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ABSTRACT

A compositing scheme that predicts changes in tropical precipitation under climate change from changes in

near-surface relative humidity (RH) and temperature is presented. As shown by earlier work, regions of high

tropical precipitation in general circulation models (GCMs) are associated with high near-surface RH and

temperature. Under climate change, it is found that high precipitation continues to be associated with the

highest surface RH and temperatures in most CMIP5 GCMs, meaning that it is the ‘‘rank’’ of a given GCM

grid box with respect to others that determines how much precipitation falls rather than the absolute value of

surface temperature or RH change, consistent with the weak temperature gradient approximation. Further, it

is demonstrated that the majority of CMIP5 GCMs are close to a threshold near which reductions in land RH

produce large reductions in the RH ranking of some land regions, causing reductions in precipitation over

land, particularly South America, and compensating increases over ocean. Recent work on predicting future

changes in specific humidity allows the prediction of the qualitative sense of precipitation change in some

GCMs when land surface humidity changes are unknown. However, the magnitudes of predicted changes are

too small. Further study, perhaps into the role of radiative and land–atmosphere feedbacks, is necessary.

1. Introduction

Changes in regional precipitation in the tropics per

Kelvin warming under a given climate change scenario

differ substantially across contemporary general circula-

tion models (GCMs) (Collins et al. 2013). In an effort to

understand the differences, researchers have employed a

number of schemes or ‘‘decompositions’’ that express

precipitation changes in terms of a number of physically

interpretable components (e.g., Emori and Brown 2005;

Bony et al. 2013; Chadwick et al. 2013, 2014; Wills et al.

2016). Decompositions have been derived in a variety of

ways, but most have components identified as

‘‘thermodynamic,’’ which are due to changes in atmo-

sphericmoisture, and ‘‘dynamic,’’ which are due to changes

in the intensity and location of atmospheric circulation

features. The terms can be subdivided. Relevant to our

study, the dynamic term may be split into a ‘‘weakening’’

term that describes precipitation changes due to the slow-

ing down of atmospheric circulation under global warming,

and a ‘‘shift’’ term that describes movement of pre-

cipitation patterns.

The thermodynamic termcanbeestimatedby combining

changes in surface specific humidity (SH), which dominate

changes in atmospheric moisture under climate change,

with the climatological (i.e., unperturbed) atmospheric

circulation to predict changes in moisture convergence and

therefore changes in precipitation that would occur if

other factors were unaltered. Over tropical oceans, a

typical GCM maintains near-constant relative humidity

(RH) under climate change. Hence fractional changes

in near-surface SH follow fractional changes in satura-

tion SH predicted by the Clausius–Clapeyron equation.

Supplemental information related to this paper is avail-

able at the Journals Online website: http://dx.doi.org/10.1175/

JCLI-D-16-0649.s1.

Corresponding author: F. Hugo Lambert, f.h.lambert@exeter.ac.

uk

15 JUNE 2017 LAMBERT ET AL . 4527

DOI: 10.1175/JCLI-D-16-0649.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

http://dx.doi.org/10.1175/JCLI-D-16-0649.s1
http://dx.doi.org/10.1175/JCLI-D-16-0649.s1
mailto:f.h.lambert@exeter.ac.uk
mailto:f.h.lambert@exeter.ac.uk
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


The thermodynamic change in precipitation over oceans

is therefore an increase of about 7% K21. Increases over

land can be smaller if there are reductions in landRH.The

weakening term can be estimated by combining changes

in atmospheric circulation with the climatological mois-

ture field. GCMs predict a slowing down of the tropical

circulation and an associated reduction in precipitation of

about 3% or 4%K21, which reflects the fact that the de-

mand for convective heating of the atmosphere increases

at a lower rate than the availability of moisture at the

surface (e.g., Vecchi and Soden 2007). The combined ef-

fect of the thermodynamic and weakening terms is an

increase in precipitation of about 3%K21 in regions of

climatological atmospheric convergence and a small re-

duction or no change in regions of divergence (the latter

typically experience little climatological precipitation)

that is known as the ‘‘rich-get-richer’’ response (Mitchell

et al. 1987; Chou and Neelin 2004; Held and Soden 2006).

The residual difference between GCM-simulated pre-

cipitation change and the sum of the so-called thermo-

dynamic and weakening terms can then be attributed to

what we call shifts, which represent the movement of

precipitation patterns. A problem is that these shifts are

poorly understood but typically large. In particular, they

dominate the meridional mean zonally asymmetric re-

sponse (Chadwick et al. 2013;Wills et al. 2016), governing

the key impact-relevant question of whether areas of

precipitation will shift onto or away from land in future

(Allan 2014; Hawkins et al. 2014; Good et al. 2016).

Prompted by the need to understand changes in the

land–sea contrast of tropical precipitation, in this paper

we develop and test a new compositing scheme that es-

timates shifts in precipitation from patterns of surface

temperature and humidity change without the need to

rely on residuals. We concentrate on meridional mean

change because a substantial literature on zonal mean

change and its relationship to aerosol forcing and in-

terhemispheric energy budget imbalance already exists

(e.g., Yoshimori and Broccoli 2008; Scheff and Frierson

2012; Chiang et al. 2013; Hwang et al. 2013) and because

GCM-simulated response is more obviously connected

with asymmetries in surface properties caused by zonal

variations in land fraction than in the zonal mean case.

(We do make zonal mean results and maps available in

the online supplemental information for reference.) The

remainder of the paper is arranged as follows: in section 2,

we explain the scheme and how it is motivated by earlier

theory. In section 3, we describe the GCM data that we

will use to test the scheme. Section 4 contains the results,

showing the extent to which GCMs conform to the

scheme. The scheme is a classification to aid un-

derstanding and not a prognostic theory of future pre-

cipitation change. In section 5, however, we show what

can be achieved without knowledge of land humidity

change as a first step toward a prognostic theory. Section

6 presents a discussion of the implications of our results

and section 7 is a short summary of our main conclusions.

2. Precipitation compositing scheme

a. Theoretical and modeling background

The unique conditions that exist near the equator

allow a simple interpretation of many features of trop-

ical climate (Schneider 1977). Specifically, the weakness

of the Coriolis force prevents the tropical free atmo-

sphere above about 700 hPa from maintaining large

horizontal gradients of pressure or temperature. This is

termed the ‘‘weak temperature gradient’’ approxima-

tion. Horizontal variations in moisture content in the

free troposphere do exist, but these are dwarfed by

variations at the surface. The result is that the occur-

rence of clouds and precipitation in the tropics can be

anticipated through some measure of the relationship

between conditions in the local atmospheric boundary

layer, which may vary substantially, and mean condi-

tions in the free atmosphere. Although organized sys-

tems such as tropical waves and cyclones do occur, a

large volume of work has developed understanding of

precipitation and cloud by treating the tropics as a set of

vertical columns that interact only via the ‘‘mean field’’

of the nearly uniform free atmosphere (Sobel and

Bretherton 2000). Many studies have achieved this

through composites, which group different geographical

locations by similar local properties, to classify local be-

havior into sets of regimes with common features allowing

easier interpretation. Bretherton et al. (2004) and Biasutti

et al. (2006) grouped climatological precipitation by pre-

cipitable water and near-surface RH; Emori and Brown

(2005) grouped changes in precipitation by 500-hPa ver-

tical velocity; Allan (2012) grouped changes in pre-

cipitation by 500-hPa vertical velocity and surface

temperature; Wyant et al. (2009) grouped changes in low

cloud relevant to radiative feedbacks using lower-

tropospheric stability, which is the difference between

near-surface and 700-hPa potential temperature; Lambert

and Taylor (2014) and Ferraro et al. (2015) grouped clear-

sky radiative feedbacks by near-surface temperature and

precipitation; and Webb et al. (2015) grouped cloud radi-

ative feedbacks by precipitation in convecting regions. The

last three articles demonstrate that the robustness of these

mean-field ideas is such that even precipitation itself is a

useful compositing variable under tropical conditions.

These and other studies reveal that convection and

precipitating cloud regimes are associated with high

precipitable water, upward vertical velocity, high
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surface temperature, and low lower-tropospheric sta-

bility, and that nonprecipitating low cloud regimes are

associated with low precipitable water, downward ver-

tical velocity, low surface temperature, and high lower-

tropospheric stability. For surface temperature and

precipitable water in particular, it is important to rec-

ognize that it is for the most part not the absolute values

of these quantities that determine climatic regime, but

the local value of the quantity relative to the tropical

mean. Meanwhile, total precipitation amount in the

tropics is largely controlled by the requirement that at-

mospheric radiative cooling and energetic export to the

extratropics balance convective heating. Increases in

surface temperature do not therefore result in sub-

stantial increases in the area of the tropical convecting

region (Pierrehumbert 1995; Johnson and Xie 2010).

Where surface temperature increases are spatially het-

erogeneous, however, the location of precipitation may

change. Xie et al. (2010) showed that patterns of pre-

cipitation change over ocean are associated with pat-

terns of sea surface temperature change.

Theoretical and numerical modeling studies have

taken advantage of the above constraints to predict

tropical precipitation and cloud amounts. Neelin and

Held (1987) used the weak temperature gradient ap-

proximation along with the vertically integrated moist

static energy budget to derive horizontal atmospheric

convergence in the tropics, and therefore vertical velocity

and precipitation. Sobel and Bretherton (2000) showed

that a set of single vertical column models coupled only

via a mean free tropospheric temperature can represent

the results of a full atmospheric model reasonably well.

Blossey et al. (2009) and Dal Gesso et al. (2015) among

other studies have found that single-column models have

some use in predicting GCM cloud amounts in stable

subsiding regimes. Using the ideas introduced here, in the

next subsection we describe our compositing scheme for

predicting precipitation changes from the relationship

between local conditions and the tropical mean.

b. Compositing scheme description

We take monthly-mean gridbox precipitation data for

308N–308S from the unforced preindustrial control run

of a GCM (the data are described in section 3) and re-

grid so that all runs are on a 2.58 longitude by 2.58
latitude grid. A composite is then formed by grouping

grid boxes into 10 equal-population bins of ascending

near-surface RH. Every grid box is therefore assigned

to a RH bin based on its ‘‘rank’’ relative to other grid

boxes rather than its absolute value of RH. Each RH bin

is then further divided into 10 equal-population bins of

ascending near-surface temperature, TS. The resulting

RH–TS bins are assigned a precipitation value that is

equal to the area-weighted average of the gridbox pre-

cipitation in that bin. We divide into bins of RH first

because we find a broader range of TS in each RH bin

than we find RH in TS bins if the composite is formed in

reverse order. We choose RH and TS as compositing

variables because their variation across the tropics is

strongly linked to variations in moist static energy and

lower-tropospheric stability, and because they are ob-

servable quantities in principle. Further, variations in TS

have been shown to be strongly related to precipitation

amounts across tropical oceans (e.g., Bretherton et al.

2004; Biasutti et al. 2006; Xie et al. 2010); variations in

RH are quite small over the ocean, but can be a crucial

control on the initiation of convective precipitation over

land (e.g., Eltahir 1998; Betts 2004; Fasullo 2012;

Chadwick 2016). Our expectation is that the highest RH

and TS bins will experience heavy precipitation, while

low RH and TS bins will experience little precipitation.

We predict shifts in monthly-mean precipitation in a

43CO2 simulation of a GCM by associating them with

the RH and TS for that month. We reclassify each 308N–

308S grid box into a new ‘‘perturbed’’ bin based on the

rank of its new 43CO2 RH and TS values. Grid boxes

move to higher bins where their new RH and TS values

rank higher than their control values and move to lower

bins where the RH and TS values rank lower. The pre-

dicted precipitation shift is the difference between the

control precipitation value associated with the per-

turbed bin and the control precipitation value associated

with the control bin. We therefore assume that the

preferred bins for both heavy precipitation and low

precipitation in a perturbed run will continue to be those

with the same rankings of RH and TS as in the control.

Precipitation in a given RH–TS regime remains un-

changed because we continue to use the control pre-

cipitation associated with each composite bin. Finally,

we calculate annual mean results by taking the mean

over the monthly predictions for each model. This pro-

cess defines our shift component.

Thermodynamic and weakening changes in pre-

cipitation are predicted through a simplification of the

scaling argument used by Chadwick et al. (2013). We

scale the precipitation amounts of each composite bin by

the tropical mean change in precipitation per Kelvin

warming. This is equivalent to assuming that surface SH

(thermodynamic) and tropospheric circulation (weak-

ening) in every grid box change in proportion to tropical

mean changes in these variables, consistent with GCM

studies of the rich-get-richer mechanism (Held and

Soden 2006; Vecchi and Soden 2007; Ma et al. 2012).

Our null hypothesis is that in the ‘‘bin space’’ of the

precipitation composite, precipitating features do not

change location (see also Allan 2012). We test this
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assertion by comparing this scaled composite with the

perturbed composite formed when 43CO2 precipitation

amounts are composited on 43CO2 TS and RH values.

There is no need to investigate thermodynamic and

weakening changes geographically. Finally, we gauge

the overall success of our scheme by making a geo-

graphical comparison of GCM 43CO2 precipitation

change with respect to control with the change predicted

by using the scaled composite and 43CO2 TS and RH

values. As a consistency check, the geographical pre-

cipitation change when the perturbed composite is used

to estimate perturbed precipitation amounts is calcu-

lated. This is the maximum fidelity that can be achieved

with our method, because control and perturbed RH

and TS, and control precipitation values, are known ac-

curately. Mathematically, our composite predictions can

be written as

DP
shift

5P
con

(RH
pert

,T
S,pert

)2P
con

(RH
con

,T
S,con

),

DP
scaled

5P
scaled

(RH
pert

,T
S,pert

)2P
con

(RH
con

,T
S,con

),

DP
pert

5P
pert

(RH
pert

,T
S,pert

)2P
con

(RH
con

,T
S,con

),

where DPshift are predicted changes in precipitation due

to shifts, DPscaled are predicted changes in precipitation

due to shifts and thermodynamic and dynamic effects,

and DPpert are predicted changes in precipitation where

all GCM perturbed and control values are known,

serving to show the best that can be achieved with the

compositing method. The P are precipitation composite

values for a given RH and TS. RH and TS values sub-

scripted with ‘‘con’’ are control values and values sub-

scripted with ‘‘pert’’ are perturbed values.

To explain our expectations and assist understanding

of possible precipitation shifts, consider the following

example. Under climate change, land regions tend to

warm more than ocean regions (e.g., Sutton et al. 2007;

Zhang and Li 2016a,b). An ocean region that warms 4K

under a 43CO2 forcing may find itself in a lower TS bin

than in the control climate because tropical land regions

may warm 5 or 6K. We might therefore anticipate shifts

in precipitation and accompanying atmospheric con-

vection from ocean to land because the ocean will be less

warm with respect to the tropical mean than it was in the

control climate. However, land regions may also expe-

rience reductions in RH under warming (e.g., Rowell

and Jones 2006). Given that oceanic regions tend to

retain approximately constant RH under climate

change, land regions with decreasing RH may therefore

find themselves moving to lower RH bins. This could

produce a shift in precipitation and convection away

from these land regions to other, especially oceanic,

regions where RH changes little. We expect that the

competition between relatively larger warming over

land increasing precipitation and relatively larger de-

creases in RH over land decreasing precipitation will

determine whether precipitation patterns shift toward

or away from land.

The method makes simplifications that limit or omit

the representation of some physical processes. The ef-

fects of clear-sky and cloudy-sky radiative feedbacks

that may drive changes in precipitation are implied as

being associated with meteorological variables that shift

following our compositing scheme rather than being

considered directly. The same is true of shifts in atmo-

spheric circulation, which we assume to be coincident

with shifts in precipitation. This neglects the influence of

changes in geographical temperature gradients, which

may drive or be driven by changes in dynamics with

consequences for precipitation. One example is the

weakening of the zonal equatorial Pacific temperature

gradient found inmanyGCMs under warming that leads

to a weakening in the Pacific Walker (i.e., zonal) circu-

lation (Zhang and Li 2016b). The location of pre-

cipitationmay also be affected by atmospheric dynamics

not simply related to surface temperature gradients. It

has been proposed that monsoon rainfall is controlled

by the interaction between tropical dynamics and ex-

tratropical planetary waves, which may or may not

depend on land–sea temperature gradients (Bordoni

and Schneider 2008; Shaw 2014).

The effects of fast adjustments on precipitation, which

occur as a result of radiative forcing and which are es-

sentially independent of large-scale sea surface tem-

perature (SST) change, are considered only through

their effects on land surface warming. In the tropics, fast

adjustments to CO2 forcing are expected to produce

reductions in precipitation over ocean and increases

over land associated with heat transport from land to

ocean that attempts to maintain a near-time-invariant

ratio of land to ocean surface temperature change

(Lambert et al. 2011; Bony et al. 2013). These effects are

significant in GCMs, linked to land surface warming and

therefore at least partially represented by our method,

but are small compared with SST-driven changes

(Chadwick et al. 2014). It is found that the effects of fast

adjustment and sea surface temperature on pre-

cipitation add quite linearly when trialed separately and

simultaneously in a GCM (Lambert et al. 2011;

Chadwick et al. 2014).We therefore do not expect issues

for precipitation simulation related to the GCM simu-

lations we use not being in equilibrium (see section 3).

Further effects occur, however, when radiative forcings

cause changes in atmospheric heating without first af-

fecting the surface (e.g., Previdi 2010; Andrews et al.

2012). For the uniform CO2 forcing considered in our
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study, regional variations in atmospheric heating are

small relative to the size of mean heating. Shifts in

precipitation may not therefore be greatly affected. We

note, though, that the highly nonuniform (both verti-

cally and horizontally) atmospheric heating applied by

black carbon aerosol during historical and future climate

change scenario forcing may pose a problem for our

method (Ming et al. 2010; Previdi 2010; Frieler et al.

2011). Predicting changes in precipitation in more re-

alistic twenty-first-century scenarios may therefore be

more difficult. Land–atmosphere feedbacks are not

considered explicitly. Some of these drive changes in TS

and RH, but others may have more subtle influence

through changes in surface fluxes or boundary layer

conditions (e.g., Eltahir 1998) or cloud condensation

nuclei concentration (e.g., Krejci et al. 2005).

Our scheme is not a prognostic theory, because it re-

lies on knowledge of perturbed RH and TS and it is

unclear to what extent changes in precipitation drive or

are driven by changes in RH and TS. (The possibility of

developing a prognostic scheme is discussed in section

5.) Despite these limitations, it is useful because it allows

us to explore the extent to which changes in tropical RH,

TS, and precipitation represent a coupled problem in

GCMs and, where successful, it gives us a physical basis

for understanding the shift component of precipitation

change. It is shown in section 4 that differences in GCM

control states exert a strong control on differences in

precipitation shifts in the perturbed simulations. This

has implications for what the observed mean state and

variability may tell us about real future tropical pre-

cipitation change, as discussed in section 6.

3. GCM data

We analyze GCM simulations from phase 5 of the

Coupled Model Intercomparison Project (CMIP5)

(Taylor et al. 2012). The models used, their horizontal

resolutions, and accompanying references are shown in

Table 1. We take data from the model preindustrial

control simulations (piControl, hereinafter referred to as

‘‘control’’), in which atmospheric CO2 concentration is

held fixed at 287ppmv, and their abrupt carbon dioxide

quadrupling simulations (abrupt43CO2, hereinafter re-

ferred to as 43CO2), in which CO2 concentration is in-

stantaneously quadrupled to 1148ppmv at the beginning

of the run.One ensemblemember is used in each case.All

GCMs are fully coupled, featuring coupled interactive

atmospheres, oceans, sea ice, and land surfaces. Only the

atmospheric carbon cycle is constrained to prescribed

values. Our analysis uses monthly means of the last 30

years from every simulation. In the case of the 150-yr-long

43CO2 simulations this means that most forced global

warming has occurred, but that the simulations are not at

TABLE 1. CMIP5 GCMs used in this study. ‘‘Atmospheric grid’’ refers to the number of points in longitude and latitude. If the model is

spectral the resolution given is the resolution of its geometric transform grid; the spectral resolution is given in brackets. (Expansions of

acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

Model Institute ID Atmospheric grid Reference

ACCESS1.0 CSRIO-BOM 192 3 144 Bi et al. (2013)

ACCESS1.3 CSRIO-BOM 192 3 144 Bi et al. (2013)

BCC-CSM1.1 BCC 128 3 64 (T42) Wu et al. (2014)

BCC-CSM1.1-M BCC 320 3 160 (T106) Wu et al. (2014)

BNU-ESM GCESS 128 3 64 (T42) Ji et al. (2014)

CCSM4 NCAR 288 3 192 Gent et al. (2011)

CNRM-CM5 CNRM-CERFACS 256 3 128 (T127) Voldoire et al. (2013)

CanESM2 CCCMA 128 3 64 (T63) von Salzen et al. (2013)

FGOALS-s2 LASG-IAP 128 3 104 (R42) Bao et al. (2013)

GFDL-CM3 NOAA GFDL 144 3 90 Donner et al. (2011)

GFDL-ESM2G NOAA GFDL 144 3 90 Dunne et al. (2012)

GFDL-ESM2M NOAA GFDL 144 3 90 Dunne et al. (2012)

GISS-E2-H NASA GISS 144 3 90 Schmidt et al. (2014)

GISS-E2-R NASA GISS 144 3 90 Schmidt et al. (2014)

HadGEM2-ES MOHC 192 3 144 Martin et al. (2011)

INMCM4 INM 180 3 120 Volodin et al. (2010)

IPSL-CM5A-LR IPSL 96 3 96 Dufresne et al. (2013)

IPSL-CM5A-MR IPSL 143 3 144 Dufresne et al. (2013)

IPSL-CM5B-LR IPSL 96 3 96 Dufresne et al. (2013)

MIROC-ESM MIROC 128 3 64 (T42) Watanabe et al. (2011)

MIROC5 MIROC 256 3 128 (T85) Watanabe et al. (2010)

MRI-CGCM3 MRI 320 3 160 (T159) Yukimoto et al. (2012)

NorESM1-M NCC 144 3 96 Bentsen et al. (2013)
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equilibrium. [Caldeira and Myhrvold (2013) estimated

that 43CO2 simulations realize about 70% of their

equilibrium warming after 100 years.]

4. RH–TS composite results

We now present our RH–TS composites. To focus the

discussion, we show results largely for the CMIP5 mean

and five marker models: CanESM2, FGOALS-s2, GISS-

E2-R, HadGEM2-ES, and IPSL-CM5A-LR, which are

chosen to highlight qualitatively different responses

within the ensemble and because our compositing

scheme has different levels of success in predictingGCM-

simulated changes. Because we are primarily interested

in the zonally asymmetric response and land–ocean shifts

in precipitation in particular, we show results for the

meridional mean alone in the main manuscript. The

43CO2–control results are shown per Kelvin tropical

mean (308N–308S) warming to aid intermodel compara-

bility, apart from where explicitly stated. Further results

for all models, including zonal mean responses and maps

and maps of RH and TS rank locations and changes, are

given in the online supplemental material.

RH–TS control composites of control precipitation on

control RH and TS are shown in Fig. 1 for the CMIP5

mean and our marker models. In general, the heaviest

precipitation falls in the highest RH and TS bins as ex-

pected, although FGOALS-s2 is an exception, with

heavy precipitation tending to fall in lower RH bins than

in the CMIP5 mean. The mean RH and TS values of

each bin are shown as blue points in Fig. 2 for the CMIP5

mean and the five marker models. RH bins tend to be

separated by very small differences inRHof around 1%,

apart from the highest and especially the two lowest

bins. Bins are more evenly spaced in TS, with some

crowding at the upper end. The proportion of land found

in each control composite bin is shown in the left-hand

side of each panel of Fig. 3. In the majority of models,

land is most common in the highest and especially the

lowest RH bins. FGOALS-s2 and IPSL-CM5A-LR are

exceptions, where land is mostly present in the lowest

RH bins only. Models with large amounts of land in high

RH bins (e.g., CanESM2, GISS-E2-R, and HadGEM2-

ES) have the potential for large shifts in precipitation

away from land because small RH reductions could

cause large reductions in theRH rank of land grid boxes.

a. Changes in the RH–TS composites under climate
change

Figure 4 shows 43CO2 minus control changes in the

composite bins for the CMIP5 mean and our marker

GCMs (left-hand side of each panel) and changes

FIG. 1. Composites of control tropical precipitation on control RH andTS for (a) the CMIP5model mean and our

five marker models: (b) CanESM2, (c) FGOALS-s2, (d) GISS-E2-R, (e) HadGEM2-ES, and (f) IPSL-CM5A-LR.

In general, the heaviest precipitation falls in the highest RH and TS bins. FGOALS-s2 is an exception, heavy

precipitation tending to fall in lower TS bins than in the CMIP5 mean.
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anticipated from mean precipitation scaling of each

control bin (right-hand side of each panel). (See section

2b for an explanation of scaling, which is designed to

emulate thermodynamic and weakening changes in the

perturbed climate.) The scaling prediction is not suc-

cessful in reproducing GCM-simulated changes in indi-

vidualmodels, which contain a great deal of structure that

the scaling does not reproduce. In particular, the GCM-

simulated changes predict substantial reductions in pre-

cipitation in some bins, which cannot be anticipated via

uniform scaling. The prediction for the CMIP5 mean is

better, but similarly represents the simulated structure

poorly. These issues are underlined byFig. 5, which shows

summary statistics relating GCM-simulated to predicted

changes for all GCMs. (Numbers are shown in Table S1

of the supplemental information.) Correlations for other

GCMs are higher than in our marker models in a number

of cases, but the ordinary least squares (OLS) slope found

when scaled predictions are regressed on simulated

changes is substantially less than 1 in all cases, indicating

that simulated variance is not represented by the scaling.

Clearly, it is not the case that precipitation features re-

main static in the composite bin space with changes de-

scribed by a simple uniform percentage rich-get-richer

increase everywhere.

Perturbed values of mean RH and TS for each com-

posite bin are shown as green points in Fig. 2. As expected

under global warming, all bins move to higher values of

TS. There are also some small increases and decreases in

RH. Changes in RH values or changes in the spacing of

TS values can cause changes in precipitation that are not

anticipated by our simple scaling prediction. Another

issue is the largemigration of land grid boxes fromhigh to

low RH bins in the perturbed climate (see Fig. 3, right-

hand side of panels). Given the differences in physical

processes controlling convection over land and ocean,

land and ocean grid boxes of a given RH–TS rank may

show rather different precipitation amounts, introducing

unpredictable changes into the perturbed composites

under climate change. This is a weakness of our com-

positing scheme, discussed further in section 6. Thus, our

ability to predict changes in precipitation composite bins

is limited. Despite this, in the next subsection we find that

our framework is able to make useful predictions of

geographical precipitation change.

b. Changes in meridional mean precipitation

Figure 6 presents 43CO2 minus control perturbations

in 308N–308S meridional mean precipitation for the

CMIP5 mean and our marker models. GCM-simulated

values mostly show increases in precipitation over the

Pacific, decreases in precipitation over South America,

and mixed responses over the Maritime Continent and

Africa. Control composite predictions, DPshift, which are

the difference between the control precipitation value in

the perturbed RH–TS bin and the control RH–TS bin,

FIG. 2. MeanRHandTS values for each precipitationRH–TS bin for the control composites (blue) and the perturbed

composites (green) in (a) the CMIP5 mean and (b)–(f) our five marker models.
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show good overall agreement with GCM-simulated

changes in HadGEM2-ES (r5 0:78) and CanESM2

(r5 0:78), reasonable agreement in GISS-E2-R

(r5 0:65) and the CMIP5 mean (r5 0:59), and poor

agreement in IPSL-CM5A-LR (r5 0:15) and especially

FGOALS-s2 (r520:05). Compositing scheme perfor-

mance varies regionally, however, particularly over

important-to-predict land. Despite strong correlation

overall, the scheme overestimates precipitation re-

ductions over South America in HadGEM2-ES and

Africa for HadGEM2-ES and CanESM2. Although

overall correlation is weaker forGISS-E2-R, the scheme

performs relatively well over land, with much of the

mismatch to GCM results over the Pacific Ocean.

Summary correlation and OLS regression of predicted

onGCM-simulated values are shown for all GCMs in the

left panels of Figs. 7 and 8, respectively. (Numbers are

shown in Table S2.) Note that 13 of 22 predictions show

correlations of 0.5 or better, indicating that the shape

of the predicted response is about as good as that for

GISS-E2-R or better, but all but HadGEM2-ES and

ACCESS1.0 showOLS slopes less than and inconsistent

with 1, indicating that the size of the response is un-

derestimated. The regression coefficient for CMIP5

mean data is 0.466 0.11; the mean of the coefficients for

each GCM is 0.39 6 0.50, where the error is 2 standard

deviations of the spread of the individual GCM

coefficients, indicating a wide range of responses across

models. Improved predictions are made if we use our mean

precipitation change scaled composites to predict 43CO2

precipitation amounts in each bin, DPscaled, reflected by

improvements in correlations in almost all models (19 of 22

have correlations greater than 0.5; see Fig. 7, middle panel).

The CMIP5mean slope coefficient is 0.736 0.12; the mean

of the coefficients for each GCM is 0.54 6 0.57. Because

unforced internal variability plays a role in precipitation

amounts, we rerun our analysis using five separate 30-yr

control segments for each of our five marker GCMs. This

does produce some changes in correlation and regression

coefficients but does not have a qualitative effect on our

conclusions. We therefore do not discuss the effects of

variability further in themain text. Instead, details are given

in the supplemental information (section 2 therein). We

note, however, that the effect of internal variability would

probably be more important for lower forcing, more re-

alistic scenarios (e.g., Deser et al. 2012).

The composites predict shifts in precipitation when

grid boxes change RH and TS ranking under climate

change. In practice, the largest shifts arise when grid

boxes change RH ranking, because a small change in

RH value can cause a large change in RH ranking and a

corresponding large precipitation change. This is im-

portant in HadGEM2-ES, CanESM2, and GISS-E2-R,

where large numbers of land grid boxes shift from high

FIG. 3. Fraction of each control composite bin that is land, and change in land fraction when 43CO2 RH and TS

values are used, shown on the left and right side of each panel, respectively, for (a) the CMIP5 model mean and

(b)–(f) our five marker models. In the majority of models, land is most common in the highest and lowest RH bins.

FGOALS-s2 and IPSL-CM5A-LR are exceptions, where land is mostly present in the lowest RH bins only. Under

climate change, most models show a strong shift of land from high to low RH rank and some shift of land from low to

high TS rank. RH shifts in FGOALS-s2 and IPSL-CM5A-LR are necessarily weaker, as little land starts at high RH.
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RH ranking to lowRH ranking (Fig. 3 right-hand side of

panels). This predicts decreases in precipitation over

land (much of it over South America) and compensating

increases over ocean that are largely replicated by

GCM-simulated changes in these models. The CMIP5

mean indicates that these results are fairly common

across models. However, this effect is necessarily weak

in IPSL-CM5A-LR and FGOALS-s2, because relatively

few land grid boxes have high RH rank in the control

run. Large shifts over land from high RH to low RH

rank therefore cannot occur and shifts of precipitation

from land to ocean are not predicted by the composites.

It is also largely the case that shifts in precipitation from

land to ocean are not simulated by these GCMs, al-

though the weakness of the composite predictions in

reproducing GCM simulated changes makes it in-

appropriate to draw strong conclusions. We note, how-

ever, that our composite predictions successfully predict

the modest land–ocean shifts in models such as GFDL-

ESM2M and MIROC-ESM. These modest shifts are

associated with modest declines in land RH rankings.

Meridional mean, zonal mean, and map plots may be

found in the supplemental information (section 1

therein) for all GCMs.

Finally, we calculate correlations and OLS slopes for

the perturbed case where 43CO2 predictions are made

using 43CO2 precipitation amounts composited on

43CO2 RH–TS bins, DPpert, as a consistency check.

Recall that this is the maximum accuracy possible with

our method, because control and perturbed RH and TS

and control precipitation values are known. Interestingly,

predictions for some models—MIROC5 in particular—

are still very poor, indicating that meridional mean

tropical precipitation amounts are poorly classified in

terms of RH and TS in these GCMs. (Zonal and geo-

graphical predictions forMIROC5 are nevertheless quite

good, indicating that it is the meridional mean in partic-

ular that cannot be predicted; see Figs. S6 and S7.) Similar

to the scaled case, 19 of 22 GCMs show correlations

greater than 0.5 (Fig. 7, right panel). The slope co-

efficients show amodest improvement comparedwith the

scaled case: the CMIP5 mean slope coefficient is 0.78 6
0.09, and the mean of the coefficients for each GCM is

0.59 6 0.42. (Full numbers are shown in Table S2.)

To focus attention on land–ocean shifts in precipitation,

Fig. 9 shows land mean changes in GCM-modeled pre-

cipitation against land mean RH rank change across

Amazonia, tropical Africa, and the Maritime Continent.

Large reductions inAmazonianprecipitationoccur in some

models that are associated with large reductions in RH

rank that correspond to RH reductions of about 3%K21

(typically the largest across the tropics). HadGEM2-ES

and ACCESS-1.0 are outliers in Amazonia, showing

large decreases in RH of about 6%–7%K21. These large

RH decreases produce predictions of large Amazonian

precipitation decreases in these models that tend to

FIG. 4. 43CO2–control GCM-simulated changes, and scaling-predicted precipitation composite values, shown on

the left and right side of each panel, respectively (mmday21 K21 tropical mean warming), for (a) the CMIP5model

mean and (b)–(f) our five marker models. The CMIP5 mean and the individual GCMs show a ‘‘rich-get-richer’’

response that is partially represented by the scaling prediction. However, the GCM-simulated changes show larger

changes with more structure and some strong reductions, particularly in drier regions.
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overestimate simulated precipitation decreases (see Fig. 6

and Fig. S5). A number of models also show increases in

Amazonian precipitation, associated with no change or

small positive change in RH rank. Small changes in

tropical African precipitation are associated with small

changes in RH rank. Where reductions in precipitation

occur, these correspond toRHreductions of about 1%K21.

Over theMaritime Continent, a number of models show

either large positive or large negative changes in pre-

cipitation that are not associated with any change in RH

FIG. 5. (left) Correlations and (right) ordinary least squares regression slopes for GCM-

simulated changes for each GCM against total ‘‘thermodynamic’’ and ‘‘weakening’’ changes

predicted by scaling each control RH–TS composite bin by mean precipitation change

per Kwarming againstGCM-simulated changes for eachGCMand theCMIP5mean.MEAN

is the mean correlation and slope across models. The whisker on the MEAN slope bar is the

mean error across the individual GCMs taken as two standard deviations of the fit of the OLS

slope parameter. CMIP5MEAN is the correlation and slope for theCMIP5meridionalmean.

The whisker on the CMIP5MEANOLS slope bar is two standard deviations of the fit for the

CMIP5 mean.
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rank. This occurs despiteRH–TS composite predictions of

precipitation change being in general no worse than

elsewhere (see Figs. 6 and S5). This may be because both

GCM-simulated values and composite predictions show a

dipole-like response with compensating increases and

reductions across the Maritime Continent for many

models, in contrast to themore spatially uniform decrease

seen over Amazonia. Maps of RH change per Kelvin are

shown in Fig. S9.

In summary, we find that zonally asymmetric tropical

precipitation change is quite well associated with near-

surface RH and TS change in more than half of CMIP5

GCMs, but poorly related in a few others. There is little

skill in predicting precipitation changes in composite bins

when changes are estimated by scaling precipitation

amounts bymean tropical precipitation change, but using

the scaled composite does offer improved predictions of

meridional mean precipitation change. This implies that

errors introduced by our inability to predict changes in

the composites themselves are second order when it

comes to predicting geographical precipitation changes.

A feature of many predicted and GCM-simulated

changes is a shift of precipitation from land to ocean as-

sociated with decreases in RH over land that produce

large decreases in land RH rank. A continental analysis

shows that in models where land precipitation is reduced,

the largest changes typically occur over Amazonia.

5. Land precipitation predictions without
knowledge of land humidity change

We now discuss the possibility for predictions of land

tropical precipitation change when we do not know

changes in land humidity in the perturbed simulation.

FIG. 6. The 43CO2–control changes in meridional mean precipitation simulated by GCMs

(black), shifts predicted by the control RH–TS precipitation composite (blue), and changes

predicted by the scaled RH–TS precipitation composite (green), in mmday21 K21 tropical

mean warming, for (a) the CMIP5 model mean and (b)–(f) our five marker models. Gray

vertical bands represent the longitudinal extents of Africa (AF), the Maritime Continent

(MC), and SouthAmerica (SA). Good agreement between composite and simulated values is

found for HadGEM2-ES (r5 0:78) and CanESM2 (r5 0:78); reasonable agreement is found

for GISS-E2-Rv (r5 0:65); little agreement is found for IPSL-CM5A-LR (r5 0:15) and

FGOALS-s2 (r520:05).
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Inspired by Rowell and Jones (2006), Byrne and

O’Gorman (2016) and Chadwick et al. (2016) demon-

strated that changes in GCM-simulated land near sur-

face SH can be estimated by assuming the same fractional

change as ocean mean SH. Recognizing that this may be a

first step toward a prognostic theory of tropical pre-

cipitation shifts, we re-estimate changes in precipitation

using ourRH–TS composites, but this time estimating land

SH change as being in proportion to mean ocean SH

changewithin the same latitude circle, followingChadwick

et al. (2016). Ocean SH change we set to mean change for

each latitude circle.We refer to this as ‘‘ocean SH scaling.’’

We find changes in 43CO2–control precipitation for

our marker models shown in Fig. 10. Agreement between

scaled, DPscaled, and simulated responses is degraded for

all GCMs compared with the case where land RH change

is treated as known, Fig. 6. Correlation and regression

coefficients for the meridional mean are shown as green

bars in Figs. 7 and 8; numbers are given in Table S4. For

the scaled composites, only 3 of 22 correlations are above

0.5; 7 are above 0.4. Also, 15 of 22 cases show regression

coefficients that are positive and inconsistent with zero

indicating that the majority of ocean SH scaling pre-

dictions show some relationship with GCM simulated

values. It should be noted, though, that all regression

coefficients are significantly less than 1, meaning that

precipitation change is underestimated in all cases. Nev-

ertheless, we regard our results as an encouraging start.

FIG. 7. Correlations for composite predicted meridional mean precipitation changes against GCM-simulated

changes, for (left) control composites, (middle) scaled composites, and (right) perturbed composites. The blue bars

are for the RH–TS composites with known RH and TS change; the green bars are for the RH–TS composites when

land RH is estimated via ocean SH scaling. MEAN is the mean correlation across models. CMIP5 MEAN is the

correlation for the CMIP5 meridional mean.
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Marker model predictions show skill in predicting simu-

lated reductions in land precipitation, particularly over

Amazonia, and compensating increases over ocean. The

meridional mean, zonal mean, and maps of predicted

against GCM-simulated changes for all models are shown

in the supplemental information.

Could our precipitation predictions be improved if we

avoid calculation of RH? The success of Byrne and

O’Gorman (2016) and Chadwick et al. (2016) in pre-

dicting land SH change in a perturbed climate motivates

the testing of a simpler compositing scheme that relies

on knowledge of SH alone [similar to Biasutti et al.

(2006)] and therefore does not rely on estimating RH

change. Our alternative scheme groups GCM grid boxes

into 10 equal population bins of ascending near-surface

SH. No further division of the bins is made. As before,

each bin is assigned a precipitation value that is equal to

the area-weighted average of the gridbox precipitation

in that bin. Precipitation shifts are predicted to be the

difference between the control precipitation value as-

sociated with the SH ranking in the perturbed run and

the control precipitation value associated with the SH

value in the control run, equivalent to DPshift. We also

predict scaled changes that include the effect of ther-

modynamic and weakening changes by scaling control

bin precipitation values by mean precipitation change

FIG. 8. OLS slopes for composite predicted meridional mean precipitation changes against GCM-simulated

changes: (left) control composites, (middle) scaled composites, and (right) perturbed composites. The blue bars are

for the RH–TS composites with knownRH and TS change; the green bars are for the RH–TS composites when land

RH is estimated via ocean SH scaling.MEAN is the slope acrossmodels. Thewhisker on theMEAN slope bar is the

mean error across the individual GCMs taken as two standard deviations of the fit of the OLS slope parameter.

CMIP5 MEAN is the slope for the CMIP5 meridional mean. The whisker on the CMIP5 MEANOLS slope bar is

two standard deviations of the fit for the CMIP5 mean.
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per Kelvin warming, equivalent to DPscaled. Some

degradation in composite performance is expected,

because a range of RH and TS conditions are plausible

for a given SH value.

Full results and a discussion are shown in the sup-

plemental information (section 4 therein). Here we

summarize key differences with RH–TS predictions.

Where we allow ourselves to know perturbed GCM

simulated RH, TS, and SH, for scaled composites, 15 of

22 SH predictions remain above 0.5, compared with 19

of 22 for RH–TS composites. However, where we use

ocean SH scaling to predict SH changes, almost no

precipitation shifts are predicted by the composites.

They are very poor compared even with the ocean SH

RH–TS composites. Why does this happen when ocean

SH scaling gives fairly good predictions of future SH and

SH composites give fairly good predictions of GCM

simulated precipitation change? The issue is that ocean

SH scaling changes land SH at the same fractional rate

as ocean SH within the same latitude circle, meaning

that no grid box may change SH rank with a grid box

within the same latitude circle. Hence, regions with

higher control SH are generally predicted to remain at

higher SH in the 43CO2 simulation than regions with

lower control SH. As a result only very small shifts in

precipitation are predicted (not shown).

In summary, ocean SH scaling can be used to provide

an indication of changes in tropical regional pre-

cipitation in a perturbed climate where TS change and

ocean SH change is known using the RH–TS composit-

ing method. Predictions are substantially degraded

compared with the case where perturbed humidity

change is known. However, reductions in Amazonian

precipitation are predicted, qualitatively in line with

GCM-modeled results. We note that a simplified com-

positing method based on SH only is also quite suc-

cessful at reproducing precipitation change if SH change

is known, but that it cannot be used with ocean SH

scaling because ocean SH scaling cannot properly pro-

duce changes in the ranking of grid boxes by SH in the

perturbed climate.

6. Discussion

We have presented a scheme that explores the link

between tropical surface humidity and temperatures and

precipitation changes under climate change. A number of

features of CMIP5 GCMs are revealed. The scheme

shows some skill in estimating changes in tropical me-

ridional mean precipitation when future RH and TS

changes are known in the majority of models. This sug-

gests that meridional mean changes in RH, TS, and pre-

cipitation may be considered a coupled problem in these

GCMs, and that the response is as expected from

earlier mean field theory developed from the weak

temperature gradient approximation (Sobel and

Bretherton 2000). In IPSL-CM5A-LR, MIROC5, and

especially FGOALS-s2, precipitation change is poorly

related to RH and TS change. (Interestingly, MIROC5

zonal mean precipitation change is well represented.)

This does not mean that these GCMs are wrong. It may

be that they simulate physical processes not represented

FIG. 9. Mean land precipitation change against mean land change in RH ranking for (a) Amazonia (158S–58N,

2858–3108E), (b) Africa (158S–158N, 08–308E), and (c) the Maritime Continent (158S–158N, 1008–1508E). The r

values are correlations between precipitation andRH rank changes. Large changes in Amazonian precipitation are

associatedwith large reductions in RH rank of theAmazon. Only small changes in precipitation andRH rank occur

over Africa. Large changes in mean precipitation do occur over the Maritime Continent, but these are associated

with small changes in RH rank, possibly because GCMs tend to show a dipole-like precipitation response here.

These results are total changes, not changes per Kelvin mean tropical warming.
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by other models. This is an important question for future

research, because these GCMs do not simulate or only

weakly simulate the shift of precipitation from land

(particularly South America) to ocean seen in the ma-

jority of other CMIP5 GCMs under warming, increasing

our uncertainty concerning future climate change.

In GCMs that show shifts in precipitation from land to

ocean, the shifts are generally associated with large

numbers of land grid boxes, particularly over South

America, with high RH ranking in the control run

moving to low RH ranking in the perturbed simulation

through RH changes of around 3%K21. This requires

that 1) RH bins are quite tightly spaced, meaning that

relatively small changes in gridbox RH can lead to large

changes in gridbox RH ranking, and 2) large numbers of

land grid boxes are found at high RH ranking in the

control run. Where these conditions are fulfilled (as in

HadGEM2-ES, CanESM2, and GISS-E2-R), the result

is that a warming of 5 or 10K is sufficient tomove a large

proportion of high RH ranked grid boxes to low RH

ranks. GCMs that do not show this behavior, either

because land has high RH rank under both control and

perturbed conditions (true to some extent of BNU-

ESM) or because land has low RH rank under both

control and perturbed conditions (as in FGOALS-s2

and IPSL-CM5A-LR), show weak land–ocean shifts in

precipitation. A number ofmodels represent in-between

cases, such as GFDL-ESM2MandMIROC-ESM, which

show some land areas at high RH rank in the control,

some decline in land RH rank in the perturbed simula-

tion, and limited land–ocean shifts in precipitation.

These relationships motivate two immediate goals of

our future work. First, it must determine whether ob-

served interannual climate variability shows coupled

FIG. 10. 43CO2–control changes in meridional mean precipitation simulated by GCMs

(black), shifts predicted by the control RH–TS precipitation composite (blue), and changes

predicted by the scaled RH–TS precipitation composite (green) when land SH change is

estimated by ocean SH scaling in mmday21 K21 tropical mean warming, for (a) the CMIP5

model mean and (b)–(f) our five marker models. Gray vertical bands represent the longitu-

dinal extents of Africa (AF), the Maritime Continent (MC), and South America (SA). Good

agreement between composite and simulated values is found for HadGEM2-ES and

CanESM2; reasonable agreement is found for GISS-E2-R; little agreement is found for

FGOALS-s2 and IPSL-CM5A-LR.
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changes in RH, TS, and precipitation. Second, if this is

the case, then it must discover whether or not the real

world is close to a threshold that could lead to a large

reduction in precipitation over some land areas under

tropical warming expected in the twenty-first century.

The CO2 quadrupling simulations that we analyzed are

idealized, but not incomparable to end-of-century

warming in strongly forced future scenarios such as

RCP8.5 (Collins et al. 2013; Chadwick 2016). We

therefore expect our results to be relevant to projections

of climate change, although unexplored issues con-

cerning direct heating of the atmosphere by aerosol

forcing will need to be addressed. We also note that

other recent work has emphasized the importance of

radiative feedbacks and their impact on the surface and

atmospheric energy budget for the hydrological cycle

(Maroon et al. 2016; Oueslati et al. 2016). Where these

feedbacks are not simply coupled to surface humidity

and temperature change, our compositing scheme may

perform poorly.

Improved precipitation change predictions were ob-

tained when our RH–TS composites were scaled by

tropical mean precipitation change. This represents an

estimate of the combined thermodynamic–weakening

change when surface SH and tropical circulation in ev-

ery grid box change in proportion to their climatological

values, similar to the method of Chadwick et al. (2013).

Although geographical precipitation predictions are

improved, the change in the composites themselves is

poorly represented—these contain much stronger and

more complex changes than we can predict, suggesting

that unrecognized processes control composite change,

or that our compositing method does not fully remove

shifts. One possible issue is that we have composited

land and ocean precipitation together, a choice usually

avoided in other composite studies of the tropics or

other simple models of tropical precipitation (e.g.,

Lindzen and Nigam 1987; Neelin and Held 1987;

Bretherton et al. 2004; Biasutti et al. 2006) because land

precipitation is sensitive to different processes than

ocean precipitation (e.g., Eltahir 1998; Betts 2004;

Fasullo 2012). Hence, it may be that differences in the

geographical regions that contribute to each composite

bin in the perturbed and control climate contribute to

composite changes, particularly if the fraction of land in

the bin changes significantly.

Building a useful compositing schememeans finding a

minimum set of information that can be related to pre-

cipitation amounts with sufficient accuracy. We chose

RH and TS because these variables are important to

atmospheric convection and are potentially observable,

and because they are ones for which some progress has

been made in predicting changes in future climates.

Regarding the last point, previous work has shown that

SH change over ocean maintains approximately con-

stant RH asTS increases, and SH changes over land tend

to show the same fractional increases in SH as over

ocean (Byrne and O’Gorman 2016; Chadwick et al.

2016). We have referred to this as ocean SH scaling. A

problem, however, is that although ocean SH scaling

captures changes in perturbed SH quite well, we do see

substantial degradations in our compositing scheme

GCM precipitation predictions. The principal issue is

that ocean SH scaling cannot interchange the SH rank of

two GCM grid boxes in the same latitude circle. This

difficulty is highlighted when we try to predict shifts in

rainfall in a perturbed climate using ocean SH scaling

in a simple one-dimensional SH compositing scheme

that avoids the need for separate estimates of RH and

TS. The SH scheme is only somewhat less accurate than

the RH–TS scheme when values of future temperature

and humidity change are known. When ocean SH scal-

ing is employed to estimate SH change, however, the SH

scheme fails to predict almost any changes in pre-

cipitation at all because grid boxes within a given lati-

tude circle must change SH rank to produce substantial

meridional mean precipitation changes.

It is also important to note that the ocean SH scaling

response assumes that there are no changes in the lo-

cation of circulation. This is incompatible with our

precipitation compositing schemes, which arise from a

picture in which the most intense precipitation and re-

gions of atmospheric convergence are collocated and

move together under climate change. Ocean SH scaling

also neglects at least some effects of land–atmosphere

feedbacks, which may for example arise from shifts in

precipitation themselves that then couple to changes in

near-surface humidity (Eltahir 1998; Betts 2004; Betts

et al. 2004; Berg et al. 2016). This may explain why

even where our ocean SH scaled RH–TS composites

are relatively successful, they always underestimate

precipitation response. It is likely that simultaneous es-

timates of precipitation and land surface humidity are

needed. A potential avenue for research might be to

build a simple model of the land surface heat budget

(e.g., Zeng and Neelin 1999).

Nevertheless, we regard our ocean SH scaling results

as a promising start for which further improvementsmay

be possible in future if the above issues can be overcome.

Given that RH in the oceanic boundary layer remains

quite constant under climate change (our GCMs mostly

show a small increase) and that changes in tropical

ocean TS are fairly uniform, changes in land SH per

Kelvin might be estimated from the climatology and

changes in sea surface temperatures. If this is combined

with predictions of land TS for a given ocean TS by
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equating values of equivalent potential temperature, uE,

over land and ocean (Byrne and O’Gorman 2013), then

estimates of changes in land–sea contrast of RH and TS

can be found in principle. Obtaining estimates of tropi-

cal precipitation change would then require knowledge

of climatology and ocean TS change only.

7. Summary

We have combined precipitation compositing and

mean field theory methods from previous work to relate

changes in CMIP5 general circulation model (GCM)

simulated tropical precipitation when atmospheric CO2

concentration is quadrupled. A compositing method is

used to relate precipitation amounts at a given location

to values of local relative humidity (RH) and surface

temperature TS. Changes in precipitation at a given lo-

cation in the perturbed climate are then associated with

changes in the RH and TS relative to other locations so

that precipitation change depends principally on change

of the RH and TS rank of that location in accordance

with the weak temperature gradient approximation.

Land–sea ‘‘shifts’’ in patterns of precipitation that

dominate tropical precipitation change in most CMIP5

GCMs are found to be associated largely with decreases

in the RH rank of land grid boxes, which are due to

decreases in land RH noted by previous work. (The

dominant response over ocean only has been shown to

be associated with changes in sea surface temperature;

Xie et al. 2010; Zhang and Li 2016b). Other recent work

has begun to develop quantitative predictions of

changes in land humidity and temperature, suggesting

that it may be possible to develop a prognostic theory of

precipitation change in future. We combined our com-

positing method with GCM-simulated TS and RH

changes predicted from the method of Byrne and

O’Gorman (2016) and Chadwick et al. (2016), which we

call ocean SH scaling. The method shows some skill in

predicting the sense of future tropical precipitation

change, but magnitudes of changes are too small in all

cases, probably because radiative and land–atmosphere

feedbacks are neglected. We find that a simpler scheme

that depends only on knowledge of SH can also predict

shifts in precipitation in most GCMs when SH change is

known. However, when it is coupled with ocean SH

scaling, it fails to make adequate predictions.

A distinctive feature of our results is that many CMIP5

GCM control runs are near a threshold at which re-

ductions of around 10% in landRHare sufficient to cause

large reductions in the rank of land gridpoint RH and

therefore large reductions in land precipitation, espe-

cially over Amazonia. GCMs that are not near this

threshold do not in general produce substantial land to

ocean shifts in precipitation. Our future work will there-

fore focus on discovering whether or not real-world

precipitation change is associated with surface humidity

and temperature change—it is not in some GCMs—and

whether the real world is near the land RH threshold.
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