages to inform each
other about the impact values. A node fails the contention if it
detects a larger impact, and starts data transmission otherwise.
Active contention requires multiple rounds of control message
exchanges, which incurs considerable transmission and delay
overhead. (2) In passive contention, each potential sender starts
a back-off timer according to its own impact. A node starts
transmission if its timer fires. If a node receives data packets
before the back-off timer fires, it fails the contention and stops
its own timer. The benefit is that it incurs no control message
exchanges. The drawback is that it may fail to select the most
effective sender if the back-off is not carefully designed.

Table 1: Series of dissemination protocols using native packets

contention
estimation random MNP’s ECD’s γ

None Deluge [8]
active MNP [9]
passive ECD [10] γ−Deluge

Table 2: Series of dissemination protocols using network
coding (RD:Rateless Deluge, γ-RD:γ-Rateless Deluge)

contention
estimation random ECD’s γ

None RD [11],Synapse [12]
active UFlood
passive γ-RD

We propose to use a passive approach, employing an impact-
based back-off mechanism. Intuitively, in order to prioritize
the transmissions of the potential senders with larger γ , we
need to assign a short back-off time for a node with a large
γ and a long back-off time for a node with small γ . There
are several ways to correlate the back-off time with γ . Here,
we simply use the reciprocal, Tbacko f f (u) = C

γ
+ ∆, where

C is a constant value and ∆ is a small random value to
differentiate the back-off time when γ values are the same.
In our experiments, we found the back-off design is effective
(see Section VI.C). With this back-off time design, the largest
impact node is most likely to transmit first. Other nodes
will cancel the data transmission. It is worth noting that
compared to traditional sender selection approaches, γ brings
only computational overhead (metric calculation). Considering
that in low power network, radio operations (transmitting,
receiving, idle listening) are the dominating source of energy
consumption [29], [30], the overhead is negligible compared
to the reduction of transmissions (see Section VI).

C. The γ-component

We abstract γ-component, a general sender selection scheme
based on γ . Estimation and contention are two key interfaces
of γ-component. The estimation interface estimates γ , and it
depends on the LEEP component for estimating link quality.
The contention interface prioritizes transmission according to
the γ value. Figure 3 illustrates the relationship between these
two interfaces.

The benefit of γ-component is two-fold. On one hand,
we can easily incorporate γ into existing data dissemination
protocols such as Deluge, MNP, ECD, and Rateless Deluge.
On the other hand, we can also implement other sender
selection algorithms such as in MNP or ECD for the same
interface in order to compare the effect of different sender
selection algorithms for the same dissemination protocol.

The γ-component abstraction also allows us to generate
a series of different dissemination protocols as illustrated in
Tables 1 and 2.

D. γ-Deluge and γ-Rateless Deluge

Figure 3 shows how we can incorporate γ-component
with Deluge into γ-Deluge. The dark arrows indicate the
information exchange of Deluge and γ-component.
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Fig. 5: Performance comparison of Deluge, ECD and γ-Deluge.

γ-Deluge works as follows: When receiving an REQ
message, Deluge invokes the estimation interface. Combining
the REQ from Deluge and link quality information from
LEEP, the estimation interface updates the γ value. When the
estimation period ends, the updated γ value is delivered to
the contention interface. Based on the γ value, the contention
interface starts a back-off timer. When the timer fires, the
contention interface informs Deluge to start data transmission.
If Deluge receives data messages during the back-off timer
period, the contention fails and the node does not start
transmissions.

Similarly, we incorporate γ-component with Rateless Del-
uge into γ-Rateless Deluge. The difference lies in that Rateless
Deluge invokes a decoding component when receiving an
entire page.

VI. EVALUATION

We now move to performance evaluation by implementing
γ-Deluge and γ-Rateless Deluge in TinyOS 2.1.1 [21]. We
first conduct testbed experiments to compare existing protocols
using two key performance metrics, i.e., the number of
transmissions and the completion time of the dissemination.
We then evaluate γ through large scale simulation in TOSSIM
[31] to gain more insights by analyzing the sender selection
behaviors and the impact of link correlation.

A. Methodology

We built a 8×10 testbed with TelosB [32] nodes to form a
multi-hop low power network (shown in Figure 4). We first
measure the link characteristics of the network.

Figure 5(a) shows the CDF of pair-wise link quality.
With the power setting, different links have different link
quality. Figure 5(b) shows the CDF of average outbound link
correlation for each node. Both good link correlation and poor
link correlation exist.

In γ-Deluge, we set the page size and packet payload size
using Deluge’s default settings (1034K bytes/page and 23
bytes/packet). In γ-Rateless Deluge, we set the page size and
packet payload size using Rateless Deluge’s default settings
(460K bytes/page and 23 bytes/packet).

We place a sniffer node near the testbed for listening reports
from each node. At the beginning, the sink node broadcasts a
start message at the maximum radio power. Upon receiving
the start message, the sniffer node records the start time of
dissemination. Each node broadcasts a report message once
it has received the whole data object, also in the maximum
radio power. When report messages from all nodes are
collected at the sniffer, we can get the performance metrics
from the sniffer. We also use local logging to record the
interested events at each node in external flash.

We use two key metrics for comparison:

1) Completion time. It is the time from the start of
dissemination to the end of dissemination at each
individual node. The network completion time is the
maximum completion time among all nodes.

2) Number of transmissions. The number of transmissions
include data packet transmissions and control packet
transmissions.
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Fig. 6: Performance comparison of Rateless Deluge and γ-Rateless Deluge.

B. Dissemination Performance

We first compare the overall performance of dissemination
protocols with γ-component and their counterparts (both
protocols using native packets and network coding).

1) Comparison with dissemination protocols using native
packets: We compare γ-Deluge with Deluge and ECD in terms
of the number of transmissions and the completion time.

Figure 5(c) shows the performances of γ-Deluge, Deluge
and ECD in terms of the number of transmissions. The
data object size ranges from 10, 20 to 40 pages (each page
consisting of 1K bytes). For typical low power wireless
applications based on TelosB motes, few data objects are
larger than 40K bytes. We classify three kinds of transmissions
according to the message types (i.e., ADV, REQ, and DATA).
Both ADV and REQ are control-plane messages. (1) For ADV,
γ-Deluge reduces 8.6% and 1.5% transmissions compared
to Deluge and ECD, respectively. The reason is that ADV
is broadcasted periodically by each node, as γ-Deluge has
shortest completion time, it has fewest ADV transmissions. (2)
For REQ, γ-Deluge also reduces transmissions by 6% and 3%
compared to Deluge and ECD, respectively. Although Deluge
employs an REQ message suppression, it generally postpones
the REQ transmission instead of cancelling it (unless it
receives all the missing packets during the postponed period).
Hence, its suppression does not greatly reduce the REQ
transmissions. As good links are selected in γ and ECD, γ and
ECD reduce the number of REQ transmissions. γ also reduces
the REQ transmissions compared with ECD. The reason is that
γ-Deluge considers the reception statuses, which enables the
sender’s data transmissions in γ-Deluge effectively cover more
receivers than that in ECD. More covered receivers produce
fewer REQ transmissions. (3) For DATA, γ-Deluge reduces
transmissions by 20.4% and 16.5% compared to Deluge and
ECD, respectively. The reason is that the selected senders’
data transmissions in γ-Deluge have more receivers. We can
also see that, the reduction in data transmissions is larger than
control transmissions, and the reduction increases when the
page size increases.

Figure 5(d) shows the CDF of the number of transmissions
for each node in γ-Deluge, Deluge and ECD, respectively. We
can see that γ-Deluge has the lowest transmission overhead.
This is because γ jointly considers link quality and reception

statuses, and thus selects more efficient senders. We can also
see that there are several γ-Deluge nodes that have more
transmissions than the other two protocols. The reason is
that with γ-component, the nodes with good links are almost
selected all the time. As a result, there are fewer senders
selected in γ-Deluge, and some senders transmit more in γ-
Deluge than in Deluge.

Figure 5(e) shows the result for the completion time. ECD
has shorter completion time compared to Deluge for its
link quality aware sender selection. γ-Deluge further reduces
the completion time by 20.5% compared to Deluge and
16.1% compared to ECD, respectively. The reason is two-
fold: First, γ-Deluge exploits the reception statuses, which
provides fine-grained information about link correlation and
missing packets. Thus γ can accurately estimate sender impact
and select senders with lower ETX. Second, the transmission
contention does not incur message exchange, which also
reduces the contention time.

Figure 5(f) shows the CDF of the completion time for
each node in γ-Deluge, Deluge, and ECD, respectively. The
result shows that for each individual node, γ-Deluge has the
shortest completion time. Although the contention module
in γ-component incurs an extra back-off timer compared to
Deluge, it greatly reduces the number of transmissions. As a
result, it still reduces the completion time compared to Deluge.

2) Comparison with dissemination protocols using network
coding: We compare γ-Rateless Deluge with Rateless Deluge
in terms of transmissions and the completion time.

Figure 6(a) shows the performances of γ-Rateless Deluge
and Rateless Deluge in terms of the number of transmissions.
The result shows that (1) γ-Rateless Deluge reduces the total
number of transmissions by 10.5% compared to Rateless
Deluge. This is because γ-Rateless Deluge employs sender
selection which favors good link quality. (2) The transmission
reduction of γ-Rateless Deluge to Rateless Deluge is less
than that of γ-Deluge to Deluge. Apparently, it is due to the
impact of network coding. By using network coding, a packet
transmission is useful for more receivers. Hence, Rateless
Deluge greatly reduces the number of transmissions than
Deluge. However, although γ-Deluge does not use network
coding, it considers the expected reception number of a
transmission. In γ-Rateless Deluge, a packet can also be
received by more receivers than that in γ-Deluge, but the
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improvement is not as significant as that of Rateless Deluge
to Deluge. As a result, the reduction of γ-Rateless Deluge to
Rateless Deluge is less than that of γ-Deluge to Deluge.

Figure 6(b) shows the result of the completion time.
γ-Rateless Deluge reduces the completion time by 11.9%
compared to Rateless Deluge. The reduction is less than that
of γ-Deluge to Deluge (γ-Deluge reduces the completion
time by 20.5% compared to Deluge). This is because the
decoding delay in rateless protocols occupies a large fraction
of the completion time. As reported in [16], Rateless Deluge
outperforms Deluge mainly in networks with high link loss.
We envision that the improvement of γ-Rateless Deluge will
be significant in large and lossy networks.

Figure 6(c) shows the CDF of the completion time for each
node in γ-Rateless Deluge and Rateless Deluge, respectively.
We can see that (1) for all nodes, the completion time of γ-
Rateless Deluge is less than that of Rateless Deluge. (2) The
result in γ-Rateless Deluge falls into a small range (i.e., 230-
240), while the result in Rateless Deluge is distributed in a
large range (i.e., 260-290). This may be due to that γ-Deluge
favors the sender with strong outbound link correlation. Hence,
receivers tend to receive the object at the same time. Rateless
Deluge employs random sender selection, and the completion
time is sparsely distributed.

C. System Insights

We conduct both testbed experiments and TOSSIM sim-
ulations [31] to gain more system insights of the γ factor.
We first validate whether our metric accurately selects the
appropriate sender for actual data transmission. We then
perform correlation studies to examine the characteristics of
most selected senders. Finally, we conduct experiments to
explore how link correlation affects protocol performance.

1) Sender selection accuracy: We perform simulation
studies on γ-Deluge, Deluge, MNP and ECD in TOSSIM.

We use the LossyBuilder provided in TinyOS to generate a
topo file containing pair-wise link quality. The topology is
a 10×10 grid with 5 feet inter-node spacing. Link quality
and pair-wise link correlation are both randomly set and
distributed. The sink node starts the dissemination of 10 pages.
We collect over 2000 times of sender selections by repeating
the simulation.

We output each node’s reception statuses using the dbg
statements so that we know the network statuses at any
instant. We define a selection event when a node (is selected
and) starts transmitting data packets. Upon each event, we
judge whether it is the right sender with the smallest ETX
according to the link condition and the reception statuses of all
neighboring nodes. We define the accuracy of sender selection
as the number of correct decisions divided by the total number
of selection events. Correspondingly, we define the error of
sender selection as the number of wrong decisions divided by
the total number of selection events.

Table 3 shows the selection errors of γ-Deluge, ECD, MNP
and Deluge, respectively. We further classify the errors based
on the causes. (1) Estimation error which means the sender
with the highest estimated metric is not the real best sender.

Table 3: Sender selection accuracy.

Protocols Selection err. Estimation err. Contention err.
γ-Deluge 10.9% 2.1% 8.8%

ECD 29.5% 20.4% 9.1%
MNP 33.2% 21.1% 12.1%

Deluge 64.3% - -

Table 4: The Pearson’s correlation between protocol
performance and various factors.

Protocols
Factors link correlation link quality hop count

Rateless Deluge 0.104352 0.131334 -0.428381
γ-Rateless Deluge 0.383020 0.266300 -0.401995

Deluge 0.087548 0.171700 -0.589562
ECD 0.281017 0.238520 -0.559540

γ−Deluge 0.453888 0.234081 -0.558477

This may due to insufficient requests are collected or the
request messages are simply lost. (2) Contention error which
means that the sender with the highest estimated metric is the
right one but it loses the contention in the contention phase.

From the results in Table 3, the γ factor achieves the smallest
overall selection error. It yields more accurate sender selection
by 155.2%, 36.1% and 29.2% compared with the metrics used
in Deluge, MNP, and ECD. The estimation error is much
smaller than the contention error. The large contention error
is caused by the small fraction of randomness in the back-off
timer based contention design.

For other protocols, the estimation errors are much larger.
The sender selection error rates of ECD, MNP and Deluge are
29.5%, 33.2% and 64.3%, respectively. This is because they
do not take into account the joint impact of link quality and
reception statuses. As Deluge uses a random sender selection
scheme, its expected selection error should be 1− 1

N , where
N is the average number of the potential senders (neighboring
nodes which receive the requests and stores the page to send).
The selection error of Deluge (64.3%) is consistent with the
above expected value with N=3 in our simulation.

2) Characteristics of sender selection: We now investigate
which senders are more likely to transmit more packets.
We perform correlation analysis between the number of data
transmissions and three impact factors, i.e., average link
quality to neighboring nodes, average link correlation value
in the neighborhood, and the hop count from the sink. We
use Pearson correlation coefficients to explore the correlation
between the number of transmissions for each node and
various factors that impact the dissemination process.

Table 4 shows some facts. First, hop count has strong neg-
ative correlation with the transmission overhead. This is easy
to understand since the sink starts the dissemination process.
Second, in both ECD and γ based protocols (i.e., γ-Deluge
and γ-Rateless Deluge), link quality has positive correlation
with the transmission overhead as all the protocols take link
quality into account. Most importantly, in γ based protocols,
link correlation also has a stronger positive correlation with
the transmission overhead than other protocols.

3) Impact of link correlation: Next, we explore the
performance of γ in different conditions with different levels
of link correlation. We conduct experiments in our lab with
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Fig. 7: Comparison of channel 16 and channel 26.

channels 26 and 16, respectively. Channel 16 is overlapped
with the WiFi channel used in the testbed room. As reported in
[16] and our measurement, communications over this channel
is supposed to be interfered with WiFi signals and experience
high link correlation. On the other hand, channel 26 is
known to be non-overlapped with any WiFi channels. Hence,
communications over channel 26 will experience lower link
correlation.

Figure 7(a) shows the CDF of link correlation for all
link pairs of a common sender. As expected, channel 16
experiences a higher link correlation than channel 26.

Figure 7(b) shows the completion time of γ-Deluge and
ECD in channel 16. Figure 7(c) shows the completion time
of γ-Deluge and ECD in channel 26. γ-Deluge outperforms
ECD in both channels. However, γ-Deluge’s performance
improvement to ECD at channel 16 is 16.14% while the
performance improvement at channel 26 is only 6.74%. This
can be explained as follows. As analyzed in Section IV.C,
when link quality is similar for the two channels, link
correlation essentially reshapes the missing packets of each
node and affects the number of common missing packets. At
channel 16, there are more cases that receivers have similar
missing packets. As a result, γ-Deluge has more opportunity to
select senders with both good outbound link quality as well as
strong link correlation in the neighborhood. While in channel
26, the link correlation is inherently weak, and the receivers
tend to have random or different missing packets. There are
less opportunity for γ-Deluge to find neighborhood with strong
link correlation. Hence, γ-Deluge’s performance in channel
16 is better than channel 26. In contrast, ECD has similar
performances in channel 16 and channel 26. Consequently,
the performance improvement of γ-Deluge to ECD in channel
16 is larger than that in channel 26.

4) Impact of density aware REQ mechanism: The accuracy
of γ with static REQ timer decreases along with the network
density. Comparatively, γ with density aware REQ timer
consistently achieves accurate sender selection. The accuracy
will start to decrease when the network density is above a
certain threshold. The reason is that in such situation, the
optimal REQ timer has exceeded T hrreq and the timer is
set as T hrreq when network density is above the threshold.
Experimental results on the impact of density aware REQ
mechanism can be found in our technical report.

The discussions on the impact of time-varying link charac-
teristics, the comparison between γ and κ/µ , the situations
where γ is the most benefical and the application of γ to
routing protocols and be found in our technical report at
http://www.emnets.org/dongw/pub/TON-gamma.pdf.

VII. CONCLUSION

In this paper, we first identify that link quality alone is far
from enough for accurate sender selection. Then we propose γ ,
an accurate sender selection metric that takes both link quality
and link correlation to accurately calculate the gain/cost ratio
for evaluating each sender’s effectiveness. We further present
γ-component, a generic sender selection scheme based on γ ,
which can be easily adopted by most dissemination protocols.
We incorporate γ-component with existing dissemination into
two novel protocols: γ-Deluge and γ-Rateless Deluge.

We implement γ-Deluge and γ-Rateless Deluge in TinyOS
on a TelosB motes testbed. We conduct comprehensive
experiments and large scale TOSSIM simulations. Results
show that: (1) γ achieves more accurate sender estimation
compared to the metrics in MNP and ECD/UFlood. (2) Both
γ-Deluge and γ-Rateless Deluge outperform existing bulk
data dissemination protocols. By large scale simulations, we
confirm that γ favors senders with good link quality and strong
link correlation for both native packets and network coding
based dissemination protocols.
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