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ABSTRACT 

 

The Early Permian Variscan Cornubian Batholith is a peraluminous, composite pluton intruded into 

Devonian and Carboniferous metamorphosed sedimentary and volcanic rocks. Within the batholith 

there are: G1 (two-mica), G2 (muscovite), G3 (biotite), G4 (tourmaline) and G5 (topaz) granites. G1-

G2 and G3-G4 are derived from greywacke sources and linked through fractionation of assemblages 

dominated by feldspars and biotite, with minor mantle involvement in G3. G5 formed though flux-

induced biotite-dominate melting in the lower crust during granulite facies metamorphism. 

Fractionation enriched G2 granites in Li (average 315 ppm), Be (12 ppm), Ta (4.4 ppm), In (74 ppb), 

Sn (18 ppm) and W (12 ppm) relative to crustal abundances and G1 granites. Gallium (24 ppm), Nb 

(16 ppm) and Bi (0.46 ppm) are not significantly enriched during fractionation, implying they are 

more compatible in the fractionating assemblage. Sb (0.16 ppm) is depleted in G1-G2 relative to the 

average upper and lower continental crust. Muscovite, a late-stage magmatic/subsolidus mineral, is 

the major host of Li, Nb, In, Sn and W in G2 granites. G2 granites are spatially associated with W-Sn 

greisen mineralisation.  

Fractionation within the younger G3-G4 granite system enriched Li (average 364 ppm), Ga 

(28 ppm), In (80 ppb), Sn (14 ppm), Nb (27 ppm), Ta (4.6 ppm), W (6.3 ppm) and Bi (0.61 ppm) in 

the G4 granites with retention of Be in G3 granites due to partitioning of Be into cordierite during 

fractionation. The distribution of Nb and Ta is controlled by accessory phases such as rutile within the 

G4 granites, facilitated by high F and lowering the melt temperature, leading to disseminated Nb and 

Ta mineralisation. Lithium, In, Sn and W are hosted in biotite micas which may prove favourable for 

breakdown on ingress of hydrothermal fluids. Higher degrees of scattering on trace element plots may 

be attributable to fluid-rock interactions or variability within the magma chamber. The G3-G4 system 

is more boron-rich, evidenced by a higher modal abundance of tourmaline. In this system, there is a 

stronger increase of Sn compared to G1-G2 granites, implying Sn in tourmaline-dominated mineral 

lodes may represent exsolution from G4 granites. 

G1-G4 granite abundances can be accounted for by 20-30% partial melting and 10-40% 

fractionation of a greywacke source. G5 granites are analogues of Rare Metal Granites described in 
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France and Germany. These granites are enriched in Li (average 1363 ppm), Ga (38 ppm), Sn (21 

ppm), W (24 ppm), Nb (52 ppm) and Ta (15 ppm). Within G5 granites, the metals partition into 

accessory minerals such as rutile, columbite-tantalite and cassiterite, forming disseminated magmatic 

mineralisation. High observed concentrations of Li, In, Sn, W, Nb and Ta in G4 and G5 granites are 

likely facilitated by high F, Li and P, which lower melt temperature and promote retention of these 

elements in the melt, prior to crystallisation of disseminated magmatic mineralisation. 

 

 

1. INTRODUCTION 

Growth in the low carbon and consumer electronics sectors has led to a rise in demand for 

metals that are not typical historical exploration and mining targets. For instance, indium (In), 

beryllium (Be) and bismuth (Bi) are used extensively in products such as solar panels and touch 

screen devices, and lithium (Li) is essential for high capacity energy storage (Moss et al., 2011). 

Several metals including Be, niobium (Nb), tantalum (Ta), antimony (Sb), gallium (Ga), tungsten (W) 

and bismuth (Bi) are identified as having strategic importance for the UK and the EU (e.g. House of 

Commons, 2011; European Commision, 2014). Consumption of several of these metals already 

outstrips supply and there is an immediate need to identify further resources. In addition, market price 

fluctuations in some major metals such as Zn can impact the supply of minor „speciality‟ metals that 

are produced solely as by-products, particularly In, for which sphalerite is a major carrier (e.g. Cook 

et al., 2009; Jovic et al., 2011)   

Peraluminous granites are a major global source of magmatic and magmatic-hydrothermal ore 

deposits, particularly for elements often described as lithophile during the petrogenesis of granitic 

melts (Li, Nb, Ta, Be, Sn and W) (e.g. Černŷ et al., 2005; Sial et al., 2011). Factors such as source 

composition (Romer and Kroner, 2014), degree of fractionation (Lehmann, 1987; Taylor and Wall, 

1992) and hydrothermal overprinting (Štemprok, 1987; Haapala, 1997) control enrichment of these 

lithophile metals within granites.  There are limited studies on the behaviour of Ga, In, W and Bi 

during source melting and fractionation of peraluminous granite magmas. A prerequisite for 

understanding the distribution of rare metals in magmatic-hydrothermal systems is an understanding 
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of their behaviour in precursor magmas prior to, and during, the exsolution of magmatic-hydrothermal 

fluids.  

The purpose of this study is to further understanding of the magmatic behaviour of Li, Be, Ga, 

Nb, Ta, In, Sn, W, Sb and Bi in peraluminous granitic systems through an investigation of the 

Variscan granites of the Cornubian Batholith in SW England. The region has an extensive history of 

mining. It has historical and contemporary production of metals now deemed “critical” (e.g. Bi, W, 

Sb) and there is evidence for In concentrations comparable to those in regions of China and Canada 

(e.g. Jackson et al., 1989; Cook et al., 2011a; Andersen et al., 2016). There are several stages of 

(largely) fracture-controlled mineralisation related to the release of magmatic-hydrothermal fluids 

during, and immediately after pluton construction, with variable mixing between meteoric and 

metamorphic fluids (e.g. Jackson et al., 1989). Mineralisation styles are diverse, and granite-related 

mineralisation encompasses magnetite and sulphide skarns with silicate-hosted Sn, greisen-bordered 

sheeted vein complexes (W-Sn), quartz-tourmaline veins and breccias (Sn) and polymetallic sulphide 

lodes (Cu, Zn, As, Sn); Scrivener (2006) and references therein. A previous study indicates that 

evolved tourmaline-bearing granites are enriched in metals such as Sn and are a likely magmatic 

precursor to mineralisation in the region (Müller et al., 2006).  

In this study, we present geochemical data for the occurrence of Li, Be, Ga, Nb, Ta, In, Sn, 

Sb, W and Bi within the variably evolved early Permian granites of the lower plate, post-collisional, 

peraluminous Cornubian Batholith. In so doing, we are able to evaluate metal behaviour during the 

evolution of peraluminous magmas. We explore the distribution of these elements within major 

silicate minerals and discuss the implications for metal partitioning and metallogeny. Finally, we 

evaluate the processes, using geochemical modelling, that control the distribution of the metals during 

evolution of the Cornubian Batholith and discuss how these constraints can be used to assess potential 

rare metal enrichment elsewhere, particularly within the European Variscides. 

 

2. GEOLOGICAL SETTING 

 

2.1. Regional tectonic evolution 
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 The Variscan belt stretches across Western Europe and represents the collision between 

Laurussia, Gondwana and several peri-Gondwana microplates from the Devonian to the 

Carboniferous (Stampfli et al., 2013). South west England lies within the Rhenohercynian Zone, 

representing a short-lived marginal or successor basin that formed during or after the closure of the 

Rheic Ocean (Franke, 2000). In the Early Devonian, the region underwent rifting and passive margin 

development, with deposition of shallow marine sandstones, siltstones and mudstones and rift-related 

basaltic lavas and gabbros in E-W trending sedimentary graben and half-graben structures (Floyd et 

al., 1991; Leveridge and Hartley, 2006). During Late Devonian convergence, SW England occupied a 

lower plate position, with continental collision initiating in the early Carboniferous (Shail and 

Leveridge, 2009). Metamorphism of the Devonian-Carboniferous basin successions is very low grade 

(epizone-anchizone), with localised greenschist facies in Devonian rocks (Warr et al., 1991). By the 

late Carboniferous (c. 305 Ma), Variscan convergence had been replaced by a dextral transtensional 

regime, with reactivation of Variscan thrusts and development of new fault systems during NNW-SSE 

lithospheric extension continuing throughout most of the Early Permian (Alexander and Shail, 1995). 

Red-bed sedimentary successions were deposited and mantle-derived lamprophyres and high-K 

basalts erupted and intruded during this Early Permian extension (e.g. Leat et al., 1987; Shail and 

Wilkinson, 1994; Dupuis et al., 2015) The lamprophyres and basalts are contemporaneous with the 

main expression of post-collisional magmatism represented by the Cornubian Batholith (Dupuis et al., 

2015).  

 

2.2. The Cornubian Batholith 

The Cornubian Batholith is a WSW-ENE trending, 250 km long and 20-40 km wide 

composite granite intrusion extending from beyond the Isles of Scilly in the west to Dartmoor in the 

east, at the current erosional level. The batholith is hosted by a passive margin succession of 

Devonian and Carboniferous sedimentary and volcanic rocks (Willis-Richards and Jackson, 1989; 

Shail and Leveridge, 2009).  The two-mica (G1) and muscovite (G2) granites represent the oldest 

magmatism in the region with U-Pb monazite ages from 293.7 ± 0.6 to 281.7 ± 0.8 Ma (Chesley et al., 

1993; Clark et al., 1994).  The former are confined to the Isles of Scilly, Carnmenellis and Bodmin 
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plutons with minor G2 granite stocks at Carn Marth, Cligga, Kit Hill and Hemerdon. Biotite (G3) 

granites represent a significant second stage of magmatic activity in SW England, with U-Pb monazite 

ages from 281.8 ± 0.8 to 272.3 ±1.8 Ma (Chen et al., 1993; Chesley et al., 1993) and are confined to 

the Land‟s End, St. Austell and Dartmoor plutons (Fig. 1). Associated with G3 granites are evolved 

tourmaline (G4) granites, forming dykes and small stocks within the Land‟s End, St. Austell and 

Dartmoor plutons. Topaz (G5) granites and aplites form small stocks within the St. Austell Granite 

and comprise the majority of the Tregonning Granite, the latter of which has an Ar-Ar zinnwaldite 

cooling age of 281.0 ± 1.3 Ma (Clark et al., 1994). Across the batholith there are minor aplites and 

pegmatites associated with G1-G5 granites (e.g. Dangerfield and Hawkes, 1981; Manning et al., 1996; 

Müller et al., 2006; Simons et al., 2016) (Fig. 1). Other expressions of magmatism include 

rhyolite/microgranite dykes, locally termed “elvans” and rhyolitic lavas, which are now extensively 

exposed as clasts in Permian red-bed sediments.  

 

2.2.1. Two-mica (G1) and muscovite (G2) granites 

The G1 granites are coarse- (G1a) to fine-grained (G1c), commonly porphyritic, and are 

mainly monzogranites. They have perthitic orthoclase phenocrysts (<25 mm), 5-10 modal % 

trioctahedral micas (Mg siderophyllite / siderophyllite), up to 6 modal % muscovite, 1 modal % 

tourmaline and a variety of accessory minerals including zircon, monazite, xenotime, andalusite, 

apatite, ilmenite, fluorite and topaz (Fig. 2a). Enclaves of granites within each other, metasedimentary 

enclaves and strained quartz are widespread throughout all G1 (Fig. 2b) (Exley and Stone, 1964; 

Charoy, 1986; Chappell and Hine, 2006; Simons et al., 2016). 

 Muscovite (G2) granites are confined to small stocks such as Cligga, Kit Hill and Hemerdon. 

G2 granites are fine- to coarse-grained with variable sizes and abundances of perthitic orthoclase 

phenocrysts. Muscovite is dominant, up to 10 modal %, with trioctahedral micas, which are Li 

siderophyllite, trending towards zinnwaldite in composition. Plagioclase trends towards near albite 

compositions and tourmaline reaches up to 2 modal %. Accessory minerals include topaz, apatite, 

zircon, rutile (Nb-bearing) and fluorite. The muscovite granites are spatially associated with W-Sn 

greisen-bordered veins (Fig. 2c) (Exley and Stone, 1964). The G1 and G2 granites are linked through 
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fractionation of an assemblage dominated by biotite, feldspars, zircon, monazite, allanite and apatite. 

They are derived from a greywacke-type source within the lower crust, with melting at moderate 

temperatures (731-806°C) and pressures (>5 kbar) (Charoy, 1986; Chappell and Hine, 2006; Simons 

et al., 2016).  

 

2.2.2. Biotite (G3) and tourmaline (G4) granites 

The G3 granites are coarse- (G3a) to fine-grained (G3d), commonly porphyritic, and are 

mainly monzogranites. They have perthitic orthoclase phenocrysts (>25 mm), 10 modal % 

trioctahedral micas (Mg siderophyllite / siderophyllite), up to 2.5 modal % tourmaline and a variety of 

accessory minerals including cordierite, muscovite, zircon, monazite, xenotime, andalusite, apatite, 

ilmenite, and fluorite (Fig. 2d).  

 Tourmaline (G4) granites are texturally variable, comprising fine-grained (G4a), globular 

quartz (G4b) and coarse-grained Li mica-bearing porphyritic variants (G4c) (Fig. 2e) (Manning et al., 

1996). G4 granites are spatially associated with G3 granites, for example, forming gradational 

contacts, and are therefore confined to the Land‟s End, St. Austell and Dartmoor plutons. In G4 

granites, tourmaline is the dominant ferromagnesian mineral, with Li-rich trioctahedral micas (Li 

siderophyllite, zinnwaldite) and approximately equal abundances of orthoclase and albite (An<8). 

Accessory minerals include muscovite, topaz, cordierite, apatite, zircon, monazite, Nb-(Ta)-rutile, 

phosphates and fluorite (Hill and Manning, 1987; Manning et al., 1996). Metasedimentary and mafic 

microgranular enclaves (MME), along with quartz-tourmaline orbicules and pegmatitic pockets are 

widespread throughout all G3 and G4 granites (Fig. 2f; Stimac et al., 1995; Müller et al., 2006; 

Drivenes et al., 2015). 

The G3 and G4 granites appear to be linked through fractionation of an assemblage 

dominated by biotite and feldspars with minor zircon, monazite, allanite and apatite. They are derived 

from a greywacke-type source within the lower crust, with melting at higher temperatures (768-

847°C) and lower pressures (<5 kbar) than G1-G2 granites, due to continued intrusion of mafic 

igneous rocks into the crust during ongoing extensional and erosional exhumation of the lower plate. 

There is a minor mantle component in the G3 granites and scatter on major element plots is 
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interpreted as evidence for fluid overprint (Darbyshire and Shepherd, 1994; Simons et al., 2016), 

although this may represent variable pulses of evolved melt from a deep magma chamber (e.g. Merino 

et al., 2013). 

 

2.1.3. Topaz (G5) granites 

The topaz (G5a) granites are medium-grained, equigranular and aphyric and distinguished by 

up to 3 modal % of euhedral to subhedral topaz and Li-Fe trioctahedral micas such as zinnwaldite and 

lepidolite (Fig. 2g) (Stone et al., 1988; Henderson et al., 1989). The Tregonning Granite and Nanpean 

and Hensbarrow stocks within the St. Austell Granite are the main exposures. Contacts with adjacent 

G3 and G4 granites from now inaccessible exposures within the St Austell Granite are reported to be 

sharp, with zones of pegmatite and aplite and localised zones of extensive tourmalinisation developed 

in host granite or metasedimentary rock (Manning and Hill, 1990). Topaz-rich aplite (G5b) and 

pegmatite sheets are associated with the Tregonning Granite, where they primarily occur in 

metasedimentary host rocks. The Meldon Aplite, north of the Dartmoor Granite, is a topaz aplite, but 

there is no outcrop of G5 granite. Accessory minerals are diverse, comprising apatite, amblygonite, 

zircon Nb-(Ta)-rutile, Mn-ilmenite, columbite-tantalite and cassiterite (Stone and George, 1978; Scott 

et al., 1998). The topaz granites do not appear to be petrogenetically linked to the G1-G2 or G3-G4 

granites and are interpreted as forming from fluid-fluxed melting of a biotite-rich source, with the 

fluids derived from granulite facies metamorphism in the lower crust (Stone, 1992; Simons et al., 

2016). 

 

3. METHODOLOGY 

 Granite samples (n=91) were primarily those described by Simons et al. (2016); additional 

samples used by Müller et al. (2006) were obtained from the Natural History Museum, London 

(collection BM.2004,P14, specimen numbers 1, 7, 8, 10, 21, 23, 24, 30 and 31). Lamprophyre (n=9) 

and basalt (n=3) samples were collected from across SW England to provide a mantle end-member 

composition required to assess the potential for mixing of mantle and felsic melts. Mafic 
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microgranular enclave samples (n=2) from some of the locations studied by Stimac et al. (1995) were 

also analysed. 

Major elements, Ga, Nb and Sn were determined by X-ray fluorescence (XRF) analysis at 

Activation Laboratories, Canada. Samples were prepared as fused beads for major elements and 

pressed powder pellets for Ga, Nb and Sn. Major element data with standard reference material 

(SRM) recoveries are reported by Simons et al. (2016). The remaining trace elements (Li, Be, In, Sb, 

W, Bi) were determined following the methods of Yu et al. (2001) using an Agilent 7700 ICP-MS at 

Camborne School of Mines, along with Ga, Nb and Sn for validation purposes. Prior to analysis, the 

instrument was calibrated using multi-elemental standard solutions and sampling depth and carrier gas 

flow were tuned to ensure that oxide and doubly charged ion formation were kept <1%. Isotope 
115

In 

(95.7% of naturally occurring In) has an isobaric interference with 
115

Sn (0.34% of naturally occurring 

Sn). This isobaric interference was corrected by monitoring 
118

Sn (24.22% of naturally occurring Sn, 

interference free), and subtracting the corresponding signal from 
115

In that represents 
115

Sn (see also 

White et al., 2015). Detection limits were estimated at 10 times the standard deviation of 10 blanks 

(typically <0.5 ppm). The analytical reproducibility is generally better than 10%, except for Sb which 

is 12%. International standard reference material (GSP-2, BCR-1) and internal standards show 

excellent agreement with certified and preferred (Sn, In, W, Bi, Sb) values (Supplementary Table 1). 

Polished petrographic thin sections were prepared at Camborne School of Mines. Electron–

probe microanalysis (EPMA) of micas, feldspars, topaz, tourmaline and cordierite was carried out on 

a JEOL JXA-8200 superprobe with four wavelength dispersive detectors. Two of the detectors have a 

high count rate suitable for analysis of trace elements. For EPMA analysis, a 10 μm spot was used to 

minimise loss of F and Na with an accelerating voltage of 15 kV and charge of 1.5 x 10
-8

 A. Data 

reduction followed the ZAF method. Calibration was checked using a secondary standard (Astimex 

Biotite) that contained the elements in a similar proportion to those expected in the unknown samples. 

Chemical analyses were converted to the empirical formulae on the basis of the appropriate number of 

atoms of oxygen in a formula unit (apfu). 

Eight selected samples were prepared as 100 μm thick polished thin sections. The samples 

chosen contained a range of trioctahedral (biotite group) mica and plagioclase compositions along 
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with topaz and cordierite in a range of mineral assemblages and granite types. Laser-ablation 

inductively coupled spectroscopy (LA-ICP-MS) analysis was carried out over three consecutive days 

using an Agilent 7500 quadrupole ICP-MS with a New Wave 213 laser system at the Open 

University, Milton Keynes, UK. Samples were ablated using a laser spot diameter of 100 μm and a 

repetition rate of 18 Hz with 70s of analysis time (30s background, 40s ablation). The ICP-MS was 

tuned prior to analysis to ensure low oxide and doubly charged ion production rates. Elements 

analysed included: 
7
Li, 

27
Al, 

29
Si, 

43
Ca, 

49
Ti, 

57
Fe, 

69
Ga, 

71
Ga, 

93
Nb, 

115
In, 

118
Sn, 

181
Ta and 

182
W, 

following the methods described in Jenner and O‟Neill (2012), and using silica content determined by 

EPMA for internal calibration of analyses. Precision is better than 5% for most elements, with the 

exception of Ti (10%) and Fe (13%). Analyses of the unknown minerals were collected in batches of 

12 with NIST 612 and BCR-2G used for external calibration, using values and given by Jenner and 

O'Neill (2012) (Supplementary Table 2).  

 

4. RESULTS 

 

4.1. Whole-rock geochemistry 

It is well established that the granites of the Cornubian Batholith are peraluminous, with 

A/CNK [(Al2O3/(CaO+N2O+K2O)] values of >1.2 and average SiO2 contents >70 wt.% (e.g. 

Darbyshire and Shepherd, 1985; Charoy, 1986; Manning et al., 1996; Chappell and Hine, 2006; 

Müller et al., 2006). Two-mica (G1) and biotite (G3) granites have the lowest average SiO2
 
(70-72 

wt.%) and higher abundances of Ti, Fe, Mg and Ca relative to the more evolved muscovite (G2) and 

tourmaline (G4) granites. Barium, Sr, Pb, Th, U, Zr and the REE are lower and Rb higher in the 

geochemically evolved G2 and G4 granites, which also have stronger Eu anomalies, respectively, 

relative to the G1 and G3 granites (Chappell and Hine, 2006; Müller et al., 2006; Simons et al., 2016). 

Topaz (G5) granites have SiO2 contents of 71-72 wt.%, lower Ti, Mg, Fe, REE, Th, U and Zr with 

higher Al, Rb, and P abundances relative to the G1-G4 granites (Stone, 1975, 1992). The Cornubian 

granites are enriched in elements such as As, B, Cl, F, Pb, Rb, U and Zn relative to peraluminous 

granites elsewhere in the world (Willis-Richards and Jackson, 1989). 
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Relative to the average upper (UCC) and lower (LCC) continental crust abundances of 

Rudnick and Gao (2004) and the crustal abundances of Hu and Gao (2008), the Cornubian Batholith 

shows strong enrichment in Li (and associated Rb, F enrichment) with moderate enrichment in Be, 

Sn, Ta, W and Bi. Antimony is higher in all continental crust estimates relative to the Cornubian 

Batholith, whereas Ga, In and Nb are broadly similar. Metasedimentary rocks of the region, which can 

be regarded as a proxy for a granite source (e.g. Simons et al., 2016) show a slight enrichment of Li 

relative to upper and lower crustal values, with Sn and Nb comparable to lower crustal abundances 

(Hall, 1990) (Table 1, Fig. 3). On UCC-normalised multi-element plots, the less evolved G1 and G3 

granites are characterised by lower abundances of all rare metals, with the exception of Sb. Evolved 

G2 granites are enriched in Be and W relative to the less evolved G1 granites, whereas these elements 

decrease and remain constant respectively for G4, relative to the less evolved G3 granites. G5 granites 

show significantly enriched abundances of Li, Nb, Ta and W compared to the G1, G2, G3 and G4 

granites (Fig. 3). 

Using 1/TiO2 as a fractionation indicator, where increasing 1/TiO2 indicates increasing 

degrees of fractionation or a variable source (e.g. Förster et al., 1999; Romer et al., 2014), the metals 

show differing behaviour across the G1-G2, G3-G4 and G5 granites (Fig. 4). Niobium and Ta 

increase with granite fractionation with stronger increases for Nb in G3-G4 granites. Li and Ga are 

significantly elevated in the G3-G4 granite series relative to G1-G2 granites. Conversely, In, Sn, W 

and Bi increase in G1-G2 granites, but within the G3-G4 series, several G4 values scatter towards 

lower In, Sn and Bi abundances, with no strong trend for W in G3-G4 granites. Beryllium shows 

increases with fractionation in G1-G2 granites, but decreases in G3-G4 granites. Antimony shows no 

overall trends with variations in 1/TiO2. Limited data from the G5 granites (n=9) means that no clear 

trends are discernible, but these granites invariably plot towards extremes of all values, except for Be, 

In, Sb and Bi compared to the G1, G2, G3 and G4 granites.  

Regional maps displaying the distribution of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi identify 

variations in the behaviour of these metals within the magmatic system (Fig. 5). There are clear 

increases in abundance with granite fractionation for Li, Ga, Nb, Ta and Sn, with the highest 

abundances of these metals confined to geochemically evolved G2 and G4 granites (Fig. 5c-e,g). 
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Lithium is particularly enriched in the lepidolite-bearing Tregonning Granite and Meldon Aplite, both 

with abundances in the 99
th
 percentile. These localities are also enriched in Ga, Nb, Ta and W. 

Indium, which generally shows an enrichment in G2 and G4 granites, shows higher average 

abundances in the Land‟s End Granite and within the Carnmenellis Granite, regardless of the granite 

type (Fig. 5f). Beryllium is unique in showing a marked increase in medium-grained G1b (Fig. 1) and 

G2 granites, but not in G4 granites, indicated by abundances in the 98
th
 percentile upwards within the 

Cligga, Carn Marth and Kit Hill G2 granites (Fig. 5b). The behaviour of Sb isn‟t related to the degree 

magmatic evolution, with high abundances centred in locations such as Burras (Carnmenellis), 

Hemerdon, Lamorna (Land‟s End) and Yes Tor (Dartmoor) that have no petrogenetic links (Fig. 5h). 

It is also apparent from these maps, that Sn and W have a decoupled relationship, with the former 

more strongly enriched in the younger, boron-rich systems of the G3-G4 granites than the latter. 

 

4.2. Mineral chemistry 

There are very limited data on the partitioning of metals such as In, Sn and W within major 

silicate minerals in peraluminous granites. Previous studies suggest that muscovite is the dominant 

host of Sn and W over biotite (Alderton and Moore, 1981; Neiva et al., 2002) and that biotite may 

contain In (Miroshnichenko, 1965). Incorporation of trace elements, with variable ionic radii and 

charge, into micas is well established (Tischendorf et al., 2001 and references therein). Tourmaline 

can also incorporate such elements including Sn and W (Marks et al., 2013).  Niobium and Ta are 

known to be incorporated into rutile in G3, G4 and G5 granites and associated mineralisation (Scott et 

al., 1998; Müller and Halls, 2005; Drivenes et al., 2015) and can also partition into biotite and white 

mica (Stepanov et al., 2014).  

The trioctahedral (biotite group) micas reflect granite evolution. G1 and G3 granites have Mg 

siderophyllite or siderophyllite as the trioctahedral mica composition, with a continuum, represented 

by increasing Li and decreasing Mg through Li siderophyllite in G2 granites and zinnwaldite in G4 

granites (Stone et al., 1988; Henderson et al., 1989; Müller et al., 2006). Muscovite has two forms, 

with primary euhedral muscovite closer to true muscovite compositions and late-stage muscovite, 

containing increased Li and/or Fe, trending towards ferroan muscovite or lithian ferroan muscovite 
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compositions (Simons et al., 2016). Plagioclase compositions evolve from oligoclase in G1/G3 

granites through to albite in G2/G4 granites, whereas alkali feldspar is orthoclase-perthite in all 

granite types (Müller et al., 2006; Simons et al., 2016). Tourmaline is primarily schorl, with increased 

Li and decreased Mg and Fe in G2/G4 granites, occasionally reaching elbaite composition in G5 

granites (London and Manning, 1995; Drivenes et al., 2015). The samples analysed by LA-ICP-MS, 

representative of the different mineralogical association across the batholith, are detailed in Table 2. 

 

4.2.1. G1-G2 granite 

Trioctahedral micas are the dominant hosts of Li within G1 and G2 granites with average Li 

abundances ranging from (average) 3097 ppm in Mg siderophyllite to 6070 ppm in Li siderophyllite. 

Primary muscovite hosts minor Li (average 1250 ppm), as does late-stage ferroan muscovite (1547 

ppm) (Table 3). Gallium is distributed fairly evenly across mica and tourmaline (average 95-157 

ppm), with minor amounts in feldspars (21-34 ppm). The majority of the Nb and Ta are incorporated 

into muscovite and biotite micas in G1 granites. Within G2 granites, whilst much of the Nb is 

incorporated in micas, the bulk of the Ta (69%) resides in an unknown mineral (Fig. 6a-c), most likely 

a Fe-Ti oxide. Indium and W are dominantly hosted by muscovite in G2 granites with average 

abundances of 0.74 ppm and 124 ppm respectively. Tin has maximum average abundance of 63 ppm 

in muscovite, but is also incorporated in minor (<20 ppm) amounts in plagioclase (albite), perthitic 

orthoclase and tourmaline. 

 

4.2.2. G3-G4 granite 

 Trioctahedral micas show strong enrichment in Li within G3-G4 granites, averaging 3247 in 

siderophyllite and 16299 ppm in zinnwaldite. Cordierite is also a major host of Li within G3 granites, 

with an average abundance of 3857 ppm. The majority of the whole rock Li budget is accounted for 

by trioctahedral micas in both G3 and G4 granites. As with G1-G2 granites, Ga is distributed evenly 

across plagioclase, micas, perthitic orthoclase and tourmaline (Fig. 6d-e). Niobium and Ta are 

primarily hosted in trioctahedral mica in G3 granites but over 80% of the whole rock abundance in G4 

granites is accounted for by accessory minerals, most likely Fe-Ti oxides. Indium and Sn are hosted 
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within micas and have higher average abundances in G4 granite zinnwaldite, 1.11 and 111 ppm 

respectively, than micas within G1-G2 granites. Tungsten has an average abundance of 163 ppm in 

zinnwaldite in G4 granites and partitions into an unknown mineral in G3 granites (Table 3).  

 

4.2.3. G5 granite 

 Near ideal composition lepidolite micas are the major host of Li within G5 granites, with an 

average abundance of 22650 ppm (4.88 wt.%). Gallium, as with G1-G4 granites, is distributed evenly 

between all major silicates (Fig. 6f). Abundances of Nb, Ta, In and Sn are lower in mica and feldspars 

than for G1-G4 granites, with the distribution of these metals, particularly Nb and Ta, controlled by a 

trace or accessory mineral. Tungsten has high average abundances (195 ppm), but also partitions into 

an accessory mineral. Topaz is not a dominant host of any rare metal, with only Ga having an average 

abundance above 2 ppm (Table 3). 

 Across all of the granite types, abundances of Sn and W in micas are consistent with the 

studies by Neves (1997) and Gomes and Neiva (2002); in both of these studies biotite is the primary 

host of Sn. Tourmaline from Schwarzwald, Germany, has lower abundances of Li, but similar Nb, Ta, 

Sn and W (Marks et al., 2013). Topaz in SW England remains unenriched in Sn-W and rare metals, 

converse to findings in the Erzgebirge, where topaz contains 5-35 ppm Ga and up to 23 ppm Sn 

(Breiter et al., 2013) 

 

6. TRACE ELEMENT MODELLING 

 

6.1. Methods 

The G1-G2 and G3-G4 granites are predominantly crustally-sourced, with a very minor 

contribution (<10%) from mantle-derived melts within the G3-G4 granites (Charoy, 1986; Darbyshire 

and Shepherd, 1994; Chappell and Hine, 2006; Simons et al., 2016). Lower crustal source rocks are 

not exposed in SW England, so fur samples of Gramscatho Group metagreywacke, used in the studies 

of Floyd et al. (1991) and Darbyshire and Shepherd (1994), have been used as a compositional proxy 

and were analysed for their rare metal contents (Table 1). Although these metagreywackes were 
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derived from the upper plate during Variscan convergence, their T
DM

 model ages are similar to those 

for the granites and suggest that their lower plate source shared a similar peri-Gondwanan basement 

origin (Shail and Leveridge, 2009; Nance et al., 2015). The rare metal abundances of greywacke from 

Hu and Gao (2008) are also utilised as a proxy composition and these are very similar to geochemical 

analyses of the Gramscatho Group greywackes.  

There are limited experimentally determined partition coefficients for the metals in this study. 

For geochemical modelling of source melting and fractional crystallisation, partition coefficients for 

Li, Be, Ga, Nb and Ta in peraluminous granites are taken from the literature (Table A.1). The 

partition coefficients for In, Sn, Sb , W and Bi in biotite and garnet in a basanite (Adam and Green, 

2006) indicate incompatible behaviour of these elements during melting, with the exception of In, 

which displays compatibility in garnet (garnet/melt = 10.3 ± 9.3 to 87 ± 50, Adam and Green, 2006). 

Approximations of mineral/melt partition coefficients using phenocryst/matrix measurements indicate 

that biotite and muscovite host Sn and W (i.e. D
mineral/melt 

>1), whereas feldspar and quartz can host Sn 

and W, but with D
mineral/melt

 typically <1 (e.g. Lehmann, 1990); quartz from rare metal granite (RMG) 

pegmatites contains less than 1 ppm Sn (Breiter, 2014). This is consistent with the findings of this 

study; mineral/melt ratios of Sn and W in micas are >1 and <1 for feldspars (Appendix, Table A.1.), 

implying that fractionation of an assemblage with a significant modal abundance of feldspar (+ 

quartz) over mica will result in a melt with higher Sn and W than the parental melt. Accessory 

minerals are also an important host of Nb, Ta, Sn and W within the source region, particularly Fe-Ti 

oxides (e.g. Stepanov and Hermann, 2013; Romer and Kroner, 2016). Tin partitioning during melting 

and fractionation is also partially influenced by the oxidation state of the melt. For example, in 

oxidising melts, Sn is stabilised as Sn
4+

, which should result in partitioning into minerals such as 

biotite, hornblende and magnetite, and would therefore be more readily depleted during fractionation 

(Taylor and Wall, 1992). However, the Cornubian granites contain ilmenite, rather than magnetite, 

indicating their reduced nature and the linear increase in Sn versus 1/TiO2 (Fig. 4) implies Sn was 

relatively incompatible during fractionation.  

The batch melting and Rayleigh fractionation equations (Eq. [A.1-A.2]), along with the 

average abundance of the rare metals from the Hu and Gao (2008) greywacke and the Gramscatho 
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greywacke source proxy were utilised. Additional data for metasedimentary rocks in the region from 

the study of Hall (1990) for Li, Nb and Sn were utilised to demonstrate the range of concentrations 

within metasedimentary rocks in the region. Major element and REE models indicated that 20% and 

30% partial melting of a greywacke source would be sufficient to produce the element abundances 

shown in the G1-G2 and G3-G4 granites, respectively (Simons et al., 2016). Using these data 30% 

melting followed by 10% and 30% fractional crystallisation (G1-G2) and 40% fractional 

crystallisation (G3-G4) was modelled using the batch and Rayleigh fractionation models. 

 

6.2. A fractional crystallisation model for distribution of rare metals in G1-G2 and G3-G4 

granites 

Prior to establishing the likely parental melt compositions, it is important to first consider the 

overprinting effects of fractional crystallisation. Fig. 4 indicates the strong influence of granite 

fractionation for several of the metals within the Cornubian Batholith. For G1-G2 granites, the 

modelled Li, Be, Nb, Ta, In, W and Bi abundances are consistent with fractionation of an assemblage 

comprising 20% biotite, 23% alkali feldspar, 50% plagioclase and minor garnet from the least evolved 

G1 granite to produce a more evolved G2 granite (Fig. 7, Supplementary Fig. 1a). There is likely 

minor quartz in the fractionating assemblage due to the high SiO2 content of the melt, but quartz is 

excluded in these models due to lack of partitioning information. It is likely that the trace elements in 

this study have partition coefficients of significantly <1 for quartz due to low ppm concentrations (e.g. 

Drivenes et al., 2016) and a model without quartz therefore represents a minimum melt enrichment 

scenario for metal enrichment during fractionation. Across the batholith, modelled Sn abundances are 

slightly lower than observed concentrations, likely due to over-estimation of Sn compatibility. 

Modelled Nb and Sb abundances are slightly higher than observed concentrations, implying either an 

under-estimation of compatibility of these elements during fractionation or partitioning into a mineral 

not modelled, likely Fe-oxides for Nb. Gallium remains constant with fractionation (Fig. 7c). Up to 

30% fractionation is required to account for the range of the G2 granites, with high Sn and W values 

in the sample from Hemerdon likely attributable to fluid-rock interactions (Supplementary Table 3). 
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A modified fractionating assemblage, comprising 25% biotite, 20% plagioclase, 50% alkali 

feldspar, minor cordierite and garnet is sufficient to model fractionation from G3 to more evolved G4 

granites for Nb, Ta, In, Sn and Bi (Fig. 8, Supplementary Fig. 1b). Up to 40% fractionation is 

sufficient for the majority of observed G4 concentrations (Supplementary Table 4). Like G1-G2 

granites, there is a discordance between observed and modelled Sb, with modelled Sb abundances 

higher than observed abundances, implying an under-estimation of the compatibility of Sb during 

differentiation. The Li, Ga and W concentrations within G4 granites do scatter slightly above 

modelled abundances compared to the models for G2 granites; the most evolved sample for modelling 

was chosen as one that does not display significant evidence for fluid fractionation, demonstrated by 

anomalies on trace element plots (Fig. 4). The scatters in Li, W and Bi are also likely attributable to 

element mobility associated with hydrothermal fluids, supported by modelling of Ba and Sr and 

variations in Rb/Sr (Simons et al., 2016). 

 

6.3. Partial melting of a greywacke source 

Fractional crystallisation modelling indicates the importance of this process for attaining high 

abundances of the trace metals in evolved granites, consistent with previous models for Sn, Nb and Ta 

(e.g. Lehmann, 1982; Stepanov and Hermann, 2013).  Modelling of partial melting was undertaken to 

assess the source required to attain the metal abundances in the least evolved G1 and G3 granites. The 

samples representing the least fractionated partial melt are the least geochemically evolved; they are 

consistent with those identified in Simons et al., (2016). For the metals in this study, the least evolved 

sample has low Li, Be, Nb, Ta, Sn and W relative to other G1 samples. For the G1-G2 granites, there 

is a close match for modelled and observed Be, Ga, Nb, Ta, W and Bi abundances with 20% partial 

melting, utilising the Gramscatho Group greywacke samples as a proxy for a source (Fig. 9a). Indium 

and Sb have lower observed abundances, and Sn higher, within the least evolved G1 granite relative 

to modelled abundances, although the modelled In values are consistent with other G1 samples within 

the batholith. This may reflect under-estimated compatibility for In and Sb, and overestimated 

compatibility during melting for Sn. Minor Sn may also be contained within Fe-Ti oxides in the 

source. 
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Using a combined 20% partial melting and up to 30% fractional crystallisation model, the 

majority of the observed metal abundances within the G1-G2 granites can be accounted for, taking 

into account source heterogeneity (Fig. 7). Beryllium abundances scatter towards higher than 

modelled values using Gramscatho greywacke Be abundances; higher modelled abundances would be 

achieved if using the sedimentary source estimations of London and Evensen (2002) of 2-5 ppm (Fig. 

7b). Lithium within the granites can be accounted for using the higher source abundance of Hall 

(1990) for shales within SW England, but not with the lower abundance (44 ppm) of Gramscatho 

greywacke, which may indicate a slightly enriched sedimentary source. Interbedded mudstone or 

mudstone-dominated packets would be expected in a greywacke-dominated succession.  For Sb, the 

observed granite abundances fall well below modelled concentrations (Fig. 7), implying Sb is 

considerably more compatible than assumed given the available partitioning information.  

For the least evolved G3 granite, up to 30% melting of a muscovite-depleted source produces 

a melt consistent with the observed Be, Ga, Nb, Ta, In, Sb, W and Bi abundances of G3 granites (Fig. 

9b). Tin scatters towards higher observed abundances, likely a consequence of the role of F (see 

section 7.4), an overestimation of Sn partitioning during melting using the mineral/melt ratio from this 

study and/or higher temperature melting of the source and release of Sn from Sn-bearing Fe-Ti 

oxides. Lithium, which is significantly higher in the least evolved sample relative to the model (Fig. 

9b) and Nb abundances across all G3 granites are largely accounted for by a higher source abundance 

due to source heterogeneity (Fig. 8a,d). For a combined partial melting, fractional crystallisation 

model, Ga, Sn and W show upward scatter in the granite abundances that is not accounted for by the 

models (Fig. 8), likely due to higher temperature melting incorporating Fe-Ti oxides or a slightly 

enriched source. Observed Be abundances also scatter upwards relative to models, but as with the G1-

G2 granites, higher abundances can be accounted for by higher source values of 2-5 ppm. Sb shows 

lower abundances than expected from the models (Fig. 8h, Supplementary Table 4). 

 

6.4. Evidence for mantle involvement in the melting and metal budgets 

The granites are contemporaneous with lamprophyres dykes, sills and basalts (Dupuis et al., 

2015). G3 and G4 granites also include mafic microgranular enclaves (MME) e.g. Stimac et al. 
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(1995). This is common with other granitic terrains, and raises the possibility of metal transfer 

between mantle- and crustally-derived magmas (e.g. Chappell, 1996; Štemprok and Seifert, 2010). 

The mantle contribution to the Cornubian Batholith appears to be confined to G3 granites and is 

minor (Darbyshire and Shepherd, 1994). Nevertheless, mantle He signatures are present in sulphide 

mineralisation associated with the earliest through to the latest granites and indicate persistent 

devolatisation of mantle-derived melts emplaced in the lower crust during batholith construction 

(Shail et al., 2003). 

When the granite trace element data from this study are plotted with lamprophyre, basalt and 

MME data (Supplementary Table 1) there are no clear trends (Fig. 10). Granite data invariably scatter 

towards higher abundances, whilst MME, lamprophyre and basalt compositions lie generally towards 

lower abundance of the metals. Only Nb shows an increased abundance relative to the granites in this 

study, but there is no evidence for continuation of trends from mafic/ultramafic through MME to 

granites (Fig. 9b). Magma mixing would be expected to result in linear trends through all 

compositions, including MME, from mafic/ultramafic rocks towards the granites. 

 

7. DISCUSSION 

 

7.1. Concentration of metals by fractional crystallisation 

Lithium, Be, Nb, Ta, Sn, In and W increase with granite fractionation in G1-G2 granites, and 

Li, Nb, Ta and Bi increase in the G3-G4 granites as expected due to their incompatible nature in a 

fractionating assemblage dominated by feldspars (e.g. for Sn, Lehmann, 1987) (Fig. 4). Gallium 

increases within G3-G4 granites but remains constant in G1-G2 granites. Ga is compatible in biotite, 

with D
Bt/Melt

 of 3.1 (Ewart and Griffin, 1994), which is present in modelled fractionating assemblages 

for G1-G2 and G3-G4 granites. Providing biotite is in the fractionating assemblage, limited variation 

with fractionation is expected, consistent with the variations in Ga in the G1-G2 granites. The increase 

in Ga in the G3-G4 granites must therefore be attributed to higher source abundances, or increased 

degrees of partial melting of biotite. Indium shows similar behaviour to other lithophile metals such as 
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W, Nb and Ta, implying this metal is relatively incompatible during granite fractionation. Antimony 

shows no clear trend with fractionation. Upward scatter of observed trace elements relative to 

modelled abundances could reflect deviation from estimated source abundances, subsolidus or 

hydrothermal processes (Haapala, 1997) or devolatilisation of host rocks (Williamson et al., 2010). It 

is noted that whilst Sn and W are commonly associated, in SW England there appears to be a 

decoupling of these elements. Whilst both increase with fractionation, W shows a significantly 

stronger enrichment in the older G1-G2 granites whereas Sn increases more strongly in the younger 

G3-G4 granites (see Fig. 5). This is likely a consequence of the conditions of melting and availability 

of W and Sn over time, discussed further below. 

Alternatively, the depletion of Li, In, Sn and W within evolved G4 granites, plotting away 

from the overall fractional trend may indicate losses during exsolution of magmatic-hydrothermal 

fluids. The globular tourmaline (G4b) subtype show lower abundances of Li, In, Sn, W and Bi relative 

to other G4 granites. Manning et al. (1996) suggested that G4b granites achieved water saturation, 

with loss of B from the melt, and therefore potentially Li, In, Sn, W and Bi. Depletion could also 

represent alteration of micas;  Henderson et al. (1989) noted that this could result in the loss of Li 

along with Rb, Cs and F. G4b granites have snowball quartz textures with radial inclusions supporting 

fluid saturation (Müller and Seltmann, 1999). Equally, these granites may represent distinct pulses of 

melt from a fractionated magma chamber at depth (e.g. Merino et al., 2013). Both Nb and Ta increase 

strongly during fractionation crystallisation, particularly Ta which is less compatible than Nb in 

biotite (Stepanov and Hermann, 2013), with some suggestion that they are further concentrated by 

hydrothermal processes in the magmatic-hydrothermal transition, particularly in G2 granites 

(Ballouard et al., 2016), although Nb, Ta-rich rutile and columbite can be typical magmatic phases 

disseminated throughout a granite body. The scatter of Ta in G4 granites towards higher Nb/Ta at 

relatively constant Ta may represent variable melts not linked to the observed G3 granites; if Nb/Ta≤5 

is a proxy for hydrothermal processes (Ballouard et al., 2016), these samples lie well within the 

magmatic field (Fig. 11).  

The Hemerdon Granite is commonly an outlier on the models, with elevated abundances of 

Sn, W and Bi. This is not unexpected considering the extensive mineralisation in this area and the 
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difficulty in obtaining relatively unaltered samples. Thus these high abundances likely reflect fluid-

rock interactions. Beryllium shows higher than expected concentrations in G2 granites for the G1-G2 

fractionation model using a Gramscatho Group greywacke source abundance of 2.2 ppm. This might 

be attributable to source variation or incorporation into quartz which can occur during greisenisation 

(e.g. Williamson et al., 1997); greisen-style mineralisation is unequivocally spatially associated with 

G2 granites. Within the G3-G4 granites, the lower abundance of Be within the more evolved G4 

granites appears to be controlled by strong partitioning of Be into cordierite. Beryllium has a partition 

coefficient of D
Crd/Melt

 = 100 to >1000 and even a small modal abundance of cordierite in a 

fractionating assemblage will deplete any residual melt in Be (Evensen and London, 2003). Cordierite 

occurs in G3 granites, but not G4 granites, implying early crystallisation of this mineral in granites 

linked by fractionation (Simons et al., 2016), or crystallisation of cordierite in a deeper magma 

chamber prior to G4 melt extraction. Ultimately, in the Müller et al. (2006) study, metals such as Sn 

were shown to increase with granite fractionation in the G3-G4 granite series within the Land‟s End 

Granite; this is supported here and shown not only for Sn but additional metals such as Li, Ga, Nb, Ta, 

In, W and Bi across the batholith encompassing G1-G4 granites.  

Highly evolved topaz (G5) granites in France and Germany have been interpreted as attaining 

their rare metal enrichment through fractionation from more voluminous, less evolved peraluminous 

melts (Raimbault et al., 1995; Breiter et al., 2005). However, fractionation trends shown by G1-G2 

and G3-G4 granites do not translate into G5 granite compositions (Manning and Hill, 1990; Stone, 

1992; Simons et al., 2016). A preferred model of biotite-dominated melting in the lower crust during 

granulite-facies metamorphism in the lower crust to liberate Li, Nb, Ta, Sn, W and F is preferred (e.g. 

Cuney and Barbey, 2014). There is a strong association between major NW-SE trending faults in the 

region and G5 granites. These faults may have aided extraction of low degrees of melt from the 

source region and transport to higher levels in the crust. 

 

7.2. Partial melting of a metasedimentary source 

Trace element modelling for the least evolved G1 and G3 granites shows that the abundances 

of a number of the metals in this study can be accounted for by up to 30% partial melting of a 
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sedimentary source, similar to a greywacke. Unlike in other regions within the Variscan belt, 

basement rocks are not exposed in SW England. South west England either represents Avalonian 

terrane or a similar, but separate, Gondwana-derived terrane (e.g. Shail and Leveridge, 2009; Nance et 

al., 2015). It is noted by Romer and Kroner (2014) that Avalonian sedimentary rock compositions 

show mixed enriched-“normal” signatures, with only small positive Sn anomalies. The Gramscatho 

greywackes, used as a peri-Gondwanan, starting compositional proxy, are compositionally similar to 

the average upper crustal abundances of Rudnick and Gao (2004) and greywackes of Hu and Gao 

(2008), with slight enrichment in Be, Ta and Bi and strong enrichment in Li. This indicates that a 

significantly enriched source may not be required in the Cornubian Batholith source rocks, in 

common with Avalonian geochemical signatures, but the partitioning of the metals into source 

minerals and temperature may be a key control.  

Data from this study indicate that W partitions strongly into muscovite micas within the 

granites (Fig. 6). Muscovite micas are often the first minerals involved in incongruent melting 

reactions (Harris and Inger, 1992; Harris et al., 1995). If greywacke source micas are also enriched in 

W, any W that is not partitioned into residual minerals during melting will be released to the resultant 

melt. Metals such as Sn and Nb are hosted in muscovite (Fig. 6), but also in biotite and Fe-Ti oxides 

(e.g. Stepanov and Hermann, 2013); these are not melted until higher temperatures are attained. 

Higher temperature melting will potentially release increased abundances of metal hosted in biotite 

and Fe-Ti oxides to the melt, reducing the need for extreme fractionation, but also lowering the 

requirement for low degrees of partial melting of an enriched source. 

The low Nb within the least evolved G1 granite, relative to modelled Nb abundances of 

melting a Gramscatho greywacke source (Fig. 9a), is likely linked to partitioning of Nb into residual 

minerals during melting or retention of Nb in Ti-oxides not accessible at conditions of minimum 

melting. This study indicates that biotite can both host Nb and Ta, confirming previous studies (Bea et 

al., 1994; Stepanov et al., 2014). The Nb partition coefficients will vary, dependant on the Ti-

abundance within the source biotite and degree of equilibrium between source Fe-Ti oxides and melt 

(Marschall et al., 2013). During melting of metasedimentary sources, Nb can partition into residual 

biotite and Fe-Ti oxides; the former may be consumed during higher degrees of partial melting or 
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melting at higher temperatures (Spear et al., 1999; Stepanov and Hermann, 2013; Stepanov et al., 

2014). The G3 granites resulted from higher temperature melting that was dominated by biotite 

breakdown, but with consumption of Fe-Ti oxides also likely (Chappell and Hine, 2006; Simons et al., 

2016), and hence are characterised by high Nb in the parental melt (see also discussion surrounding 

mica melting in Romer and Kroner, 2016). G3 granites were emplaced during a period of tectonic 

extension in SW England and higher melting temperatures are aided by continued emplacement of 

mantle-derived melts in the lower crust. 

The combined melting and fractional crystallisation models show a good match between 

modelled and observed abundances for the majority of the elements. In both the G1-G2 and G3-G4 

granites, there are discrepancies between modelled and observed abundances, when utilising the 

Gramscatho greywacke as a proxy for source abundance. Whilst this can largely be accounted for 

using the greywacke values of Hu and Gao (2008) to account for source heterogeneity, Sn and Sb still 

show a discordance between modelled and observed abundances. The Sn discrepancy could result 

from an over estimation of the compatibility of Sn in mica or melting of a slightly enriched source, as 

suggested by Romer and Kroner (2016) for the Cornubian granites. The mineral/melt ratio utilised 

from the mineral chemistry data in this study for mica (up to 2.32) is likely an over estimate of the 

true partition coefficient. As a melt evolves, the Sn partition coefficient is likely to reduce for mica, as 

B, OH and F increase, helping to increase diffusion and extend enrichment of metals such as Sn 

within the residual melt (Pollard et al., 1987). Assuming complete incompatibility of Sn, 30% melting 

and up to 50% fractionation was shown by Williamson et al. (2010) to account for the range of Sn 

observed in the Cornubian granites. This study demonstrates that Sn is compatible in biotite and 

muscovite and in all likelihood the true partition coefficient must lie between 0 (Williamson et al., 

2010) and 2.32 (this study). Quartz was also not modelled in the fractionating assemblage in this 

study to give a minimum melt enrichment scenario for metal enrichment during fractionation. Given 

the compatibility of Sn in biotite and Fe-Ti oxides, it could also be assumed that not all Sn will be 

released to a melt during partial melting and may be retained in the source during early muscovite-

dominated melting, only being released to a melt at higher temperatures of partial melting. 
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The partitioning of Sb is either under-estimated in the main silicate minerals or alternatively, 

the lack of correlation on the plot of 1/TiO2 vs. Sb might indicate that Sb is not controlled by granite 

crystallisation processes. There are few previous studies of Sb partitioning, but one, of a basanitic 

melt, indicates that Sb has a strong preference for garnet, not micas (Adam and Green, 2006). It is not 

clear into which mineral(s) Sb partitions. However, the failure of the model, coupled with lack of 

evidence of a granite control leads to the conclusion that Sb distribution in SW England is not 

dominantly controlled by granite-related magmatic processes. Much of the documented Sb 

mineralisation in the region occurs in Carboniferous pre-granite shear zone veins and is not associated 

with granite-related mineralisation styles (e.g. Clayton and Spiro, 2000). 

 

7.3. The role of the mantle 

A contribution to the metal budget from a mantle source is not required or supported by the 

observed variations, converse to the theory of Seifert (2008) for the origins of Sn and W in the 

granites of the Erzgebirge, Germany. Interpretation of enclave geochemistry is problematic due to 

chemical exchange of element between the host granite melt and enclave, obscuring the original mafic 

composition of the enclave (e.g. Stimac et al., 1995). Mixing models for individual elements may not 

be consistent between different samples due to variable advection and/or diffusion processes (Orsini 

et al., 1991; Perugini et al., 2008). Whilst the mixing behaviour of the elements in this study remains 

largely unknown, it is noted by Tindle (1991) there will be more chemical exchange of large ion 

lithophile elements (LILE) due to their large ionic radius to charge ratio and compatibility in both 

granite and enclave minerals. Lithium also behaves as a LILE due to its radius to charge ratio, despite 

a small ionic radius. High field strength elements (HFSE) such as Nb, Ta and W have high charges 

and are generally less mobile as it is difficult to maintain charge balance. It is therefore thought that 

the enrichment of the metals (Li, Sn, W) in the enclaves relative to the lamprophyres and basalts 

represents chemical exchange of these elements between the granitic melt and original melt; this is 

also noted for other incompatible elements such as Th and U by Stimac et al. (1995). Given the 

amount of chemical exchange between enclaves and their granite hosts it may be impossible to 
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determine the extent of mixing; for this an enclave that has undergone no chemical exchange would 

be needed. 

 

7.4. The role of fluorine and phosphorus 

Although F wasn‟t analysed as part of this study, F appears to be a key control on the 

distribution of Nb, Ta, Sn, W and to a lesser extent In, within the Cornubian batholith. Using previous 

data, there is a moderate increase in F in the G1-G2 granites from approximately 0.2% F (Charoy, 

1986; Chappell and Hine, 2006) in G1a granites of the Carnmenellis pluton to approximately 0.4% F 

in the smaller G2 granite stocks such as Cligga and St. Michael‟s Mount (Hall, 1971; Moore and 

Jackson, 1977). For the G3-G4 series, F increases from approximately 0.2% in the biotite granites to 

approximately 0.7% F in the tourmaline granites of the St. Austell Granite (Hill and Manning, 1987). 

G5 granites contain F in excess of 1 wt.% (Manning and Hill, 1990). Increased F is common in 

fractionated peraluminous melts and along with other fluxing elements such as B and P lowers the 

temperature of the melt (Černŷ et al., 2005). High F promotes the retention of Nb, Ta and W within a 

low temperature melt, with these metals partitioning in favour of a melt during melt evolution. As the 

F content of a melt decreases during crystallisation of F-bearing minerals, Nb, Ta and, to a lesser 

extent, W, will increasingly partition into silicates (e.g. micas) and oxides (e.g. rutile, columbite, 

wolframite) if the melt is saturated with respect to these minerals (Manning and Henderson, 1984; 

Keppler, 1993; Linnen, 1998). This is observed in the Cornubian Batholith as the granites with the 

highest F contents (G4 and G5) show the highest Nb and Ta (Fig. 4). Within the trioctahedral micas, 

Nb and Ta have a negative correlation with F, supporting their incorporation into accessory minerals 

rather than major silicates (Supplementary Fig. 3). The G4 granites contain columbite-tantalite and 

Nb-rich rutile (Scott et al., 1998) and data from this study indicate Nb and Ta are controlled by 

accessory minerals (Fig. 6e-f). Metal distribution also implies that Sn, W and minor In are controlled 

by high F; the G4 and G5 granites with high F, have accessory minerals hosting Sn, W and In (Fig. 

6f). 

The topaz granites are an “anomaly” in SW England and do not exhibit the geochemical 

characteristics of the G1-G2 or G3-G4 granites. Fractionation of a G1 or G3 granite melt to produce a 
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topaz (G5) granite is problematic, as linear relationships on bivariate major and trace element plots 

and field relations cannot be resolved (e.g. Manning and Hill, 1990; Stone, 1992; Simons et al., 2016). 

Conventional fractionation models, as applied to the G1-G2 and G3-G4 granites, do not therefore 

apply to the G5 granites. A model of flux-induced melting of lower crustal source containing biotite 

during granulite facies metamorphism is preferred (Stone, 1992; Cuney and Barbey, 2014; Simons et 

al., 2016). Melting of biotite would likely liberate Li, Nb, Ta, Sn and F, with minor In and W into a 

melt (Fig. 6). Extension in SW England at the time of granite emplacement supports the influx of 

mantle-derived melts into the lower crust and subsequent high temperature, low-pressure conditions.  

High F in a source, would also be beneficial for transport of HFSE (Sn, Nb, Ta and W). Fluorine 

contents are higher in the topaz granites compared to the all other granite types (e.g. Stone, 1992) and 

the distribution of Nb, Ta, In, Sn and W is controlled by accessory minerals including Nb-bearing 

rutile, cassiterite and columbite. Granites that evolve towards or have high F contents can be 

characterised by the occurrence of disseminated magmatic mineralisation, depending on depth of 

intrusion, with limited partitioning of metals such as Sn and W into fluids exsolved from the melt (e.g. 

Pollard et al., 1987). In SW England, the G5 granites have F-bearing minerals such as F-rich micas, F-

rich topaz and primary fluorite, implying early retention of F in the melt, rather than F-rich fluid 

exsolution. Accessory cassiterite is reported from G5 granites (Stone et al., 1988). 

Phosphorus, like F, increases with fractionation of a peraluminous melt, and is highest in the 

evolved granites in SW England that have the lowest Ca. High-P with low Ca, termed the 

“Pedrobernardo trend” by Bea et al (1992), causes P to behave as an incompatible element, 

concentrating within residual fluids, as apatite crystallisation is limited by the lack of Ca. Unusual 

phosphates, such as amblygonite and triplite, found within G5 granites, are also able to crystallise 

(Stone and George, 1978, 1983). There is a positive correlation between P2O5 and Rb, commonly 

concentrated in residual melts, and a negative correlation between P2O5 and compatible elements such 

as Sr and Ba within the Cornubian Batholith (Simons et al., 2016). Applying this to the rare metals, 

there is a positive correlation, with some scatter, for Be, Nb, Ta, In, Sn, Ta, W and Bi for G1-G2 

granites, with no overall trend for Li, Ga and Sb. For G3-G4 granites, Li, Ga, Nb, Ta, In, Sn, Ta and 

Bi show a positive correlation, Be a negative correlation, and there is no overall trend for Sb, W and 
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Bi (examples in Fig. 12). Scatter towards lower abundances in G4 granites is confined to the globular 

quartz variant (G4b); these plot towards higher P2O5 which supports fluid alteration of these samples, 

as discussed above. The combined effects of F and P, along with Li, appear to favour retention of Nb, 

Ta, In, Sn, W and to a lesser extent Be, Ga and Bi within the melt and hence increase the potential, 

depending on late magmatic evolution, for subsequent partitioning into exsolving magmatic-

hydrothermal fluids.  

 

7.5. Biotite micas as indicators of magmatic evolution 

As previously demonstrated by Stone et al. (1988), trioctahedral micas are particularly 

effective at recording evolving melt compositions within the batholith. Using Mg-Li (apfu) as a 

differentiation index, the trace elements form clear trends (Tischendorf et al., 1997; Tischendorf et al., 

2001). Tungsten increases with mica evolution from G1 to G5 granites, with decreasing Mg and 

increasing Li (Fig. 13a). The strong enrichment of W with increasing Li can be attributed to the 

overall incompatible nature of W within felsic melts, consistent with whole rock trends (Fig. 4i). 

Niobium decreases within the trioctahedral micas (Fig. 13b), showing similar trend to F 

(Supplementary Fig. 2), and confirming partitioning into trace minerals. Tin, In and Ga increase from 

Mg siderophyllite to zinnwaldite, with a marked decrease in lepidolite (Fig. 13c-d). This trend is 

noted for Sn in trioctahedral micas by Tischendorf et al. (2001). It could imply crystallisation of 

lepidolite after Ga, Sn and In have already been exsolved from the magma within magmatic-

hydrothermal fluids, which could potentially also remove Li and F, or crystallisation of mica after 

crystallisation of disseminated magmatic cassiterite. Granite evolution is tracked by major mineral 

chemistry in several other granite terrains. Within the peraluminous Variscan granites of Portugal and 

Germany, variations in mineral chemistry also reflect evolution of the host granite and minerals such 

as micas are useful indicators of the melt composition at the time of crystallisation (Tischendorf et al., 

2001). Similar to mineral chemistry in SW England, evolved granites from Germany and Portugal 

contain evolved micas such as zinnwaldite (e.g. Förster et al. 1999; Neiva et al. 2011). 

 

7.6. Implications for magmatic-hydrothermal mineralisation 
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Radiometric dating of granites and associated mineralisation indicates that each pluton has its 

own discrete episodes of magmatism and mineralisation and there is not a region-wide fluid source for 

the mineralisation (e.g. Chen et al., 1993; Chesley et al., 1993; Clarke et al., 1993). Given the 

composite nature of the batholith, multistage emplacement of G1-G5 granites beneath the current 

exposure level is a distinct possibility, with multiple stages of fluid exsolution and fluid transport to 

higher levels within the crust via deep crustal faults. However, the in situ differentiation of the 

granites, with fractionation of Sn-W and associated metals is demonstrated at the current exposure 

level. There are contrasts in the rare metal magmatic-hydrothermal mineralisation between the two 

major episodes of magmatism represented by the G1-G2 and G3-G4 granites, and also the 

volumetrically minor (at the current exposure levels) G5 episode. These granite suites have potentially 

exsolved rare metals in differing relative proportions due to the variations source melting conditions 

and subsequent fractionation.  

Lithium is fairly ubiquitous across the study area, occurring within trioctahedral and 

dioctahedral micas and tourmaline and increasing with fractionation. The strongest enrichment of Li 

is within the G5 granites and topaz aplites. The G5b pegmatites, similar to those associated with the 

Tregonning Granite, may represent a potential source of Li-rich minerals, but these pegmatites are 

volumetrically minor, similar to the Li-Cs-Ta-type pegmatites described elsewhere, for example in the 

Moldanubian Zone of the Bohemian Massif, Czech Republic (e.g. Breiter, 2014). Lithium enrichment 

in Li-Fe micas, particularly prevalent in the G4 and G5 granites could represent a source of Li. 

Beryllium has divergent behaviour between the G1-G2 and G3-G4 granites. There is a strong 

increase in Be within the G1-G2 granites, implying that hydrothermal fluids exsolving from the more 

evolved G2 granites may be enriched in Be. Any pegmatite associated with this granite series would 

be expected to carry Be minerals, consistent with descriptions of beryl and bertrandite within the 

Trolvis Quarry pegmatite of the Carnmenellis G1 granite (Hosking, 1954). Conversely, Be is depleted 

in the most evolved G4 granites because of its removal by cordierite fractionation. 

In both the G1-G2 and G3-G4 granites, Sn and W increase with fractionation. However, there 

are key differences between these two suites that result in a decoupling of Sn and W mineralisation 

between them. Tungsten enrichment in granites and their associated magmatic-hydrothermal 
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mineralisation is more strongly associated with the older G1-G2 granites. In contrast, Sn is fairly 

ubiquitous across both suites but shows a consistent increase with fractionation in younger G3-G4 

granites. This is likely to be controlled, in part, by contrasting source melting temperatures between 

the two suites. For early granites, the melting temperature was lower, which resulted in muscovite-

dominated and minor biotite melting. If W was dominantly hosted within source muscovite, and Sn 

within source biotite and Fe-Ti oxides, W will be melted out of the source first. As extension in SW 

England continued, further underplating and/or lower crustal sill emplacement of mantle-derived 

melts caused increasing temperatures, biotite and Fe-Ti oxides become involved in melting reactions 

and release additional Sn to the G3-G4 melts.  

In the evolved G2 granites, Sn and W are hosted within muscovite micas. Muscovite is both 

primary and late-stage magmatic/subsolidus in G2 granites. Both primary (muscovite) and late-stage 

(Li-Fe muscovite) contain comparable Sn, with slightly higher W in the latter (Table 3). This implies 

that Sn and W in muscovite may partition into fluids that exsolve from cooling muscovite (G2) 

granites as late-stage muscovite should represent the magmatic-hydrothermal transition. It has been 

suggested by Neiva (1987) that biotite breakdown in already crystallised granite will liberate metals 

such as Sn and W, making them available for mineralisation. Although such a model is not thought to 

be a dominant source for Sn and W in SW England mineralisation, these elements will be 

redistributed during biotite alteration to chlorite (e.g. Alderton et al., 1980). G2 granites are spatially 

associated with Sn-W/W-Sn greisen deposits in the region. If muscovite is also the dominant host for 

W within the source, these metals will partition into the earliest formed crustal melts and hence will 

be associated with the older G1-G2 granites.  

Within the G3-G4 granite series, tourmaline is the dominant late-stage magmatic mineral, 

rather than muscovite, although accessory (secondary) muscovite is still present. Both Sn and W are 

dominantly hosted within Li-rich micas in G4 granites and could be readily redistributed by 

hydrothermal fluids. Finally, the G3-G4 system is associated with strong increases in Li, F. Boron 

also increases, indicated by the increased modal abundance of tourmaline and presence of late-stage 

orbicules (e.g. Drivenes et al., 2015), indicating the system is evolving towards possible miscibility 

between boron-rich melts and/or fluids This implies, that unlike Sn, W is not preferentially enriched 
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in boron-rich melts or fluids that presumably remain towards the later stages of crystallisation (Figure 

5 for Sn-W distribution). This is in part supported by experimental work demonstrating that in the 

presence of a B-rich fluid, W is preferentially retained in melts rather than partitioning into 

hydrothermal fluids exsolving from cooling granitic bodies, whereas Sn is commonly associated with 

quartz-tourmaline lodes in the region (Manning and Henderson, 1984). 

Indium increases with fractionation in the G1-G2 and G3-G4 granite series. Like Sn and W, 

In is hosted within muscovite in the G2 granites, implying that In is incompatible in this fractionation 

trend and may be available for partitioning into hydrothermal fluids that exsolve from these granites. 

Within the G3-G4 granites, In also increases, like Sn and W, but is partitioned into Li-rich micas and 

tourmaline. However, unlike Sn and W, In mineralisation is preferentially hosted by sulphides rather 

than oxides (Andersen et al., 2016) implying a mechanism that requires the presence of sulphur for 

precipitation of In-bearing minerals or substitution into other sulphides. 

Within evolved G2 granites, Nb and Ta are hosted within muscovite, biotite group minerals 

(if present), Fe-Ti oxides and columbite-tantalite group minerals. As muscovite is late-stage and 

biotite group minerals will readily undergo breakdown during hydrothermal alteration, this may 

provide a mechanism for incorporating Nb and Ta into magmatic-hydrothermal fluids associated with 

evolved G2 granites, if Nb and Ta have not already been sequestered to form disseminated Nb-Ta-

rutile and / or columbite disseminated throughout the granite. Both Nb and Ta increase with 

fractionation in the G3-G4 granites. However, in the G4 and G5 granites, the distribution of Nb and 

Ta is dominantly controlled by accessory minerals such as rutile and columbite, disseminated 

throughout the granites (Scott et al., 1998), implying limited potential for their partitioning into 

magmatic-hydrothermal fluids.  

Gallium is distributed fairly evenly between the major minerals in all granite types and 

exhibits limited correlation with fractionation. Feldspars and micas readily undergo hydrothermal 

alteration and this may control Ga content in magmatic-hydrothermal fluids. Gallium has higher 

abundances in G4 granites and therefore may be preferentially associated with these granites, but 

there are no data on the distribution of Ga in SW England granite-related mineralisation. Antimony is 
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not enriched by fractionation in the granites and Sb mineralisation in the region is therefore unlikely 

to be granite derived. 

Differentiation in the G1-2 granite series increases all metals apart from Ga and Sb. The G2 

granites are strongly correlated with regional sheeted vein greisen W-Sn mineralisation across the 

region. Our study also supports the suggestion of Müller et al. (2006) that the G4 granites within the 

northern part of the Land‟s End Granite are the immediate magmatic precursors to tourmaline-

dominated magmatic-hydrothermal mineralisation in the region. The G5 granites evolve towards very 

low-grade disseminated Sn-Ta-Nb-(W) magmatic mineralisation; this has not been exploited. The role 

of G5 granites in controlling W-Sn magmatic-hydrothermal mineralisation is unclear; it has been 

suggested that they are surrounded by tourmalinised alteration haloes that relate to volatile exsolution 

(e.g. Manning and Hill, 1990). However, it is clear that Sn-Ta-Nb-(W) is retained more effectively in 

the magmatic system than for the G1-G2 and G3-G4 granites. The G5 granites are worked for kaolin 

in the St. Austell and Dartmoor granites. 

 

7.7. Global analogues 

Mineralised granites can develop from either unenriched or enriched sources as most rare and 

base metals of interest tend to be incompatible and so can be enriched during melting and granite 

fractionation (e.g. Lehmann, 1982; 1987). Fractional crystallisation is enhanced by the presence of 

fluxing elements (e.g. B, P, F), high K, shallow crustal settings and high temperatures (e.g. Černŷ et 

al., 2005), all of which are characteristics of the granites of SW England. Other localities with 

peraluminous granites and rare metal mineralisation such as the Variscan granites of the Erzegebirge, 

Germany and the Jingnan granites, Dahutang area, China, have also formed from both enriched and 

unenriched sources, with concentration of rare metals (Li, Sn, W, Ta, Nb, Bi) enhanced by the 

presence of fluxing elements, temperature of melting and high levels of crustal emplacement (e.g. 

Breiter, 2012; Huang and Jiang, 2014). The Variscan Carrazeda de Ansiães granites in Portugal 

formed from heterogeneous metapelites, and like the Cornubian Batholith from a source relatively 

unenriched in Sn and W; fractional crystallisation in the presence of F and B was sufficient to increase 

metals in the granites prior to exsolution of Sn-bearing hydrothermal fluids (Teixeira et al., 2012). Tin 
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and W in two-mica and muscovite granites in Portugal differentially partition into muscovite (Neiva 

et al., 2002) and are therefore similar to the Cornubian Batholith. Partial melting of variably enriched 

metasedimentary rocks followed by fractional crystallisation processes have previously been invoked 

as a method for enriching metals such as Sn and W (and fluxing elements) within other European 

Variscan granites (e.g. Romer and Kroner, 2016) (e.g. Kováříková et al., 2007; Breiter, 2012) and 

China (e.g. Huang and Jiang, 2014).  There is limited information available about In within 

peraluminous granites. However, within the mineralisation associated with the highly evolved A-type 

granites of the Wiborg Batholith, Finland, there is significant In incorporated into sulphides (Haapala 

and Lukkari, 2005; Cook et al., 2011b). There may be a similar increase of In with granite 

fractionation associated with this locality, as reported for melt inclusions for the area (Lukkari et al., 

2009). 

The topaz (G5) granites are most similar to descriptions of RMG (Černŷ et al., 2005). With 

regards to the metals in this study, peraluminous RMG are characterised by the presence of extreme 

enrichment of Li, Be, Nb, Ta, Sn and W and disseminated magmatic mineralisation, promoted by 

high-F, Li and/or P. Variscan RMG with associated disseminated magmatic mineralisation include the 

Beauvoir Granite, Massif Central (Marignac and Cuney, 1999) and Podlesí Stock, Czech Republic 

(Breiter et al., 1997). The former is interpreted as forming from a rare metal-enriched fluid derived 

from the breakdown of biotite during granulite facies metamorphism (Cuney and Barbey, 2014), and 

the latter through extreme fractionation (Breiter et al., 1997). The Yichun RMG granite complex of 

SE China comprises disseminated columbite and cassiterite, and formed through multiple stages of 

fractional crystallisation (Belkasmi et al., 2000). 

 

8. Conclusions 

1. The Early Permian post-Variscan Cornubian Batholith is composite, constructed over 20 Ma. An 

older stage of magmatism, generated during muscovite-dominated and minor biotite melting of a 

metagreywacke source formed two mica (G1) granites, with fractionation to form muscovite 

(G2) granites. Continued extension and underplating of mantle-derived melts, induced higher 

temperature, biotite-dominated melting, leading to a second major stage of magmatism, 
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producing biotite (G3) granites and fractionated tourmaline (G4) granites. Minor topaz (G5) 

granites form from flux-induced melting of biotite in the lower crust. 

2. Lithium, Be, Nb, Ta, Sn, W and Bi are enriched in the granites of the Cornubian Batholith 

relative to average crustal abundances. Topaz (G5) granites have the highest Li (mean 1363 

ppm), Ga (38 ppm), Nb (52 ppm), Ta (15 ppm), Sn (21 ppm) and W (24 ppm) relative to the 

remaining G1-G4 granites. Beryllium is most strongly enriched in muscovite (G2) granites (mean 

12 ppm) and Bi in tourmaline (G4) granites (mean 0.94 ppm). Indium has a consistent abundance 

in the granites relative to crustal abundances, with G4 granites having the highest modal 

abundance (mean 90 ppb). Sb has lower abundances in the granites compared to average crustal 

abundances. 

3. Fractionation, dominated by biotite and feldspars, increases Be, Nb, Ta, In, Sn, W and Bi in the 

G1-G2 granites. Gallium remains constant and Sb shows no overall trend. Within the G3-G4 

granites, Li, Ga, Nb and Ta increase strongly with fractionation. Beryllium decreases, due to 

cordierite fractionation, and Sb and Bi show no overall trend. Several In, Sn and Bi values scatter 

towards lower abundances in the G3-G4 granites due to fluid involvement, particularly in the 

globular quartz facies. 

4. Trace element modelling indicates that 20% partial melting of a greywacke source and up to 30% 

fractionation is sufficient to account for the range of observed abundances of the metals in G1-

G2 granites. In G3-G4 granites, 30% partial melting and up to 40% fractionation is sufficient for 

the majority of elements. Observed Nb and Ta abundances scatter upwards relative to modelled 

values, facilitated by high F. Observed Sb lies far below modelled concentrations. There is no 

evidence for a mantle source using the constraints provided here. 

5. G5 granites form from fluid fluxed melting of a biotite-rich source. This source would be 

enriched in F, Li, Nb, Ta and Sn hosted within source biotite, producing a melt enriched in these 

elements, consistent with the G5 topaz granites in SW England and RMG such as the Beauvoir 

Granite, Massif Central, France.  

6. Lithium is dominantly hosted by trioctahedral micas across all granite types. Gallium is 

distributed fairly evenly between all major silicates. Niobium and Ta partition into muscovite in 
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G1-G2 granites, trioctahedral micas in G3 granites and accessory minerals in G4 and G5 

granites, although Fe-Ti oxides are an important host in all granite types and columbite-tantalite 

host Nb and Ta in G5 granites. Indium, Sn and W follow Nb and Ta, with the exception of G4 

granites, in which they are incorporated into trioctahedral micas. 

7. There is a strong spatial associated between W-Sn greisen deposits and G2 granites, e.g. 

Hemerdon, Cligga and St. Michael‟s Mount. The metals partition dominantly into muscovite, 

with limited disseminated magmatic mineralisation. G4 granites are likely precursors to 

tourmaline-dominated magmatic-hydrothermal mineralisation and represent sources of Sn, for 

example in the mineralisation north of the Land‟s End Granite and tourmaline-dominated 

systems around the St. Austell Granite. Beryllium is not associated with G4 granites. Phosphorus 

and F cause the retention of Nb, Ta, Sn, W and to a lesser extent, In, in the melt. In G4 and G5 

granites with high P (>0.4 wt. %) and F (>1 wt.%), this promotes disseminated magmatic 

mineralisation. High F promotes disseminated magmatic mineralisation through lowering melt 

temperature resulting in retention of HFSE in the melt. On crystallisation of an F-bearing 

mineral, minerals such as columbite precipitate, providing melt saturation is achieved (e.g. 

Linnen, 1998). 

8. There is a decoupling of W and Sn behaviour in SW England. Whilst both increase with 

fractionation, W shows a significantly stronger enrichment in the older G1-G2 granites whereas 

Sn increases more strongly in the younger G3-G4 granites. This is likely a consequence of 

increasing temperatures in the lower crustal source region that progress from lower temperature 

muscovite-biotite (W ≈ Sn) melting to higher temperature biotite-dominated melting (Sn > W). 

9. G1-G2 granites are similar to two-mica and muscovite-bearing granites of Portugal associated 

with W mineralisation, formed through partial melting of unenriched greywacke sources, with 

metal enrichment via fractional crystallisation. Analogues of G3-G4 granites include granites 

within the Variscan zone in Germany and Spain, which are also fractionated sedimentary-sourced 

melts. 
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Appendices 

 

Eqs. A.1-2 Trace element modelling equations and partition coefficients 

 

After Shaw (1970): 

[Eq. A.1] Batch melting: CL / CO = 1 / [D + F(1-D)] 

[Eq. A.2] Raleigh fractionation: CL / CO = F
(D-1)

 

where: 

CL =Weight concentration of a trace element in the melt 

CO =Weight concentration of a trace element in the source 
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D =Bulk distribution coefficient for residual solids (batch melting) or the fractionating assemblage 

(Raleigh fractionation) 

F = Weight fraction of melt produced (batch melting) or the fraction of melt remaining  

(Raleigh fractionation) 

Table A.1 Partition coefficients used for partial melting and fractionation crystallisation modelling. 

 Qtz* Kfs Pl Bt Msc Grt Sil Crd 

Li 0 0 0 1.65
1 

0.80
1 

0 0 0.44
2 

Be 0 0.26
2 

0.10
2 

0.39
2 

1.35
2 

0 0 30.69
2 

Ga 0 0.20
3 

0.59
3 

3.10
3 

5.04* 0 0 0 

Nb 0 0.04
3 

0.07
3 

1.96
5 

0.15
5
 0 0 0.01

1 

In 0 0* 0* 1.87*
 

5.21* 10.3
4
 0 0 

Sn 0 0.05* 0.60* 2.32* 4.14* 0.86
4
 0 0 

Sb 0 0 0 0.0013
4
 0 10

4
 0 0 

Ta 0 0.025
6 

0.063
7 

0.16-0.91
5 

0.06-0.45
5
 0.0017

4
 0 0 

W 0 0* 0* 0.4*
 

10.71* 0.0008
4
 0 0 

Bi 0 0 0 0 0 0 0 0 

 Melting abundances 

G1 0.45 0.02 0.35 0.12 0.02 0.03 0.01 0 

G3 0.45 0 0.40 0.12 0 0.01 0.01 0.01 

 Fractionating assemblage 

G1-G2 0** 0.23 0.50 0.22 0 0.046 0 0 

G3-G4 0** 0.24 0.50 0.25 0 0 0 0.01 
All zeros, unless otherwise stated, are estimated as 0, in part due to high charge and large ionic radii, following the methods 

of Williamson et al, 2010. (1) Icenhower and London, 1995; (2) Evensen and London, 2002; (3) Ewart and Griffin, 1994; (4) 

Adam and Green, 2006; (5) Stepanov and Hermann, 2013; (6) Mahood and Hidreth, 1983;(7) Streck and Grunder, 1997. 

*Estimated mineral/melt ratio from this study. Calculated by dividing mineral (LA-ICP-MS) by whole rock abundance (ICP-

MS). Melting abundances and fractionating assemblages from Simons et al. (2016). **Set at 0 for this study due to lack of 

partition coefficients for quartz and assumed incompatibility; there is likely to be a minor amount of quartz in a fractionating 

assemblage. 
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Figures 

 

Fig. 1. Geological map of SW England showing the principal mineralogical and textural variations in 

the Cornubian Batholith and subdivision of G1-G5 granites. Compiled from Ghosh (1927), Exley and 

Stone (1982), Dangerfield and Hawkes (1981), Manning et al. (1996), Selwood et al. (1998), Müller 

et al. (2006) and British Geological Survey data (Geological Map Data © NERC 2016). Reproduced 

after Simons et al. (2016). 

 

Fig. 2. Field photographs of Cornubian Batholith granites. a – Typical G1a granite with orthoclase 

phenocrysts (<25 mm) from the Carnmenellis Granite. b – Enclave of G1c granite within G1a granite, 

St. Agnes, Isles of Scilly Granite. c – Cligga G2 Granite with sheeted W greisen veins. d – Coarse-

grained porphyritic G3a granite with abundant orthoclase phenocrysts (>25 mm) from the Dartmoor 

Granite. e – Globular quartz G4b granite from Carn Dean Quarry, Land‟s End Granite. f – Pegmatitic 

pocket dominantly comprising tourmaline, orthoclase and quartz within G3a granite, Land‟s End 

Granite. g – Typical topaz (G5) granite texture, equigranular with abundant Li mica, Tregonning 

Granite. 
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Fig. 3. Multi-element plot showing average metal abundances normalised to the upper continental 

crustal (UCC) values of Rudnick and Gao (2004). Regionally, there is a strong enrichment in Li in all 

granites and G2 and G5 granites show strong enrichment in W. Gallium, In and Sb plot towards 

expected UCC abundances. Beryllium, Nb, Ta, Sn and Bi are slightly enriched in the least evolved G1 

and G3 granites, typically increasing for G2, G4 and G5 granites. Average values for the peri-

Gondwanan Devonian Gramscatho Basin (GB) plot around average UCC abundances. 

 

Fig. 4. Trace element variation diagrams using 1/TiO2 as a differentiation index for a – Li, showing a 

positive trend for both G1-G2 and G3-G4 granites; G5 granites plot towards extreme values. The 

circled G4 granites show low Li attributable to alteration. b – Converse trends for Be, increasing with 

fractionation in G1-G2 and decreasing in G3-G4. c – Positive curvilinear trend for Ga for G3-G4 

granites and no trend for G1-G2 granites (constant abundance with fractionation). d – Curvilinear 

positive trends for Nb in G1-G2 and G3-G4, with stronger enrichment in the latter. G5 granites plot 

towards extreme Nb values, with a distinctive gap between evolved G2 / G4 granites and G5. e – 

Curvilinear positive trends for Ta, with stronger correlations for G1-G2 granites with fractionation. 

Scatter in the G3-G4 granites is likely an effect caused by evolution towards high-F melts and 

changes in partitioning behaviour of Ta into accessory minerals (see discussion). f – Trends for G1-

G2 and G3-G4 granites show increasing In with fractionation. G5 granites plot towards low In. The 

circled G4 granites show low In attributable to alteration. g – G1-G2 granites have a curvilinear 

positive Sn correlation with granite fractionation. G3-G4 granites broadly increase but there is no 

comprehensive correlation. Low values of Sn are likely attributable to alteration. G5 granites plot 

towards high Sn. h – There is no conclusive trend observed for any granites with Sb. I – W increases 

strongly within G1-G2 granites but shows no conclusive correlation with fractionation in the G3-G4 

granites. G5 granites plot towards high W abundances, with a distinctive gap between the most 

evolved G2 and G4 W abundances and G5 granites. j – Positive correlation with Bi and fractionation 

in G1-G2 granites and no overall trend in G3-G4 granites. 
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Fig. 5. Regional maps showing trace element distribution, subdivided by 50
th
, 75

th
, 90

th
, 95

th
, 99

th
 and 

100
th
 percentiles for a – Li, b – Be, c – Ga, d – Nb, e – Ta, f – In, g – Sn, h – Sb, I – W and j – Bi. 

Note that high abundances for many of the metals are centred over the G5 granites of the Tregonning 

and St. Austell granites, with the exception of Be which has high abundances in G2 granites. 

Hemerdon, south of the Dartmoor Granite, shows high Sn, Sb, W and Bi and is most likely affected 

by subsolidus / hydrothermal processes. 

 

Fig. 6. Lithium, Ga, Nb, Ta, In, Sn and W distribution shown as cumulative percent of whole rock 

abundances. a – Distribution for G1a granite. Gallium and Sn are fairly evenly distributed between 

major silicates. Indium and W are dominantly concentrated in muscovite, with Li, Nb and Ta in Mg 

siderophyllite. b – Distribution in G2 granite (with Li siderophyllite) is similar to G1a granite, with 

muscovite a dominant host for In and W and Li siderophyllite hosting Li and Nb. Note that Ta is 

depleted in major silicates, most likely partitioning into Fe-Ti oxides. c –Metal distribution in G2 

granite (without Li siderophyllite). Niobium, Ta and Sn show depletions in major silicates and are 

again likely to be distributed in Fe-Ti oxides. Muscovite is again the dominant host of Nb, In and W, 

with Li partitioning into muscovite in the absence of trioctahedral micas. d –Other than W, the metals 

are accounted for in major silicates, particularly siderophyllite mica, in G3a granite, Land‟s End. 

Muscovite is an accessory mineral, fine-grained and subsolidus / late-stage and may represent a host 

of the metals, consistent with G1 and G2 granites. e – In G4b granite, St. Austell, Nb and Ta are 

strongly depleted in major silicates, most likely partitioning into rutile. Gallium is evenly distributed 

between major silicates whereas Li, In, Sn and W partition into zinnwaldite. f –Niobium, Ta, Sn, W 

and to some extent In, are depleted in major silicates, partitioning into accessory minerals such as 

rutile, ilmenite, cassiterite and wolframite in G5 granite, St. Austell. 

 

Fig. 7. Model for G1-G2 granites: Combined 20% partial melting with 0% (i.e. only a 20% partial 

melt), 10% and 30% fractional crystallisation models for variable source abundances (x-axis) of the 

metals to account for source heterogeneity. The modelled abundances (y-axis) for a given source 

abundance are demonstrated by the symbols and the observed abundances for the Cornubian G1-G2 
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granites are on the right hand side. The average Gramscatho greywacke, taken as a proxy for the 

source, is indicated along with additional data from Devonian and Carboniferous shales from Hall 

(1990) and greywackes of Hu and Gao (2008) to show the possible ranges within sedimentary source 

material. For the majority of the elements, 30% partial melting and between 10 and 30% fractionation 

is sufficient to account for the range of abundances shown within the G1-G2 granites. There are 

notable exceptions. b – Be scatters upwards from modelled abundances, although these observed 

abundances may be achieved using higher source values of up to 5 ppm (London and Evensen, 2002). 

c – Ga partitions into plagioclase and micas and so modelled abundances do not significantly vary 

with fractionation. h – Modelled Sb abundances are significantly higher than observed Sb in the G1-

G2 granites. This could be due to an overestimation of Sb in the source, partitioning into the residue 

during melting that is not accounted for by current partition coefficients or lack of magmatic control 

on Sb in SW England. 

 

Fig. 8. Model for G3-G4 granites: Combined 30% partial melting with 0% (i.e. only a 20% partial 

melt), 10% and 30% fractional crystallisation models for variable source abundances (x-axis) of the 

metals to account for source heterogeneity. Other details remain the same as Fig. 6. d – Nb and g - Sn 

scatter towards higher observed abundances than those modelled using a Gramscatho greywacke 

source abundance, most likely attributable to variable partitioning of these elements facilitated by 

evolution of the melt towards high-F (see discussion) or overestimation of partitioning. The remaining 

metals are accounted for by 30% partial melting and 40% fractionation. As with G1-G2 granite 

models, modelled h – Sb abundances are significantly higher than those observed, again attributable 

to an overestimation of Sb incompatibility, partitioning into the residue during melting that is not 

accounted for by current partition coefficients or lack of magmatic control on Sb in SW England, with 

the latter most likely due to lack of correlation between Sb and magmatic evolution indicators such as 

1/TiO2. 

 

Fig. 9. Multi element plots showing partial melting models of a greywacke source, similar in 

composition to the Gramscatho Formation, to produce a – G1 two mica granite and b – G3 biotite 
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granite. The least evolved G1 and G3 granites were selected for modelling. For G1 granite, 20% 

partial melting is sufficient to attain the abundances of the majority of the metals observed, with the 

exception of Li, Nb, Sn and Sb. For G3 granites, 30% partial melting of a muscovite-depleted source, 

consistent with higher T melting, is sufficient to attain the observed concentrations, with the exception 

of Li and Sn. For both, the observed Li abundances could be attained with a higher source Li 

abundance and the compatibility of Sn is likely overestimated using the mineral/melt ratios from this 

study. Niobium partitioning is likely also controlled by Fe-Ti oxides and residual biotite during 

melting. 

 

Fig. 10. Trace element variation diagrams using Mg (wt. %) as the abscissa showing G1-G4 granites, 

lamprophyre, basalt and mafic microgranular enclave (MME) data. These diagrams represent the 

typical trends for all trace elements in this study. a – Beryllium plot, showing converse trends for G1-

G2 and G3-G4 granites, with mafic and ultramafic rocks and MME lying away from the granite 

trends, towards moderate to low Be abundances. b – Niobium plot showing the main granite trend, 

with mafic and ultramafic rocks and MME lying towards higher Nb abundances. It is not possible to 

decipher linear mixing lines through lamprophyres, basalts, MME and granites, implying that magma 

mixing is not a dominant factor in controlling metal distribution. 

 

Fig. 11. Nb/Ta vs. Ta. G1-G2 granites show a curvilinear trend for both elements, typical of 

fractionation. For G3-G4 granites, Ta shows a curvilinear trend, typical of fractionation,. G5 granites 

plot towards high Ta abundances. The proposed value of Nb/Ta < 5 for the magmatic-hydrothermal 

transition in peraluminous granites (Ballouard et al., 2016) indicates the majority of the samples lie in 

the authors defined magmatic field, consistent with field and other geochemical observations. 

 

Fig. 12. Trace element variation diagrams with P2O5 (wt. %) as the abscissa. P2O5 becomes 

concentrated in residual fluids during evolution of peraluminous granites and positive correlations for 

a – Sn and b – In indicate these metals may also be concentrated in residual fluids. The G2 granite 

outlier with low P2O5 is Hemerdon, most likely affected by subsolidus / hydrothermal processes. 
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Fig. 13. Trace element variation diagrams for trioctahedral (biotite) micas with Mg-Li (apfu) as the 

abscissa. With granite evolution, Mg decreases and Li increases, resulting in decreasing Mg-Li value. 

a W increases with granite evolution, showing strong enrichment in lepidolite and zinnwaldite micas. 

b – Nb decreases with granite evolution, although increases in whole rock data. This is due to 

increased F in evolved granites promoting the retention of Nb in the melt and consequential 

partitioning into accessory minerals on crystallisation of an F-bearing mineral such as topaz (e.g. 

Linnen, 1998), see also Fig. 9. c – In and d – Ga increase towards zinnwaldite before decreasing in 

lepidolite. This may represent the effects of F, or variable partitioning of these elements during source 

melting of the topaz granites. 

 

Tables 

 

Table 1. Mean Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi (in ppm, In in ppb) in the Cornubian 

Batholith relative to the average crustal values of Rudnick and Gao (2004) and average greywacke 

and shales of Hu and Gao (2008). Full data are provided in Supplementary Table 1. 

 

Table 2. Samples, representative of the mineralogical diversity within the Cornubian Batholith, 

analysed by LA-ICP-MS and their constituent mineralogy. 

 

Table 3. Mean abundance of Li, Ga, Nb, Ta, In, Sn and W in major silicate minerals in G1-G5 

granites of the Cornubian Batholith (ppm). Full data are provided in Supplementary Table 2. 

 

Supplementary Data 

 

Supplementary Table 1. All bulk rock geochemical data and grid references for sampling locations 

with standard reference material data. 
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Supplementary Table 2. Spreadsheet with complete EPMA and LA-ICP-MS data for G1-G5 granites 

with BCR-2G and NIST-612 recoveries. 

 

Supplementary Table 3. Modelling results for G1-G2 granites. 

 

Supplementary Table 4. Modelling results for G3-G4 granites. 

 

Supplementary Fig. 1: Additional modelling plot: Multi-element plots showing fractional 

crystallisation models for fractionation of the assemblages described in text from the least to the most 

evolved granites in the a – G1-G2 granites and b – G3-G4 granites. For G1-G2 granites, there is a 

good match for the majority of the metals with 30% fractionation. Note that Sb was below detection 

in the most evolved G2 sample. For G3-G4 granites, 40% fractionation is consistent with a number of 

the metals, with the exception of Li, which has a higher observed abundance than modelled, and Be 

and Sb which have lower observed abundances than modelled. 

 

Supplementary Fig. 2.  Correlation between F (wt. %) and Nb (ppm) in trioctahedral micas. This also 

represents the decrease in Nb in micas with decreasing Mg and increasing Li from Mg siderophyllite 

(G1/G3) through to lepidolite (G5). The decrease of Nb in G4 and G5 granites supports partitioning of 

Nb into accessory minerals, most likely Fe-Ti oxides (see also Fig. 5) and demonstrates the 

importance of high F in promoting high HFSE in peraluminous melts (e.g. Linnen, 1998). 
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Table 1 

  Li Be Ga Nb Ta In* Sn Sb W Bi 

Detection limt 
(ppm) 

n 
1 0.1 5 0.3 0.3 25 0.2 0.02 1 0.06 

G1a 23 252 6.5 26 11 2.2 41 11 0.27 3.9 0.44 

G1b 8 290 9.5 26 11 1.9 51 12 0.28 3.3 0.39 

G1c 6 108 4.0 23 14 1.7 27 5.2 0.31 1.9 0.23 
G2** 9 315 12 24 16 4.4 74 18 0.16 12 0.46 

G3a 26 231 5.4 23 17 2.8 55 12 0.44 5.7 0.40 

G3c  4 158 5.0 19 15 2.7 31 10 0.29 5.8 0.21 
G4a 11 219 2.1 27 22 3.6 87 14 0.22 3.4 0.24 

G4b 5 445 4.8 28 29 4.9 74 14 0.37 6.8 0.57 

G4c 7 273 3.2 28 24 4.5 90 13 0.14 7.2 0.94 
G4d 3 128 2.3 - 18 2.2 31 7.6 b.d. 2.2 b.d. 

G5a 7 1363 3.5 38 52 15 47 21 0.36 24 0.82 

G5b 2 2467 8.8 40 54 14 40 8.1 0.78 25 0.52 

Gramscatho+ 4 40 2.2 16 9.2 1.1 44 1.9 0.63 n/a 0.16 

Average upper 
crust1 

- 
24 2.1 17.5 12 0.9 56 2.1 0.40 1.9 0.16 

Average lower 

crust1 

- 
13 1.4 13 5 0.6 50 1.7 0.10 0.6 0.20 

Greywacke2 4 44 2 19 15 1.1 73 3.5 0.52 1.5 0.27 

Shale2 11 63 4 23 18 1.5 88 4.5 0.77 2.7 0.54 

*Indium data in ppb. **Hemerdon is omitted due to hydrothermal alteration. 1From Rudnick and Gao (2004); 2Averaged from Hu and Gao 

(2008). +Ground samples (GG6, GG15, GG28, GG44) sourced from the study of Darbyshire and Shepherd (1994). Tungsten not analysed 

due to sample preparation method. Included in this table are samples from Natural History Museum collection BM.2004,P14: G3a- 

specimen numbers 7, 24, 30; G4a - specimen number 8; G4c - specimen numbers 1, 31; G4d - specimen numbers 10, 21, 23.  
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Table 2.  

Sample Type Pluton Major silicate minerals 

CN09 G1a Carnmenellis 
Qtz, Kfs, Pl (An17), Msc, FeMsc, 

Mg Sid, Tur 

CL02 G2 Cligga 
Qtz, Kfs, Pl (An5), Msc, FeMsc, 

Li Sid, Tur 

KT01 G2 Kit Hill Qtz, Kfs, Pl (An7), Msc, Tur 

LE08 G2 Land‟s End 
Qtz, Kfs, Pl (An1), Msc, FeMsc, 

Li Sid, Tur 

LE02 G3a Land‟s End 
Qtz, Kfs, Pl (An10), Mg Sid, Crd, 
Tur 

DT07 G3a Dartmoor Qtz, Kfs, Pl (An14), Sid, Tur 

AU12 G4a St. Austell Qtz, Kfs, Pl (An1), Zwd, Tur 

AU06 G5 St. Austell Qtz, Kfs, Pl (An1), Poly, Tz 

Abbreviations: Crd – Cordierite; FeMsc – Ferroan muscovite; Kfs – Alkali feldspar (orthoclase); Li Sid – Lithian siderophyllite; Mg Sid – 

Magnesian siderophyllite; Msc – Muscovite; Pl – Plagioclase; Poly – Polylithionite; Qtz – Quartz; Sid – Siderophyllite; Tur – Tourmaline 

(schorl); Tz – Topaz; Zwd – Zinnwaldite  
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Table 3  

 Li Ga Nb Ta In Sn W 

Detection limt (ppm) 0.15 0.08 0.02 0.01 0.01 0.10 0.03 

G1 n  

Mg siderophyllite 9 3097 95 149 10 0.20 34 3.8 

Muscovite 3 1250 157 66 7.8 1.13 58 64 
Ferroan muscovite 6 1547 140 58 11 1.10 66 82 

Plagioclase (oligoclase) 10 34 34 0.30 0.09 0.02 8.6 0.05 

Orthoclase 8 11 21 0.81 0.03 b.d. 13 0.05 
Tourmaline 11 120 145 0.94 0.66 0.27 8.5 0.16 

G2   

Li siderophyllite 7 6070 114 188 9.7 0.31 53 20 

Muscovite 10 2379 118 115 20 0.74 65 94 
Ferroan muscovite 15 3034 119 139 22 0.60 63 124 

Plagioclase (albite) 11 56 39 0.59 0.11 0.06 19 0.58 

Orthoclase 15 65 42 0.88 1.10 0.12 15 0.27 
Tourmaline 15 210 120 2.6 1.6 0.20 10 0.07 

G3   

Mg siderophyllite 3 2085 90 43 16 0.28 34 8.9 

Siderophyllite 13 3247 95 234 24 0.44 66 9.1 
Plagioclase (oligoclase) 13 22 31 0.28 0.06 0.02 11 0.23 

Orthoclase 10 9.5 18 0.04 0.02 0.05 13 0.91 

Tourmaline 7 115 112 1.6 1.2 0.17 20 0.51 
Cordierite 3 3857 47 0.18 0.02 0.02 5.7 0.19 

G4   

Zinnwaldite 8 16299 105 109 11 1.1 111 163 

Plagioclase (albite) 5 165 35 1.3 0.12 0.10 17 2.0 
Orthoclase 1* 47 22 0.03 b.d. 0.08 14 0.27 

Tourmaline 3 509 147 0.76 0.25 0.16 4.9 0.19 

G5   

Lepidolite 7 22650 83 95 16 0.17 13 195 

Plagioclase (albite) 6 23 46 0.56 0.19 0.03 9.5 1.1 

Orthoclase 2* 16 35 0.10 0.02 0.03 8.8 0.20 

Topaz 3 1.8 6.1 0.50 0.10 0.02 1.2 0.35 

*Analyses affected by presence of microperthite. 
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Highlights 

 

 Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the G1-G5 granites of the 

Cornubian Batholith. 

 New geochemical data for distribution of Ga, Nb, Ta, In, Sn and W in granite 

silicates. 

 There is a strong W increase with fractionation from G1 to G2 granites. G2 are 

associated with greisen deposits. 

 With fractionation from G3 to G4, there are strong increases in Li, Nb, Ta and Sn; 

accessory minerals host Nb and Ta in G4. 

 G5 granites are enriched in Li, Ga, Nb, Ta, Sn and W, promoted by high F, and 

contain disseminated magmatic mineralisation. 


