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Abstract— It is a widely accepted fact that the computational
capability of recurrent neural networks (RNNs) is maximized on
the so-called “edge of criticality.” Once the network operates in
this configuration, it performs efficiently on a specific application
both in terms of: 1) low prediction error and 2) high short-
term memory capacity. Since the behavior of recurrent networks
is strongly influenced by the particular input signal driving
the dynamics, a universal, application-independent method for
determining the edge of criticality is still missing. In this paper,
we aim at addressing this issue by proposing a theoretically
motivated, unsupervised method based on Fisher information
for determining the edge of criticality in RNNs. It is proved
that Fisher information is maximized for (finite-size) systems
operating in such critical regions. However, Fisher information is
notoriously difficult to compute and requires the analytic form of
the probability density function ruling the system behavior. This
paper takes advantage of a recently developed nonparametric
estimator of the Fisher information matrix and provides a method
to determine the critical region of echo state networks (ESNs),
a particular class of recurrent networks. The considered control
parameters, which indirectly affect the ESN performance, are
explored to identify those configurations lying on the edge of
criticality and, as such, maximizing Fisher information and com-
putational performance. Experimental results on benchmarks
and real-world data demonstrate the effectiveness of the proposed
method.

Index Terms— Echo state network (ESN), edge of criticality,
Fisher information, nonparametric estimation.

NOMENCLATURE

ARIMA Autoregressive integrated moving average.
ESN Echo state network.
FIM Fisher information matrix.
GA Genetic algorithm.
MC Memory capacity.
MLLE Maximum local Lyapunov exponent.
MST Minimum spanning tree.
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mSVJ Minimum singular value of Jacobian.
NARMA Nonlinear autoregressive moving average.
NRMSE Normalized root mean square error.
PD Positive semidefinite.
pdf Probability density function.
RNN Recurrent neural network.
SVR Support vector regression.
φ Region in parameter space where FIM is

maximized.
λ Region in parameter space where MLLE

crosses zero.
η Region in parameter space where mSVJ is

maximized.
γ Prediction accuracy.

I. INTRODUCTION

AN RNN can approximate any dynamic system under mild
hypotheses (see [1] and references therein). However,

RNNs are difficult to train [2] and the interpretability of
their modus operandi is still object of study [3], [4]. Inter-
estingly, RNNs can generate complex dynamics characterized
by sharp transitions permitting them to commute between
ordered and chaotic regimes. In fact, experimental results
on a multitude of application contexts suggest that RNNs
achieve the highest information processing capability exactly
when configured on the edge of this transition, resulting
in high MC (storage of past inputs) and good performance
on the modeling/prediction task at hand (low prediction
errors) [5]–[10]. Therefore, in order to determine such “crit-
ical” network configurations, RNNs require fine-tuning of
their controlling parameters. This general behavior is in
agreement with the widely discussed “criticality hypothesis”
associated with the functioning of many biological (complex)
systems [11]–[16], including the brain [17]–[23]. In fact, it was
noted [15] that such complex systems tend to self-organize so
as to operate in a critical regime. This still controversial issue
has been supported by experiments showing that, in such a
regime, systems are highly responsive to external stimuli, and
hence capable of introducing any dynamics as requested by
the specific task [15]. Investigating whether a given complex
system operates more efficiently in the critical regime or not
requires, at first, theoretically sound methods for detecting the
onset of criticality [24].
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Determination of system configurations lying on the edge
of criticality can be then carried out by means of appropriate
sensitivity analyses (on the edge of criticality the sensitivity
diverges, being the separation between ordered and chaotic
regimes). In this direction, Fisher information and its mul-
tivariate extension called FIM [25]–[28] provide a way to
quantify the sensitivity of a (parameterized) pdf with respect
to its control parameters. Fisher information is tightly linked
with statistical mechanics and, in particular, with the field
of (continuous) phase transitions. In fact, as shown in [29],
it is possible to provide a thermodynamic interpretation of
Fisher information in terms of rate of change of the order
parameter, quantities used to discriminate the different phases
of a system. This fact provides an important bridge between
the concept of criticality and statistical modeling of complex
systems. It emerges that the critical phase of a thermodynamic
system can be mathematically described as that region of
the parameter space where the order parameters vanish and
their derivatives diverge. This implies that, on the critical
region, Fisher information diverges as well, hence providing
a quantitative, well-justified tool for detecting the onset of
criticality in both theoretical models and computational sim-
ulations [30]. Nonetheless, Fisher information is notoriously
difficult to compute and, in principle, it requires the knowledge
of the analytical form of the parameterized pdf describing the
system behavior.

The designer could consider directly the network weights
and drive them toward the edge of criticality through a learning
mechanism. Even though this problem is still open at current
state of research, what we propose here strongly goes in
this direction by accounting a special class of RNNs called
ESNs [31]. Although ESNs are typically randomly initialized,
the network designer has access to a set of hyperparameters,
which have an indirect effect (when considering inputs) on
the resulting ESN dynamics and their related computational
capability. We define the hyperparameter configurations that
bring an ESN in a state where prediction accuracy and MC
are maximized as the critical region (or equivalently, edge
of criticality). Here, we show that the FIM can be used to
determine the onset of criticality for a network designed to
deal with a particular application. Notably, we provide an
unsupervised algorithm that exploits the determinant of the
FIM in order to determine the edge of criticality. Since the
proposed algorithm is unsupervised, it does not depend on
the particular model and related training mechanism adopted
for the readout. This feature becomes particularly relevant
when the readout layer is implemented by means of nonlinear
models, such as feedforward neural networks or kernel-based
SVR, which require a long training time. In the proposed
algorithm, we use a nonparametric FIM estimator [32] that
allows us to overcome some of the difficulties that arise
when adopting a model-based approach to compute the FIM
(e.g., availability of the analytical model ruling the system).
In addition, in order to robustly estimate the FIM, we follow
an ensemble approach and perform a number of independent
trials.

RNNs, as well as ESNs, are driven by inputs. Therefore,
their dynamics and related computational capability depend

on the type of input signal driving the network. During the
last decade, many solutions have been proposed to charac-
terize the input-driven dynamics of the network and perform
related tuning of the (hyper-)parameters [33]. Among the many
contributions, we can cite approaches based on mean-field
approximation of the neuron activations [34], information-
theoretic methods inspired by the concept of intrinsic plasticity
(based on the maximum entropy principle) borrowed from
neuroscience [35], [36], and methods for characterizing the
onset of criticality with measures of (directional) information
transfer and information storage [37], together with related
self-organized adaptation mechanisms [38].

To the best of our knowledge, FIM and related ther-
modynamic interpretations have not been considered yet to
study the issue of criticality in ESNs. We stress that, in
principle, our method can be extended to account for several
hyperparameters, such as feedback scaling and percentage of
noise in state update [39]. Finally, it is worth noticing that,
as a consequence of the theoretical framework adopted here,
we implicitly assume that the critical phase of ESNs can be
described by a continuous phase transition. This assumption
is highly justifiable, since a system can operate in a critical
regime only if such a transition is continuous.

The novelty of our contribution can be summarized as
follows.

1) An unsupervised learning method that, by exploiting
only the information coming from the neuron activa-
tions, permits to identify the edge of crticality. Since
no assumption regarding the mathematical model of the
(input-driven) dynamic system is made, the method can
handle any type of applications.

2) The proposed method is independent of the particular
reservoir topology, since it is conceived to determine the
critical ESN hyperparameters. This allows the network
designer to instantiate a specific architecture based on
problem-dependent design choices.

3) The envisaged nonparametric FIM estimator [32] oper-
ates directly on data/observations: as such, there is no
need to estimate the high-dimensional densities underly-
ing the neuron activations. As a consequence, the num-
ber of reservoir neurons does not pose a serious technical
issue from the estimation viewpoint, and therefore, it
can be chosen by the network designer according to
application requirements.

4) The FIM estimator can be implemented in two different
ways, one of which requires elaboration in order to
properly define the related optimization problem. In
this paper, we propose our own formulation for the
constraints defining such an optimization problem—see
the Appendix for details.

The remainder of this paper is structured as follows.
In Section II, we introduce ESNs and the related consider-
ations on the characterization of the dynamics. Section III
introduces FIM and the adopted nonparametric estimator.
In Section IV, we present the proposed method for deter-
mining the ESN hyperparameters. In order to support our
methodological developments, Section V presents experimen-
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Fig. 1. Schematic depiction of an ESN. The circles represent input x, state,
h, and output, y, respectively. Solid squares Wo

r and Wo
i are the trainable

matrices, respectively, of the readout, while dashed squares, Wr
r , Wr

o, and
Wr

i , are randomly initialized matrices. The polygon represents the nonlinear
transformation performed by neurons and z-1 is the time lag operator.

tal results performed on both well-known benchmarks and a
real-world application involving the prediction of telephone
call loads [40]. Conclusions and future research directions
follow in Section VI.

II. ECHO STATE NETWORKS

ESNs [31] consist of a large recurrent layer of nonlin-
ear units with randomly generated weights and a linear,
memoryless readout layer that is trainable by means of a
simple regularized least-square optimization. The recurrent
layer acts as a nonlinear kernel [41], mapping the input to
a high-dimensional space. A visual representation of the ESN
architecture is reported in Fig. 1.

The equations describing the ESN state update and output
are, respectively, defined as

h[k] = f
(
Wr

r h[k − 1] + Wr
i x[k] + Wr

oy[k − 1]) (1)

y[k] = Wo
i x[k] + Wo

r h[k]. (2)

The reservoir contains Nr neurons characterized by a trans-
fer/activation function f (·), which is typically implemented
as a hyperbolic tangent (tanh) function. At time instant k, the
network is driven by the input signal x[k] ∈ R

Ni and produces
the output y[k] ∈ R

No , being Ni and No the dimensionality of
inputs and outputs, respectively. The vector h[k] contains Nr

components and describes the ESN (instantaneous) state. The
weight matrices Wr

r ∈ R
Nr ×Nr (reservoir connections), Wr

i ∈
R

Ni ×Nr (input-to-reservoir), and Wr
o ∈ R

No×Nr (output-to-
reservoir feedback) contain real values in the [−1, 1] interval
distributed according to a uniform distribution, but additional
options have been explored in the recent literature [42], [43].
Wo

i and Wo
r , instead, are optimized for the task under consid-

eration, usually by means of a (regularized) linear regression
algorithm. Here, for the sake of brevity, we do not report the
expressions describing training (regularized linear regression
of ESN readout) and refer the reader to [31] for details.
In fact, the proposed method for finding hyperparameters is
completely unsupervised and, hence, independent from the
readout training.

The behavior of a given network can be controlled by tuning
a set of scalar hyperparameters. Usually, the designer considers
θIS, the scaling of the input weights Wr

i , hence affecting the

nonlinearity introduced by the neurons; θSR, scaling of the
spectral radius of Wr

r , which influences both stability and
computational capability of the network by shifting the transfer
function poles [35]; θRC, which determines the sparsity of
connectivity in Wr

r , i.e., the number of weights set to 0; θFB,
which affects Wo

r , that is, the importance of output feedback
connections. In this paper, we set θFB = 0 with a consequent
simplification of ESN state update (1)

h[k] = f
(
Wr

r h[k − 1] + θISWr
i x[k]) (3)

where Wr
r is normalized as Wr

r = θSRWr
r /ρ(Wr

r ), being
ρ(Wr

r ) the spectral radius of Wr
r . θSR, θIS, and θRC are

hyperparameters typically tuned through cross validation to
find the best-performing configuration for the task at hand.
In this paper, we study how to set these three hyperparameters
through an unsupervised approach. However, we stress that
the proposed methodology is applicable to any number of
hyperparameters.

In order to guarantee asymptotic stability, ESNs must satisfy
the so-called echo state property [44]–[47], which requires
the reservoir exhibiting short-term memory (exponential fad-
ing) [48], [49]. Recently, Mayer [50] investigated the effects
of criticality in ESN memory, showing that, under certain
conditions, the echo state property can still be verified even
if the memory vanishes slowly (i.e., following a power-law
function).

The stability margin of a network can be assessed in
practice by analyzing the Jacobian matrix of the reservoir
state update (3). Notably, the MLLE λ, used to approximate
the separation rate in phase space of trajectories having very
similar initial states [51], can be computed from such a matrix.
In autonomous systems, λ < 0 indicates that the system (here
ESN) is stable; λ > 0 denotes chaoticity. A transition point
between those two different behaviors is obtained when λ = 0.
The sign of λ provides thus a criterion for detecting the onset
of criticality in reservoirs. Such a criterion is widely used also
as a baseline to develop and compare novel criteria [37].

If reservoir neurons are equipped with a hyperbolic tangent
activation function, the Jacobian at time k can be conveniently
expressed as

J(h[k])

=

⎡

⎢
⎢⎢
⎣

1 − (h1[k])2 0 . . . 0
0 1 − (h2[k])2 . . . 0
...

...
. . .

...

0 0 . . . 1 − (hNr [k])2

⎤

⎥
⎥⎥
⎦

Wr
r

(4)

where hl [k], l = 1, 2, . . . , Nr , is the activation of the lth
reservoir neuron at time k. λ is then computed by means of
the geometric average

λ = max
n=1,...,Nr

1

K

K∑

k=1

log (rn[k]) (5)

where rn[k] is the absolute value of the nth eigenvalue of
J(h[k]) and K is the total number of samples in the time
series under consideration.
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Fig. 2. Approach based on FIM maximization used to identify a continuous phase transition can be adopted also to characterize dynamics in ESNs.
In this context, ESN hyperparameters (e.g., spectral radius and input scaling) play the same role of the control parameters in a thermodynamic system (e.g.,
temperature affects the magnetization phenomenon). FIM can be used to identify the critical region (edge of criticality) in the ESN hyperparameter space,
where the computational capability is maximized. Note that the densities plotted in the two figures are not related and show the role played by FIM in the
two different fields. (a) Thermodynamic systems. (b) ESNs.

Another indicator used to predict the network performance
is the mSVJ matrix (denoted in the following as η), which
provides accurate information regarding the ESN dynamics.
The set of hyperparameter configurations that maximize mSVJ
gives rise to dynamical systems with good excitability, sepa-
rating well the input signals in state space [51].

In this paper, as a means of numerical comparison with the
proposed method based on FIM, we will use also MLLE and
mSVJ criteria for detecting the onset of criticality in ESNs.

III. FISHER INFORMATION MATRIX AND THE

NONPARAMETRIC ESTIMATOR

The FIM [25] is a symmetric PD matrix whose elements
are defined as follows:

Fij (pθ(·)) =
∫

D
pθ(u)

(
∂ ln pθ (u)

∂θi

) (
∂ ln pθ(u)

∂θ j

)
du (6)

where pθ(·) is a parametric pdf, which depends on d parame-
ters θ = [θ1, θ2, . . . , θd ]T ∈ 	 ⊆ R

d being 	 the parameter
space. As will be formally discussed in the following sections,
in ESN framework, θ contains the hyperparameters under
consideration. In (6), ln pθ (·) represents the log-likelihood
function. For the sake of simplicity, we denote F(pθ(·))
as F(θ). The FIM contains d(d+1)/2 distinct entries encoding
the sensitivity of the pdf with respect to the parameters in θ .

Elements of the FIM can be directly connected with the rate
of change of the order parameters of a controlled (thermody-
namic) system [29]. An order parameter is a quantity used to
discern the phases of a thermodynamic system. For instance, in
the liquid–vapor (first-order) transition of water, temperature
acts as a control parameter (at constant pressure), while the
difference in density of the two phases— liquid and gaseous
states—is the order parameter. At the critical temperature,
liquid water turns into vapor and the order parameter varies
discontinuously. The mathematical relationship between Fisher
information and order parameters is particularly interesting to
provide a statistical description of continuous, second-order
phase transitions, and, as a consequence, of any complex
system approaching a critical transition. In fact, during a

continuous phase transition, the order parameter varies contin-
uously. Therefore, differently from the first-order transitions,
a system can reside and operate in such a critical state.
A well-known example of continuous phase transition is the
ferromagnetic–paramagnetic transition of iron, where magneti-
zation (the order parameter) is nonzero for temperatures lower
than the critical (Curie) one and zero otherwise. However,
the second-order derivatives of the observed thermodynamic
variable (or, equivalently for continuous transitions, the first-
order derivatives of the order parameter) are discontinuous and
divergent in at least one dimension. This implies that Fisher
information diverges at criticality for infinite systems, while
it is maximized in the finite-size system case [29]. This fact
provides a clear mathematical justification explaining why the
FIM (6) can be used to detect criticality in complex systems
in terms of maximum sensitivity with respect to control
parameter changes. Therefore, as we already mentioned, the
critical region (edge of criticality) is a region in parameter
space where the Fisher information is maximized; hence, we
assume here to deal with finite-size systems. Fig. 2 provides
an intuitive illustration linking criticality and ESNs.

Computation of FIM (6) requires analytical availability
of the pdf. However, in many experimental settings, either:
1) the pdf underlying the observed data is unknown or 2) the
relation linking the variation of control parameters θ on pθ(·)
is unknown. In a recent paper [32], a nonparametric estimator
of the FIM was proposed, which is based on divergence
measure

Dα(p, q)

= 1

4α(1 − α)

∫

D
(αp(u)(1 − α)q(u))2

αp(u)(1 − α)q(u)
du − (2α − 1)2 (7)

belonging to the family of f -divergences; α ∈ (0, 1);
p(·) and q(·) are pdfs both supported on D.

It is well known [13], [32], [52] that FIM can be approx-
imated by using a proper f -divergence measure computed
between the parametric pdf of interest and a perturbed version
of it. Notably, by expanding (7) with Taylor up to the second
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Fig. 3. Schematic, high-level description of the proposed unsupervised learning method.

order, we obtain

Dα(pθ , p
θ̂
) � 1

2
rT F(θ)r (8)

where θ̂ = θ + r, being r ∼ N (0, σ 2Id×d ) a small normally
distributed perturbation vector with standard deviation σ .

Divergence (7) can be computed directly without the need
to estimate the pdfs by means of an extension of the
Friedman–Rafsky multivariate two-sample test statistic [53].
The test operates by using two data sets, Sp and Sq , each one
containing samples extracted from p(·) and q(·), respectively.
Reference [32, Th. 1] shows that, as the number of samples
n = |Sp| and m = |Sq | increases asymptotically, we have

1 − C(Sp,Sq )
n + m

2nm
a.s.−−→ Dα(p, q) (9)

where C(Sp,Sq) is the outcome (expected to be normally
distributed) of the Friedman–Rafsky test, which basically
provides a way to measure the similarity between two data
sets. Interestingly, such a test allows to analyze also high-
dimensional data, since it makes use of a graph-based data
representations (MST).

In the following, for the sake of brevity, we omit θ in most
of the equations and refer to the estimated FIM as F̂. Refer-
ence [32] proposes two different approaches for estimating the
FIM (8). The first one is based on the well-known least-square
optimization

F̂hvec = (RT R)−1RT vθ (10)

where vθ = [vθ (r1), . . . , vθ (rM )]T , with vθ (ri ) =
2Dα(pθ , p

θ̂ i
), i = 1, . . . , M , and Dα(·, ·) is computed

by means of the left-hand side of (9). R is a matrix
containing all M perturbation vectors ri arranged as col-
umn vectors, and F̂hvec is the half-vector representation of
F̂. Note that a vector representation F̂vec of F̂ reads as
[ f11, . . . , fm1, f12, . . . , fmn ]T . Since F̂ is symmetric, it can
be represented through the half-vector representation, F̂hvec,
which is obtained by eliminating all superdiagonal elements
of F̂ from F̂vec [54]. F̂hvec in (10) is hence defined as
[ f̂11, . . . , f̂dd , f̂12, . . . , f̂d(d−1)]T , where the diagonal ele-
ments are located in the first components of the vector.

However, the least-square approach (10) does not guarantee
to find an approximation of the FIM, which is PD. A second
approach requires solving a semidefinite optimization problem,
which instead assures that the resulting FIM is PD

min
Fhvec

‖RFhvec − vθ‖2

s.t. Fhvec(i) = diag(mat(F̂hvec)), i ∈ {1, . . . , d}
mat(Fhvec) � 0d×d . (11)

The diag(·) operator returns the diagonal elements of a
matrix and the mat(·) operator converts the argument from
a vector form into a square d × d matrix. The diagonal
values of the FIM as expressed by the first constraint are
computed through the least-square optimization (10). The
second constraint, instead, guarantees the estimated matrix to
be PD.

Such a convex optimization problem (11) can be imple-
mented by using the framework provided in [55] and [56].
However, there, a nontrivial implementation in matrix form
of the second constraint, i.e., mat (Fhvec) � 0d×d , must be
provided to define a proper semidefinite problem. In this paper,
we solve this issue and provide a novel method granting
mat (Fhvec) � 0d×d (see demonstration in the Appendix).

IV. CRITICAL REGION IDENTIFICATION FOR ESNs

Our goal is to find the edge of criticality, i.e., a region
in parameter space K ⊂ 	 where the ESN computational
capability is maximized. Fig. 3 shows a schematic description
of the main phases involved in the proposed method.

Let us discuss in details the proposed procedure. In order
to determine K, we propose an algorithm exploiting the
FIM properties of a system undergoing a continuous phase
transition. FIM defines a metric tensor on the smooth manifold
of parametric pdfs embedded in 	 [29], thus allowing also
for a geometric characterization of the system under analysis.
It is possible to prove [57] that K corresponds to a region
in 	 characterized by the largest volume (high concentration
of parametric pdfs). In addition, it worth mentioning that,
if 	 ⊆ R

d , then the related edge of criticality K is a
d − 1 manifold embedded in 	. This geometric result can
be exploited by computing the FIM determinant, det(F(θ)),
which is monotonically related to the aforementioned volume
in the parameter space. Therefore, considering that the FIM is
a PD matrix, and hence, its determinant is always nonnegative,
we identify K with all those hyperparameters θ∗ for which

θ∗ = arg max
θ∈	

det(F(θ)). (12)

Algorithm 1 delivers the pseudocode of the proposed pro-
cedure. As said before, the impact provided by the variation
of the control parameters θ on the resulting ESN state cannot
be described analytically without making further assumptions
[34]. In fact, the (unknown) input signal driving the network
plays an important role in the resulting ESN dynamics. There-
fore, in order to calculate F(θ), in Algorithm 1, we rely on
the nonparametric FIM estimator described in Section III. The
estimation of the FIM for a given θ is performed by analyzing
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Algorithm 1 Procedure for Determining an ESN Configura-
tion on the Edge of Criticality
Input: An ESN architecture, input x of K samples, quantized

parameter space 	, standard deviation σ for the perturba-
tions, number of trials T and perturbations M .

Output: A configuration θ∗ ∈ K
1: Select an initial parameter configuration, θ ∈ 	; maximum

η = 0
2: loop
3: for t = 1 to T do
4: Randomly initialize the ESN weight matrices
5: Configure ESN with θ and process input x
6: Collect the related activations Sθ = {h[i ]}K

i=1
7: for j = 1 to M do
8: Generate a perturbation vector r j ∼ N (0, σ 2Id×d )
9: Randomly initialize the ESN weight matrices

10: Configure ESN with perturbed version θ̂ j = θ + r j

and process input x
11: Collect the related activations S

θ̂ j
= {h[i ]}K

i=1
12: end for
13: Define S

θ̂
= ∪M

j=1Sθ̂ j

14: Estimate the FIM F(t)(θ) of trial t using Sθ and S
θ̂

with the nonparametric estimator introduced in Sec. III
15: end for
16: Compute the average FIM, F(θ), using all F(t)(θ), t =

1, ..., T
17: if det(F(θ)) > η then
18: Update η = det(F(θ)) and θ∗ = θ

19: end if
20: if Stop criterion is met then
21: return θ∗
22: else
23: Select a new θ ∈ 	 based on a suitable search scheme
24: end if
25: end loop

the sequence Sθ = {h[k]}K
k=1 of reservoir neuron activations

produced during the processing of a given input x of length K .
Since h[k] ∈ [−1, 1]Nr , the domain of the pdf in (6) is defined
as D = [−1, 1]Nr . Additional sequences of activations, S

θ̂ j
,

are considered (see line 7), which are obtained by perturbing
M times the current network configuration θ under analysis,
and processing the same input x. Perturbations are modeled
with a zero-mean noise with a spherical covariance matrix,
thus characterized by a single scalar parameter σ controlling
the magnitude of the perturbation. In this paper, we estimate
the FIM by solving the optimization problem (11) according
to our formulation as described in the Appendix. In order
to make the estimation more robust, we follow an ensemble
approach and perform a number of independent trials (see line
3). The determinant is computed only once on the resulting
average FIM, which is obtained by using T -independent
random realizations of the ESN architecture chosen for the
experiment (see line 16).

In theory, the parameter space 	 is continuous. However,
here, we assume that the parameter space 	 is quantized

according to some user-defined resolution. Although this is
not a necessary assumption for the proposed methodology, it
allows us to disentangle the problems of defining from finding
the edge of criticality. In fact, our main goal here is to provide
a principled definition of the critical region characterizing
the ESN (hyper-)parameter space and related behaviors. More
efficient and/or accurate search schemes will be considered
in future research studies. Accordingly, the criterion in (12)
identifies a “quantized” critical region K in 	 represented by
a single hyperparameter configuration, θ∗.

A. Analysis of Computational Complexity

The asymptotic computational complexity (including also
constant terms) of Algorithm 1 can be summarized as follows
(assuming a grid search):
O

(
G

(
T

(
N2

r +K Nr +M
(
N2

r +K Nr
) + EFIM

)+ d3+ T d2)).

(13)

In (13), G is the number of hyperparameter configurations
considered, T is the number of trials, Nr is the number of
neurons in the reservoir, K is the input signal length, and
M is the number of perturbations. The cost related to the
computation of the determinant of FIM is hence O(d3), where
d is the number of hyperparameters considered. The last term,
T d2, accounts for the computation of the average FIM. The
EFIM term describes the complexity of the nonparametric FIM
estimator described in Section III. EFIM cost can be decom-
posed in two different terms. First, (9), the computation of α
divergence, has a cost that is given by the MST computation on
z = (M +1)K samples, that is bounded by O(z2 log(z)). That
cost is multiplied by M , the number of perturbations. Second,
the cost associated with solving the optimization problem
shown in (20). The computational complexity of the constraint
satisfaction is bounded by d2. The semidefinite optimization
program can be solved in polynomial time, i.e., O(d p), where
p is some positive integer [55], [56].

Typically, d is much smaller than both Nr and K . There-
fore, polynomial terms in d do not pose a problem from
the computational complexity viewpoint. The computational
complexity (13) is hence dominated by the EFIM cost.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
method based on FIM for determining ESN hyperparameter
configurations lying on the edge of criticality. The proposed
method is first validated on a set of benchmarks used in the
ESN literature. In particular, we consider the short-term MC
(Section V-A) and then a forecast task on different time series
models (Section V-B). For such benchmarks, the training set
consists of 5000 samples, while 500 samples are used for
testing. Successively, in Section V-C, we validate the proposed
methodology on a real-world application involving the predic-
tion of time series related to phone calls load [40]. Here, the
training set consists of 3335 samples, while 500 samples are
used for testing.
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The hyperparameters are selected in a discretized space
through a grid search, which considers ten different config-
urations for each parameter. Specifically, we search for the
spectral radius θSR in [0.4, 1.6], input scaling θIS in [0.3, 0.8],
and reservoir connectivity θRC in [0.1, 0.7], evaluating a total
of 1000 hyperparameter configurations. Such intervals have
been chosen by focusing on the ranges that produce relevant
variations in the network behavior. For each hyperparameter
configuration, in Algorithm 1, we perform T = 10 indepen-
dent trials and M = 80 perturbations to compute the ensemble
average of the FIM; the variance for the perturbations is set
to σ 2 = 0.25. In each trial, we sample new (and independent)
input and reservoir connection weights (Wr

i and Wr
r ). The

readout layer is trained by using a standard ridge least-square
regression, with the regularization parameter set to 0.05. For
each test, we use a reservoir with Nr = 100 neurons; a
standard drop-out procedure is adopted [39], which discards
the first 100 states not to consider ESN transient.

In Fig. 4, we report the critical regions of the parameter
space identified in each test by maximization of FIM deter-
minant, zero crossing of MLLE, and maximization of mSVJ.
For the sake of brevity, we refer to these regions as φ, λ,
and η, respectively. The light gray manifold corresponds to
the regions in parameter space where the performance of the
network is maximized and the dark gray manifolds represent
φ, λ, and η. In Table I, we report the numerical values of the
correlations between the light gray manifold and the dark gray
ones. In the following subsections, we discuss the details of
obtained results.

A. Memory Capacity

This test quantifies the capability of ESN to remember pre-
vious inputs, relative to an independent identically distributed
(i.i.d.) signal. Given a time delay δ > 0, here, we train an ESN
to reproduce at time k the input x[k − δ]. MC is measured as
the squared correlation coefficient between the desired output,
which is the input signal delayed by different δ time steps,
and the observed network output y[k]

MC =
δmax∑

δ=1

cov2 (x[k − δ], y[k])
var (x[k − δ]) var (y[k]). (14)

MC is computed by training several readout layers, one for
each delay δ ∈ {1, 10, . . . , 100}, while keeping fixed input
and reservoir layers.

As it is possible to notice in Fig. 4(a), the critical regions
identified by each one of the three methods follow, with good
accuracy, the region of the hyperparameter space where MC
is maximized. The degrees of correlation for the MC task are
provided in Table I. It is interesting to note that λ shows a very
high correlation (81%) preforming better than η for this task.
The correlation between φ and the region with maximum MC
is also very high (75%), showing that both φ and λ can be used
as reliable indicators to identify the optimal configurations that
enhance the short-term MC of ESNs. The p-values for each
correlation measure are lower than 0.05, indicating statistical
significance of the results.

TABLE I

CORRELATIONS BETWEEN THE REGIONS WHERE FIM DETERMINANT IS
MAXIMIZED (φ), MLLE CROSSES ZERO (λ), mSVJ IS MAXIMIZED

(η), AND PERFORMANCES ARE MAXIMIZED (γ /MC). THE BEST

RESULTS ARE SHOWN IN BOLD AND p-VALUES ARE REPORTED

IN BRACKETS

B. Prediction Accuracy on Benchmarks

In this test, we evaluate the effectiveness of using φ, λ,
and η to identify regions of hyperparameters where prediction
accuracy is maximal. We define the prediction accuracy as γ =
max{1 − NRMSE, 0}, were NRMSE is the normalized root
mean squared error of the ESN. The accuracy is evaluated on
three prediction tasks of increasing difficulty. For each of them,
we set the forecast step τ f > 0 equal to the smallest time lag
that guarantees input measurements to be decorrelated, which
corresponds to the first zero of the autocorrelation function of
the input signal.

1) Sinusoidal Input: In the first test, an ESN is trained to
predict a sinusoidal (SIN) input using a forecast step equal to
1/4 of its period. In Fig. 4(b), both φ and η are consistent
with γ , while λ shows a lower agreement. From Table I,
we see that φ achieves the best results, and all the measures
have positive degrees of correlation with γ and small p-values
(hence statistical significant).

2) Mackey-Glass: The input signal in this test is generated
by the Mackey-Glass (MG) system, described by the following
differential equation:

dx

dk
= αx(k − τMG)

1 + x(k − τMG)10 − βx(k). (15)

We generated a time series using τMG = 17, α = 0.2, β = 0.1,
initial condition x(0) = 1.2, 0.1 as integration step and we
trained the system to predict τ f = 6 step ahead. As we can
see from Fig. 4(c) and the results in Table I, for this test, both
φ and λ provide much better results than η for identifying the
optimal configuration. Notably, the correlation between γ and
η has a p-value beyond the confidence level 0.05, suggesting
that correlations are not different from zero.

3) NARMA: This task, originally proposed in [39], consists
in modeling the output of the following order-r system:

y[k + 1] = 0.3y[k] + 0.05y[k]
(

r−1∑

i=0

y[k − i ]
)

+ 1.5x[k − r ]x[k] + 0.1 (16)

being x[k] an i.i.d. uniform noise in [0, 1]. According to the
results shown in Fig. 4(d) and Table I, in this case, φ and η
perform significantly better than λ for identifying the critical
region. If fact, the correlation between γ and λ is low and not
statistically significant. Even in this case, the best results in
terms of correlation are achieved by φ.
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Fig. 4. In each figure, we graphically represent the computed edge of criticality for each of the considered methods. The light gray manifold represents
configurations of spectral radius (θSR), input scaling (θIS), and reservoir connectivity (θRC) that maximize MC or prediction accuracy (γ ). The dark gray
manifolds represent (from left to right): configurations where the FIM determinant is maximized (φ); configurations where MLLE crosses zero (λ); and
configurations where mSVJ is maximized (η). (a) MC test. (b) SIN prediction task. (c) MG prediction task. (c) MG prediction task. (e) D4D prediction task.

C. Prediction of Mobile Traffic Load Time Series

Here, we analyze time series of data related to nationwide
mobile telephone loads. Such time series have been generated

from the data collected in the Orange telephone data set,
published in the Data for Development (D4D) challenge [58].
D4D is an open collection of call data records, containing
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anonymized events of Orange’s mobile phone users in Ivory
Coast, Africa. More detailed information on the challenge is
available on the related website.1 The data set considered here
span from December 1, 2011 to April 28, 2012. It includes
antenna-to-antenna traffic on an hourly basis, relative to mobile
phone calls and SMS. Each record in the data set has the fol-
lowing structure: 〈DateTime, IDa, IDb, NumCalls, TotTime〉.
DateTime is the time (with hourly resolution) and date when
an activity between the two antennas a and b has been regis-
tered; IDa and IDb are the identifiers of the transmitting and
receiving antenna, respectively; NumCalls is the number of
calls started from a and received by b in the time interval under
consideration; finally, TotTime is the sum of the durations
(in seconds) of all calls recorded in the interval. We selected
a specific antenna and retrieved from the data set all those
records relative to the activity involving that antenna. We have
accordingly generated the following seven distinct time series.

1) ts1: Constant input (a time series with all values set to
1). This is a standard practice in prediction with neural
networks, since a constant input acts as a bias for the
individual neurons of the network [39].

2) ts2: Number of incoming calls in the area covered by
the antenna.

3) ts3: Volume in minutes of the incoming calls in the
area covered by the antenna.

4) ts4: Number of outgoing calls in the area covered by
the antenna.

5) ts5: Volume in minutes of the outgoing calls in the
area covered by the antenna.

6) ts6: Hour of the day when the telephone activity was
registered.

7) ts7: Day of the week when the telephone activity was
registered.

All these seven time series are fed as input to an ESN, while
we predict the values relative only to ts2.

The data set contains a small percentage of missing values;
they appear when there are no outgoing and/or incoming
telephone activities for the monitored antenna at a given hour.
They are replaced by 0 s, to guarantee each time series to
have the same length. Corrupted data are relative to periods
where the telephone activity is not correctly registered and,
according to [59], they have been replaced with the average
value of the corresponding periods (i.e., the same weekday and
hour of the day) in two adjacent weeks. All data have been
standardized by a z-score transformation prior to processing.
This is successively reversed when the forecast must be
evaluated. In Fig. 5, we show the profile of ts2 relatively
to the load in the first 300 time intervals (corresponding to
1 h of activity).

D4D time series have been previously studied in [40],
where ESNs and other standard methods (ARIMA and triple
exponential smoothing) were adopted to perform both 1-step
and 24-steps ahead predictions. In [40], hyperparameters were
tuned using a GA optimization scheme and different opti-
mization procedures were evaluated for training the readout:
least-square regression; elastic net penalty; and linear and

1http://www.d4d.orange.com

Fig. 5. Load profile of ts2 for the first 300 time intervals.

nonlinear ν-SVR. It was shown that ESN achieved higher
prediction accuracy with respect to the other forecast methods,
especially when using nonlinear ν-SVR, at the expense of a
much higher computational cost. It is worth mentioning that,
when GAs are used in a supervised cross-validation scheme,
they yield a single solution through a black-box process,
which does not follow a mathematically motivated criterion
to determine the edge of criticality. In addition, a nonlinear
model, such as ν-SVR, must be trained at each iteration of
the global optimization procedure, with consequent increment
of computational complexity.

We focus again on the analysis of the hyperparameters
θSR, θIS, and θRC, while for the remaining ones, we adopt
the optimal configuration found in [40]. In particular, we set
Nr = 680 and the regularization parameter for the ridge
regression equal to 0.04. The forecast step τ f is set to 1, i.e.,
we predict the telephonic load of the next hour. Note that this
differs from the other tasks previously considered, where τ f

was set equal to the first zero of the autocorrelation function.
In Fig. 4(e), we show the results of γ (prediction accu-

racy on ts2) with respect to φ, λ, and η. According to
Table I, even in this case, φ gives rise to a manifold having
high correlation with γ ; η produces lower yet positive and
statistically significant correlations; finally, λ achieves the
worst results. Interestingly, by using the FIM-based criterion,
we find a critical region in the 3-D ESN hyperparameter
space containing the optimal values for θSR and θIS, which
are reported in [40]. In fact, the quantized area centered in
{θSR = 1, θIS = 0.35, θRC = 0.55} belongs to the ESN critical
region, according to the FIM-based criterion. Such region
also contains the values θSR = 0.98 and θIS = 0.33, which
were identified as optimal in [40]. Instead, for what concerns
the sparsity of reservoir connectivity θRC, the upperbound
considered in the GA optimization for this value was set to
0.4. Accordingly, the optimal configuration with θRC = 0.55
could not be obtained. This represents a good example of how
the proposed method provides a more flexible approach for
tuning the network hyperparameters. In fact, while several
cross-validation methods (in fact, using a GA is just an
example) treat the model as a black box, the framework we
developed allows to analyze the dynamics of the systems and
visualize the critical regions during the process of optimizing
the network. For example, it is possible to assess if the critical
region is too close to one of the bounds considered for a
given hyperparameter, hence allowing to redefine the bounds
accordingly.
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VI. CONCLUSION AND FUTURE DIRECTIONS

ESNs, as a class of networks in reservoir computing, offer a
compromise between training time and network performance
in terms of prediction error and short-term MC. Experiments
showed that such networks operate more efficiently when
configured on the so-called edge of criticality, a region in
hyperparameter space separating ordered and chaotic regimes.
Hyperparameters (indirectly) affecting the behavior of the
network are hence tuned according to some criterion. In this
paper, we proposed a principled approach for configuring an
ESN on the edge of criticality. The proposed method is com-
pletely unsupervised and is based on the interplay between the
theory of continuous phase transitions and Fisher information.
In fact, it is possible to prove that Fisher information diverges
on the critical region and hence can be used to determine the
onset of criticality. Nonetheless, Fisher information presumes
analytic knowledge of the parametric distribution describing
the system/network; in addition, its computation is known to
be difficult and prone to numerical errors. In order to deal with
these issues, here, we have followed an ensemble estimation
approach based on a recently proposed nonparametric FIM
estimator. Such an estimator is applicable to high-dimensional
densities, since it operates by means of a graph-based data
representation. This last aspect is very important in our case,
since we analyze the network though a multivariate sequence
of reservoir neuron activations.

We evaluated the proposed method on well-known bench-
marks as well as on a real-world application involving tele-
phone call load prediction. The benchmarks taken into account
were conceived to evaluate both the short-term MC (in terms
of the squared correlation between past inputs and network
outputs) and the prediction accuracy (in terms of NRMSE).
In order to compare our method with other unsupervised
approaches, we have considered: 1) a criterion based on the
sign of the MLLE computed on the activations and 2) a
criterion based on the maximum value of the mSVJ matrix
of the reservoir. Results showed that the proposed method
based on Fisher information is more accurate than those two
unsupervised methods (on both the benchmarks and the real-
world application) in determining critical ESN hyperpara-
meter configurations in terms of accuracy. However, test on
MC showed that Lyapunov exponent provides better results,
although differences are not as high as in the accuracy case.

The methodology proposed here offers a sound and appeal-
ing solution to determine the onset of criticality in ESNs, with
potential extension to other families of RNNs. Nonetheless,
our contribution comes with some technical difficulties that
we have only partially solved so far. First of all, potential
nonstationarities and dependencies of the neuron activations
might affect the estimation outcomes. Here, we have addressed
this issue by following an ensemble approach to estimate the
FIM. However, other approaches might be considered in the
future, for instance, by following a window-based analysis of
the activations. Second, the nonparametric FIM estimator we
used requires to set a parameter controlling the magnitude
of the perturbations. This parameter turned out to be very
sensitive and difficult to determine in practice, hence posing

Algorithm 2 Duplication Matrix Computation
Input: Dimensionality d of the hyperparameter space
Output: Duplication matrix, D
1: D = Id2×d2 = [

d1, . . . , dd2
]T

2: γ = δ = ∅
3: for i = 1, . . . , d − 1 do
4: γ ∪ {i + di, . . . , i + d(d − 1)}
5: δ ∪ {i + d(i − 1) + 1, . . . , i + d(i − 1) + d − i}
6: end for
7: for i = 1, . . . , d(d − 1)/2 do
8: dδ(i) = dγ (i) + dδ(i)

9: end for
10: for i = 1, . . . , d(d − 1)/2 do
11: remove dγ (i) from D
12: end for

Algorithm 3 Shuffling Matrix Computation
Input: Dimensionality d of the hyperparameter space
Output: Shuffling matrix, S
1: S = 0d(d+1)/2×d(d+1)/2 = [

s1, . . . , sd(d+1)/2
]T

2: I = Id(d+1)/2×d(d+1)/2 = [
i1, . . . , id(d+1)/2

]T

3: s1 = i1
4: for j = 2, . . . , d do
5: γ = 1 + d( j − 1) − ( j − 1)( j − 2)/2
6: s j = iγ
7: remove iγ from I
8: end for
9: for j = d + 1, . . . , d(d + 1)/2 do

10: s j = i j

11: end for

some technical limitations when trying to automatize the
procedure. Such issues will be object of future research efforts.

There are many possible routes that we intend to follow
in future research studies. Among the many, we believe it is
worth focusing on: 1) how to enable and control the output
feedback connections and 2) the application of the proposed
unsupervised learning method for training other types of
RNNs.

APPENDIX

PROPOSED FORMULATION OF THE SEMIDEFINITE

CONSTRAINT

Here, we provide the details of the formulation in matrix
form of the mat(·) operator in (11). This is a necessary step
to implement the semidefinite constraint in matrix form.

First, we express the constraint with mat(·) using the inverse
operator, vec(·), which transforms a matrix into its vector
representation. A matrix F ∈ R

m×n is converted into the vector
representation as follows:

Fvec =
n∑

i=1

Bi FEi (17)

where Ei is the i th canonical basis vector of an n-dimensional
Euclidean space, i.e., Ei = [0, . . . , 0, 1, 0, . . . , 0]T has a 1 in
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the i th position and 0 elsewhere. Bi is a (mn)×m block matrix
defined as a stack of n blocks, which are defined as m × m
zero matrix with the exception of the i th block, which is the
identity matrix

Bi = [0m×m , . . . , 0m×m , Im×m , 0m×m , . . . , 0m×m ]T . (18)

Notice that, in our case, m = n = d , where d is the number
of ESN hyperparameters considered. To convert the half-vector
representation Fhvec in (11) into the vector form Fvec, we rely
on the following expression:

D(SFhvec) = Fvec (19)

where D and S are the multiplication and the shuffling
matrices, respectively. These matrices cannot be expressed in
a closed form [54]. Therefore, in the following, we provide
the pseudocode of Algorithms 2 and 3 that implement them.

Hence, the optimization problem in (11) is formalized as

min
Fhvec

‖RFhvec − vθ‖2

s.t. Fhvec(i) = F̂hvec(i), i ∈ {1, . . . , d}
D(SFhvec) = Fvec

Fvec =
d∑

i=1

Bi FEi

F � 0d×d . (20)
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