
Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 1

An Incrementally Scalable and Cost-efficient
Interconnection Structure for Data Centers

Junjie Xie, Yuhui Deng, Member, IEEE, Geyong Min, Member, IEEE, Yongtao Zhou

Abstract—The explosive growth in the volume of data storing and complexity of data processing drive data center networks (DCNs) to
become incrementally scalable and cost-efficient while to maintain high network capacity and fault tolerance. To address these
challenges, this paper proposes a new structure, called Totoro, which is defined recursively and hierarchically: dual-port servers and
commodity switches are used to make Totoro affordable; a bunch of servers are connected to an intra-switch to form a basic partition;
to construct a high-level structure, a half of the backup ports of servers in the low-level structures are connected by inter-switches in
order to incrementally build a larger partition. Totoro is incrementally scalable since expanding the structure does not require any
rewiring or routing alteration. We further design a distributed and fault-tolerant routing protocol to handle multiple types of failures.
Experimental results demonstrate that Totoro is able to satisfy the demands of fault tolerance and high throughput. Furthermore,
architecture analysis indicates that Totoro balances between performance and costs in terms of robustness, structural properties,
bandwidth, economic costs and power consumption.

Index Terms—Data center network, Scalability, Network capacity, Cost efficiency, Fault tolerance.

F

1 INTRODUCTION

W ITH the rapid development of information digitiza-
tion, a huge amount of data is being created every

day in various fields. To process these explosively incremen-
tal data, large-scale data center networks (DCNs) are built
and play a significant role in hosting various applications,
such as Instant Messaging (IM), video service, Machine
Learning (ML) and so forth. A modern DCN is not just a
collection of servers and network devices but needs to be
considered as a single computing unit, namely Warehouse-
Scale Computers (WSC) [1]. Modern DCNs are distinguished
from traditional ones by their more rigorous requirements:

1) Scalability: DCNs must physically support thousands
and even millions of nodes to power the computational
tasks and data storage [2]. In practice, DCNs are more likely
to be built firstly with a part of integrated components
because the investors often prefer to a low startup cost and
then enlarge the scale as business expands [3]. Thus DCNs
should enable incremental expansion efficiently and such
expansion should minimize.

2) High network capacity: Cisco has studied the data
center traffic and reported that 76.7% of the traffic remains
within the data centers [4]. High network capacity is funda-
mental for a well-designed DCN to support such traffic. Two
solutions are widely adopted: a) the “scale up” solution uti-
lizes higher-end devices to upgrade the network capacity; b)
the “scale out” solution connects more commodity devices

• J. Xie, Y. Deng and Y. Zhou are with the Department of Computer Science,
Jinan University, Guangzhou, China, 510632.
E-mail: xiejunjiejnu@gmail.com, tyhdeng@jnu.edu.cn

• Y. Deng is with the State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing,
China, 100190.

• G. Min is with the College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom.
Email: g.min@exeter.ac.uk

to satisfy the performance requirements. The later has two
advantages of economical efficiency and fault tolerance and
thus represents a rising trend in this field.

3) Fault tolerance: As the scale of DCNs increases, fail-
ures become common in the cloud environment and have
a significant impact on the running applications [5]. These
damages make fault tolerance a big challenge in the cloud
environment.

4) Cost efficiency: Costs in today’s data center contain
four major components: 45% goes to servers (CPU, memory,
and storage systems), 25% goes to infrastructure (power dis-
tribution and cooling), 15% goes to power draw (electrical
utility costs), and 15% goes to network (links, transit, and
equipment) [6]. The design of DCNs must balance between
performance and costs, especially the economic costs and
power consumption.

However, legacy designs of data centers can not fully
meet these requirements. In current practice, many data
centers follow the legacy ThreeTier [7] structure in which
servers are connected in a rack with Top-of-Rack switches at
the edge level. Then edge switches are connected with ag-
gregation switches to build the network architecture. On the
top of the structure, ThreeTier provides the Internet services
by core-routers or core-switches. However, the ThreeTier
data centers have three noticeable weaknesses. Firstly, the
top-level components often become the bandwidth bottle-
neck. Secondly, one failure of them can abruptly degrade
the crossing traffic. Thirdly, it is expensive to update the
top-level switches, leading to the sharp rise of costs. Adding
redundant switches and links may lighten these issues with-
out considering the cost. But the ThreeTier structure is still
inherently short of adequate scalability and fault tolerance.

To overcome the disadvantages of the traditional Three-
Tier structure, this study aims to develop an innovative
solution to meet the requirements of well-designed DCN-
s: high scalability (especially incremental scalability), cost-

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 2

effectiveness, high network capacity, and fault-tolerance.
The servers in the current market commonly own two

Network Interface Card (NIC) ports: one for normal connec-
tion and the other for backup usage [8]. Servers with four
or more ports have recently appeared, but such machines
are usually high-end and thus are expensive. In terms of
network connection, more redundant links make the struc-
ture more efficient and robust. Adopting high-end machines
with more ports or adding more NICs to the existing
machines may address the problems of fault-tolerance and
bandwidth requirement. However, it is infeasible to build a
large-scale DCN with a vast number of high-end machines
due to their high cost [9]. Besides, updating hardware (e.g.,
adding more NICs or replacing 2-port NICs with 4-port
ones) may affect the existing business or even destroy the
original communication mechanism. Therefore, it is more
desirable to construct scalable and fault-tolerant DCNs by
utilizing the widely used and low-cost commodity servers
with dual ports [1] [8] [10][11].

In this paper, we propose a new interconnection struc-
ture called Totoro 1, which adopts commodity servers with
two ports. Totoro is recursively defined. When constructing
a high-level Totoro, the low-level Totoros use half of their
available backup ports for interconnections. Thus, there
exist available (un-used) ports for each level structure. This
feature makes the expansion of Totoro convenient. If the
scale of DCNs needs to be expanded, more servers can
be connected and integrated with the existing structures
(plugging wires to the available ports) without modifying
any existing hardware (e.g., rewiring or updating NICs)
or software (e.g., adopting new routing mechanism). As a
consequence, Totoro is incrementally scalable.

The method of using half of the available ports for
expansion was firstly adopted by FiConn [8]. But there exist
many significant differences between Totoro and FiConn.
Totoro connects servers to switches and thus there are no
direct links between any two servers, while FiConn connects
servers directly to form a complete graph in each level. Since
switches can forward data to several directions, the property
of link multiplexing is intrinsical for Totoro, which offers
more available ports and is conducive to connecting more
redundant links. Compared to FiConn, another advantage
is that the data flowing from one partition to another can be
distributed to multiple links. This reduces the forwarding
loads and makes the data transmission more efficient. We
will further discuss and prove that the usage of switches
achieves a lower price-performance ratio than FiConn. An
existing structure sharing the similar wiring principle of
using switches to connect servers is BCube [11]. However,
it is extremely hard to expand a completely built BCube
since it is mainly designed for modular data centers. The in-
cremental scalability of BCube is not comparable to Totoro.
More details will be discussed in Section 2 and 6. To sum up,
the major contributions of this paper are listed as follows.

1) We propose a new and cost-effective network struc-
ture, Totoro, which is recursively defined and incrementally

1. A preliminary short version of this paper [12] appears in the
Proceedings of the 10th IFIP International Conference on Network
and Parallel Computing (NPC-2013). We significantly extend the fault-
tolerant routing algorithm, add the extensive experiments and enrich
the architecture analysis in the current paper.

scalable. As only half of the available ports in the lower-
level structures are used whenever the network is extended
to construct a high-level structure, the available ports enable
the incremental scalability without any rewiring, hardware
replacement or routing alternation. Besides, the use of com-
modity servers and switches makes the DCNs affordable.

2) We develop a fault-tolerant and effective routing
mechanism to handle multiple types of failures in DCNs.
The proposed rerouting technology leverages a Base 2 Log-
arithms Model to bypass the fault domains via neighbor or
remote partitions without trapping into the local dilemma.
This model does not require any global information, and
thus it can efficiently determine the target links to reroute
the packets.

3) We investigate the important properties of Totoro,
conduct the experiments of evaluating the path failure
ratio and network throughput, analyse the structural ro-
bustness, bandwidth, cost and power consumption. The
results demonstrate that Totoro is a robust and cost-efficient
architecture design.

The remainder of this paper is organized as follows.
Section 2 introduces the related work. Section 3 details
the Totoro structure. Section 4 presents a distributed and
fault-tolerant routing protocol for Totoro. Section 5 presents
experiments to evaluate the performance and availability of
Totoro. Section 6 presents the architecture analysis. Finally,
Section 7 concludes this paper.

2 RELATED WORK

As cloud computing has developed rapidly in recent years,
studies on data center networks (DCNs) have attracted
many research efforts from both academic and industrial
communities [13] [14] [15].

Considering the weaknesses of the traditional ThreeTi-
er structure, Fares et al. presented an improved ThreeTier
structure, namely FatTree [16], which scales out with a large
number of links and mini-switches. Using more redundant
switches, FatTree achieves an oversubscription ratio of 1:1.
Based on FatTree, SEATTLE [17] and Portland [18] were
proposed to provide “plug-and-play” functionality via flat
addressing and hierarchical addressing, respectively. But
the scalability of FatTree is still limited by the ports of
switches fundamentally. If FatTree needs to be expanded
and the existing switches are fully utilized, switches must
be replaced to offer more ports. This has negative effects
because updating switches will break the existing business
and cause steeper costs. In contrast, Totoro is not limited by
any hardware (e.g., the number of servers or switch ports)
and thus has no bound of scale. To expand the network,
we only need add more machines and follow the building
principle to connect them to the available backup ports.
Besides, Totoro uses fewer switches than FatTree. Based on
its connecting philosophy, Totoro needs the switches fewer
than 2T/n while FatTree needs 5T/n switches (T indicates
the total number of servers and n is the number of switch
ports). It is worth noting that using fewer switches leads to
the lower cost and energy consumption.

DCell [10] is a level-based, recursively defined intercon-
nection structure with typical requirements of multiport
(e.g., 3, 4 or 5) servers. DCell scales double exponentially

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 3

with the server node degree. It is also fault-tolerant and has
high network capacity. As a trade-off, DCell replaces the
expensive core switches/routers with multi-port NICs and
higher wiring cost. Compared to DCell, Totoro needs fewer
ports, but more switches. As being discussed in the section
of Introduction, most commodity servers in the current mar-
ket are equipped with dual-port NICs [8]. Replacing NICs
with more-port ones or adding more NICs undoubtedly
increases the cost and deployment overhead. Therefore, To-
toro adopts dual-port machines as the building foundation
and thus significantly reduces the cost. By using switches
to connect servers, all data flows from a node to another
go through switches only, improving the ports’ efficiency.
Besides, Totoro adopts a naturally bottom-up resolution to
expand incrementally, which is opposite to what DCell uses
and makes the incremental deployment more convenient.

BCube [11] represents a wonderful attempt to design the
network architecture for modular data center. It connect-
s servers with multiple ports to mini-switches and there
are no direct links between servers. BCube places rout-
ing intelligence on servers. It intrinsically supports vari-
ous bandwidth-intensive applications and exhibits graceful
performance degradation. Nevertheless, large-scale use of
multi-port NICs inevitably leads to an expanding overhead,
which will be proven in Section 6. Totoro adopts the similar
method to connect servers with switches. There are no direct
links between servers as well. Partial deployment of Totoro
and BCube are also similar since they both use a full top-
level switches. However, it is more convenient for Totoro
to expand a completely deployed structure because there is
no need to reserve a port or add NIC on each host. BCube
is designed for mega data center and thus the incremental
scalability of BCube is not comparable to Totoro.

FiConn [8] is also a new server-interconnection structure
by adopting servers with two ports and low-end commodity
switches to form the network infrastructure. FiConn grows
double exponentially. The degree of server nodes in FiConn
is always two, leading to a lower wiring cost than DCell.
Routing in FiConn also makes a balanced use of links at
different levels and is traffic-aware so as to better utilize the
link capacities. Totoro shares the similar wiring principle
with FiConn by using half of the available backup ports to
form a higher-level structure, which provides the feature of
incremental scalability. The difference between Totoro and
FiConn is that Totoro connects servers with switches instead
of direct wires. In FiConn, two partition flows communicate
through a unique link. This brings high forwarding loads
to the servers at each end of this link. Unlike FiConn,
there are multiple links connecting two partitions directly
in Totoro. All data flowing from one partition to the other
can be distributed to these links, and thus reducing the
forwarding load and making data transmission more effi-
cient. Besides, the intrinsical property of link multiplexing
saves the structure more available ports and is conducive
to connecting more redundant links. We will further prove
that the usage of switches gains a lower price-performance
ratio than FiConn in Section 6.

Different from the existing work, this paper proposes a
new interconnection structure called Totoro for DCN. The
key features of Totoro can be summarized as follows:

1) Incremental scalability: Totoro supports not only

TABLE 1: The Denotations Frequently Used in this Paper.

Denotation Meaning

n The number of ports on a switch.

k The top level in a Totoro.

Totoroi The ith level Totoro.

Totoroi[x] The xth Totoroi in a Totoroi+1.

tk The total number of servers in
Totorok.

[ak, ak−1, ..., ai, ..., a1, a0] A (k + 1)-tuple to denote a server,
where ai < n (0 < i ≤ k) indicates at
which Totoroi−1 this server is locat-
ed and a0 < n indicates the index of
this server in that Totoro0.

(u − bk−u, bk−u−1, ..., b0) A combination of an integer and a
(k − u + 1)-tuple to denote a switch,
where u ≤ k indicates that it is a
level-u switch, bi < n (0 < i ≤ k−u)
indicates at which Totorou+i−1s this
switch is located and b0 indicates the
index of this switch among level-u
switches in that Totorou.

P (src, dst) or src → dst A path from src to dst.

largely physical interconnection but also flexibly incremen-
tal expansion;

2) Cost-effectiveness: Totoro achieves a lower price-
performance ratio;

3) High network capacity: Totoro provides a high bisec-
tion width;

4) Fault-tolerance: Totoro offers a fault-tolerant and
high-effective routing mechanism to handle multiple types
of failures in data centers.

3 TOTORO INTERCONNECTION NETWORKS

The frequently used denotations in this paper are listed and
explained in Table 1.

3.1 The Physical Structure of Totoro
Totoro consists of a series of commodity servers with dual
ports and low-end n-port switches. Dual-port servers are
commonly deployed in industry. Low-end switches without
uplinks are inexpensive and affordable. These motivate us
to build a modern data center at acceptable costs.

Totoro is recursively defined as follows. We connect n
servers to an n-port switch to form the basic partition of
Totoro, denoted by Totoro0. The switch is called an intra-
switch. Each server in Totoro0 is connected to an intra-
switch using one port; the rest ports are called available
ports. If a Totoro0 is considered as a virtual server, the
number of available ports in a Totoro0 is equal to n. Then
each Totoro0 is connected to n/2 switches using half of
its available ports (i.e., n/2 ports). As each switch has n
ports, it is connected to n Totoro0s. Now we obtain a
larger partition denoted by Totoro1 (as shown in Fig. 1).
Then we connect n Totoro1s with n2/4 switches to form a
Totoro2 (see Fig. 2). In each Totoro1, half of the available
ports, i.e., n2/4 ports, are used for connection. Generically,
we connect n Totorok−1s to (n/2)k switches to build a
Totorok. A switch connecting different partitions is called

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 4

[0,3][0,2](0-0,0)[0,1] [0,0] [1,3][1,2](0-1,0)[1,1] [1,0] [2,3][2,2](0-2,0)[2,1] [2,0] [3,3][3,2](0-3,0)[3,1] [3,0]
(1-0)

(1-1)

Totoro0[0] Totoro0[2] Totoro0[3]Totoro0[1]

Fig. 1: A Totoro1 structure with n = 4.

an inter-switch. In a Totorok, switches and links connecting
different Totorok−1s are called level-k switches and level-k
links, respectively. In particular, the level of intra-switch is 0.

It is worth noting that there is no need to connect low-
level switches to high-level switches in the proposed Totoro
structure in order to build the higher-level Totoro. There-
fore, no direct link between any two switches is required.
This is one typical difference between Totoro and ThreeTier
structure.

Now a case study is presented to demonstrate how to
build a Totoro structure with two given structural param-
eters: n and k. n determines how many ports of a switch
are used while k represents how many levels of the target
architecture are. Take Fig. 2 as an example where n = 4
and k = 2. Firstly, we connect 4 servers to a 4-port switch
to build a bottom partition, Totoro0. In Fig. 2, a small circle
represents a single server and a rectangle filled with 4 circles
represents a Totoro0. For clarity, the intra-switch is omitted
in Fig. 2. Repeatedly, we can construct 4 Totoro0s in the
same way. It can be seen that there exist 4 available ports
in a Totoro0 (each server owns one). Then half of them,
i.e., 2 ports, are chosen to connect with 2 different switch-
es, respectively. For example, we connect server [0, 0, 0] to
switch (1 − 0, 0) and server [0, 0, 2] to switch (1 − 0, 1).
For other Totoro0s, we adopt the same method to get a
Totoro1 structure (see Fig. 1), containing 16 servers, 4 intra-
switches (not shown in Fig. 2) and 2 level-1 switches. To
build a Totoro2, 4 Totoro1s are also required. If Totoro1
is considered as a whole, it can be observed that there are 8
available ports in a Totoro1. We also utilize half of them, i.e.,
4 ports, to connect with 4 different switches, respectively. In
Fig. 2, we connect server [0, 0, 1] to switch (2 − 0), server
[0, 1, 1] to switch (2− 1), server [0, 2, 1] to switch (2− 2) and
server [0, 3, 1] to switch (2−3). Similarly, other Totoro1s can
be connected together and we finally obtain a higher-level
Totoro, i.e., Totoro2. Generically, when n-port switches are
used to build a Totorok, the numbers of required servers,
switches, and links are nk+1 (see Theorem 1 for details),
nk × (2− 1/2k), and nk+1 × (2− 1/2k), respectively.

The linking principle of Totoro is: 1/2k of the links in a
certain partition are connected to several k-level partitions
(i.e., Totoroks). As k grows, the percentage of k-level links
declines, which means that most of the links are provided to
access the data stored nearby. This closely matches the fact
that most of the relevant data is put together, also known as
spatial locality [19].

0030020010001-0,0 1-0,1 1-1,1 1-1,0
1-2,0 1-2,1 1-3,1 1-3,0

2-0 2-1 2-2 2-3013012011010 023022021020 033032031030 103102101100 113112111110 123122121120 133132131130200201202203 210211212213 220221222223 230231232233 300301302303 310311312313 320321322323 330331332333
Fig. 2: Given 4-port switches, a Totoro2 structure can be con-
structed from 4 Totoro1s. Each Totoro1 contains 4 Totoro0s
and 4 servers are connected in each Totoro0.

In some other structures, like DCell or FiConn, there
is only one direct link between two adjacent partitions. If
this link is busy or disabled, the routing mechanism has
to bypass this link with the help of other neighbor parti-
tions. Distinctly, this creates more forwarding workloads for
other servers in those partitions. Through comparison, the
structure of Totoro reduces the accessing distance between
servers in the fault situation because there are several inter-
switches between two partitions. The servers in a Totoroi
(0 ≤ i < k) can access servers in another Totoroi directly
by (n/2)i+1 paths without going through any other Totoroi.
For instance, server [0, 1] in Fig. 1, needs to access server
[1, 1]. Under the normal circumstances, we can choose the
path [0, 1] → (0 − 0, 0) → [0, 0] → (1 − 0) → [1, 0] →
(0−1, 0) → [1, 1]. Assume that one link between servers and
the inter-switch fails (e.g., [0, 0] → (1 − 0)), this path is un-
available now. In this case, another path [0, 1] → (0−0, 0) →
[0, 2] → (1− 1) → [1, 2] → (0− 1, 0) → [1, 1] can be chosen.
As a result, the communication is still between two Totoro0s
without going through any other. For instance, the path
from server [0, 1] to server [1, 1] will not across Totoro0[2].
This feature also naturally supports multi-path routing if
we simultaneously activate all existing routing selections.
For example, if the paths of [0, 1] → (0 − 0, 0) → [0, 2] →
(1−1) → [1, 2] → (0−1, 0) → [1, 1] and [0, 1] → (0−0, 0) →
[0, 0] → (1−0) → [1, 0] → (0−1, 0) → [1, 1] are both utilized,
the throughput between server [0, 1] and server [1, 1] will
double.

Observing the Totoro structure, it is clear that not al-
l servers are connected to inter-switches. In our design
philosophy, unused ports are left for extension. For a k-
level Totoro using n-port, the number of available ports for
expansion is nk+1/2k. Thus, the proposed Totoro is open
and easy for extension. FiConn [8] makes use of all available
backup server ports for interconnection, i.e., adding shortcut
links to improve the bisection bandwidth. As a trade-off,
Totoro does not adopt this method since the percentage of
available backup ports is not high (1/2k+1) and keeping the
routing simple and consistent is quite important. Especially

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 5

Algorithm 1: Totoro Building Algorithm
1 Function TotoroBuild (n, k)
2 tk = nk+1

3 for tid = 0 to (tk − 1) do
4 s(sk, ..., si, ..., s0) = TotoroIDToTuple (tid)
5 intraSw = (0− bk, ..., bi, ..., b0)
6 for i = 1 to k do
7 bi = si

8 b0 = 0
9 Connect(s, intraSw)

10 for u = 1 to k do
11 if (tid− 2u−1 + 1) mod 2u == 0 then
12 interSw = (u− bk−u, bk−u−1, ..., b1, b0)

for i = u to (k − 1) do
13 bi = si+1

14 b0 = (tid/2u) mod (n/2)u

15 Connect(s, interSw)

when upgrading the scale of data centers, removing and re-
plugging shortcut links bring significant deployment com-
plexity. We also advocate using low-end switches without
uplinks and expanding Totoro by increasing the structural
levels rather than updating the switches. This helps to
reduce the device cost and the management cost in data
centers.

3.2 Totoro Building Algorithm
A server in Totoro can be indicated in two ways: To-
toro tuple and Totoro ID. Totoro tuple is a (k + 1)-tuple
[ak, ak−1, ..., ai, ..., a1, a0], which indicates where this server
is located and can help calculate the common partition of
two servers. In routing algorithm, it is a vital step to find
out the common partition of the source server and the
destination server. For example, servers [0, 0] and [0, 1] in
Fig. 1 are in the same Totoro0[0] in terms of their common
prefix (i.e., [0]). Totoro ID is an unsigned integer, taking a
value from [0, tk). Totoro ID will be used in the header of
packets to identify a server uniquely, performing like IP
Address. Note that, the mapping between Totoro tuple and
Totoro ID is a bijection.

In addition, a switch is denoted as a combination of an
integer and a (k− u+1)-tuple (u− bk−u, bk−u−1, ..., b1, b0).
Note that, b0 is identically equal to 0 when u = 0. Because
there is only one intra-switch in a Totoro0. Algorithm 1
presents how Totoro can be built. The key step in this
algorithm is to determine the level of the outgoing link of
this server (Line 11). The function Connect represents the
operation that a server is connected to a switch manually.
The time complexity of Algorithm 1 is O(k × tk) where tk
denotes the total number of nodes in a Totorok.

Considering the fact that the linking philosophy and ad-
dress configuration of Totoro are slightly more complex than
ThreeTier structures, some automatic address configuration
mechanisms, e.g., [20] would be introduced to make the
deployment faster and easier.

3.3 Incremental Deployment
Incremental deployment of interconnection networks be-
comes a common requirement due to the scalability re-

quirement. To incrementally deploy an interconnection net-
work, three important aspects should be considered: 1) no
rewiring, 2) no hardware replacement, and 3) no software
modification. These requirements ensure that the existing
applications will not be affected and can be achieved in the
proposed Totoro structure.

When n-port switches are used, a k-level Totoro remains
nk+1/2k ports for expansion and thus there is no need to
change the existing structure. A straightforward way to
gradually construct Totoro is the “bottom-up” approach.
Totoro firstly builds the complete low-level structures and
connects them to the top-level switches. We also make
sure that all k-level links are connected in each Totorok−1

and deploy full top-level switches. This approach provides
the full network capacity at the top level but the ports of
top-level switches will not be fully utilized. Since low-cost
switches are adopted, this approach is affordable.

3.4 Properties of Totoro

To investigate the scalability of Totoro, Theorem 1 reveals
that the number of servers, tk, in Totoro scales exponentially
as the level increases.

Theorem 1. In Totorok, the total number of servers is

tk = nk+1. (1)

Proof: A Totoro0 has t0 = n servers. n Totoro0s are
connected to n-port inter-switches to form a Totoro1. Hence,
there are t1 = n × t0 servers in a Totoro1. In general, a
Totoroi (1 ≤ i ≤ k) consists of n Totoroi−1s and has
ti = n × ti−1 servers. Finally, the total number of servers
in Totorok is tk = nk+1.

The proposed Totoro is suitable for different sizes, from
thousands to millions of nodes. In accordance with the
wiring philosophy, a Totorok always remains tk/2

k ports
for extension. Henceforth, the total number of Totoro, tk,
can be infinite in theory as the structural level k increases.

Theorem 2 shows that the average node degree of Totoro,
denoted by degreeavg , approaches to 2 when k grows, but
will never reach 2.

Theorem 2. In Totorok, the average node degree is

degreeavg = 2− (
1

2
)k. (2)

Proof: Let ci (1 ≤ i ≤ k) denote the number of
available ports in Totoroi. A Totoro0 has c0 = n available
ports. By using half of the available ports in each Totoro0,
n Totoro0s are connected to n-port inter-switches to form a
Totoro1 which has c1 = n × c0/2 = n2/2 available ports.
In general, a Totoroi has ci = n × ci−1/2 available ports.
Finally, a Totorok has ck = n × ck−1/2 = n × (n/2)k

available ports. In other words, there are ck one-degree
servers while the others are two-degree. Therefore, the total
node degree in Totorok is degreetotal = 2× tk −n× (n/2)k.
In combination with Theorem 1, the average node degree is
degreeavg = degreetotal/tk = 2− (1/2)k.

Theorem 2 demonstrates that Totoro is always incom-
plete and highly scalable by using available backup ports.
In addition, a low node degree means that fewer links are
required, leading to the lower deployment cost.

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 6

Algorithm 2: Totoro Routing Algorithm
1 Function TRoute (src, dst)
2 if src == dst then
3 return NULL

4 lcl = getLCL(src, dst)
5 if lcl == 0 then // in the same Totoro0
6 return P(src, dst)
7 else
8 P(m, n) = getNearestPath(src, dst, lcl)

9 return TRoute(src,m)+P(m,n)+TRoute(n,dst)

Theorem 3. The bisection width (BiW) of Totorok is

BiW =
tk

2k+1
. (3)

Proof: Bisection width denotes the minimal number
of links to be removed so as to partition a network into
two parts of equal size. Considering the linking philoso-
phy, there exist (n/2)k top-level (i.e., k-level) switches in
a Totorok. We divide these top-level switches into two
equivalent sets, indicated by SA and SB . We also divide
all nodes into two equal sets, indicated by NA and NB .
Then we unlink all switches in SA from nodes in NB and
keep the connection between SA and NA. Similarly, we
unlink all switches in SB from nodes in NA and keep
the connection between SB and NB . Now the network is
divided into two equal parts. In the above process, half
of the links on each switch have been unplugged, i.e.,
(n/2)k × n/2 = (n/2)k+1 = tk/2

k+1 links are removed
(Note that each switch has n links). Hence, Theorem 3 has
been proved.

A larger bisection width implies a higher network capac-
ity and a more resilient structure against failure. A low-level
Totoro can hold a large number of servers. Thus, Totoro has
a relative large bisection width. We will further compare
Totoro and other structures in Section 6.

4 TOTORO ROUTING

In DCNs, how to reroute the packets to bypass the failures
becomes a vital problem [5] [21]. The fashionable approach
that shares global link states is impracticable due to the
huge volume of traffic caused by sending link states. As
the servers deployed in DCNs are all commodity servers, it
is extremely difficult to finish this computational task with
an O(n3) time complexity of thousands or even millions of
nodes at short notice.

Since Totoro is layered and the connection is regular (see
Algorithm 2), we design Totoro Routing Algorithm based on
Divide and Conquer Algorithm [10] instead of the shortest path
algorithm. Then the whole network is partitioned into some
domains, Totoro Broadcast Domains. Link states are limited in
such a domain rather than spread globally. In combination
of these two strategies, a fault-tolerant routing mechanism,
namely Totoro Fault-tolerant Routing, is proposed to deal with
several common failure scenarios.

4.1 Totoro Routing Algorithm (TRA)
TRA is based on Divide and Conquer Algorithm and is more
simple and efficient. Suppose the source server (denoted

TABLE 2: The Mean Value and Standard Deviation of the
Path Length in TRA and SPA.

n k tk Mk
TRA SPA

Mean StdDev Mean StdDev

24 1 576 6 4.36 1.03 4.36 1.03

32 1 1024 6 4.40 1.00 4.39 1.00

48 1 2304 6 4.43 0.96 4.43 0.96

24 2 13824 10 7.61 1.56 7.39 1.32

32 2 32768 10 7.68 1.50 7.45 1.26

by src) is in a Totoroi−1 (0 < i ≤ k) partition and the
destination server (denoted by dst) is in another Totoroi−1

(0 < i ≤ k) partition. These two Totoroi−1s belong to
the same Totoroi (0 < i ≤ k). Thus, there must be at
least one level-i path between these two Totoroi−1s to
connect each other. To find out the path from src to dst
in Totoro: firstly, we need to find out one such level-i path
(denoted by P (m,n)); we suppose servers m and src are
in the same Totoroi−1 while servers n and dst are in the
another Totoroi−1; then, the problem is divided into two
sub-problems, i.e., to work out the path from src to m and
the path from n to dst; we use the same method to gain
P (src,m) and P (n, dst) recursively; in this process, if the
beginning and the ending of a path are found in the same
Totoro0, the directed path between them is returned; finally,
we join P (src,m), P (m,n) and P (n, dst) for a full path.

The function TRoute in Algorithm 2 follows the whole
process mentioned above. The function getLCL returns the
Lowest Common Level (LCL) of two nodes. The function
getNearestPath picks a level-lcl path nearest to the given
source host. For example, in Fig. 1, getNearestPath([0, 0],
[1, 1], 1) returns P ([0, 0], [1, 0]) rather than P ([0, 2], [1, 2]).
The time complexity of Algorithm 2 is O(2k) where k
denotes the top level of Totoro. Considering k is always
smaller than 4 because a low-level Totoro can hold a large
number of servers and the larger k is not required, the actual
time complexity is acceptable.

Denoting the distance between the server and its direct
neighbor switch as 1, the maximum distance between two
servers, Mk, can be given by the following theorem.

Theorem 4. The maximum distance between two servers in
Totorok is

Mk = 2k+2 − 2. (4)

Proof: Algorithm 2 reveals that the routing algorithm
divides the path into two sub-paths, which are connected
by an intermediate link. The length of intermediate link is 2.
Thus, we can easily get Mk = 2×Mk−1+2, which is further
transformed into Mk + 2 = 2× (Mk−1 + 2). Through using
the induction, this theorem can be proved.

In fact, Theorem 4 reveals the upper bound of network
diameter. The shorter the network diameter is, the more
effective the routing mechanism will be. The performance
of routing algorithm can be directly evaluated according
to the path length. Table 2 lists the mean values and the
standard deviations of the path length by using TRA and

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 7

SPA (Shortest Path Algorithm2) for Totoro with different n
and k. In terms of the mean value and standard deviation,
we observe that the differences are both small, indicating
that the performance of TRA is close to SPA under the con-
ditions of different sizes. Although SPA is globally optimal,
its computation complexity is as high as O(n3) and thus it is
not suitable for routing in data center. However, SPA gives
the upper bound of routing performance (e.g., path length,
and path failure ratio) [10]. Such comparison suggests that
the proposed TRA is efficient enough. Thus, we build the
fault-tolerant routing algorithm in Totoro based on TRA
since it is much simpler than SPA.

Considering the following case:, suppose [0, 0] in Fig.
1 needs to access [1, 1], but link [0, 0] → (1 − 0) and link
[1, 2] → (1 − 1) both fail (e.g., the corresponding ports are
unavailable or there is something wrong with the wires).
In this case, no matter which intermediate path is chosen
(i.e., [0, 0] → [1, 0] or [0, 2] → [1, 2]), TRA will fail to find
a path from [0, 0] to [1, 1]. In fact, however, there still exist
available paths, such as [0, 0] → [0, 2] → [2, 2] → [2, 0] →
[1, 0] → [1, 1]. Therefore, TRA is not fault-tolerant and we
need a more powerful and robust mechanism to solve this
problem. Since the network state, e.g., link state is crucial
for a routing mechanism, we naturally decide to utilize it to
make a fault-tolerant routing mechanism. Instead of sharing
link states in the whole network, the structure is divided
into several partitions for efficiency. Each partition is called
a TBD, which is detailed below.

4.2 Totoro Broadcast Domain (TBD)
In this subsection, the definition of Totoro Broadcast Domain
(TBD) is introduced to break up the network. Firstly, we
define a variable called bcl (Broadcast Level) for broadcast
domain, which means that a Totorobcl is a TBD. The server
in a TBD is called inner-server while the server connected to
TBD with an outgoing link whose level is larger than bcl is
called outer-server. Take Fig. 1 as an example, and assume
bcl = 0. Then [0, 0], [0, 1], [0, 2] [0, 3] and (0 − 0, 0) can be
regarded as a TBD. [1, 0], [2, 0], [3, 0], [1, 2], [2, 2] and [3, 2]
are outer-servers of this TBD.

Servers detect the state of links connecting them and
broadcast the link state information to its intra-switch and
inter-switch (if it has) periodically. If a server receives a
packet of link states, it handles the packet based on the
following steps: If this packet has ever been received, then
just drop it. Otherwise, save the link states and determine
whether the packet comes from inter-switch. If this is the
case, broadcast it to the intra-switch. If not, broadcast it
to inter-switch if this server is connected to an inter-switch
with a link whose level is less than or equal to bcl.

As a result, all inner-servers get the link states of every
inner-server and every outer-server while outer-servers only
own the states of the links that connect inner-servers and
themselves. The reason is that we will regard an outer-
server as a proxy in the failure scenarios and data will
only flow from inner-servers to outer-servers. Hence, outer-
servers do not need to get the link states among inner-
servers. Note that, inner-servers and outer-servers are not

2. Shortest path algorithm is widely used in link state protocols like
OSPF and IS-IS. In this paper, we implement SPA by using Floyd-
Warshall algorithm.

q m’ n’n
cur mp

qq
pp

src dst
TBD2

TBD0
TBD3

TBD1
Totoroi[src]

Totoroi[dst]

Totoroi[mid]

Fig. 3: Totoro Fault-tolerant Routing.

fixed in different TBDs. That is to say, as an outer-server in
one TBD (e.g., Tototro0[1]), a server (e.g., [0, 0]) will never
share the link states to inner-servers (e.g., [1, 0]). But as an
inner-server in another TBD (e.g., Tototro0[0]), this server
(e.g., [0, 0]) will share link states with outer-servers (e.g.,
[1, 0]).

4.3 Totoro Fault-tolerant Routing (TFR)
To combine TRA and TBD, we propose a distributed, fault-
tolerant routing protocol for Totoro. In a real-world situa-
tion, there are four common types of failures: link, server,
switch and rack. By Using Redundant Links and Rerouting
Through Neighborhoods, TFR displays the excellent fault-
tolerance capacity to handle these four types of failures. The
evaluation will be detailed in Section 5.

4.3.1 Using Redundant Links
Although TRA is efficient, it cannot deal with failures effi-
ciently as discussed above. Assume that source server src
needs to access the destination server dst, the current server
is cur and the selected path, P (m,n), fails. In this case, the
failure cannot be detected until the packet arrives at server
m. This may cause a lot of useless forwarding. So, what if
there is enough intelligence to find out an available P (m,n)?

Note that the key of TRA is to figure out the Lowest
Common Level (Algorithm 2, Line 4), denoted by lcl, and
a nearest level-lcl link (Algorithm 2, Line 8), denoted by
P (m,n), between two Totorolcl−1s where src and dst are
located respectively. Before determining the routing path,
we must make sure that P (m,n) can be found out in its
TBD so as to know its state. Here, the following constraint
is given to bcl to provide this feature.
Theorem 5. The constraint to bcl is

nbcl+1 ≥ 2k, (5)

i.e.,
bcl ≥ logn 2k − 1. (6)

Theorem 5 implies that there is at least one outgoing link
with level ≤ k in a TBD. In other words, a TBD contains

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 8

links of all levels, from 0 to k. Thus, we can always find
out P (m,n) and its state which is shared within this TBD.
Note that, the value of bcl should be as small as possible
because sharing link states in a large TBD will cause huge
traffic loads.

In order to further improve the routing efficiency, we
replace TRA with Dijkstra algorithm within TBD. This will
not create heavy burden on the server since the number of
servers in a TBD is not large. Among TBDs, we still use TRA
for routing.

As shown in Fig. 3, by virtue of TRA, server cur finds
that the whole path consists of P (cur,m), P (m,n), and
P (n, dst). Nevertheless, there is no need to work out the
whole path in the routing calculation. Instead, we can work
out the next hop only. Hence, the above process can be
simplified to identify the path from server cur to server n,
which is an outer-server of TBD0. Thus, Dijkstra algorithm
is adopted to find out the next hop with link states shared
in TBD0. Furthermore, we add a proxy field to the packet
header, representing a temporary destination. After working
out P (m,n), server n is set as the proxy. If this field is
not empty, intermediate servers just need to find out the
next hop to the proxy through the use of Dijkstra algorithm
rather than TRA. After the packet arrives at the proxy, TRA
will be used again to find out the next proxy. This strategy
can help reduce the overhead of routing calculation. If the
chosen proxy is unreachable (e.g., P (m,n) fails), we just
pick out another link P (m′, n′) whose level is the same as
P (m,n) and set server n′ as the proxy. Through redundant
links, the packet is rerouted to a reachable proxy to bypass
the failure.

In conclusion, TRA is used to find out the proxy through
the nearest path firstly. In case of failure, the packet is
rerouted to another reachable proxy through redundant
links. Moreover, if there exist several available links, TRA
can choose one of them according to a random algorithm
or the link load. After that, Dijkstra algorithm is adopted to
determine the next hop to the proxy server.

4.3.2 Rerouting Through Neighborhoods

We use redundant links to bypass a failed link. However, if
all required level-i links in the current TBD are unavailable,
we cannot find out a path from the current server to dst
because some servers or inter-switches may fail simultane-
ously. Server failure and switch failure are also common in a
long-running cloud platform. As failures are associated and
occur closely, we need a strategy to “escape from” the local
area.

Observing the structure of Totoro, we find that TBDs
are associated by inter-links, whose levels vary from bcl to
k. Naturally, we can utilize the adjacent TBDs to bypass
the failures. Take Fig. 3 as an example, TBD0 has three
neighborhoods: TBD1, TBD2 and TBD3. TBD1 is the
destination of TBD. TBD2 is connected to TBD0 by a link
whose level is smaller than i and thus TBD2 and TBD0

belong to the same Totoroi[src], leading to a benefit that
there still exist links connecting to the destination TBD with
the required i-level (i.e., LCL) after the packets are rerouted
to TBD2. So the packets can be delivered to the destination
TBD directly.

Since the outage of data center is inevitable [21], a worse
scenario may happen that a row of racks are all down if their
power is cut off. In this case, intermediate TBDs may be un-
reachable and rerouting the packets to neighbor TBDs in the
same low-level substructure is useless. Therefore, we adopt
a more aggressive method to reroute packets to a neighbor
TBD which is far from the trouble spot. Take TBD3 as an
example, it is connected with TBD0 by a link whose level
is greater than or equal to i and thus TBD3 and TBD0

belong to different Totorois. If Path(m,n), Path(m′, n′)
and Path(p, pp) all fail, the higher-level Path(q, qq) can be
chosen to bypass failures.

In addition, there exist two more unavoidable problems:
1) how to quantitatively determine the level of rerouting
links? 2) how to limit the rerouting times due to their huge
cost? Here we define a variable RTR (Remaining Times to
Retry) and a calculation model to solve these two problems.
RTR indicates how many times the rerouting technique can
be retried. Whenever the packet is rerouted, RTR needs to
be decreased. If it reduces to 0, the packet will be dropped.
We naturally believe that the more times the packets are
rerouted, the worse the situation must be. Hence, a smaller
value of RTR indicates that a higher-level rerouting link
should be used. However, rerouting through a higher-level
link will cause a longer path and heavier forwarding work-
load and thus we should reduce the use of higher-level
links. To meet the above requirements, we leverage a Base 2
Logarithms Model to calculate the required rerouting level,
rl, as follows:

Theorem 6.

rl = min(lcl+⌊log2 RTR MAX⌋−⌊log2 RTR⌋, k), (7)

where RTR MAX is the maximum value of the initial
RTR and lcl is the required level (i.e., the current LCL).

If we assume lcl = 2 and RTR MAX = 8, the rerouting
levels will be 2, 3, 3, 3, 3, 4, 4, 5 with the decrement of RTR.
As observed, this model will select lower rl (e.g., level-2
and level-3) many times and skip to higher level (e.g., level-
4 and level-5) faster (i.e., after a few retrying times) if it still
fails. This implies that the lower-level rerouting links will
be tried more while the higher-level ones will be adopted
less. Even though this model is simple, the experimental
results will prove that it is efficient enough. Note that, if
there are more than one link with the required level, one of
them is chosen in accordance with a random algorithm or
the link load. Furthermore, TFR is not loop free. Frequent
rerouting may form a ring. Besides RTR, the field of TTL
(Time To Live, hop count of the packet) in IP header will be
also used to prevent packets from persisting. If either TTL
or RTR reduces to 0, TFR just drops this packet and sends
an unreachable message to the source server, if necessary.

4.3.3 Algorithm

Algorithm 3 shows the detailed procedure of TFR. Let pkt
and pkt.dst denote the packet and its destination. If this
host is the packet destination, deliver it to the upper layer
(Line 3). Otherwise, check whether this host is the proxy. If
yes, clear the proxy field (Line 5). The empty proxy field
means that a new proxy will be set in the following steps if

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 9

Algorithm 3: Totoro Fault-tolerant Routing Algorithm
1 Function TotoroFaultTolerantRoute (this, pkt)
2 if pkt.dst == this then
3 deliver(this, pkt) and return TRUE

4 if pkt.proxy == this then
5 pkt.proxy = NULL

6 if pkt.ttl −− ≤ 0 then
7 drop(pkt) and return FALSE

8 next = getNextByDijkstra(pkt.dst)
9 if next == NULL then

10 if pkt.proxy == NULL then
11 lcl = getLCL(this, pkt.dst)
12 pList = getPathsByLevel(this, pkt.dst, lcl)
13 next = selectAProxy(pkt, pList)
14 if next == NULL then
15 pList = getReroutingPaths(this, pkt, lcl)
16 next = selectAProxy(pkt, pList)

17 else
18 next = getNextByDijkstra(pkt.proxy)

19 if next ! = NULL then
20 send(next, pkt) and return TRUE

21 drop(pkt) and return FALSE

necessary (Lines 13 and 16). Then check the field of Time-
To-Live ttl and reduce it. If ttl is less than or equal to 0,
drop the packet (Line 7). After that, try to get the next
hop on the path from the current host to the destination
by using Dijkstra algorithm (Line 8). If this host and the
destination node are in the same TBD, getNextByDijkstra
(O((V +E) log V)) where V and E represent the nodes and
edges of a TBD will return the next hop. Otherwise, further
calculation is required. Firstly, check whether the proxy field
is empty (Line 10). If not, we just work out the next hop to
the proxy node (Line 18). Otherwise, get the LCL between
the current host and destination node (Line 11). Then find
out all available paths that connect TBDs in which this host
and the destination are located, respectively, with the given
level lcl (Line 12). The function getPathsByLevel (O(2k)) is
based on Algorithm 2 but it returns multiple paths between
the given source and destination. pList is sorted according
to the distance (or link states). Then invoke the function
selectAProxy (Line 13), which searches the given pList, sets
the proxy filed, and returns the next hop. If it fails (Line 14),
rerouting should be adopted. The function getRerouting-
Paths (O(2k)) firstly checks the value of RTR, then calculates
the required rerouting level based on Theorem 6 and gets
those eligible paths. Following the above steps, the packet
is sent if the next hop is identified (Line 20). Otherwise, the
algorithm drops the packet (Line 21). The time complexity of
Algorithm 3 is O(2k+(V +E) log V), which mainly depends
on the scale of a TBD and the rerouting time.

4.4 Addressing and Forwarding

Totoro uses a 32-bit address to identify a unique server. The
i-th (0 ≤ i ≤ 3) byte in the address indicates the i-th value
ai of Totoro tuple (see Table 1), which is also the index in
i-level structure. Note that a 4-level Totoro (k = 3, n = 48)
can support as many as five millions servers.

TABLE 3: Network Parameters in the Experiments.

Tn,k / Sn,k Network n k tk

T12,2 / S12,2 Totoro12,2 12 2 1728

T16,1 / S16,1 Totoro16,1 16 1 256

T16,2 / S16,2 Totoro16,2 16 2 4096

Since most applications are based on TCP/IP, the func-
tion of routing and forwarding in Totoro can be implement-
ed as a 2.5-Layer driver between IP layer and the link layer
without affecting end-host applications. We need to add a
header between IP header and Ethernet header, including
fields used in TFR like source address, destination address,
proxy address, RTR (Remaining Times to Retry) and so forth.
Totoro address is mapped one-to-one to IP address. When
a packet is sent from IP layer, the Totoro 2.5-Layer driver
translates the IP address into Totoro address, utilizes TFR to
calculate the proxy, attaches the Totoro header and delivers
the packet to the Ethernet. When a packet arrives, Totoro
driver will use TFR to determine whether delivering the
packet to the IP layer (the current host is the destination) or
rerouting the packet to the next hop by the proxy field. Before
delivering the packet to the upper layer, Totoro header
should be detached.

The software-based solution which is introduced above
has been proven to be available in DCell [10] and BCube
[11]. Considering the CPU overhead, hardware-based so-
lutions like CAFE [22] and ServerSwitch [23] are also de-
sirable candidates for implementing Totoro’s routing and
forwarding in real data center environments. They can
handle self-defined packets through simple APIs and easy
configurations. In addition, commodity switches used in
Totoro are not required to be programmable. There is no
any modification about them.

5 EXPERIMENTS AND RESULTS

5.1 Fault Tolerance

In the experiments, we compare TFR and SPA which offers
a performance upper bound under the structure of Totoro.
The network parameters are shown in Table 3. Two argu-
ments are considered: the switch ports (n) and the struc-
tural level (k). The design of the simulation experiments
aim at studying how these two structural arguments affect
the routing performance. The network scales vary from
hundreds to thousands of servers. Tn,k corresponds to the
experiment which runs TFR on the Totoro structure with
given n and k while Sn,k corresponds to the experiment
which runs SPA. Besides, each Totoro0 is considered as
a rack. Failures are generated randomly and the failure
ratios vary from 2% to 20%. To achieve reliable experimental
results, nodes route packets to all the other nodes 20 times
in each simulation experiment and the final result is given
by the average of the 20 running results. In each scenario,
the numbers of packets to be sent in Totoro12,2, Totoro16,1
and Totoro16,2 are about 3M , 65K and 18M , respectively.

Fig. 4(a) depicts the results of the path failure ratio under
server failures. It shows that the performance of TFR is
almost identical to that of SPA, regardless of the structural

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 10

 T12,2 S12,2

 T16,1 S16,1

 T16,2 S16,2

0.00 0.04 0.08 0.12 0.16 0.20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
P

at
h

Fa
ilu

re
 R

at
io

Server Failure Ratio
(a)

0.00 0.04 0.08 0.12 0.16 0.20
0.00

0.05

0.10

0.15

0.20

0.25

P
at

h
Fa

ilu
re

 R
at

io

Link Failure Ratio

 T12,2 S12,2
 T16,1 S16,1
 T16,2 S16,2

(b)

0.00 0.04 0.08 0.12 0.16 0.20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
at

h
Fa

ilu
re

 R
at

io

Switch Failure Ratio

 T12,2 S12,2
 T16,1 S16,1
 T16,2 S16,2

(c)

0.00 0.04 0.08 0.12 0.16 0.20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
at

h
Fa

ilu
re

 R
at

io

Link Failure Ratio

 TRA
 TFR
 SPA

(d)

Fig. 4: Evaluation of Path Failure Ratios

arguments of n and k. SPA is globally optimal and is always
able to find out a path from the source to the destination if
it exists. The remarkable performance of TFR benefits from
the rerouting technique, through which, TFR can maximize
the usage of redundant links when server failures occur.

Fig. 4(b) plots the path failure ratio versus link failure
ratio. It can be observed that the path failure ratio of TFR
increases as the link failure ratio rises. The proposed TFR
is almost identical to that of SPA in the 1-level structure
(i.e., Totoro16,1). However, in the 2-level structure (i.e.,
Totoro12,2 and Totoro16,2), it cannot perform as well as SPA
when the link failure ratio increases and the performance
gap between them becomes larger and larger. For instance,
in Totoro16,2, the gap is 1% (0.03 − 0.02) when the link
failure ratio is 4%. It rises to 4% (0.15 − 0.11) when the
link failure ratio increases to 16%. This is because the link
failure results in only very few nodes to be disconnected.
SPA can achieve a good performance even when the link
failure ratio is high. But TFR is not globally optimal and
not guaranteed to find out an existing path. In fact, TFR is
good enough when the link failure ratio is not large (i.e.,
lower than 10%). Furthermore, we also observe that TFR
with a higher structural level has a lower path failure ratio.
For example, when the link failure ratio is 12% with given
n = 16, the path failure ratio is 13% when k = 1 (i.e., 1-level
structure) while it is 10% when k = 2 (i.e., 2-level structure).
This fact indicates that the fault tolerance of TFR is more
apparent in a Totoro with more levels.

Fig. 4(c) depicts the result of the path failure ratio versus
switch failure ratio. It shows that TFR achieves the per-
formance equivalent to SPA in the 1-level structure (i.e.,
Totoro16,1). But the performance gap between TFR and
SPA becomes larger and larger with the increase of switch
failure ratio in the 2-level structures (i.e., Totoro12,2 and
Totoro16,2). It can also be observed that the path failure
ratio of SPA becomes lower in a higher-level Totoro. It
means that more redundant high-level switches help bypass
the failure rather than become the single point of failure.
For this reason, our next work is devoted to improving
the performance of TFR under switch failure. Note that,
the ladder-shaped polygonal line of Totoro16,1 does not
imply that the path failure ratio is strongly associated with
a certain range of failure ratios. This is caused by the small
number of switches in Totoro16,1 and Totoro has the same
number of failed switches in a range of ratios.

The results under rack failures are very similar to those
of the server failures shown in Fig. 4(a). To evaluate the

effects of our rerouting technology, we further compare
TFR with TRA (i.e., the original routing in Algorithm 2 for
Totoro without any rerouting technology) and SPA under
link failures. The experimental results in Fig. 4(d) reveal that
TFR greatly benefits from the proposed rerouting strategy.

It must be emphasized that the legacy SPA is impracti-
cable in the real data centers due to its large traffic loads of
sharing link states and its high computation complexity. But
SPA offers the upper bound of routing performance and is
used to compare the performance of our proposed TFR.

5.2 Throughput
We develop a flow-level simulator based on the approach
[24] to evaluate the throughput of Totoro 3. The Maximum
Segment Size (MSS) is set to be 1500B. In the current DCNs,
the intra-rack RTT is approximately 100µs [25]. Hence, the
flow’s RTT is set as the result of 100µs multiplied by the
number of switches along the path from the source to the
destination. We use a synthetic flow workload from [26],
which contains 80000 flows with the total size of 4TB.
The flow sizes vary from 1KB to 1GB. The source and
destination of each flow are randomly chosen from 0 to
4096. Besides, all flows are launched within 135 seconds.

Furthermore, we build Totoro and five state-of-the-art
DCN structures, namely ThreeTier, FatTree, DCell, BCube
and FiConn. Specifically, 16-port switches are adopted to
construct a 2-level Totoro. ThreeTier structure uses 16-port
switches in each level. Each ToR switch in ThreeTier has
sixteen 1Gbps downlinks and five 1Gbps uplinks (i.e., 3.2
: 1 oversubscription). Each Aggregate connects sixteen ToR
switches and has one 10Gbps uplink to the core (i.e., 8 : 1
oversubscription). Each switch used in FatTree has 26 ports.
DCell is built as a 2-level structure with 8-port switches.
BCube and FiConn utilize 16-port switches and both have
2-level structures. The number of nodes in Totoro, ThreeTier,
FatTree, DCell, BCube and FiConn are 4096, 4096, 4394,
5256, 4096, and 5328, respectively. Except the uplinks of
Aggregation switches in ThreeTier, data rates of other links
in the experiment are all 1Gbps.

The throughput results for DCNs are depicted in Fig.
5. FatTree and BCube complete the data transmission first-
ly while the ThreeTier structure takes about 65 second-
s longer. As FatTree and BCube both use vast switches
and abundant links to connect servers, they can achieve

3. The simulator is available in http://dsc.jnu.edu.cn/projects/
totoro/totoro-exp.tar.gz now.

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 11

0 25 50 75 100 125 150 175 200 225 250
0

50

100

150

200

250

300

Th
ou

gh
pu

t (
G

bp
s)

Time (sec)

 Totoro
 ThreeTier
 FatTree
 DCell
 BCube
 FiConn

Fig. 5: Throughput Comparison of DCNs.

the highest bandwidth. Although their wirings are much
sparser than FatTree and BCube, Totoro, DCell and FiCon-
n also achieve comparable throughput, which only takes
10 seconds longer. During the transmission, the highest
throughput of Totoro, FatTree, DCell, BCube and FiConn
all exceed 250Gbps. However, the highest throughput of
ThreeTier hovers around 160Gbps, equal to the total link
capacity of the core switch. This is mainly because the core-
level switch of ThreeTier becomes the bottleneck. It is also
notable that ThreeTier will degrade more seriously since the
congestion in the core may cause queues to build up the
buffer of each lower-level sender.

6 ARCHITECTURE ANALYSIS

6.1 Robustness
Bilal et. al. [27] proposed a Deterioration metric σM , which
can be calculated as the difference between the average
metric value at various failure percentages and the initial
metric without failure M0, divided by M0. σM can be
represented as

σM =

∣∣∣∣ 1

M0

(
Σn

i=1Mi

n
−M0

)∣∣∣∣, (8)

where Mi is the value of metric M when i percent of the
nodes fail. A lower σM represents the higher robustness.

Here we calculate σM of a Totoro2 (n = 14) with 2744
servers in total for six graph metrics namely:

Cluster size max(v): the size of the largest connected
component. A larger max(v) means a more robust structure;

Average shortest-path length ⟨l⟩: the average length of
all the shortest paths among all node-pairs. The smaller ⟨l⟩
represents the higher robustness;

Average nodal degree ⟨d⟩: the average degree of all
nodes. A larger ⟨d⟩ exhibits the better robustness (see the
performance analysis for more details);

Algebraic connectivity µ|v|−1: the second smallest
Laplacian eigenvalue. The larger value translates to the
higher robustness;

Symmetry ratio ε
D+1 : the quotient between the number

of distinct eigenvalues of the network adjacency matrix and
the network diameter. The lower the value, the better the
robustness (see the performance analysis for more details);

TABLE 4: Comparison of Robustness in terms of σM .

Metric FatTree ThreeTier DCell Totoro (σM)

max(v) Middle Low High Middle (0.8034)

⟨l⟩ Middle Low High High (0.6121)

⟨d⟩ Middle Low High High (0.3163)

µ|v|−1 High Low Middle Middle (0.0176)
ε

D+1
Middle Low High High (0.7770)

λ1 Middle Low High High (0.1142)

Spectral radius λ1: the largest eigenvalue of the network
adjacency matrix. The structure with a larger spectral radius
is considered more robust.

We only consider the targeted attack, in which the most
vital nodes 4 are removed to disconnect the network, taking
into account 1% to 6% of the nodes failure. Note that ⟨l⟩,
µ|v|−1, ε

D+1 and λ1 are merely calculated for the largest
connected component. Thus we can observe that the robust-
ness increases during the higher nodes failure for ⟨l⟩, µ|v|−1

and ε
D+1 . This also proves that the classic metrics are not

appropriate for quantifying the DCN robustness.
We also collect approximate σMs of other three state-

of-the-art DCN structures from [27], namely DCell, FatTree
and ThreeTier. Since such data is received from the similar
scale of DCNs, i.e., about 2K nodes, we compare Totoro
with them and present the qualitative results in Table 4.
Like DCell, Totoro shows higher robustness than FatTree
and ThreeTier for almost all metrics. For max(v), DCell
outperforms Totoro because the wiring number in DCell is
much denser than Totoro. However, the comparison results
still confirm that Totoro is inherently fault-tolerant.

6.2 Topological Properties
To evaluate the topology, we compare Totoro with the
traditional ThreeTier structure and several recent structures,
such as FatTree, DCell, BCube and FiConn. Let T , n and
k denote the total number of servers, the number of ports
on a switch and the structural level, respectively. Special-
ly, ThreeTier structure adopts Cisco data center ThreeTier
model topology [7], which consists of core, aggregation and
access layers. nacc servers are connected to an access switch
(no redundancy for access layer) which uses their uplinks to
connect all aggregation switches. Each aggregation switch
also has nagg downlinks to all access switches. ThreeTi-
er structure contains Nagg aggregation modules and each
module consists of two aggregation switches (one for re-
dundancy). In the core layer, two core switches (one for
redundancy) can access each aggregation switches respec-
tively. For simplicity, We do not consider any inter-switch
link. Table 5 summarizes the topological comparison results.

Number of servers: DCell and FiConn grow double-
exponentially with the level k. Totoro and BCube are ex-
ponentially incremental. The scale of ThreeTier and FatTree
is limited by switches’ ports and thus they lack scalability.

Number of switches: In practice, ThreeTier uses less
switches than other structures. But such switches are high-
density and more expensive. FatTree needs most switches

4. For Totoro, we found that the most effective method to disparate
the network is to remove some high-level inter-switches.

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 12

TABLE 5: Comparison of Topological Property.

Structure # of Servers (T) # of Switches # of Wires Degree Diameter

ThreeTier naccnagg nagg + 2Nagg + 2 T + 2Naggnagg + 2Nagg 1 6

FatTree n3

4
5 · T

n
3 · T 1 6

DCell > (n+ 1
2
)2

k − 1
2

T
n

(1 + k
2
) · T k + 1 2k+1 − 1

BCube nk+1 (1 + k) · T
n

(1 + k) · T k + 1 k + 1

FiConn > 2k+2 × (n
4
)2

k T
n

(3
2
− 1

2k+1) · T 2− 1
2k 2k+1 − 1

Totoro nk+1 (2− 1
2k) · T

n
(2− 1

2k) · T 2− 1
2k 2k

TABLE 6: Comparison of Bandwidth

Metric BiW ARo2o ARo2m/m2o BoD

ThreeTier ncoreNcore

2
1 1 T 2

Ncore

FatTree T
2

1 1 T

DCell T
4 logn T

k + 1 k + 1 T · 2k

BCube T
2

k + 1 k + 1 T · 2k

FiConn T
4×2k 2 2 T · 2k+1

Totoro T
2k+1 2 2 T · 2k

to be non-oversubscribed. Compared to DCell, BCube and
FiConn, Totoro uses considerable amount of switches.

Number of wires: The number of wires reflects the
density of available paths among nodes as well as the
overhead of deployment and maintenance. As the structure
level k increases, FiConn has the sparsest wiring density.
The number of wires in Totoro will be almost twice as large
as server nodes and this is a moderate situation to balance
the performance and the deployment overhead.

Degree: The server degree of Totoro and FiConn ap-
proaches to 2 as k grows, but will never reach 2. They all
achieve a smaller node degree than DCell and BCube, which
means a lower overhead for deployment and maintenance.
Furthermore, Totoro and FiConn are always incomplete and
highly scalable by using available backup ports.

Diameter: It is known that the smaller the diameter
is, the more efficient the routing mechanism will be. Both
ThreeTier and FatTree have a fix diameter of 6. BCube
achieves the smallest diameter among all structures. The
diameters of Totoro, DCell and FiConn increase exponen-
tially as the structural level grows. Due to the fact that a
low-level Totoro can hold a large number of servers (e.g.,
a Totoro2 with n = 32 has 32, 768 servers and a Totoro3
with n = 16 has 65, 536 servers), the diameters of Totoro2
and Totoro3 are only 10 and 18, respectively. In addition,
even though the diameters of ThreeTier and FatTree are
both small, they cannot be comparable to Totoro since their
scalability is limited by the number of switch ports.

6.3 Bandwidth
We evaluate four metrics about bandwidth to compare
Totoro with state-of-the-art structures:

Bisection Width (BiW): The bisection width of Three-
Tier is related to its core layer design. ncore denotes the
ports of a core switch. Ncore represents the number of
core switches. To separate a ThreeTier structure, we only
need to unplug half of its core links. This implies that the

bandwidth of ThreeTier is totally limited by the core layer.
FatTree uses more redundant switches in each layer. It has
a large bisection width of T/2. DCell has a large bisection
width of T/(4 logn T) since there are more ports on a server.
The BCube structure is considered closely related to the
generalized Hypercube [11]. It also achieves a large bisection
width of T/2, which inherits the good characteristics of
Hypercube. The bisection width of FiConn and Totoro are
similar. As aforementioned, a low-level Totoro can hold a
large number of servers. When we take a small number
of k, the bisection width is large, e.g., BiW = T/4, T/8,
T/16 when k = 1, 2, 3, respectively. A large bisection width
means a fault-tolerant and resilient structure. In addition,
a relative large bisection width also leads to the higher
network capacity.

Acceleration Ratio under One-to-One communication
models (ARo2o): Parallel paths between two nodes help
accelerating the communication in One-to-One model. If
these paths are node-disjoint, the acceleration will be more
significant. There exist more than one links from a certain
server leaf to the access layer in ThreeTier. But only one
is usually active and others are blocked for backup. Thus
no acceleration is supported under One-to-One communica-
tion. FatTree suffers the same problem. For DCell, BCube, Fi-
Conn and Totoro, it can be proved that the acceleration ratio
under One-to-One communication model, i.e., the number
of parallel paths which are node-disjoint, is the port number
of NIC. Note that in Totoro and FiConn, no parallel paths
exist if the source or destination node is one-degree. This is
a worthwhile trade-off to provide incremental scalability.

Acceleration Ratio under One-to-Many and Many-to-
One communication models (ARo2m and ARm2o): In some
distributed file systems like GFS and HDFS, One-to-Many
and Many-to-One communication models are common and
can be accelerated by using multiple paths. Take One-to-
Many model for example, the source node distributes sev-
eral unique data blocks through different paths. Then the
destination nodes share their own blocks with each other
to finish the whole process. Thus the One-to-Many com-
munication is accelerated. It is required that these parallel
paths are edge-disjoint, i.e., no edges appear on two paths
simultaneously. Edge-disjoint complete graphs can be built
to determine whether a structure can speed up One-to-Many
communication [11]. For DCell, BCube, FiConn and Totoro,
the acceleration ratio under O2M or M2O model equals the
port number of NIC.

Bottleneck Degree (BoD): All-to-All communication
model is widely used in parallel data processing framework,
e.g., MapReduce. BoD is a metric that denotes the maximum

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 13

ThreeTierFat-tree DCell BCube FiConn Totoro
0

100

200

300

400

500

600

700

800

900

303.10303.10

874.49874.49

20.4811.00
51.20

10.24

196.66

92.16

196.66C
os

t(k
$)

 Switch
 NIC

445.6

(a) Cost

ThreeTierFat-tree DCell BCube FiConn Totoro
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

14.3414.34

1.54

3.84

0.77

20.4820.48

0.83

6.91

10.24

Po
w
er
(k
w
)

 Switch
 NIC

20.52

10.24

(b) Power

ThreeTierFat-tree DCell BCube FiConn Totoro
0

400

800

1200

1600

2000

2400

3.84

512
3.01

275

8.19

1280

3.47

256

10.24

Sw
itc

h
N

o.

 Switch No.
 Wires No.

47

2.14

2304

0

2

4

6

8

10

12

 W
ire

s
N

o.
(k

)

(c) Switches and Wires

Fig. 6: Comparison of Cost and Power

number of flows traveling through a single link under the
All-to-All communication model. The bigger BoD means the
heavier traffic workloads. For ThreeTier, Ncore represents
the number of core switches. ThreeTier has a large BoD since
a large number of flows burden the core layer much. FatTree
has the smallest BoD owing to the non-oversubscribed de-
sign. The BoD of Totoro is related to the structural level k. It
is much smaller than ThreeTier, which means that the All-
to-All flows are spread out over all links.

6.4 Cost and Power
Cost and power consumption are two significant issues
for DCNs. Costs in DCN contain four major components:
servers, infrastructure, power draw and network [6]. The ex-
isting studies have shown that datacenter computers rarely
operate at full utilization [28] [29]. Some studies aimed to
reduce the rapidly growing energy (or power) consumption
[30] [31]. In this paper, we only discuss cost and energy
consumption about static deployment 5, leaving energy-
saving routing as our future work.

We build a container with 2048 servers as our compari-
son model. The price and power consumptions of switches
and NICs are from Cisco, eBay and [11]. We build the same
ThreeTier as that in Section 6.2 according to [7], including 43
access (WS-C4948-10G-E, 48× 1GE+2× 10GE), 2 aggrega-
tion (WS-C6506-E, 48× 10GE + 4× 40GE) and 2 core (WS-
C6504-E, 4 × 40GE) switches. The oversubscription ratios
are 4.8 : 1 for access layer and 6 : 1 for aggregation layer.
For FatTree, DCell, BCube, FiConn and Totoro, commodity
8-port switches (D-Link DGS-1008D) are used. ThreeTier6

and FatTree require 1-port NICs (Intel EXPI9400PT). Servers
in DCell and BCube are equipped with 4-port NICs (Intel
EXPI9404PT). FiConn and Totoro need 2-port NICs (Intel
EXPI9402PT). Fig. 6 depicts the comparison of cost, power
and the numbers of switches and wires.

For ThreeTier, switches are much more expensive than
those of other structures and consume the most power, even
thought they are few in number. FatTree has the largest
number of switches while they are commodity ones and
thus the cost and power consumption are moderate. DCell

5. We only consider the NICs, switches and wires since CPU, main
memory and disk are not directly relevant to the topology structure.

6. For common ThreeTier structures, a server may be equipped with a
2-port NIC, one for active traffic and another for backup. For simplicity,
we assume a 1-port NIC is required.

and BCube have a higher cost and power consumption on
NIC due to their usage of 4-port NICs. Totoro and FiConn
control the switch cost successfully and achieve a graceful
power saving. The numbers of switches and wires of Totoro
also imply that their deployment overhead are acceptable
and uncomplicated, which is consistent with the analysis of
Degree property in Section 6.2.

In addition, ThreeTier and FatTree are usually over-
subscripted in real data center environments. Their cost,
power and wiring complexity can come down significantly
as the over-subscription increases. However, the perfor-
mance will degrade if the over-subscription is too large,
as we discuss in the introduction. Moreover, the scaling
of ThreeTier and FatTree are still limited to the number of
switch ports and they are also not incrementally scalable.

In conclusion, Totoro is comparable with other structure
in costs, power and deployment complexity. The superiority
of Totoro is that it is incrementally scalable.

6.5 Price-performance Ratio
From the above analysis, Totoro and FiConn both achieve
a relatively higher cost-efficiency. Totoro has a higher bisec-
tion width double that of FiConn while FiConn shows some
advantages over Totoro in less cost, power and wires. Gen-
erally speaking, there always are some trade-offs in system
design. Structures with a lower price/performance ratio are
more desirable. Here we exploit Price/BisectionWidth ratio
to evaluate the trade-off.

Suppose that T is the total number of hosts, n is the
number of ports on a switch, k is the structural level, Ph

and Ps are the prices of host and switch, respectively. The
cost to build a Totorok structure is:

Ct = T × Ph +
T

n
× (2− 1

2k
)× Ps. (9)

Similarly, the cost of FiConnk structure is:

Cf = T × Ph +
T

n
× Ps. (10)

In combination with the bisection widths, the difference
between their Price/BisectionWidth ratio is:

D =
Ct

T/2k+1
− Cf

T/(4× 2k)
. (11)

According to Eqs. (9) and (10), Eq. (11) can be transformed
to:

D = 2k+1 × (
Ps

n× 2k
− Ph). (12)

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 14

Since n ≥ 4, k ≥ 2 and the price of commodity switch
is much less than that of host, we can draw a conclusion
that D is smaller than 0, i.e., Totoro achieves a lower price-
performance ratio than FiConn.

7 CONCLUSION AND FUTURE WORK

The existing structures of interconnection networks are
hardly to meet the requirements of both incremental s-
calability and cost-efficiency. This drives us to develop a
new structure called Totoro. The theoretical analysis and
extensive experiments all demonstrate that Totoro satis-
fies the design goals of scalability, cost-effectiveness, high
network capacity and robustness. The proposed structure
can significantly help the DCN builders rethink the present
design and provides an alternative solution to the existing
DCNs, especially in the scenario that incremental scalability
and cost-effectiveness are vitally required.

Even though Totoro achieves relatively high bandwidth
and has a low network diameter, there exist trade-offs
between such network goodness and economy. Similar to
DCell, BCube and FiConn, packet-forwarding in Totoro may
experience delays. This is mainly because we regard servers
as “routers” in the forwarding and the packet-handling
ability of current NIC is still weaker than the professional
chips on switches or routers. But this weakness will be
overcome as the NIC becomes more and more powerful.

In the future work, we will focus on the problem of
energy saving and be devoted to the design of elastic rout-
ing, which is self-adaptive to the traffic mode to lower the
overall energy consumption. As a consequence, that Totoro
structure is elastic enough to balance the performance and
energy conservation due to the vast redundant paths.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable feedback and useful suggestions which help us to
improve Totoro. This work is supported by the NSF of China
under grant (no. 61272073, and no. 61572232), the NSF of
Guangdong Province (no. S2013020012865).

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as
a computer: An introduction to the design of warehouse-scale
machines,” Synthesis lectures on computer architecture, vol. 8, no. 3,
pp. 1–154, 2013.

[2] K. Wu, J. Xiao, and L. M. Ni, “Rethinking the architecture design
of data center networks,” Frontiers of Computer Science, vol. 6, no. 5,
pp. 596–603, 2012.

[3] Y. Sverdlik, “Microsoft plans quincy data center expansion,”
http://www.datacenterdynamics.com/focus/archive/2013/12/
microsoft-plans-quincy-data-center-expansion, 2013.

[4] CISCO, “Cisco global cloud index: Forecast and methodology,
2013c2018,” http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/global-cloud-index-gci/Cloud
Index White Paper.html, 2015.

[5] J. Dean, “Experiences with mapreduce, an abstraction for large-
scale computation,” in Proc. Parallel Architectures and Compilation
Techniques (PACT), vol. 6, 2006, pp. 1–1.

[6] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of
a cloud: research problems in data center networks,” Proc. ACM
Special Interst Group Data Commun. (SIGCOMM), vol. 39, no. 1, pp.
68–73, 2008.

[7] Cisco, “Cisco data center infrastructure 2.5 design guide,” 2007.

[8] D. Li, C. Guo, H. Wu et al., “Ficonn: Using backup port for server
interconnection in data centers,” in Proc. IEEE Int. Conf. Comput.
Commun. (INFOCOM). IEEE, 2009, pp. 2276–2285.

[9] CNET, “Google uncloaks once-secret server,”
http://www.cnet.com/news/google-uncloaks-once-secret-
server-10209580, 2009.

[10] C. Guo, H. Wu, K. Tan et al., “Dcell: a scalable and fault-tolerant
network structure for data centers,” in Proc. ACM Special Interst
Group Data Commun. (SIGCOMM), vol. 38, no. 4. ACM, 2008, pp.
75–86.

[11] C. Guo, G. Lu, D. Li et al., “Bcube: a high performance, server-
centric network architecture for modular data centers,” in Proc.
ACM Special Interst Group Data Commun. (SIGCOMM), vol. 39,
no. 4. ACM, 2009, pp. 63–74.

[12] J. Xie, Y. Deng, and K. Zhou, “Totoro: A scalable and fault-tolerant
data center network by using backup port,” in Proc. 10th IFIP Int.
Network and Parallel Computing (NPC). IFIP, 2013, pp. 94–105.

[13] Y. Cui, H. Wang, X. Cheng, D. Li, and A. Yla-Jaaski, “Dynamic
scheduling for wireless data center networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 12, pp. 2365–2374,
2013.

[14] K. Bilal, S. U. R. Malik, O. Khalid et al., “A taxonomy and
survey on green data center networks,” Future Generation Computer
Systems, vol. 36, pp. 189–208, 2014.

[15] F. P. Tso and D. Pezaros, “Improving data center network utiliza-
tion using near-optimal traffic engineering,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 6, pp. 1139–1148, 2013.

[16] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM Special Interst
Group Data Commun. (SIGCOMM), vol. 38, no. 4. ACM, 2008,
pp. 63–74.

[17] C. Kim, M. Caesar, and J. Rexford, “Seattle: A scalable ethernet
architecture for large enterprises,” ACM Transactions on Computer
Systems, vol. 29, no. 1, p. 1, 2011.

[18] R. Niranjan Mysore, A. Pamboris, N. Farrington et al., “Portland: a
scalable fault-tolerant layer 2 data center network fabric,” in Proc.
ACM Special Interst Group Data Commun. (SIGCOMM), vol. 39,
no. 4. ACM, 2009, pp. 39–50.

[19] Y. Deng, “Risc: A resilient interconnection network for scalable
cluster storage systems,” Journal of Systems Architecture, vol. 54,
no. 1, pp. 70–80, 2008.

[20] K. Chen, C. Guo, H. Wu et al., “Dac: generic and automatic address
configuration for data center networks,” IEEE/ACM Transactions on
Networking, vol. 20, no. 1, pp. 84–99, 2012.

[21] CTOCIO, “Ten worst cloud crashes in 2011,”
http://www.ctocio.com/hot news/2370.html, 2011.

[22] G. Lu, Y. Shi, C. Guo, and Y. Zhang, “Cafe: a configurable packet
forwarding engine for data center networks,” in Proc. ACM Special
Interst Group Data Commun. (SIGCOMM) on Programmable routers
for extensible services of tomorrow, 2009, pp. 25–30.

[23] G. Lu, C. Guo, Y. Li et al., “Serverswitch: A programmable and
high performance platform for data center networks,” in Proc.
Symp. Network System Design and Implementation (NSDI), 2011, pp.
15–28.

[24] M. Al-Fares, S. Radhakrishnan, B. Raghavan et al., “Hedera: Dy-
namic flow scheduling for data center networks.” in Proc. Symp.
Network System Design and Implementation (NSDI), vol. 10, 2010, pp.
19–19.

[25] M. Alizadeh, A. Greenberg, D. A. Maltz et al., “Data center tcp (d-
ctcp),” Proc. ACM Special Interst Group Data Commun. (SIGCOMM),
vol. 41, no. 4, pp. 63–74, 2011.

[26] T. Benson, A. Akella, and D. A. Maltz, “Network traffic charac-
teristics of data centers in the wild,” in Proc. ACM Special Interst
Group Data Commun. (SIGCOMM) on Internet measurement. ACM,
2010, pp. 267–280.

[27] K. Bilal, M. Manzano, S. U. Khan et al., “On the characterization
of the structural robustness of data center networks,” IEEE Trans-
actions on Cloud Computing, vol. 1, no. 1, pp. 1–1, 2013.

[28] D. Abts, M. R. Marty, P. M. Wells et al., “Energy proportional dat-
acenter networks,” in Proc. ACM SIGARCH Computer Architecture
News, vol. 38, no. 3. ACM, 2010, pp. 338–347.

[29] D. Li, Y. Yu, W. He, K. Zheng, and B. He, “Willow: Saving data cen-
ter network energy for network-limited flows,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 9, pp. 2610–2620,
2015.

Page x of xx Publication Title 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, DECEMBER 20XX 15

[30] B. Heller, S. Seetharaman, P. Mahadevan et al., “Elastictree: Saving
energy in data center networks.” in Proc. Symp. Network System
Design and Implementation (NSDI), vol. 3, 2010, pp. 19–21.

[31] Y. Guo, Y. Gong, Y. Fang, P. Khargonekar, and X. Geng, “Energy
and network aware workload management for sustainable data
centers with thermal storage,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 8, pp. 2030–2042, 2014.

Junjie Xie is a research student at the Computer Science Department
of Jinan University. His current research interests cover network inter-
connection, data center architecture and cloud computing.

Yuhui Deng is a Professor in the Department of Computer Science at
Jinan University. His research interests cover green computing, cloud
computing, information storage, computer architecture, performance e-
valuation, etc.

Geyong Min is a Professor of High Performance Computing and Net-
working in the Department of Mathematics and Computer Science
within the College of Engineering, Mathematics and Physical Sciences
at the University of Exeter, United Kingdom. His research interests
include Next Generation Internet, Wireless Communications, Multimedia
Systems, Information Security, Ubiquitous Computing, Modelling and
Performance Engineering.

Yongtao Zhou is a research student at the Computer Science De-
partment of Jinan University. His current research interests cover data
deduplication and distrtributed system.

