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The thermodynamics of moist processes is complicated, and in typical atmospheric

models numerous approximations are made. However, they are not always made in a

self-consistent way, which could lead to spurious sources or sinks of energy and entropy.

One way to ensure self-consistency is to derive all thermodynamic quantities from a

thermodynamic potential such as the Gibbs function. Approximations may be made to

the Gibbs function; these approximations are inherited by all derived quantities in a

way that guarantees self-consistency. Here, the feasibility of using the Gibbs function

in an atmospheric model is demonstrated through the development of a semi-implicit,

semi-Lagrangian vertical slice model, and its application to a standard buoyant bubble

test case. The flexibility of the approach is also demonstrated by running the test

case with four different equations of state corresponding to dry air, moist air that

is saturated, a pseudo-incompressible fluid, and an incompressible fluid. A recently

presented ‘blended’ equation set that unifies the dry fully compressible case and the

pseudo-incompressible case is also easily accommodated.
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1. Introduction

In atmospheric models numerous approximations are made in

the thermodynamics, particularly where moisture is involved.

The approximations are often mutually inconsistent, so that the

fundamental laws of thermodynamics are not fully respected.

Thermodynamics can be formulated consistently by deriving all

thermodynamic quantities from a single thermodynamic potential,

such as the Gibbs function, and this approach has been advocated

for use in oceanography and ocean modelling (IOC et al. 2010),

where an accurate equation of state is very complex and has

no simple analytical expression. Here the feasibility, as well as

flexibility, of using the Gibbs function approach in atmospheric

modelling is investigated through the development of a semi-

implicit semi-Lagrangian vertical slice model.

At typical atmospheric temperatures and pressures, dry air

behaves, to an excellent approximation, as a perfect gas. It obeys

a simple equation of state p = RTρ, the specific heat capacities

at constant pressure (Cp) and constant volume (Cv) may be

taken as constant, and other related thermodynamic quantities

such as specific internal energy CvT , potential temperature θ =

T (p0/p)
R/Cp , and specific entropy η = Cp ln θ + const have

simple analytical expressions. (Standard notation is used for

pressure p, temperature T , density ρ, specific gas constant R, and

a reference pressure p0.) For humid air, i.e. a mixture of dry air

and water vapour, the situation is only a little more complicated.

Again the mixture behaves, to an excellent approximation, as a

perfect gas, but now R, Cv and Cp depend on the mass fraction of

water q in the mixture.

However, the possibility of condensation and freezing

of water considerably complicates the thermodynamics (e.g.

Emanuel 1994; Curry and Webster 1999; Feistel et al. 2010).

Consequently, numerous approximations to the thermodynamics

are commonly made in atmospheric models. Examples include

assuming the latent heat of vaporization Lv to be constant,

using dry air values for R, Cv , Cp, or the ratio κ = R/Cp,

neglecting the volume of liquid water, and neglecting the heat

capacity of liquid water. It is far from trivial to ensure that such

approximations are made in a self-consistent way so as to respect

the laws of thermodynamics and their consequences, and such

consistency is not usually enforced. One common example of

such an inconsistency is the use of a constant Lv while taking

the specific heat capacities of vapour and liquid Cv
p and Cl to be

different from each other. Another common example is the use of

an accurate empirical formula (such as Bolton 1980) to compute

the saturation vapour pressure, while retaining simplifications

elsewhere in the thermodynamics so that the Clausius-Clapeyron

relation
dpsat

dT
=

Lv

T (αv − αl)
(1)

(psat is saturation vapour pressure, αv and αl are specific volumes

of vapour and liquid) is not exactly satisified. Both of these
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examples result in the need for a net (positive or negative)

input of energy to take an air parcel around certain reversible

thermodynamic cycles in p-T space, violating the first law of

thermodynamics, and in a net source or sink of entropy for

adiabatic reversible changes involving saturation of water vapour,

violating the second law of thermodynamics. Another common

source of inconsistency is the use of different approximations

in different model components such as the dynamical core and

different physical parameterizations. These kinds of inconsistency

can result in global energy budget errors of order 1Wm−2 in

a typical weather or climate prediction model (Martin Willett,

personal communication 2016).

The issue of thermodynamic consistency also arises when

including diabatic heating in approximated equation sets such as

the pseudo-incompressible equations (Klein and Pauluis 2012).

One way to ensure that thermodynamics is represented in

a self-consistent way in a numerical model is to derive all

thermodynamic quantities from a single thermodynamic potential,

such as the Gibbs function (e.g. IOC et al. 2010; Feistel et al.

2010). The Gibbs function is defined by

g = e+ αp− ηT (2)

where e is specific internal energy and α = 1/ρ is specific volume.

It is naturally considered to be a function of pressure, temperature,

and composition: g = g(p, T, q). In terms of g, the fundamental

thermodynamic relation is

dg = −ηdT + αdp+ µdq, (3)

leading to

α = gp, η = −gT , (4)

where µ is the relative chemical potential of water in air and

subscripts on g indicate partial derivatives. When phase changes

are possible, consistency requires that equilibrium between

phases is determined by equating their temperature, pressure,

and chemical potential (e.g. Emanuel 1994; Curry and Webster

1999; Feistel et al. 2010). Some other relations between the Gibbs

function and commonly used thermodynamic quantities are noted

in Appendix A.

Simplifications to the thermodynamics can be made, while

maintaining consistency, by approximating the Gibbs function.

Section 3 gives some examples. There is a partial analogy

here with the use of Hamilton’s principle to derive the

dynamical equations of motion (Staniforth 2014; Tort and Dubos

2014). The dynamics can be approximated, while maintaining

key conservation laws related to dynamical consistency, by

approximating the Lagrangian density, provided this is done in

a way that preserves its symmetries.

The Gibbs function approach is best implemented in such

a way that the Gibbs function and any derivatives needed are

evaluated via a single subroutine or function (which may call

other subroutines as needed). Having this single interface then

greatly facilitates the use of different approximations to the

thermodynamics, through the use of different Gibbs functions,

within a single model code.

There is growing interest in the design of numerical models

with switchable governing equation sets (e.g. Wood et al. 2014;

Smolarkiewicz et al. 2014; Kurowski et al. 2014; Benacchio et al.

2014; Klein and Benacchio 2016). Of note here is that one

widely used approximate equation set, the pseudo-incompressible

equation set of Durran (1989), is obtained from the fully

compressible equations by modifying only the equation of state,

leaving the other governing equations unchanged (see also

Klein and Benacchio 2016). It might be hoped, therefore, that the

pseudo-incompressible system could be obtained via a suitably

specified Gibbs function. In section 3.3 this is confirmed to be the

case provided we extend the idea to allow an explicit dependence

of g on height z. An incompressible system similar to the

Boussinesq equations can be obtained in a similar way. However,

some care is needed. For both the pseudo-incompressible and

incompressible systems the density is a function only of the

entropy (and height), so, given ρ and η, the equation of state does

not determine the pressure; the pressure is determined entirely by

the dynamical equations. Thus we must use a numerical solution

technique that solves the dynamics and the equation of state as a

fully coupled system—see section 2.

There are strong benefits from having flexibility in the gov-

erning equations while keeping other aspects, such as numer-

ical methods, fixed. It allows commonly made approximations

to be relaxed, permitting sensitivity tests to be carried out

(Kurowski et al. 2014). It could be used to model flows with

different composition or variable composition, such as Earth’s

atmosphere from the ground to the thermosphere (Akmaev 2011),

or where the equation of state is not well approximated by a

perfect gas, such as the ocean or the deep interior of gas giant

planets (e.g. Militzer and Hubbard 2013). It could be used to

replace the fully compressible equation of state in a weather

forecast model by a pseudo-incompressible equation of state to

facilitate comparison with a Large-Eddy model or for acoustic

filtering to initialize a compressible integration (Benacchio et al.

2014), or by a quasi-incompressible equation of state to facilitate

comparison with laboratory flows (e.g. Read et al. 2000).

For a general Gibbs function there will not exist explicit

expressions for many of the quantities needed to integrate a

numerical model or for initialization or diagnostics, so these

quantities must be found as solutions of some implicit equations.

This apparent complexity might discourage model developers

from adopting the approach. Part of the purpose of this paper is

to show that any additional complexity, and computational cost, is

in fact rather modest. In Appendix A a variety of commonly used

quantities are expressed in terms of the Gibbs function.

In principle, any one of the four thermodynamic potentials

e(α, η, q), f(α, T, q), g(p, T, q), or h(p, η, q) (f is the specific

Helmholtz function or free energy, h is the specific enthalpy)

could be used to derive all the other thermodynamic properties.

Section 7 gives some discussion regarding the choice of the Gibbs

function.

In this paper it is shown that the Gibbs function representation

of thermodynamics can be combined fairly straightforwardly with

a typical numerical method for atmospheric dynamics. Section 2

describes the semi-implicit semi-Lagrangian vertical slice model

used in this study. The numerical methods are derived from

those used in the ENDGame dynamical core (Melvin et al. 2010;

Wood et al. 2014) now operational at the Met Office. The key

modification is that the equation of state is everywhere evaluated

via a Gibbs function. In particular, in the moist case condensation

and evaporation are automatically taken into account as part of the

semi-implicit solution procedure, not handled in a separate, time-

split, physics step as is often done.

Section 3 summarizes the four Gibbs functions that have been

implemented so far in the code and used in this study, noting, in

particular, the Gibbs functions that give a pseudo-incompressible

fluid and an incompressible fluid. Section 4 shows some example

results of a standard test case using these four Gibbs functions,

demonstrating the flexibility of the Gibbs function approach.

Section 5 discusses the errors that can result from handling

condensation in a time-split way, and which are avoided in the

more tightly coupled scheme presented here. Phase transitions

give rise to discontinuous derivatives in some thermodynamic

quantities; some possible implications for the numerical solution

method are discussed briefly in section 6. Conclusions and further

discussion are given in section 7.
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2. A semi-implicit semi-Lagrangian scheme using the Gibbs

function

For atmospheric modelling it is desirable to enforce mass

conservation by solving the density equation in conservative form,

and to improve Lagrangian conservation by solving an advection

equation for an entropy-like quantity; this is usually taken to be

potential temperature or one of its variants; here specific entropy

is used. The governing equations are therefore written in the form

D

Dt

(
∫

V

ρ dV

)

= 0, (5)

Dη

Dt
= 0, (6)

Dq

Dt
= 0, (7)

Du

Dt
+

1

ρ
∇p+∇Φ = 0, (8)

1/ρ− gp(p, T, q) = 0, (9)

η + gT (p, T, q) = 0. (10)

Here Φ is the geopotential, u = (u,w) is the two-dimensional

velocity vector, and D/Dt is the Lagrangian derivative. Coriolis

terms are neglected, as are forcing and dissipation terms. This set

comprises in effect seven equations for the seven unknowns ρ, η,

q, u, w, p, and T .

The numerical methods closely follow those used in ENDGame

(Wood et al. 2014). Motivated by the desire for good wave

dispersion properties, a C-grid staggering is used in the horizontal

(u offset half a grid length from ρ) and a Charney-Phillips

staggering is used in the vertical (w and η offset by half a grid

length from ρ). Second-order centred differences are used to

approximate the gradient and divergence. To capture accurately

the coupling between moisture and temperature, q is colocated

with η. In order to obtain optimal wave dispersion with the ρ−1∇p

form of the pressure gradient term it is necessary to satisfy the

equation of state (i.e. (9) and (10) together) at ρ points

ρ = ρ(p, η, q) (11)

and also at η points

ρ(w) = ρ(p, η, q), (12)

where an overbar indicates a vertical average, in order to

determine the density ρ(w) to be used in calculating the vertical

component of the pressure gradient term; see Thuburn (2017) for

details.

The notation in the density equation (5) indicates that it is

integrated using the SLICE scheme of Zerroukat et al. (2009),

which conservatively transports the mass in a domain-filling

set of departure cells to their corresponding arrival cells. The

modification of Thuburn et al. (2010) is used to ensure accurate

departure cell volumes. The code also includes the option to solve

the density equation in the form

Dρ

Dt
+ ρ∇ · u = 0 (13)

using a standard, non-conservative, interpolating semi-Lagrangian

scheme. The quantities η, q, and u are transported using a standard

semi-Lagrangian scheme with cubic Lagrange interpolation.

A semi-implicit semi-Lagrangian scheme for this system may

then be written

[ρ]n+1 − [ρ]nSLICE = 0, (14)

[η]n+1 − [η]nD = 0, (15)

[q]n+1 − [q]nD = 0, (16)
[

u+ ν∆t

(

1

ρ
px

)]n+1

−

[

u− (1− ν)∆t

(

1

ρ
px

)]n

D

= 0, (17)

[

w + ν∆t

(

1

ρ(w)
pz +Φz

)]n+1

−

[

w − (1− ν)∆t

(

1

ρ(w)
pz +Φz

)]n

D

= 0, (18)

along with the semi-Lagrangian trajectory departure point

calculations for u and w points and (9) and (10) at both ρ and

η points. Here, superscripts n and n+ 1 indicate the time step

number, subscript D indicates a quantity evaluated at a semi-

Lagrangian departure point, and ρ is transported using the SLICE

scheme. The off-centring parameter ν is set to 1/2 giving a centred

second-order in time Crank-Nicolson scheme for all the tests

described below. Henceforth, to keep the notation compact, details

of the spatial discretization are suppressed, except that an overbar

indicates where a vertical average is used to transfer a field from

ρ points to η points or vice versa, and superscript (w) is used to

indicate the density ρ(w) and temperature T (w) that satisfy the

equation of state at w points to distinguish them from the density

ρ and temperature T that satisfy the equation of state at ρ points.

Thus we have a coupled nonlinear system to be solved for the

unknowns at timestep n+ 1.

The coupled nonlinear system is solved using an iterative quasi-

Newton method. Suppose that after l Newton iterations the right

hand sides of (14)-(18) are not necessarily zero but equal to

some residuals Rρ, Rη , Rq , Ru, Rw, while (9) and (10) have

residuals Rgρ, Rgη at ρ points and R
(w)
gρ , R

(w)
gη at w points. We

seek increments to the unknowns, indicated by primes, intended

to reduce the residuals:

ρ′ + ν∆t∇ ·
(

ρ∗u′) = −Rρ, (19)

η′ + ν∆tw′η∗z = −Rη, (20)

q′ + ν∆tw′q∗z = −Rq, (21)

u′ +
ν∆t

ρ∗
p′x = −Ru, (22)

w′ +
ν∆t

ρ∗

(

p′z −
ρ(w)′

ρ∗
p∗z

)

= −Rw, (23)

−
ρ′

ρ∗ 2
− gppp

′ − gpTT
′ − gpqq′ = −Rgρ (24)

η′ + gpT p
′ + gTTT

′ + gTqq′ = −Rgη (25)

−
ρ(w)′

ρ∗ 2
− gppp′ − gpTT

(w)′ − gpqq
′ = −R

(w)
gρ (26)

η′ + gpT p′ + gTTT
(w)′ + gTqq

′ = −R
(w)
gη . (27)

The left hand sides of (19)-(27) are an approximate linearization

of (14)-(18) and the equation of state about a reference state

indicated by asterisks. (The derivatives of g on the left hand side

are also evaluated at the reference state.) There is some freedom

in the choice of the reference state, but it should be close to the

actual state for rapid convergence of the Newton iterations. Here

the reference state is taken to be the solution at time step n.

Although the linear system (19)-(27) appears somewhat

daunting, systematic elimination of unknowns leads to a
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familiar Helmholtz problem (or Poisson-like problem in the

incompressible or pseudo-incompressible cases). Elimination of

T (w)′ from (26), (27) gives

−
ρ(w)′

ρ∗ 2
+

(

g2pT
gTT

− gpp

)

p′ +

(

gpT
gTT

)

η′

+

(

gpT gTq

gTT
− gpq

)

q′ = −R
(w)
gρ −

gpT
gTT

R
(w)
gη , (28)

or∗

−
ρ(w)′

ρ∗
+ (ln ρ)∗p

∣

∣

∣

ηq
p′ + (ln ρ)∗η

∣

∣

∣

pq
η′ + (ln ρ)∗q

∣

∣

∣

ηp
q′

= −ρ∗R
(w)
gρ − (ln ρ)∗η

∣

∣

∣

pq
R

(w)
gη . (29)

(Subscripts to the right of the vertical bars indicate what is held

constant when the partial derivatives are taken.) Using (20) and

(21) to eliminate η′ and q′, applying the definition of the reference

state sound speed c

(ln ρ)∗p

∣

∣

∣

ηq
=

1

ρ∗c2
, (30)

and defining N2 by

N2 =

(

(ln ρ)∗η

∣

∣

∣

pq
η∗z + (ln ρ)∗q

∣

∣

∣

ηp
q∗z

)

p∗z
ρ∗

, (31)

(29) becomes

−
ρ(w)′

ρ∗
+

p′

ρ∗c2
− ν∆t

ρ∗N2

p∗z
w′ = R

(w)
eos , (32)

where

R
(w)
eos = −ρ∗R

(w)
gρ + (ln ρ)∗η

∣

∣

∣

pq

(

Rη −R
(w)
gη

)

+ (ln ρ)∗q

∣

∣

∣

ηp
Rq.

(33)

Eliminating ρ(w)′/ρ∗ from (23) then leaves

(

1 + ν2∆t2N2
)

w′ +
ν∆t

ρ∗

(

p′z −
p∗z
ρ∗c2

p′
)

= −Rw −
ν∆tp∗z
ρ∗

R
(w)
eos . (34)

Defining the vertical derivative operator

D1(p
′) ≡

1

(1 + ν2∆t2N2)

(

p′z −
p∗z
ρ∗c2

p′
)

(35)

allows (34) to be written compactly as

w′ +
ν∆t

ρ∗
D1(p

′) = Rpw, (36)

where

Rpw =
−1

(1 + ν2∆t2N2)

(

Rw +
ν∆tp∗z
ρ∗

R
(w)
eos

)

. (37)

Next, the analogue of (32) at ρ points is

−
ρ′

ρ∗
+

p′

ρ∗c2
− ν∆t

N2

p∗z
ρ∗w′ = Reos, (38)

∗ Using the standard formula for change of independent variable in a partial

derivative, e.g. αp|η = αp|T + α
T

∣

∣

p
Tp|η .

where

Reos = −ρ∗Rgρ + (ln ρ)∗η

∣

∣

∣

pq

(

Rη −Rgη
)

+ (ln ρ)∗q

∣

∣

∣

ηp
Rq.

(39)

Using (38) to eliminate ρ′ from (19) gives

p′

c2
+ ν∆t

(

ρ∗u′
)

x
+ ν∆tD2

(

ρ∗w
)

= −Rρ + ρ∗Reos, (40)

where

D2

(

ρ∗w′) ≡
(

ρ∗w′)

z
−

ρ∗

p∗z
N2ρ∗w′. (41)

Finally, using (22) and (36) to eliminate u′ and w′ from (40)

leaves
p′

c2
− ν2∆t2

{

p′x x +D2D1(p
′)
}

= RH , (42)

where

RH = −Rρ + ρ∗Reos + ν∆t
(

ρ∗Ru
)

x
− ν∆tD2

(

ρ∗Rpw
)

.

(43)

Equation (42) is a typical Helmholtz problem that arises

from implicit or semi-implicit integration of compressible fluid

equations. A variety of methods are available for its solution;

here a horizontally-multigrid method is used with a vertical line

solve and an underrelaxed Jacobi smoother in the horizontal. A

single V-cycle gives sufficient accuracy for rapid convergence of

the Newton iterations, except for the incompressible and pseudo-

incompressible cases for which two V-cycles are needed to avoid

noise in the divergence field. Having found p′, the increments to

other variables are found by back-substitution, and the Newton

update is carried out on all variables. Three Newton iterations

were used for the results shown below.

Note that the coefficients of the Helmholtz problem depend on

the equation of state only through the terms N2 and 1/c2. In the

moist case these quantities are defined in such a way that they

automatically take into account the effects of condensation and

evaporation. In the incompressible and pseudo-incompressible

cases 1/c2 goes to zero (section 3.3) and the Helmholtz problem

becomes a less local Poisson-like problem.

The Helmholtz problem (42) is only guaranteed to have a

solution if the Helmholtz operator on the left hand side is

elliptic. As with any model that treats gravity waves implicitly,

this property can break down if the coefficient
(

1 + ν2∆t2N2
)

in (35) becomes negative, which could happen if N2 becomes

negative and ∆t is too large. The inclusion of condensation

effects in the calculation of N2 might make the occurrence of

negative N2 more likely. It is common practice in numerical

models (e.g. Davies et al. 2005) to limit the values of N2 used

in this coefficient to prevent loss of ellipticity. Such a measure

is not needed in the experiments discussed below because of the

relatively small time steps used; however, it would be needed in a

larger-scale model taking longer time steps.

3. Some example Gibbs functions

Feistel et al. (2010) provide a very accurate expression, as a set

of functional fits to the best available experimental data, for

the Helmholtz function of humid air, from which the Gibbs

function may be calculated. It provides a valuable benchmark,

but is more accurate, and more complex, than needed for most

meteorological modelling. This section presents some example

Gibbs functions that might be used in meteorological models, for

dry air and wet air, and also for a pseudo-incompressible fluid and

an incompressible fluid. (But note that, for weather forecasting

or climate modelling, an extension to include ice would be a

minimum requirement.)

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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Many quantities of physical interest are given by or involve the

first and second derivatives of g. The derivatives are also needed if

a Newton method is used to solve the implicit equations that give

other quantities of interest (Appendix A). The first and second

derivatives of g for each of the examples below are given in

Appendix B.

3.1. Dry air

One simple example of a Gibbs function suitable for idealized

modelling is that of dry air approximated as a perfect gas:

g(p, T ) = −Cd
pT ln

(

T

T0

)

+RdT ln

(

p

pd0

)

. (44)

Here Rd and Cd
p are constants, superscripts d indicate dry air

values, and T0 and pd0 are constant reference values. The values

of all constants used are summarized in Table 1.

Note we have some freedom in the specification of g; we can

add A+BT for arbitrary constants A and B. The effect of A

is to offset the origin of g or equivalently e, by a constant. The

effect of B is to offset the origin of η by a constant. In both cases

there is no effect on any quantity that can be measured by physical

experiment.

3.2. Humid and wet air

Humid air, a mixture of dry air and water vapour without liquid

water, can be treated, to an excellent approximation, as a mixture

of perfect gases (Feistel et al. 2010). Let a be the mass fraction of

dry air in the mixture. Then

gav(p, T, a) = aga + (1− a)gv (45)

where

ga(pd, T ) = −Cd
pT ln

(

T

T0

)

+RdTL(1)
(46)

and

gv(pv, T ) = −Cv
pT ln

(

T

T0

)

+RvTL(2) + Lv
0

(

1−
T

T0

)

.

(47)

Here superscript v indicates values related to water vapour, Lv
0 is

a constant,

L(1) = ln

(

pd

pd0

)

= ln

(

εap

(1 + a(ε− 1)) pd0

)

, (48)

L(2) = ln

(

pv

pv0

)

= ln

(

(1− a)p

(1 + a(ε− 1)) pv0

)

, (49)

ε = Rd/Rv , and pv0 is another constant. As noted above, we are

free to add the last term on the right hand side in (47); it will

be used below to ensure consistency with the liquid water Gibbs

function. (We follow Feistel et al. (2010), who express gav as a

function of the mass fraction of dry air a rather than the mass

fraction of water vapour because this leads to a formal symmetry

between humid air and saline water.)

If we treat liquid water as an incompressible fluid of constant

density then its Gibbs function may be written (e.g. Vallis 2006,

with his β parameters set to zero and specific choices for other

constants)

gl(p, T ) = −ClT ln

(

T

T0

)

+ αl

(

p− psat0
T

T0

)

. (50)

Here superscript l indicates values related to liquid water, αl is

the constant specific volume of liquid water and psat0 is another

constant that will turn out to equal the saturation vapour pressure

of pure water vapour at T = T0.

The total Gibbs function for moist air, possibly containing

liquid water, is then given by

g(p, T, q) = (1− ql)gav(p, T, a) + qlgl(p, T ), (51)

where q is the mass fraction of total water in the sample, ql is the

mass fraction of liquid water in the sample, and a = (1− q)/(1−

ql) is the mass fraction of dry air in the gaseous part of the sample.

To complete the calculation it remains to determine a and

ql from the requirement that either the liquid water and water

vapour should be in equilibrium or there should be no liquid

water. For equilibrium the liquid water and water vapour should

have the same pressure, temperature, and chemical potential (e.g.

Feistel et al. 2010). Since the pressure and temperature are input

arguments to the Gibbs function, the first two conditions are

automatically satisfied. The chemical potential of water vapour in

the air-vapour mixture is given by

µv(p, T, a) = gav − agava (52)

(Feistel et al. 2010). For the gav given above, which neglects

certain virial interaction terms between water vapour and air, it

may be verified that

µv = gv(pv, T ), (53)

which is assumed in much of the literature on atmospheric

thermodynamics (e.g. Emanuel 1994; Curry and Webster 1999).

(However, the code described here implements the full version

(52) in readiness for more general gav .) In the absence of salinity

etc., the chemical potential of liquid water is given simply by its

Gibbs function

µl(p, T ) = gl. (54)

A practical way to complete the calculation is to determine the

saturation value of a, given p and T , by solving

µv (p, T, asat) = µl (p, T ) . (55)

Given a good first guess for asat, for example by using a standard

approximation for the saturation vapour pressure psat followed by

asat =
p− psat

p+ (ε− 1)psat
, (56)

a single Newton iteration is found to give a sufficiently accurate

solution. If q < 1− asat then there is insufficient water to achieve

saturation, so we have ql = 0, qv = q, a = 1− q, and

g(p, T, q) = gav(p, T, a). (57)

If q ≥ 1− asat then there is sufficient water to achieve saturation,

so a = asat, q
l = (q + a− 1)/a, and qv = q − ql, and the Gibbs

function is given by (51).

As noted above, there is some freedom in the choice of certain

constants in the Gibbs functions ga, gv , gl. However, these must

be chosen consistently between vapour and liquid in order to

give the correct latent heat of vaporization and saturation vapour

pressure. The latent heat of vaporization is given by (74), which,

for the equation of state discussed here, reduces to

Lv = hv − hl (58)

where

hv = gv + ηvT = Cv
pT + Lv

0 (59)
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and

hl = gl + ηlT = ClT + αlp (60)

are the specific enthalpies of vapour and liquid respectively,

evaluated using (47) and (50). Thus

Lv = Lv
0 +

(

Cv
p − Cl

)

T − αlp, (61)

so the constant Lv
0 must be chosen to be the latent heat of

vaporization extrapolated to T = 0 and p = 0. Also, the condition

for equilibrium between vapour and liquid (55) here reduces to

gv = gl. Substituting from (47) and (50) and evaluating at T = T0
with p = pv = psat0 gives

RvT0 ln

(

psat0

pv0

)

= 0. (62)

This is satisfied provided we choose pv0 = psat0 .

3.3. Pseudo-incompressible fluid

The pseudo-incompressible system of Durran (1989) has an

equation of state of the form

ρθ = ρr(z)θr(z) =
pd0
Rd

(

pr(z)

pd0

)1−κ

(63)

where ρr , θr and pr are reference profiles that are functions

only of height. By integrating and making some specific choices

for functions of integration (details omitted) we obtain a Gibbs

function that has a form somewhat reminiscent of the dry air Gibbs

function (44):

g(p, T, z) = Cd
pT

[

ln

{

Πr

(

(1− κ) + κ
p

pr

)}

− ln

(

T

T0

)]

,

(64)

where Πr(z) =
(

pr/p
d
0

)κ
is the reference Exner function profile.

It may be verified that the internal energy density ρe = ρ(g +

ηT − αp) agrees with the expression Cd
vρrΠrθr given by Durran

(1989). It may also be verified that the form of N2 defined in (31)

remains appropriate despite the explicit z dependence in g. By

construction, this Gibbs function gives

1

c2
=

∂ρ

∂p

∣

∣

∣

∣

η

=
g2pT − gppgTT

g2pgTT
= 0. (65)

Thus the first term on the left hand side of (42) vanishes.

3.4. Incompressible fluid

A special case of the pseudo-incompressible system is obtained

by setting ρr(z)θr(z) = pd0/R
d = const, pr = pd0, Πr = 1:

g(p, T ) = Cd
pT

[

ln

(

(1− κ) + κ
p

pd0

)

− ln

(

T

T0

)]

. (66)

In this case the density is a function only of the potential

temperature, so if Dθ/Dt = 0 then Dρ/Dt = 0 and ∇ · u = 0.

For both the pseudo-incompressible and incompressible cases,

a variety of different Gibbs functions are possible that give

the desired equation of state. The forms given here have been

chosen so that parameters such as p, T , and θ retain more or

less intuitive interpretations comparable with the compressible

case. But note the slightly modified interpretation of θ in the

pseudo-incompressible case: it is the temperature that an air parcel

would have if moved reversibly and adiabatically to the reference

pressure pd0 and height z = 0.

4. Example results

The flexibility of the Gibbs function approach is demonstrated

using the standard buoyant bubble test case of Bryan and Fritsch

(2002). For a dry air case and for a saturated moist air case,

Bryan and Fritsch (2002) impose an identical initial positive

buoyancy perturbation upon a resting, neutrally stratified,

hydrostatically balanced background state and follow the

subsequent evolution over a time of 1000 s.

In the dry case the constant background potential temperature

is set to θ0 = 300K and the buoyancy is given by Φzθ
′/θ0 where

θ′ is the potential temperature perturbation. (Although not stated

explicitly, Bryan and Fritsch appear to hold the pressure fixed

as they perturb buoyancy, and we do the same here.) In the

saturated case the total water mixing ratio is r = q/(1− q) =

0.02, the constant background equivalent potential temperature

is set to θe 0 = 320K, and the buoyancy is expressed in terms

of a buoyancy potential temperature. An equivalent definition of

buoyancy in both cases (assuming zero pressure perturbation) is

−Φzρ
′/ρ (note the denominator is the full ρ, not the background

value) and this definition generalizes to arbitrary equations of

state, so it is used here for all cases. Provided we use the same

values of all physical constants (Table 1) and set αl to zero, the

Gibbs function (44) gives the Bryan and Fritsch dry case and the

Gibbs function (51) gives the Bryan and Fritsch saturated case.

In addition to the two Bryan and Fritsch cases, two further,

analogous, cases were carried out. The first used the pseudo-

incompressible Gibbs function (64), taking the reference profile

to be the hydrostatically balanced background profile Πr =

1− Φ/(Cd
pθ0) and pr = pd0Π

1/κ
r , with background potential

temperature θ0 = 300K. The second used the incompressible

Gibbs function (66) with background potential temperature θ0 =

375K. In all cases the surface pressure was set to 105 Pa.

As in Bryan and Fritsch (2002), a 20 km wide and 10 km deep

domain is used with the initial buoyant perturbation centred at

x = 10 km, z = 2km. The results shown here use 192× 96 grid

cells, which is convenient for the multigrid solver, giving a slightly

coarser resolution than the 100m used by Bryan and Fritsch

(2002). The time step was set to ∆t = 10 s.

Figure 1 shows the potential temperature perturbation and

Fig. 2 shows the vertical velocity for the four cases at t = 1000 s.

The dry air and saturated cases agree very closely with the

benchmark simulations of Bryan and Fritsch (2002). The solution

in the pseudo-incompressible case is almost identical to the

compressible dry air case, in agreement with Benacchio et al.

(2014). In the absence of numerical errors and neglecting pressure

fluctuations, the buoyancy would be materially conserved in the

three dry cases; in fact the peak decreases by around 10− 15%

(not shown) due to numerical errors. In the saturated case, on

the other hand, latent heating generates additional buoyancy (the

peak value increases by about 38%); consequently the bubble in

the saturated case rises slightly faster and grows slightly bigger

than in the dry compressible and pseudo-incompressible cases.

The bubble in the incompressible case conserves its initial volume

and so remains smaller than the other three, which expand as they

rise.

As another example of the flexibility of the approach, the

sensitivity to the specific volume of liquid water was tested by

changing αl from zero to the more realistic value 10−3 m3kg−1.

In fact the sensitivity is extremely small: the maximum w at

t = 1000 s increased by only about 0.5mms−1 compared to the

result shown in Fig. 2(b). But the point is that such a sensitivity

test would be quite difficult to carry out with the usual approach

to atmospheric model thermodynamics because there is no longer

a (consistent) explicit analytical expression for the saturation

vapour pressure, whereas in the present approach it is a simple

matter of changing one model parameter.
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Table 1. Constants used for the results shown in section 4

Constant Description Value

Cd
p Specific heat capacity of dry air at constant pressure 1004 Jkg−1K−1

Cv
p Specific heat capacity of water vapour at constant pressure 1885 Jkg−1K−1

Cl Specific heat capacity of liquid water at constant pressure 4186 Jkg−1K−1

Lv
0 Latent heat of vaporization at T = 0, p = 0 3.1285× 106 Jkg−1

pd0 Reference pressure for dry air 105 Pa

pv0 Reference pressure for water vapour pv0 = psat0

psat0 Saturation vapour pressure for pure water at T = T0 611.2Pa

Rd Gas constant for dry air 287 Jkg−1K−1

Rv Gas constant for water vapour 461 Jkg−1K−1

T0 Reference temperature 273.15K

αl Specific volume of liquid water 0m3kg−1

ε Ratio of Rd and Rv ε = Rd/Rv

κ Ratio of Rd and Cd
p κ = Rd/Cd

p
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Figure 1. Perturbation to potential temperature or equivalent potential temperature (K) at t = 1000 s for (a) dry air, (b) saturated air, (c) incompressible fluid, (d) pseudo-
incompressible fluid. The contour interval is 0.2K except in (b) where it is 0.5K.

5. Physics-dynamics coupling

In many atmospheric models the time stepping is split. First

the increments due to dynamics and transport are computed

and added, then the increments due to other physical processes,

including an adjustment back to saturation in any air that has

become supersaturated as a result of dynamics and transport. To

get an estimate of the magnitude of the errors that result from

such splitting the following simple calculation was carried out.

An air parcel was assumed to have initial pressure p = 105 Pa,

temperature T = 280K, and specific humidity q = 0.00196. The

parcel was then ‘lifted’ in such a way as to mimic a split

time stepping scheme. The parcel’s pressure was reduced by an

amount corresponding to an ascent of 100m, and the temperature

computed so as to maintain the total entropy of the parcel while

keeping qv and ql fixed. Then, if the parcel was supersaturated,

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls



8 J. Thuburn

w

(a)
z 

(k
m

)

4 6 8 10 12 14 16
0

2

4

6

8

10
w

(b)

4 6 8 10 12 14 16
0

2

4

6

8

10

w

(c)

x (km)

z 
(k

m
)

4 6 8 10 12 14 16
0

2

4

6

8

10
w

(d)

x (km)
4 6 8 10 12 14 16

0

2

4

6

8

10

Figure 2. Vertical velocity (ms−1) at t = 1000 s for (a) dry air, (b) saturated air, (c) incompressible fluid, (d) pseudo-incompressible fluid. Contour interval is 2ms−1.

it was adjusted back to saturation while conserving its volume

and total internal energy. One hundred such step were carried out,

lifting the parcel to a height of 10 km. This parcel was compared

with a control parcel that conserved entropy and was allowed to

adjust to saturation as it was lifted.

Figure 3 shows the results of this calculation. As expected, the

two parcels are identical until the height at which condensation

begins, close to 2 km. Above this height, the time split parcel

has slightly less buoyancy than the control parcel. This happens

because, at the end of the first part of the split step, not all of

the latent heat has been released to produce buoyancy. At the

end of the saturation adjustment the latent heat has been released,

but since this occurs at constant volume the buoyancy has still

not been realized. Thus the buoyancy of the time split parcel

effectively lags one step behind the control parcel.

In the time split calculation the parcel becomes supersaturated

before condensation occurs; thus there should be a net production

of entropy because the condensation occurs irreversibly. This

entropy production is visible as an increase in θe. The increase

is, in fact, very small, of order 0.01K, but it is systematic and

measurable.

The release of latent heat during the second part of the split step

increases the pressure of the parcel. If the dynamics and transport

step produced a parcel pressure in balance with its surroundings

then this latent-heat-induced perturbation will be unbalanced, and

in a full model could manifest as spurious acoustic waves. Figure 3

shows this pressure perturbation peaking at around 0.75 hPa,

which is comparable to the pressure perturbations seen in the

compressible buoyant bubble case of section 4 (not shown). Thus,

although the buoyancy errors and entropy errors resulting from

time splitting are both very small, in fact much smaller than those

resulting from advection errors, the pressure errors are significant.

For this reason, Bryan and Fritsch (2002) use an unsplit time

integration scheme that includes condensation terms along with

the dynamics and transport, and they iterate the time step in order

to obtain a condensation rate that prevents supersaturation at the

end of the time step. In this way, their time integration scheme

behaves like the control parcel in the calculation of Fig. 3. In

the model described here, the same effect is achieved by building

the assumption of no supersaturation into the Gibbs function, and

coupling the full, moist equation of state to the dynamics through

the semi-implicit time integration scheme.

Another advantage of the approach used here is that the quantity

N2 appearing in the Helmholtz problem is the full static stability

experienced by the fluid, taking into account any condensation or

evaporation. This will help to ensure good convergence of the fully

coupled Newton solver of section 2.

6. Numerical effects near phase transitions

For initializing the model, for the time integration itself, and for

calculating diagnostics for output, there are many places where

it is necessary to compute some thermodynamic quantity from

those that are already known. This can either be done directly
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Figure 3. (a) Buoyancy (ms−2), (b) Equivalent potential temperature (K), (c) Pressure perturbation (Pa), for a rising air parcel computed using a split time step (dashed)

and a control air parcel (solid).

or through some iterative calculation such as the Newton method

(Appendix A). However, a caveat should be given. Near phase

transitions some quantities have discontinuous derivatives, so a

Newton method might converge slowly or even fail to converge.

In fact, the only example of such a calculation encountered by

the author for which a Newton iteration fails to converge is in

calculating T given p, q, and enthalpy h:

g(p, T, q)− TgT (p, T, q) = h. (67)

A practical solution for this example is first to determine the

dewpoint temperature Td (83) (Appendix A) and hence dewpoint

enthalpy hd, and then use either the unsaturated Gibbs function

or the saturated Gibbs function according to whether h ≤ hd or

h > hd, thus avoiding the discontinuous derivative hT |pq .

Another potential issue that might arise near phase transitions is

that N2 defined by (31) will be discontinuous between unsaturated

air and adjacent saturated air. The resulting roughness in the

Helmholtz coefficients might adversely affect convergence of the

solver.

These issues do not affect the test cases described above

because the air is either always dry or always saturated. Therefore,

to investigate these effects a further test case was carried out. The

full moist air equation of state (51) was used. The initial buoyancy

perturbation was identical to the other four test cases, but the

initial specific humidity was set to either 0.002/1.02 (one tenth

of the value in the saturated test case) or 95% of the saturation

value, whichever is smaller. Initially there is no liquid water,

but as the buoyant bubble rises the air within becomes saturated

and a cloud forms, so that saturated and subsaturated regions co-

exist. Examination of the N2 field for the dry case, the saturated

case, and this cloud case shows that it is dominated by the sharp

gradients in θ or θe that form at the edge of the rising bubble

due to transport and shear; the cloud case is not noticeably more

rough than the other two. The convergence of the solver was also

investigated by looking at the residuals in (19)-(27) and (43).

and how they decreased with iteration number. Again there was

no noticeable difference between the cloud case and the dry and

saturated cases. The maximum residuals typically decrease by an

order of magnitude per iteration in all three cases.

Thus, for the test cases investigated here, numerical effects near

phase transitions have no adverse effect on the solution method.

However, it is important to be aware of the possibility of such

effects in other situations.

7. Conclusions and Discussion

The feasibility of specifying the equation of state via the Gibbs

thermodynamic potential within a semi-implicit semi-Lagrangian

flow solver has been demonstrated. The flexibility of the approach

has been shown by carrying out a standard buoyant bubble test

case using four different equations of state: dry air, saturated

air, incompressible fluid, and pseudo-incompressible fluid. In the

pseudo-incompressible case the Gibbs function must be allowed

an explicit dependence on z as well as on p, T and q. In the

incompressible and pseudo-incompressible cases, the equation

of state, given ρ and η, does not determine the pressure. Thus

the equation of state and the dynamical equations arising from

the implicit time integration must be solved as a single coupled

system. This is analogous to the inclusion of a hydrostatic

switch in the ENDGame solver (Wood et al. 2014); it is only

straightforward for an implicit time integration scheme.

‘Blended’ equation sets (e.g. Benacchio et al. 2014;

Klein and Benacchio 2016), for example an equation set

intermediate between compressible dry air and pseudo-

incompressible, can be obtained by combining the corresponding

Gibbs functions in appropriate ways. Thermodynamic consistency

is automatically guaranteed by the approach. It may be verified

that the particular blended compressible-pseudo-incompressible

equation set of Klein and Benacchio (2016) is given not by a

simple weighted average of (44) and (64), but by

g(p, T ) = Cd
pT

[

ln

{

βΠ+ (1− β)Πr

(

(1− κ) + κ
p

pr

)}

− ln

(

T

T0

)]

, (68)

where β ∈ [0, 1] is the blending parameter (called α in

Klein and Benacchio 2016), with β = 0 giving pseudo-

incompressible and β = 1 giving fully compressible.

It is worth commenting that the incompressible system studied

here is not equivalent to the Boussinesq equations. Unlike the

Boussinesq equations, the full density is used wherever density

appears. Density is a function only of entropy, independent of

pressure; thus 1/c2 = 0 and, in the absence of diabatic heating,

density is materially conserved and the divergence vanishes.

However, diabatic heating can modify the entropy and hence the

density of an air parcel, so a non-zero divergence is needed to

accommodate the change in specific volume. In the Boussinesq

equations, on the other hand, it is volume rather than mass

that is conserved, and zero divergence is enforced even under

diabatic heating. The numerical methods used here respect the

mass budget exactly. Thus, any Lagrangian changes in density,

including heating-induced changes in the incompressible case,

are accompanied by a corresponding divergence. When explicit

diabatic heating is absent in the incompressible case, as in

section 4 above, zero divergence is not directly enforced by

the numerics, but it is hoped that the solver will indeed give

divergence close to zero. Figure 4 shows the divergence at t =

1000 s for the incompressible case and, for comparison, the dry

compressible case. In the compressible case the divergence is

very strongly correlated with the vertical velocity (Fig. 2), as

expected. In the incompressible case the peak divergence is

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls



10 J. Thuburn

two orders of magnitude smaller, and the non-zero values are

concentrated around the sharp entropy gradients at the edge of the

bubble. These are the locations where the numerical errors in the

advection of η and ρ, the fact that η and ρ use different advection

schemes, and the averaging of η to ρ points because of the vertical

grid staggering will have greatest effect. The importance of

accurate mass conservation is shown by one further test. When the

incompressible experiment is repeated with standard interpolating

semi-Lagrangian advection of ρ rather than SLICE, the spurious

divergence is an order of magnitude larger.

On a related point, the model code, as currently formulated,

conserves the total density, but not necessarily the dry mass and

water that make up that total. Since the sources and sinks of dry

mass are essentially zero even when there are strong sources and

sinks of water, it might be desirable to conserve dry mass exactly.

This could be achieved straightforwardly by replacing (14) by the

corresponding equation for dry mass

[

ρd
]n+1

−
[

ρd
]n

SLICE
= 0, (69)

and diagnosing ρ = (1 + q)ρd as needed.

By coupling the full equation of state to the dynamics via the

Gibbs function, including the equilibrium between water vapour

and liquid in the saturated case, the numerical integration scheme

presented here prevents the occurrence of supersaturation, and

eliminates the unbalanced pressure perturbations that could result

from a time split treatment of condensation.

Despite the apparent complexity of the Gibbs function

approach, with its implicit representation of the equation of

state, the additional computational cost is rather modest. Calls

to evaluate the Gibbs function and its derivatives are made 1 +

5NNewton times per grid cell per step, where NNewton is the

number of Newton iterations. One call is needed to evaluate ρ(w)

at time level n in (18). Then, for each Newton iteration, one call

is needed to evaluate ρ(w) at time level n+ 1 in (18), two calls

are needed to evaluate 1/c2, N2, and the residuals in (9) and

(10) at ρ-levels and w-levels, and two calls are needed for the

back substitution to compute T ′ and T (w)′. The number of calls

could be reduced at the price of increased storage by saving some

information rather than recomputing it.

The choice to use the Gibbs function rather than one of

the other thermodynamic potentials deserves some discussion.

Feistel et al. (2010) note that the Gibbs function is convenient

because it expresses all properties as functions of p and T ,

which are directly measurable. Near a phase transition g(p, T )

and h(p, η) are multivalued, so we must consider separate g or

h for each phase and impose the condition for equilibrium to

determine how much of each phase is present. On the other

hand, e(α, η) and f(α, T ) are single valued even near a phase

transition, and so at first might appear more convenient. However,

near a phase transition the sound speed squared can become

negative at certain points in (α, η) or (α, T ) space, and this

could be problematic in a numerical model. Thus whichever

thermodynamic potential is used, some special treatment will be

needed near phase transitions. The Gibbs function is appealing

for the treatment of phase equilibria because p and T are input

arguments; thus two of the three criteria for equilibrium (equal

p and equal T in the two phases) are automatically satisfied,

and determining the equilibrium is then a problem in a single

unknown.

In this paper sources and sinks of heat and water have been

neglected, and equilibrium between liquid water and vapour has

been assumed. In reality, sources, sinks, and departures from

equilibrium, including fallout and evaporation of condensate,

are important for many meteorological processes (e.g. Bannon

2002; Raymond 2013, and references therein), and their inclusion

significantly complicates the governing equations. Nevertheless,

a self-consistent equilibrium, source-free formulation should be a

useful starting point for the inclusion of such processes.

In weather prediction and climate models important subgrid

processes such as radiation, boundary layer fluxes, and shallow

and deep convection are parameterized. In typical computer codes

the equation of state appears implicitly or explicitly in numerous

places, and adapting those parameterizations to make use of a

Gibbs function would involve major effort. Nevertheless, it is

hoped that the self-consistency of the Gibbs function approach,

together with its flexibility to simplify, or ‘upgrade’, the equation

of state will encourage model developers to consider the approach.
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Appendix A. Some common thermodynamic quantities

This Appendix summarizes how some thermodynamic quantities

commonly used in Meteorology can be expressed in terms of the

Gibbs function and its derivatives. See Feistel et al. (2010) for

more details and derivations, but note that they use a different

definition of equivalent potential temperature.

Given p, T , and q, some quantities can be calculated directly

from the derivatives of the Gibbs function:

• Specific heat capacity at constant pressure

Cp = −TgTT ; (70)

• specific heat capacity at constant volume

Cv =
T
(

g2pT − gppgTT

)

gpp
; (71)

• specific enthalpy

h = g − TgT ; (72)

• specific internal energy

e = g − pgp − TgT ; (73)

• latent heat of vaporization

Lv = hav − ahava − hl

= gav − agava − TgavT + aTgavTa

− gl + TglT ; (74)

• inverse sound speed squared

1

c2
=

g2pT − gppgTT

g2pgTT
; (75)

• static stability

N2 = −Φz

(

(ln ρ)η

∣

∣

∣

pq
ηz + (ln ρ)q

∣

∣

∣

ηp
qz

)

= −Φzρ

{(

gpT
gTT

)

ηz +

(

gpT gTq

gTT
− gpq

)

qz

}

.(76)

Some quantities must be found by solving an implicit equation

or system of equations for the desired quantity:
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Figure 4. Divergence at t = 1000 s for (a) dry air, contour interval 2 × 10−4 s−1, and (b) incompressible fluid, contour interval 2 × 10−6 s−1. Negative contours are

dotted and the zero contour is omitted.

• Potential temperature

gT (p0, θ, q) = gT (p, T, q) , (77)

(in the pseudo-incompressible case the left hand side must

be evaluated at z = 0 and the right hand side at the current

height z);

• equivalent potential temperature

(1− q)gavT (p0, θe, a = 1) + qglT (p0, θe) = gT (p, T, q) ;

(78)

• relative humidity

H =
pv

psat
=

(1− a) (1 + asat(ε− 1))

(1− asat) (1 + a(ε− 1))
(79)

where

µv (p, T, asat) = µl (p, T ) , (80)

µv = gav − agava , (81)

and

µl = gl; (82)

• dewpoint temperature

µv (p, Td, a) = µl (p, Td) ; (83)

• lifting condensation level (for a subsaturated parcel)

µv (pLCL, TLCL, a) = µl (pLCL, TLCL) ;

gT (pLCL, TLCL, q) = gT (p, T, q) .

}

(84)

For all of these quantities a small number of Newton iterations

(around three) was found to give sufficient accuracy for practical

purposes.

Appendix B. Derivatives of example Gibbs functions

The derivatives of the example Gibbs functions given in section 3

are listed here for the convenience of readers wishing to

implement them in their own code.

7.1. Dry air (section 3.1)

gp =
RdT

p
; gT = −Cd

p

{

1 + ln

(

T

T0

)}

+Rd ln

(

p

pd0

)

;

(85)

gpp = −
RdT

p2
; gpT =

Rd

p
; gTT = −

Cd
p

T
. (86)

7.2. Air and water vapour (section 3.2)

The derivatives of gav are given by

gavp =
(

aRd + (1− a)Rv
)

T

p
; (87)

gavT = −
(

aCd
p + (1− a)Cv

p

)

{

1 + ln

(

T

T0

)}

+
(

aRdL(1) + (1− a)RvL(2)
)

− (1− a)
Lv
0

T0
; (88)

gava = −
(

Cd
p − Cv

p

)

T ln

(

T

T0

)

+
{

Rd
(

aL(1)
)

a
+Rv

(

(1− a)L(2)
)

a

}

T

− Lv
0

(

1−
T

T0

)

; (89)

and

gavpp = −
(

aRd + (1− a)Rv
)

T

p2
; (90)

gavpT =
(

aRd + (1− a)Rv
)

1

p
; (91)

gavTT = −
(

aCd
p + (1− a)Cv

p

)

1

T
; (92)

gavpa =
(

Rd −Rv
)

T

p
; (93)

gavTa = −
(

Cd
p − Cv

p

)

{

1 + ln

(

T

T0

)}

+
{

Rd
(

aL(1)
)

a
+Rv

(

(1− a)L(2)
)

a

}

+
Lv
0

T0
; (94)

gavaa =
{

Rd
(

aL(1)
)

aa
+Rv

(

(1− a)L(2)
)

aa

}

T. (95)

These expressions may be evaluated making use of
(

aL(1)
)

a
= L(1) +

1

(1 + a(ε− 1))
; (96)

(

aL(1)
)

aa
=

1

a (1 + a(ε− 1))2
; (97)

(

(1− a)L(2)
)

a
= −L(2) −

ε

(1 + a(ε− 1))
; (98)

(

(1− a)L(2)
)

aa
=

ε2

(1− a) (1 + a(ε− 1))2
. (99)

(100)
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12 J. Thuburn

Note that gavTa and gavaa blow up in the limits a → 1 (pure air)

and a → 0 (pure water vapour); in these limits it is safest to use

gav = ga and gav = gv , respectively.

7.3. Liquid water (section 3.2)

The derivatives of gl are given by

glp = αl; (101)

glT = −Cl

{

1 + ln

(

T

T0

)}

−
αlpsat0

T0
; (102)

glpp = 0; (103)

glpT = 0; (104)

glTT = −
Cl

T
. (105)

(106)

7.4. Humid and wet air (section 3.2)

If a > asat then the air is unsaturated and

gq = −gava , gpq = −gavpa ,

gTq = −gavTq, gqq = gavaa, (107)

with the other partial derivatives of g equal to the corresponding

partial derivatives of gav .

In the saturated case care is needed in calculating the partial

derivatives of g since we must allow for changes in the fractions

of vapour and liquid water, noting that the equilibrium µv = µl

must be maintained. Also, attention must be paid to what is held

constant (q or a) as derivatives with respect to p and T are taken.

After some manipulation we obtain (Feistel et al. 2010)

gp = (1− ql)gavp + qlglp, (108)

gT = (1− ql)gavT + qlglT , (109)

gq =
(

gl − gav
)

/a, (110)

gpp = (1− ql)gavpp + qlglpp − (1− ql)
Λ2
p

a2gavaa
, (111)

gpT = (1− ql)gavpT + qlglpT − (1− ql)
ΛpΛT

a2gavaa
, (112)

gTT = (1− ql)gavTT + qlglTT − (1− ql)
Λ2
T

a2gavaa
, (113)

gpq =
(

glp − gavp

)

/a, (114)

gTq =
(

glT − gavT

)

/a, (115)

gqq = 0, (116)

where

Λp = gavp − agavpa − glp, (117)

ΛT = gavT − agavTa − glT . (118)

7.5. Pseudo-incompressible (section 3.3)

The derivatives of g are

gp =
RdT

(1− κ)pr + κp
, (119)

gT = Cd
p

[

ln

{

Πr

(

(1− κ) + κ
p

pr

)}

−

{

1 + ln

(

T

T0

)}]

, (120)

gpp = −
κRdT

((1− κ)pr + κp)2
, (121)

gpT =
Rd

(1− κ)pr + κp
, (122)

gTT = −
Cd
p

T
. (123)

7.6. Incompressible (section 3.4)

The derivatives of g are

gp =
RdT

(1− κ)pd0 + κp
, (124)

gT = Cd
p

[

ln

(

(1− κ) + κ
p

pd0

)

−

{

1 + ln

(

T

T0

)}]

,(125)

gpp = −
κRdT

(

(1− κ)pd0 + κp
)2

, (126)

gpT =
Rd

(1− κ)pd0 + κp
, (127)

gTT = −
Cd
p

T
. (128)
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