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Abstract 

We report a theoretical study of the spin-wave band spectrum of magnonic crystals formed by 

stacking thin-film magnetic layers, with general assumptions about the properties of the interfaces 

between the layers.  The use of the Barnaś-Mills magnetization boundary conditions has enabled us to 

systematically trace the origin of the magnonic band gaps in the spin-wave spectrum of such systems.  

We find that the band gaps are a ubiquitous attribute of a weakened interlayer coupling and a finite 

interface anisotropy (pinning).  The band gaps in such systems represent a legacy of the discrete spin-

wave spectrum of the individual magnetic layers periodically stacked to form the magnonic crystal rather 

than result from Bragg scattering.  At the same time, magnonic crystals with band gaps due to the Bragg 

scattering can be described by natural boundary conditions (i.e. those maintaining continuity of the 

magnetization direction across the whole sample).  We generalize our conclusions to systems beyond 

thin-film magnonic crystals and propose magnonic crystals based on the ideas of graded-index 

magnonics and those formed by Fano resonances as a possible way to circumvent the discovered issues.   
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I. Introduction   

Magnonic crystals, i.e. magnetic media or structures for spin-wave propagation with a periodic 

modulation of structural, compositional or micromagnetic characteristics, have been the flagship object 

of magnonics research for several decades. 1-72  The dispersion of spin waves with wavelength shorter 

than the lattice constant (period) of a magnonic crystal contains magnonic band gaps (frequency bands 

in which the propagation of spin waves is impossible).  For spin waves of longer wavelength, the same 

magnonic crystal will represent an effectively continuous medium with properties defined not only by 

those of the constituent magnetic materials but also details of the geometrical and micromagnetic 

structure.  Magnonic crystals therefore represent a class of metamaterials, often referred to as “magnonic 

metamaterials”,73-78 which also includes systems that are not periodic, such as magnonic quasi-crystals79-

85 and (when considered from the point of view of their dynamic properties) magnetic composites.86-93   

The nature of the interlayer magnetization boundary conditions has crucial consequences for the 

scattering of spin waves from interfaces between regions with different magnetic properties.94-106  It is 

therefore of essential importance for magnonics and magnonic technology, in which spin waves are 

studied and exploited.28  In multilayer magnonic crystals (i.e. those formed by stacking of continuous 

magnetic films), the scattering of spin waves from periodically located interfaces causes Bragg 

diffraction and formation of magnonic band gaps in their spectrum.  This has led to proposals that one 

could characterize the nature and quality of magnetic interfaces experimentally via measurements of the 

spin-wave dispersion in magnonic crystals.107-110  Hence, a systematic approach by which to attribute 

specific features in and / or the qualitative character of measured spin-wave spectra and dispersions to 

the nature and parameters of the magnetization boundary conditions at interfaces would be highly 

desirable.   

Let us consider a one-dimensional (1D) multilayered magnonic crystal with a unit cell containing 

two magnetic layers made of “material A” and “material B” (Fig. 1).  Earlier, we developed a method 

enabling a systematic study of the effect of a simultaneous periodic modulation of several magnetic 

parameters on the character of spin-wave propagation in such systems.111-114  This method exploits the 

fact that, in the stationary case, the wave scattering from an interface is always defined by the wave 

numbers of the incident and scattered waves, which “hide” the wave frequency and properties of the 

media separated by the interface.  Hence, the problem of finding the dispersion law of spin waves in a 

magnonic crystal (i.e. the frequency dependence of the Bloch wave number) can be factorized into two 

stages, as illustrated by Fig. 2.  First, one finds the dependence of the Bloch wave number χ on the wave 

numbers of spin waves in the constituent layers kA(B).  This dependence is fully determined by the layer 

thicknesses dA(B) and the boundary conditions at interfaces and can be represented as  

   conditionsboundary   ,,,,cos BABA ddkkFL  ,  (1) 

where L = dA + dB is the period and F is a function depending on the structure of the magnonic crystal.  

The dependence of function F on kAa and kBa, where a is the inter-atomic distance (lattice constant) 

assumed to be the same in both materials, is plotted as a two-dimensional (in the case of two layers within 

the unit cell of the magnonic crystal) “spectral map”.  Magnonic band gaps emerge whenever 1F .  

Then, the character of the spin-wave dispersion in the magnonic crystal is determined (for specific 

parameters of the layers, which must be consistent with those used to plot the map) by the position of 

curves (called “lines of spectra” here) defined by the parametric dependence of kA(B) upon the spin-wave 

frequency ω in the space of kAa and kBa.   
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Fig. 1  (a) A multilayered thin film magnonic crystal is schematically shown together with the 

assumed problem geometry.  The bias magnetic field H, magnetisation M and easy 

magnetisation axis (defined by unit vector n) are all parallel to the x axis and perpendicular to 

the planes of the constituent layers.  (b) The unit cell of the magnonic crystal in (a) is 

schematically shown.  The layers are made of materials A and B (with saturation 

magnetisations MA(B), uniaxial anisotropy strengths κA(B), surface anisotropy strengths KA(B), 

exchange stiffnesses AA(B) and gyromagnetic ratios gA(B)) and have thicknesses dA and dB.  The 

separation between layers is a and the interlayer exchange coupling parameter is denoted as 

AAB.   

 

 

Fig. 2  A typical spectral map is shown with a set of lines of spectra for exchange spin waves, both in 

coordinates kAa, kBa.  The map is plotted using natural boundary conditions (see the text) for 

the magnonic crystal shown in Fig. 1 with AA = AB and dA = dB = 100a = 3×10-6 cm.  The lines 

of spectra are plotted for spin waves the dispersion relation of which is defined by Equation (2) 

with AA = AB = 2×10-6 erg/cm, MA = MB, HA = HB, gA = gB, and (1) κA = κB = 25×105 erg/cm3, 

(2) κB = 2κA = 50×105 erg/cm3, (3) κB = 2κA = 100×105 erg/cm3, (4) 

κB = 4κA = 100×105 erg/cm3.  Black colour corresponds to magnonic band gaps.   

In Fig. 2, we assume that the materials A and B have magnetizations MA and MB, constants of the 

uniaxial magnetic anisotropy κA and κB, gyromagnetic ratios gA and gB, and parameters of the non-

uniform exchange interaction (exchange stiffness parameters) AA and AB, respectively.  The easy 

magnetization axis in both materials is parallel to the unit vector n, which coincides with the normal to 

the layer planes (and therefore also to their interfaces) and parallel to which the external bias magnetic 

field of strength H is applied.  We use a Cartesian coordinate system the x axis of which is parallel to n.  
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Limiting the consideration to the exchange approximation, the dispersion of small amplitude plane spin 

waves of frequency ω propagating along the x axis is described by 

   
 

 

 

 
  












 2

BA

BA

BA

BA

BA

BABA

22
k

M

A

M
Hg


 ,  (2) 

where HA(B) are the values of the static internal magnetic field in the layers, which are generally different 

if the magnetizations of saturation MA(B) are different.  Spin waves with dispersion different from that 

given by Equation (2) could also be studied using this method, provided the dispersion relation is justified 

for the choice of the implemented interface boundary conditions and more generally the model assumed 

in the calculation.   

The map in Fig. 2 is plotted for the case when the complex wave distributions  BA  resulting from 

the interference of the forward and backward propagating waves in the adjacent layers are related at each 

interface via so called “natural boundary conditions” (note that we drop the time dependent harmonic 

factor here and throughout the paper, which always cancels in the linear equations)106 

0AB   , (3) 

0A
A

B
B 










x
A

x
A


.  (4) 

The boundary conditions (3-4) do not depend on the strength of the exchange interaction between media 

A and B but only require that the two media be coupled strongly enough for the equation (3) to hold.  

The strength of this coupling cannot therefore be extracted from comparison of a theory based on the 

natural boundary conditions with experiments.   

The strength, η, of exchange coupling between the two media enters explicitly so called “Hoffmann 

boundary conditions”.95,96  For two media (layers) separated by distance 2δ, which e.g. can represent the 

thickness of a non-magnetic spacer layer (centered at zero), the conditions can be written as 

     0A
A

B
BAB 










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
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x
A

x
A , (5) 
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

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

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

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

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
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

x
A

x
A ,  (6) 

where curly brackets   xf  are used to denote the value of function f at point ξ.  The second equations 

in the natural and Hoffman boundary conditions, i.e. equations (4) and (8) respectively, are identical.  

This is because they follow from the conservation of the magnetic energy flow across the interface.115  

However, the Hoffmann boundary conditions do not require continuity of the magnetization direction at 

the interface.  

In the case of 2δ = a, where a is the inter-atomic distance (lattice constant) at the interface, the 

Hoffman boundary conditions describe the media A and B in “direct” contact 
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Here, we have formally introduced a volume exchange parameter AAB in place of η as AAB = aη/2.  It is 

easy to check that the direction of the magnetization is continuous only if one neglects in equation (7) 

terms of the order of 
 



 a
a

x







BA
, where λ is the spin wave wavelength,111 as expected in the 

continuous medium approximation, in which the natural boundary conditions (3-4) are derived.   

The Hoffmann boundary conditions must only be used to connect solutions that are defined in 

different points, δ and –δ in the case of equations (5-6) or a/2 and –a/2 in the case of equations (7-8).  If, 

however, they are applied formally to relate magnetization values that are defined in the same point, one 

could arrive to erroneous conclusions, as argued e.g. in Ref. 100.  To avoid this, one needs instead to 

interpolate properly the Hoffman boundary conditions to the same point (the position of the interface, 

e.g. zero coordinate), thereby obtaining so called “Barnaś-Mills boundary conditions”.98,100  In 

Ref. 94,98,106, the case of a significant interface anisotropy115-123 was also accounted for, leading to the 

following form of the Barnaś-Mills boundary conditions98,100 used in our calculations  
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x
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x
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



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,  (10) 

where KA and KB are the interface anisotropies in materials A and B, respectively.  The Barnaś-Mills 

boundary conditions (9-10) describe properly transitions to the continuous material (so called “full 

coupling limit”: BAAB AAA   and 0BA  KK ) and to the long wavelength approximation ( a , 

where λ is the spin-wave wavelength),98,100 as we will also illustrate below for the case of magnonic 

crystals.  

In this paper, we present a systematic generalization of the method from Refs. 111-114 to the case 

of 1D multilayered magnonic crystals with the Barnaś-Mills boundary conditions at interfaces.98,100  The 

boundary conditions enable us to draw general conclusions about the effect of the strengths of the 

interlayer coupling and interface anisotropy (pinning) upon the spin-wave band gap spectrum in 

magnonic crystals.  We find that, in systems with weakened interlayer coupling and/or significant 

interface pinning, the spectral band gaps are a rule rather than a result of the Bragg scattering associated 

with the periodic modulation of the magnetic properties (“magnetic contrast”).  Hence, the interface 

anisotropy should normally be avoided in magnonic crystals, while one should also try to realise the 

strongest possible coupling between their constituent layers.  Finally, we discuss how our findings could 

be extrapolated to systems beyond thin-film magnonic crystals for which the theoretical formalism is 

developed, while also presenting our opinion about most attractive avenues for magnonic crystals 

research.   
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II. General spin-wave dispersion relation in magnonic crystals 

We can write the space-dependent parts of the solutions and their derivatives in each layer of the 

magnonic crystal as 

           xikxik BABABABABA expexp    ,  (11) 

 
             xikikxikik

x
BABABABABABA

BA
expexp 




 


,  (12) 

where  


BA
  and  


BA  are amplitudes of the forward and backward propagating spin waves in the 

constituent layers.  Substituting equations (11-12) into the boundary conditions (9-10) at interfaces and 

applying the Bloch theorem 

     LixLx  exp .  (13) 

at the boundaries of one period of the magnonic crystal, we obtain a system of four homogeneous 

algebraic equations for  


BA
  and  


BA .  The system has non-trivial solutions if and only if its 

determinant is equal to zero, which (together with equations (2)) yields the sought dispersion relation of 

spin waves in the magnonic crystal as  
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(14) 

where we have introduced notations  
 

2

BA

BA

aΚ
  and neglected βA(B) have been in comparison to 

AA(B) (but not AAB) as was done in the used form of the boundary conditions.98 
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The obtained spin-wave dispersion relation is obviously too complex to draw any direct 

conclusions.  Hence, we consider its various limiting cases first and then apply the graphical approach 

from Refs. 111-114.   

III. Limits of weak coupling and strong pinning at the interface 

In the limit of a weak coupling (i.e. when AAB is small as compared to AA(B)) we obtain from 

Equation (14)  
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In the limit of a strong pinning (i.e. when βA(B) is large as compared to AAB, AA and AB), we obtain 
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The right-hand sides of the dispersion relations (15) and (16) contain large pre-factors in front of 

the harmonic functions and are therefore expected to exceed (in absolute value) the unity in wide 

frequency ranges, thereby yielding large magnonic band gaps in the spin-wave spectrum.   

In the limit of zero coupling, Equation (14) yields the discrete spectra of spin waves in the de-

coupled constituent layers of each type with mixed boundary conditions 
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or recalling the introduced earlier notations 
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In the limit of infinitely strong pinning, we obtain the discrete spectra of spin waves in the de-

coupled constituent layers of each type with Dirichlet boundary conditions 

    0sinsin BBAA dkdk  (19) 

as expected.   

IV. Limiting case of natural boundary conditions 

A typical issue that arises in numerical calculations of the spin-wave dispersion is how to set the 

value of the exchange parameter at interface between two materials, e.g. when numerically computed 

dispersions are to be compared with analytical theories.  The following considerations could ensure that 

the comparison is reasonable even beyond the long-wavelength limit, when the applicability of the 
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natural boundary conditions is guaranteed.  Let us first consider the case of zero interface anisotropy.  

Then we obtain from Equation (14) 
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(20) 

This dispersion relation reduces to that obtained using "natural" boundary conditions (3-4), i.e. 
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if and only if 
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, (22) 

which is identical to the averaging law in the thin layer limit (λ>>L).124,   When the interface anisotropy 

is non-zero but the interface exchange is defined by Equation (22), we obtain 
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(23) 

The strength of the exchange interaction between different materials is defined using Equation (22) 

e.g. in MuMax.125  Hence, an analytical theory aiming to explain observations made from micromagnetic 

simulations performed in MuMax could be based on the natural boundary conditions (3-4), which are 

arguably simpler than the Barnaś-Mills boundary conditions.   

V. Barnaś-Mills and Hoffmann boundary conditions in the full coupling limit 

Let us illustrate the relation between the Barnaś-Mills and Hoffmann boundary conditions, which 

is best noted in the full coupling limit, or the limit of a uniform medium for a magnonic crystal.  The 

surface anisotropy is absent in the case of a uniform medium.  Then, dropping indices A and B (except 

in dA(B)) in the equation (20), we obtain 

         BA

22
2

AB

AB

AB

AB sinsin
2

sincoscos kdkd
ak
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 








 
 . (24) 

In the case of A = AAB, the second and third terms are strictly equal to zero, and the Bloch wave 

number equals that in the continuous material, satisfying the full coupling limit, as expected for the 

Barnaś-Mills boundary conditions.  In contrast, from the Hoffmann boundary conditions, we obtain for 

the same case of A = AAB 
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i.e. the full coupling limit is fulfilled only approximately in the long wavelength limit.  This shows that 

the limits of applicability of the Hoffmann boundary conditions basically coincide with those of the 

continuous medium approximation, although a weakened exchange coupling at interfaces might increase 

the error associated with their use.  Furthermore, the overlap between the regions of validity the exchange 

and continuous medium approximations is rather narrow, making errors associated with the incorrect use 

of the Hoffmann boundary conditions to describe exchange spin waves more likely.   

VI. Graphical analysis of the general dispersion relation 

We begin our graphical analysis of the general dispersion relation (14) by considering the 

symmetrical case dA = dB, AA = AB and βA = βB.  It is useful to assume that the strengths of both the 

exchange interaction and of the interface anisotropy in the layers are measured in relative units of AAB.  

Hence, we replace (both in the text and figure captions)  
 

AB

BA

BA
A

A
A   and  

 

AB

BA

BA
A


   in this 

section.  Furthermore, to plot the spectra maps, we assume that dA = dB = 100a.   

 

Fig. 3  Spectral maps are shown for βA(B) = 0 and different strengths of the interlayer exchange 

coupling (a) AA = AB = 0.5, (b) AA = AB = 2, (c) AA = AB = 10, and (d) AA = AB = 100.  Black 

colour corresponds to magnonic band gaps.   

Fig. 3 shows the spectral maps for different strengths of the interlayer exchange coupling.  The 

map for strong coupling AA = AB = 0.5 (Fig. 3 (a)) is virtually identical to that plotted using the natural 

boundary conditions in Fig. 2, with only slight deviations noticeable in the case of slightly weakened 

coupling AA = AB = 2 (Fig. 3 (b)).  This emphasizes the earlier made remark that the natural boundary 

conditions only require the coupling to be strong but do not enable quantitative analysis of the coupling 

strength.  As the coupling strength decreases, magnonic band gaps emerge in (AA = AB = 10, Fig. 3 (c)) 
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10 

and then dominate the spectrum (AA = AB = 100, Fig. 3 (c)).  This behaviour agrees well with the 

prediction made earlier based on Equation (15).   

Fig. 4 shows the spectral maps for different strengths of the interface anisotropy in the layers.  

Again, in agreement with our earlier analytical predictions based on Equation (16), the presence of 

interface anisotropy leads to appearance of magnonic band gaps in the spin-wave spectrum, with the 

band-gap width increasing with increasing the surface anisotropy strength (i.e. pinning).   

 

Fig. 4  Spectral maps are shown for AA = AB = 1 and different strengths of the interface anisotropy (a) 

βA = βB = 0, (b) βA = βB = 0.001, (c) βA = βB = 0.01, and (d) βA = βB = 0.1.  Black colour 

corresponds to magnonic band gaps.   

It is also interesting to consider a magnonic crystal consisting of the same layers (with kA = kB = k) 

separated by interfaces with interface anisotropy β = βA = βB and modified (relative to that in the layers) 

exchange coupling.  This corresponds to lines of spectra in form of diagonals running from the bottom 

left to the top right corners in Figs. 3 and 4.  The spin-wave spectra described by the lines contain 

magnonic band gaps.  However, the band gaps emerge differently when resulting from a weakened 

interlayer coupling or a finite interface anisotropy, so that the low frequency (wave-number) region 

remains “allowed” in the former and becomes “forbidden” in the latter case.  This is a result of the pinning 

of the magnetisation in the case of a finite strength of the interface anisotropy.  For the spectral maps in 

this case, we could also obtain from Equation (14) keeping only leading terms in β 
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(26) 

where nA and nB denote the numbers of lattice constants a in the layer thicknesses dA and dB, respectively.  

Hence, we find that, for the case of k ≈ 0, the leading term is 
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i.e. we have a band gap if β > 0.  If however β = 0, we have  
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i.e. we have an allowed band if nA + nB > 2, which is always the case.   

We have shown that a strong pinning and a weak coupling can both lead to extremely wide band 

gaps and narrow magnonic bands, and ultimately to a discrete spectrum of spin waves in the sample.  In 

magnonic crystals of interest, one aims to realise the opposite situation, i.e. to make the coupling strong 

and the pinning weak, so that the magnetic energy flux carried by spin waves across the interfaces is as 

strong as possible.  The magnonic band gaps are realised by increasing the depth of modulation 

(“contrast”) of magnetic parameters in the sample.  In this practically important case, the magnonic 

dispersion can calculated as 
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 (29) 

Finally, Fig. 5 shows the spectral maps for the case of unequal strengths of the exchange parameter 

in the two layers.  Expectedly, the maps become asymmetric in this case.  The positions of the lines of 

spectra also shift (or rather get distorted) with the map.  However, the possibility of tuning the positions 

by the parameters of the layers that do not enter Equation (14) is retained, as discussed e.g. in Ref. 112.   
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12 

 

Fig. 5  Spectral maps are shown for AA = 1 and the values of AB and βA(B) indicated for each panel.  

Black colour corresponds to magnonic band gaps.   

VII. Discussion 

The main take-home message of the presented analysis is that the weakened interlayer exchange 

coupling and finite interface anisotropy (pinning) can both lead to formation of frequency gaps (band 

gaps) in the spin-wave spectrum of magnonic crystals.  However, the origin of such band gaps is not 

related to the Bragg resonance.  Instead, the Bragg resonance is responsible for formation of the (quite 

flat) allowed bands in the systems.  The bands could also be considered as splitting of the standing spin-

wave resonances in the constituent layers of the magnonic crystals, in the spirit of the tight binding theory 

of the quantum-mechanical electron in crystals.126  So, both the weakened interlayer coupling and finite 

interface pinning should be generally treated as imperfections and therefore avoided.  Instead, in “good” 

magnonic crystals, magnonic band gaps are formed due to cumulative scattering from consecutive 

interfaces between layers with high magnetic contrast, as in the case of the nearly free electrons in 

crystals.126  The degree to which this is achieved could be judged by the applicability of the natural 

boundary conditions (3-4) to the descriptions of observed magnonic band spectrum.   

Strictly speaking, the formalism developed in this paper applies to the case of exchange spin waves 

in thin-film magnonic crystals.  However, we speculate that the calculations themselves, the graphical 

analysis and the conclusions drawn could be extrapolated to several other systems beyond those assumed 

in our model.  For instance, the dispersion of spin waves in the individual layers does not necessarily 

need to be that described by Equation (2).  Indeed, the dispersion relation could be replaced by that 

derived using any microscopic approach, provided the approach is consistent with the Barnaś-Mills 
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boundary conditions, given by Equations (9-10).  The modification of the dispersion relation would 

change the shape and position of the lines of spectra but not the spectral maps.   

Surface magnetostatic waves (Damon-Eshbach modes)127 in thin planar magnonic crystals could 

also be treated (even if approximately) using our approach.  Indeed, assuming that the mode amplitude 

is constant across the film thickness, the dispersion relation of such modes in a magnonic crystal would 

be calculated by applying the Bloch theorem and requiring continuity of the magnetostatic potential and 

its derivative at interlayer interfaces.  The latter boundary conditions have form of those considered here, 

perhaps with a different meaning of the parameters in the equation.  The pinning would be “effective”101 

and have magneto-dipole origin, e.g. in samples with modulated magnetization of saturation.  The 

strength of coupling between layers could be modified by introducing air gaps between layers.128-130  Yet, 

any generalization to the case of dipole-exchange spin waves could be only approximate since the 

corresponding differential (or integro-differential equations) are of a higher order, so that a greater 

number of boundary conditions is required to stitch their solutions at interfaces.  However, it is likely 

that even qualitative analysis based on the ideas presented here could prove useful in some cases.   

In Ref. 106, we showed that, under certain assumptions, the Barnaś-Mills boundary conditions 

could even be used to describe interfaces of finite (albeit small) thickness, thereby removing the need to 

consider the detailed structure of interfaces.  In the same work, we also outlined how the boundary 

conditions could be derived for the case of non-collinear magnetic configurations across the interface, 

which could result either from non-collinearity of the easy magnetization axes in the adjacent layers, or 

from the antisymmetric (Dzyaloshinskii-Moriya) exchange coupling.131-134  It is plausible that the spin-

wave dispersion relations in one-dimensional periodic non-collinear configurations of this sort (e.g. such 

as that forming the domain wall magnonic crystals from Refs. 135) could be treatable using the approach 

developed here.   

The theory presented here does not consider magnetic damping.136  The spin-wave attenuation in 

magnonic crystals depends non-monotonically on the frequency and magnetic structure.124,137  In 

practice, researchers face a trade-off between studying low-damping YIG magnonic crystals with periods 

typically greater than 100 μm29 and relatively high damping metallic magnonic crystals with periods 

down to several 100 nm.30  Only recently, thin (and therefore potentially patternable at the nanoscale) 

YIG and ultralow damping metallic ferromagnetic alloys became available,138 promising to revolutionize 

the experimental studies of magnonic crystals.  At present, however, the damping in metallic 

ferromagnets used so far appears to be quite high to allow formation of a magnonic band resulting from 

Bragg resonance of multiple spin waves scattered from successive interfaces in magnonic crystals with 

a strong magnetic contrast.  In contrary, the wide magnonic band gaps resulting from a weakened 

interlayer coupling and/or a strong magnetization pinning at interfaces are not limited by damping since 

they originate mainly from individual layers and do not therefore require Bragg resonances to form.  In 

this case, the damping is more relevant to the width of allowed bands.  The formalism developed here 

might facilitate a more thorough analysis of the available experimental data to isolate the true mechanism 

of the magnonic band spectrum formation in metallic magnonic crystals.  Yet, we note that magnonic 

crystals even with relatively high damping could be used as Bragg mirrors.139  

In addition to mastering magnonic crystals formed on the basis of thin YIG films140 and ultralow 

damping CoFe alloys,138 we see two other main avenues for development of the magnonic crystal 

research in the nearest future.  The first path is associated with a more extensive use of the ideas of 

graded-index magnonics.141  This includes media with a continuously periodic modulation of the 

magnetic contrast142 or applied magnetic field,143,144 those with a periodic variation of the magnetic 
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texture (such as arrays of magnetic domain walls,145,146 vortices147-149 and skyrmions,150 or even periodic 

bending of the magnetization114,151), as well as combinations of the approaches.  In light of the discussion 

presented in this paper, this path has an obvious advantage of maintaining the full magnetic coupling 

between and within individual periods of the magnonic crystals, which would also be free from patterned 

(or otherwise defined) sharp interfaces and associated interface anisotropy and pinning.   

The other path is associated with exploitation of Fano resonances25,152 in binary magnonic 

structures, in which (presumably, metallic) magnetic resonators could be periodically formed on top of 

a low damping magnonic medium, such as YIG.  Highly exotic effects associated with Fano resonances 

were observed already in the case of interaction between an isolated resonator and underlying magnonic 

waveguide.153,154  The microwave to spin wave coupling concept from Ref. 153 was extended to an array 

of resonators (“nanograting coupler”) in Ref. 140,155.  Both the graded-index and Fano resonance 

research directions lend themselves naturally to reconfigurability by altering the micromagnetic 

configuration of the magnonic crystals156-158, and to tuneability and dynamic modulation by the applied 

magnetic field,143,144 which represent the perceived main attractions of the magnonic technology.  Finally, 

we should mention here the non-reciprocity inherent to magnetism and more recently also observed in 

magnonic crystals,159,160 which is beyond the scope of this contribution.   

VIII. Conclusions 

We have investigated the origin of the band gaps in the spectrum of spin-waves propagating in thin-

film magnonic crystals with general assumptions about the properties of interfaces their constituent 

layers, as described by the Barnaś-Mills boundary conditions.98,100  Using the graphical method from 

Refs. 111-114, we have revealed that magnonic band gaps are a ubiquitous attribute of the spin-wave 

dispersion in magnonic crystals with weakened interlayer coupling and/or finite interface anisotropy 

(pinning).  The band gaps do not result from Bragg scattering but represent a legacy of the discrete spin-

wave spectrum of the individual magnetic layers periodically stacked to form the magnonic crystal.  This 

conclusion can be generalized to the important case of arrays of dipolar-coupled magnetic elements (e.g. 

stripes or nanodots) since the magneto-dipole coupling between elements is usually much weaker than 

that within each individual element.  Our conclusions lend a special attraction to magnonic crystals based 

on the ideas of graded-index magnonics or those formed by Fano resonances in a low damping magnetic 

wafer loaded by arrays of magnetic elements as they could prove free from the discovered shortcomings.   
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