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Amazon Basin climate under global warming:
the role of the sea surface temperature
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The Hadley Centre coupled climate–carbon cycle model (HadCM3LC) predicts loss of the Amazon
rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the
atmospheric component of HadCM3LC is used to assess the role of simulated changes in mid-
twenty-first century sea surface temperature (SST) in Amazon Basin climate change.

When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces
the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in
Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both the
tropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest
rainfall reduction occurs from May to October, outside of the mature South American monsoon
(SAM) season. This dry season response is the combined effect of a more rapid warming of the
tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely,
a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed
by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry
season soil moisture deficits from being recharged through the SAM season, leading to a perennial
soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary
productivity (NPP). A further 23% NPP reduction occurs in response to a 3.58C warmer air
temperature associated with a global mean SST warming.
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1. INTRODUCTION
First-generation coupled climate–carbon cycle models

indicate that carbon cycle feedbacks may accelerate

anthropogenic climate change through the twenty-first
century (Friedlingstein et al. 2006). The principal

feedbacks are from the terrestrial biosphere, and one

model in particular (Hadley Centre coupled climate–

carbon cycle model, HadCM3LC, Cox et al. 2000)

simulates an almost complete loss of forest from the

Amazon Basin between 2050 and 2100 under con-

ditions of locally reduced precipitation and increased

air temperature. While future drying of the Amazon
Basin is not common to all general circulation models

(GCMs) contributing to the Intergovernmental Panel

on Climate Change Fourth Assessment Report (IPCC

AR4; Christensen et al. 2007), it remains useful to

study the processes that contribute to the strong

Amazon climate change exhibited by Cox et al.
(2000, 2004)

Betts et al. (2004) estimated that global carbon cycle
feedbacks and vegetation structural changes in

HadCM3LC contribute to approximately 40% of the

simulated Amazon Basin precipitation reduction. This

indicates that the majority of the regional drying is part

of a wider atmosphere–ocean response to greenhouse
tribution of 27 to a Theme Issue ‘Climate change and the
he Amazon’.
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warming. The HadCM3LC trend in the twenty-first
century Pacific sea surface temperature (SST) has been
described as ‘El Niño like’ (Collins 2005), and Cox
et al. (2004) showed that a future weakening of Amazon
Basin rainfall during December to February (DJF) is
correlated with a progressive weakening of the equa-
torial Pacific east–west SST gradient. They suggest that
Amazon Basin drying is related to this SST change
through Walker circulation perturbations, similar to
those thought to relate observed South American
rainfall and El Niño-Southern Oscillation (Aceituno
1998; Grimm 2003).

However, the observed seasonal cycle and inter-
annual variation in Amazon Basin precipitation are
linkedadditionally to tropical AtlanticSST (e.g. Nobre&
Shukla 1996; Marengo et al. 2001). Most recently, it
was suggested that prolonged dry periods in parts
of the Amazon Basin through 2005 were related
to an anomalously warm tropical north Atlantic
(Marengo 2006). The potential contribution of
Pacific and Atlantic SST change to Amazon drying in
HadCM3LC is noted by Li et al. (2006) in an analysis
of AR4 model output. However, such an analysis of
transient GCM simulations is unable to distinguish
the relative roles of concurrent SST changes in each
ocean basin.

To investigate the roles of future Pacific and Atlantic
SST change in Amazon Basin drying, we run the
atmospheric component of HadCM3LC with a range
of SST boundary conditions derived from the transient
This journal is q 2008 The Royal Society
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Figure 1. Change in annual mean HadCM3LC-simulated SST for 2040–2059 relative to 1961–1990.Contours are plotted every
0.58C. The monthly mean SSTAs applied in the HadAM3 experiments MWLA, MW, LA, ATL, PAC and IND are based on this
change, as described in table 1. Shaded land pixels indicate the region used for calculating Amazon Basin area means, and
dashed lines indicate regions of each basin where SSTAs were applied in ATL, PAC and IND.

Table 1. Description of SST boundary conditions used in the
HadAM3 experiments. (‘MW’ and ‘LA’ indicate global mean
warming and local anomalies respectively.)

experiment SST boundary condition
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simulations of Cox et al. (2000). The model and
methods used are described in §2, and the HadAM3
control climate is described in §3. The results of the
HadAM3 simulations with different SST boundary
conditions are described in §4, and conclusions are
given in §5.
CONT GISST
MWLA GISSTCfull SST change
MW GISSTCglobal mean warming
LA GISSTCfull changeKglobal mean
ATL as LA, but DSST in tropical Atlantic only
PAC as LA, but DSST in tropical Pacific only
IND as LA, but DSST in tropical Indian Ocean only
2. MODEL AND METHODS
The atmospheric GCM used in this study is HadAM3
(Pope et al. 2000) including the MOSES2 land surface
scheme (Essery et al. 2001). HadAM3 is a hydrostatic,
primitive equation model with discretization of 19
vertical levels and 96!73 horizontal gridboxes,
corresponding to a gridbox size of 3.758 longitude!
2.58 latitude.

In a control simulation (CONT), HadAM3 is
integrated for 10 model years using the GISST
1961–1990 climatology (Parker et al. 1995, v. 2.3b)
as the SST boundary condition. Unless stated
otherwise, atmospheric CO2 concentration in each
of these simulations was set to the HadCM3LC
1961–1990 mean value of 348 ppmv. The initial 3
years of the simulation are excluded from the analysis
to allow the model to ‘spin up’. A further six
experimental integrations are made by adding to the
GISST climatology SST anomalies (SSTAs) based on
the climatologies of HadCM3LC-simulated SST
change between 1961–1990 and 2040–2059. This
future period, centred on 2050, is chosen to simulate
an Amazon Basin climate change sufficient to initiate
forest loss in HadCM3LC, but also one through
which the effects of vegetation change on Amazon
rainfall are weak (see Betts et al. 2004).

The annual mean HadCM3LC SST change, shown
in figure 1, exhibits warming in almost all ocean
gridboxes corresponding to a global annual mean
warming of 1.78C. Notable regional features in the
tropics are an east–west gradient in Pacific warming, a
north–south gradient in Atlantic warming, and a near-
uniform warming of the Indian Ocean. The maximum
eastward extent of the equatorial Pacific warming
occurs through the Northern Hemisphere winter
(DJF), the same season as the peak SSTAs in this
region observed during El Niño events. Tropical
Atlantic SST changes enhance the existing SST
Phil. Trans. R. Soc. B (2008)
seasonal cycle and produce a northward shift in the
location of the maximum SST throughout the year.

The study assesses the contribution of these SST
features to modelled Amazon climate change using the
SST boundary conditions summarized in table 1. A full
HadCM3LC SST change simulation (MWLA) is an
atmosphere-only reproduction of the HadCM3LC
response to mean 2040–2059 SST change. An
additional simulation is made using MWLA SSTAs
but with atmospheric CO2 concentration increased to
the HadCM3LC 2040–2059 mean value of 592 ppmv
to verify that HadAM3 reproduces the full HadCM3LC
Amazon Basin climate change. The full MWLA SST
change is separated further into two components: a
global mean warming (MW) and gridbox local
anomalies to this global mean (LA). In three further
simulations, the local anomalies are restricted to the
tropical basins of the Atlantic (ATL), Pacific (PAC) and
Indian (IND) Oceans between 258 S and 258 N, and
bounded by 158 latitude and longitude linear relax-
ations to zero anomaly for preventing unrealistic spatial
discontinuities in SST.
3. SIMULATED CONTROL CLIMATE
A detailed global analysis of the HadAM3 control
climate (as reproduced by the CONT simulation
herein) is given by Pope et al. (2000), and only the
model biases over South America and the tropical
Atlantic are described in this section. Amazon Basin
area means quoted in this section and following ones
are calculated over the model gridboxes indicated in



Table 2. Simulated Amazon Basin (see figure 1 for region definition) precipitation rate, air temperature, total soil moisture
content (SMC) and NPP from each experiment. (Differences from control values are shown in parentheses. HadCM3LC
anomalies are taken from the transient simulation for 2040–2059 relative to 1961–1990.)

experiment rainfall (mm dK1) 1.5 m T (8C) top 3 m SMC (mm) NPP (Mg C haK1 yrK1)

CONT 5.34 25.3 912.8 12.2
HadCM3LC 3.25 (K1.39) 31.1 (C4.7) 791.0 (K78.0) 5.1 (K4.4)
MWLA 4.23 (K1.11) 30.7 (C5.4) 822.1 (K90.7) 5.8 (K6.3)
MW 5.35 (C0.01) 28.8 (C3.5) 900.8 (K12.0) 9.4 (K2.8)
LA 4.18 (K1.16) 27.1 (C1.8) 820.5 (K92.3) 8.6 (K3.6)
ATL 5.01 (K0.33) 25.8 (C0.5) 889.0 (K23.8) 11.1 (K1.1)
PAC 4.76 (K0.58) 26.3 (C1.0) 870.0 (K42.8) 10.6 (K1.6)
IND 5.16 (K0.18) 25.5 (C0.2) 903.4 (K9.4) 11.9 (K0.3)
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figure 1. The observation datasets used herein are the
CMAP observation-only climatology for precipitation
(Xie & Arkin 1997) and the CRU land-only climatology
for 1.5 m air temperature (Ta from v. CRU-CL-1.0;
New et al. 1999).

The CONT simulation produces tropical precipi-
tation with annual mean wet bias of 1.0 mm dK1 over
tropical land. Over South America, the annual mean
precipitation rate north of 408 S is 4.2 mm dK1

corresponding to a 0.1 mm dK1 wet bias. This is
compared with a dry bias of 0.4 mm dK1 for this region
in HadCM3LC. Over the Amazon Basin, defined here
by the shaded gridboxes in figure 1, the CONT annual
mean precipitation rate of 5.3 mm dK1 has a dry bias
of 0.1 mm dK1, which is weaker than the dry bias
of 0.8 mm dK1 in HadCM3LC. Simulated peak mature
South American monsoon (SAM) precipitation rates
of 9–10 mm dK1 from DJF agree with CMAP rates in
magnitude, but are located approximately 58 too far
south. This produces a ‘dipole’ of dry–wet biases from
the Amazon to 208 S for both CONTand HadCM3LC.
When estimated biases in CMAP annual mean rainfall
of 10–20% over Amazon Basin are considered (Xie &
Arkin 1997), both CONT and HadCM3LC are
acceptable simulations of SAM precipitation in timing
and magnitude.

Annual mean Ta over the Amazon Basin is 25.38C in
CONT, corresponding to a cool bias of 0.48C
compared with the CRU dataset, and which contrasts
with a HadCM3LC warm bias of 0.88C. This cool bias
over the whole basin comprises strong cold biases of
28C in the Andes and weaker warm biases of !18C in
the Amazon lowlands. New et al. (1999) noted that the
interpolation method used to construct the CRU
dataset tends to underestimate the air temperature
lapse rate, resulting in air temperatures that are
probably too warm at high altitudes. Accounting for
this bias would tend to reduce the cool bias in the
Amazon Basin mean. In the Amazon lowlands,
monthly mean Ta values are within 18C of CRU data
throughout the year.
4. RESULTS
(a) Rainfall response to global SST changes

An annual Amazon Basin rainfall reduction (table 2) of
1.4 mm dK1 (K30%) in HadCM3LC is reproduced by
HadAM3 as an MWLA drying of 1.1 mm dK1

(K21%). The spatial extent of this drying is coincident
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in the two models, and covers the whole Amazon Basin.
The additional simulation (not shown) with atmos-
pheric CO2 increased to 592 ppmv produces a drying
of 1.4 mm dK1 (K27%), indicating that much of the
additional drying in HadCM3LC is due to the effects of
elevated CO2 in the coupled model. This is consistent
with the results of Betts et al. (2004) who estimated that
the stomatal response to increased CO2 enhances the
drying by approximately 20%.

Monthly mean rainfall anomalies for MWLA in
figure 2a show that the greatest drying of up to
2.8 mm dK1 occurs between May and November,
outside of the peak months of the SAM, and through
which observed interannual variance in Amazon Basin
rainfall is the greatest. This dry season response has
been noted previously for HadCM3LC by Li et al.
(2006). Weak rainfall increases through the mature
SAM months of January to March reflect enhanced
SAM rainfall with no shift in location of the peak from
the southern edge of the Amazon Basin (as defined in
figure 1). By contrast, HadCM3LC exhibits a
1.1 mm dK1 drying through these months (not
shown), probably related to a stomatal response to
increased CO2. Rainfall reductions through May and
June correspond to an early recession of the SAM.

Comparison with the MW and LA simulations
shows that these May to November rainfall reductions
are part of an atmosphere response to regional patterns
of SST warming, rather than the increase in global
mean SST. Moreover, this corresponds to a delayed
onset of the Amazon Basin monsoon and a longer dry
season. The effect of global mean SST increase in MW
is to enhance the existing seasonal cycle of rainfall over
the Amazon Basin. However, these monthly changes
are not statistically significant and the effect on the
annual mean Amazon Basin rainfall is relatively small.

(b) Response to tropical SST changes

Annual mean rainfall rates in table 2 show Amazon
Basin drying in ATL and PAC of 0.3 and 0.6 mm dK1,
respectively. Neither Pacific nor Atlantic SST gradient
changes alone explain the strength of rainfall reduction
in response to global SST gradient changes. Moreover,
the sum of ATL and PAC anomalies explains only 80%
of drying in LA, indicating that the response to global
SSTAs is not simply the response to Atlantic and
Pacific SSTAs summed through all seasons. These
annual mean rainfall responses suggest a stronger
response to Pacific SST gradients changes than
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Figure 2. Simulated monthly mean Amazon Basin (a) rainfall rate (mm dK1) (b) 1.5 m air temperature ( 8C), (c) total soil
moisture content (mm) and (d ) NPP (Mg C haK1 yrK1). Upper panels show CONT climatologies and lower panels show
anomalies in each experiment relative to CONT. Thick lines indicate simulations using global SSTAs and thin lines indicate
simulations with SSTAs restricted to a tropical basin. Crosses indicate anomalies significant at the 99% level using Student’s
t-test. Thick line, CONT; dotted line, MWLA; thick dashed line, MW; dash dotted line, LA; thin line, ATL; thin dashed
line, PAC.
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Atlantic gradient changes; however, it is shown in
§4b(i),(ii) that there are significant differences
between seasons.

An IND annual mean drying of 0.2 mm dK1

corresponds to a weakening of DJF rainfall over
northeast Brazil rather than the Amazon Basin. This is
consistent with a modelled rainfall response to warm
Indian Ocean SSTAs following El Niño events (Spencer
et al. 2004). However, because there is no statistically
significant response over the Amazon Basin, the IND
simulation is not considered further here.

(i) Amazon Basin dry season
Monthly mean Amazon Basin rainfall anomalies for
ATL in figure 2a show a consistent drying of
approximately 1 mm dK1 from June to November,
and a similar 1 mm dK1 drying in PAC from August to
November. Both correspond to a longer dry season,
which is a strong determinant of vegetation type in the
Phil. Trans. R. Soc. B (2008)
tropics (Sternberg 2001), but the ATL dry season has a
more severe annual minimum than that in PAC.

Associated with these dry season rainfall decreases in
the ATL and PAC simulations are changes in the Hadley
and Walker circulations, respectively (figure 3). In
response to Atlantic SSTAs over the tropical South
America/Atlantic region, there is an overall strengthe-
ning of the Hadley circulation and associated rainfall
increases over ocean. The effect of this over South
America is indicated in figure 3b by increased ascent
from 108 to 308 N over warm SSTAs and increased
descent between 308 S and 58 N across the same latitudes
as cool SSTAs. There are also stronger 950 hPa cross-
equatorial southerlies and a shift in intertropical conver-
gence zone (ITCZ) rainfall from South America north of
the equator towards the Caribbean. These changes could
affect Amazon rainfall through both increased upper
troposphere convergence and reduced lower troposphere
moisture convergence (Hastenrath 2000).
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Figure 3. (Upper panels) Zonal mean atmospheric Hadley circulation (ATL) and anomalies from 708 W to 458 W for (a) SAM
months of January to March and (b) dry season months of July to September. Contours show CONT vertical velocity, plotted
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Observed Atlantic ITCZ rainfall, unlike the mean

change in ATL, exhibits little interannual variation in

latitude through the dry season (Chiang et al. 2002).
From July to September, a strong meridional gradient

in tropical SST supports ITCZ convection over only a

narrow band of latitudes. As a result, the peak SSTand
the associated ITCZ rainfall are moved only by

relatively large SSTAs. For the future change, ATL

SSTAs (figure 3b, lower panel) are sufficient to shift

northwards the maximum SST from 7.58 to 128 N and
strengthen the inter-hemispheric SST gradient, result-

ing in the significant drying over northern South

America. The ATL inter-hemispheric gradient also

persists for one to two months longer at the end of the
dry season, which leads to a delay in the SAM

development phase (Li & Fu 2004).

The atmospheric response to Pacific SSTAs
through the dry season (figure 3d ) exhibits increased
Phil. Trans. R. Soc. B (2008)
ascent over the warm equatorial east Pacific SSTAs

from 1358 to 858 W and descent over cool west
Pacific SSTAs. These anomalies correspond to a

weaker, but extant, Pacific Walker circulation.
However, the strongest east Pacific ascent increase

from July to September occurs over the warmest
SSTs approximately 108 N, away from the equatorial

SST ‘cold tongue’. This results in a removal of the
600–200 hPa mean ascent over equatorial South

America and the associated rainfall reduction in
figure 2a. Because the east Pacific convection

anomaly is located north of the Equator, the Andes
form less of a barrier to lower troposphere connec-

tions with the equatorial and northern Amazon than
for warm SSTA in the equatorial east Pacific (Fu

et al. 2001). It is probable that this helps limit
significant PAC Amazon Basin rainfall reductions to

the dry season.
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(ii) South American monsoon season
Through the mature SAM season (JFM), there are few
significant changes in Amazon Basin rainfall (figure 2a)
from any SSTAs, with the exception of ATL for March.
This March rainfall increase due to Atlantic SSTAs
comprises a 1 mm dK1 increase in SAM maximum
rainfall on the southern edge of the basin (not shown),
with an associated strengthening of the existing Hadley
circulation (figure 3a). Chiang et al. (2002) noted that a
broad Atlantic SST maximum about the equator
during these months supports ITCZ convection over
a range of latitudes, resulting in the greatest observed
interannual variation in ITCZ location from January to
April. Warm equatorial SSTAs (figure 3a, lower panel)
enhance the climatological equatorial maximum SST
and increase the SST gradient away from the equator
favouring an enhanced monsoon. However, the rela-
tively short simulation lengths make it difficult to
distinguish a significant mean wet season change from
internal variability through these months, despite
relatively strong ATL circulation anomalies.

(c) Amazon Basin surface response

to SST change

Sections 4a,b describe how mid-twenty-first century
SST change in HadCM3LC is associated with a 21%
reduction in annual mean Amazon Basin rainfall.
However, rainfall change initiates modelled forest loss
only indirectly through the effect of soil moisture
limitation on vegetation net primary productivity
(NPP). Table 2 shows that the MWLA rainfall
reduction coincides with a 10% reduction in soil
moisture but a proportionately greater 52% reduction
in basin mean NPP. Comparison with simulations MW
and LA indicates that this NPP change comprises
approximately a 30% reduction from SST gradients
and a 23% reduction from global mean warming.

Amazon Basin monthly mean air temperature
(figure 2b) exhibits an MW warming of 3–58C through
the year with no significant soil moisture reduction
(figure 2c). While MWLA soil moisture reductions
are attributable to SST gradient changes in all
months, the corresponding NPP reductions in LA are
2.5–3.0 Mg C haK1 yrK1 weaker than those in MWLA.
This difference may be accounted for by the NPP
response to mean SST warming. This indicates that
there would be a significantly reduced Amazon Basin
NPP in HadCM3LC, even in the absence of SST
gradient changes in the Atlantic and Pacific. However,
the NPP reduction required to initiate forest loss would
occur later in the twenty-first century. It is interesting
to note that a simulation with increased atmospheric
CO2 (not shown) exhibited a weaker NPP reduction of
33% due to the effect of CO2 fertilization.

The rainfall responses to tropical Atlantic and
Pacific SSTAs produce relatively weak annual mean
NPP reductions (table 2) of 9 and 13%, respectively.
Each of these reductions is unlikely to be sufficient to
cause forest loss. These NPP reductions are primarily
in response to reduced dry season soil moisture
(figure 2c), although there is some PAC wet season
drying restricted to land around the Amazon River
mouth. The drier ATL soil through the dry season is
offset by the wet season rainfall increase to produce a
Phil. Trans. R. Soc. B (2008)
relatively weak (3%) annual mean reduction. These
contrast markedly with the strong, perennial LA soil
moisture reduction produced when the combined ATL
and PAC dry season responses are propagated from
year to year. This indicates that the contribution of
SST-related rainfall change to HadCM3LC Amazon
Basin forest loss requires both the Atlantic and Pacific
SST gradient changes examined herein.
5. CONCLUSIONS
A scenario as striking as the predicted loss of Amazon
forest by Cox et al. (2000), along with the associated
social and economic implications for the region,
warrants further investigation. This is particularly
important because regional climate projections for
tropical South America are not consistent across
different GCMs contributing to the IPCC AR4.

This study used atmospheric GCM simulations to
assess the effect of simulated future SST change on
Amazon Basin climate. Particular attention was given
to the roles of SST gradient change in the tropical
Atlantic and Pacific. We conclude that several con-
current SST conditions are sufficient to reduce
Amazon Basin NPP to a level at which rainforest is
unsustainable. These conditions include strengthening
of inter-hemispheric SST gradients in the Atlantic and
east Pacific through the Amazon Basin dry season and
global mean SST warming. The establishment of these
Atlantic and Pacific SSTAs under greenhouse warming
is uncertain; current coupled atmosphere–ocean
GCMs disagree on the signs of SST gradient change
across both the zonal equatorial Pacific (Collins
2005) and the meridional Atlantic (Good et al. 2008).
This study highlights the importance of reducing
uncertainty in the prediction of future SST change in
order to understand and quantify the risk of climate
change-induced loss of Amazon rainforest.

This study was supported by Natural Environment Research
Council non-thematic grant GR3/12967. The authors thank
Chris Taylor and Richard Betts for their comments
throughout, and the Hadley Centre for allowing use of
HadAM3 and for making their existing simulations available
for analysis.
REFERENCES
Aceituno, P. 1998 On the functioning of the Southern

Oscillation in the South American sector. Part I: surface
climate. Mon. Weath. Rev. 116, 505–524. (doi:10.1175/
1520-0493(1988)116!0505:OTFOTSO2.0.CO;2)

Betts, R., Cox, P., Collins, M., Harris, P., Huntingford, C. &
Jones, C. 2004 The role of ecosystem–atmosphere
interactions in simulated Amazonian precipitation
decrease and forest dieback under global climate warming.
Theor. Appl. Climatol. 78, 157–176. (doi:10.1007/s00704-
004-0050-y)

Chiang, J., Kushnir, Y. & Giannini, A. 2002 Deconstructing
Atlantic intertropical convergence zone variability: influ-
ence of the local cross-equatorial sea surface temperature
gradient and remote forcing from the eastern equatorial
pacific. J. Geophys. Res. Atmos. 107, 3-1–3-19. (doi:10.
1029/2000JD000307)

Christensen, J. et al. 2007 Regional climate projections. In
Climate change 2007: the physical science basis. Contribution of
working group I to the Fourth Assessment Report of the

http://dx.doi.org/doi:10.1175/1520-0493(1988)116%3C0505:OTFOTS%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0493(1988)116%3C0505:OTFOTS%3E2.0.CO;2
http://dx.doi.org/doi:10.1007/s00704-004-0050-y
http://dx.doi.org/doi:10.1007/s00704-004-0050-y
http://dx.doi.org/doi:10.1029/2000JD000307
http://dx.doi.org/doi:10.1029/2000JD000307


Amazon Basin climate under global warming P. P. Harris et al. 1759
Intergovernmental Panel on Climate Change (eds S. Solomon,
D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M.
Tignor & H. Miller), ch. 1, pp. 847–940. Cambridge, UK;
New York, NY: Cambridge University Press.

Collins, M. 2005 El Niño - or La Niña-like climate change?Clim.
Dynam. 24, 89–104. (doi:10.1007/s00382-004-0478-x)

Cox, P., Betts, R., Jones, C., Spall, S. & Totterdell, I. 2000
Acceleration of global warming due to carbon-cycle
feedbacks in a coupled climate model. Nature 408,
184–187. (doi:10.1038/35041539)

Cox, P., Betts, R., Collins, M., Harris, P., Huntingford, C. &
Jones, C. 2004 Amazonian rainforest dieback un climate-
carbon cycle projections for the 21st century. Theor. Appl.
Climatol. 78, 137–156. (doi:10.1007/s00704-004-0049-4)

Essery, R., Best, M. & Cox, P. 2001 Moses 2.2 technical
documentation. Technical report, Hadley Centre, Met
Office.

Friedlingstein, P. et al. 2006 Climate-carbon cycle feedback
analysis: results from the C4MIP model intercomparison.
J. Clim. 19, 3337–3353. (doi:10.1175/JCLI3800.1)

Fu, R., Dickinson, R., Chen, M. & Wang, H. 2001 How do
tropical sea surface temperatures influence the seasonal
distribution of precipitation in the equatorial Amazon?
J. Clim. 14, 4003–4026. (doi:10.1175/1520-0442(2001)
014!4003:HDTSSTO2.0.CO;2)

Good, P., Lowe, J. A., Collins, M. & Moufouma-Okia, W.
2008 An objective tropical Atlantic sea surface tempera-
ture gradient index for studies of south Amazon dry season
climate variability and change. Phil. Trans. R. Soc. B 363,
1761–1766. (doi:10.1098/rstb20070024)

Grimm, A. 2003 The El Niño impact on the summer
monsoon in Brazil: regional processes versus remote
influences. J. Clim. 16, 263–280. (doi:10.1175/1520-
0442(2003)016!0263:TENIOTO2.0.CO;2)

Hastenrath, S. 2000 Upper air mechanisms of the Southern
oscillation in the tropical Atlantic sector. J. Geophys. Res.
Atmos.105, 14 997–15 009. (doi:10.1029/2000JD900159)

Li, W. & Fu, R. 2004 Transition of the large-scale atmos-
pheric and land-surface conditions from the dry to the wet
season over Amazonia as diagnosed by the ECMWF
re-analysis. J. Clim. 17, 2637–2651. (doi:10.1175/1520-
0442(2004)017!2637:TOTLAAO2.0.CO;2)
Phil. Trans. R. Soc. B (2008)
Li, W., Fu, R. & Dickinson, R. 2006 Rainfall and its

seasonality over the Amazon in the 21st century as

assessed by the coupled models for the IPCC AR4.

J. Geophys. Res. Atmos. 111, D02111. (doi:10.1029/

2005JD006355)

Marengo, J. 2006 Drought in Amazonia. In State of the climate

in 2005, vol. 87 (ed. K. Shein). Bulletin of the American

Meteorological Society, p. S70. Washington, DC: Amer-

ican Meteorological Society.

Marengo, J., Liebmann, B., Kousky, V. E., Filizola, N. &

Wainer, I. 2001 Onset and end of the rainy season in the

Brazilian Amazon basin. J. Clim. 14, 833–852. (doi:10.

1175/1520-0442(2001)014!0833:OAEOTRO2.0.CO;2)

New, M., Hulme, M. & Jones, P. 1999 Representing

twentieth-century space–time climate variability. Part I:

development of a 1961–1990 mean monthly terrestrial

climatology. J. Clim. 12, 829–856. (doi:10.1175/1520-

0442(1999)012!0829:RTCSTCO2.0.CO;2)

Nobre, P. & Shukla, J. 1996 Variations of sea surface tempe-

rature, wind stress, and rainfall over the tropical Atlantic

and South America. J. Clim. 9, 2464–2479. (doi:10.1175/

1520-0442(1996)009!2464:VOSSTWO2.0.CO;2)

Parker, D., Folland, C. & Jackson, M. 1995 Marine surface

temperature: observed variations and data requirements.

Clim. Change 31, 559– 600. (doi:10.1007/BF01095162)

Pope, V., Gallani, M., Rowntree, P. & Stratton, R. 2000 The

impact of new physical pameterizations in the Hadley

Centre climate model: HadAM3. Clim. Dynam. 16,

123–146. (doi:10.1007/s003820050009)

Spencer, H., Slingo, J. & Davey, M. 2004 Seasonal

predictability of ENSO teleconnections: the role of the

remote ocean response. Clim. Dynam. 22, 511–526.

(doi:10.1007/s00382-004-0393-1)

Sternberg, L. d. S. L. 2001 Savanna-forest hysteresis in the

tropics. Global Ecol. Biogeogr. 10, 369–378. (doi:10.1046/

j.1466-822X.2001.00243.x)

Xie, P. & Arkin, P. 1997 Global precipitation: a 17-year

monthly analysis based on gauge observations, satellite

estimates, and numerical model outputs. Bull. Am.

Meteorol. Soc. 78, 2539–2558. (doi:10.1175/1520-0477

(1997)078!2539:GPAYMAO2.0.CO;2)

http://dx.doi.org/doi:10.1007/s00382-004-0478-x
http://dx.doi.org/doi:10.1038/35041539
http://dx.doi.org/doi:10.1007/s00704-004-0049-4
http://dx.doi.org/doi:10.1007/s00704-004-0049-4
http://dx.doi.org/doi:10.1175/JCLI3800.1
http://dx.doi.org/doi:10.1175/1520-0442(2001)014%3C4003:HDTSST%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(2001)014%3C4003:HDTSST%3E2.0.CO;2
http://dx.doi.org/doi:10.1098/rstb20070024
http://dx.doi.org/doi:10.1175/1520-0442(2003)016%3C0263:TENIOT%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(2003)016%3C0263:TENIOT%3E2.0.CO;2
http://dx.doi.org/doi:10.1029/2000JD900159
http://dx.doi.org/doi:10.1175/1520-0442(2004)017%3C2637:TOTLAA%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(2004)017%3C2637:TOTLAA%3E2.0.CO;2
http://dx.doi.org/doi:10.1029/2005JD006355
http://dx.doi.org/doi:10.1029/2005JD006355
http://dx.doi.org/doi:10.1175/1520-0442(2001)014%3C0833:OAEOTR%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(2001)014%3C0833:OAEOTR%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(1999)012%3C0829:RTCSTC%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(1999)012%3C0829:RTCSTC%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(1996)009%3C2464:VOSSTW%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(1996)009%3C2464:VOSSTW%3E2.0.CO;2
http://dx.doi.org/doi:10.1007/BF01095162
http://dx.doi.org/doi:10.1007/s003820050009
http://dx.doi.org/doi:10.1007/s00382-004-0393-1
http://dx.doi.org/doi:10.1046/j.1466-822X.2001.00243.x
http://dx.doi.org/doi:10.1046/j.1466-822X.2001.00243.x
http://dx.doi.org/doi:10.1175/1520-0477(1997)078%3C2539:GPAYMA%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0477(1997)078%3C2539:GPAYMA%3E2.0.CO;2

	Amazon Basin climate under global warming: the role of the sea surface temperature
	Introduction
	Model and methods
	Simulated control climate
	Results
	Rainfall response to global SST changes
	Response to tropical SST changes
	Amazon Basin dry season
	South American monsoon season
	Amazon Basin surface response to SST change

	Conclusions
	This study was supported by Natural Environment Research Council non-thematic grant GR3/12967. The authors thank Chris Taylor and Richard Betts for their comments throughout, and the Hadley Centre for allowing use of HadAM3 and for making their existin...
	References


