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Abstract 

Density functional theory study has been carried out to design a new All-Solid-State dye-

sensitized solar cell (SDSC), by applying a donor-acceptor conjugated polymer instead of 

liquid electrolyte. The typical redox mediator (I1-/I3-) is replaced with a narrow band gap, hole 

transporting material (HTM). The electronic and optical properties predict that donor and 

acceptor moieties in the polymeric body have increased the visible light absorption and charge 

transporting ability, compared to their parent polymers. A unique “upstairs’ like band energy 

diagram is created by packing N3 between HTM and TiO2. Upon light irradiation on the 

proposed configuration, electrons will move from the dye to TiO2 and from HTM to dye (to 

regenerate dye), simultaneously. Our theoretical simulations prove that the proposed 

configuration will be highly efficient as the HOMO level of HTM is 1.19 eV above the HOMO 

of sanitizer (dye); providing an efficient pathway for charge transfer. High short-circuit current 

density and power conversion efficiency is promised from the strong overlapping of molecular 

orbitals of HTM and sensitizer. A low reorganization energy of 0.21 eV and exciton binding 

energy of 0.55 eV, confirm the high efficiency of HTM. Finally, a theoretical open-circuit 

voltage of 1.49 eV would results high quantum yield while, the chemical stability of HTM 

towards oxidation can be estimated from its high ionization potential value (4.57 eV). 
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Introduction 

When Sun strikes the earth for an hour, if that energy is properly harvest then it can fulfill 

whole the world energy demand for a year, but unfortunately, we are not able to harvest it 

properly [1, 2]. Solar energy technology in the market is mostly Silicon-based photovoltaic 

cells, which is a promising renewable energy technique for [3]. Silicon-based solar cells are 

ideal, but having a high cost and high operation temperature limits its portability and versatility, 

so, it is an urgent need to replace Si with a better and efficient material for photovoltaic 

applications [4-6]. Thin film solar technology based on CdTe, p-GaAs/n-GaAs, and 

ZnO/CdS/CuInSe2 etc., exhibiting ~ 20% efficiency, however, this is more expensive and 

having elements which are not earth abundance and toxic for environment [7]. 

Dye-sensitized solar cell (DSSC) is considered as the best way forward to fulfill our energy 

requirements  due to it's low-cost, easy fabrication and environmentally friendly [8]. A basic 

DSSC is consist of molecular dye, adsorbed on a mesoporous wide band gap semiconductor 

oxide (frequently TiO2), a redox couple (I1-/I3-) usually liquid electrolyte and a p-type hole 

collector/counter electrode [9, 10]. The dye molecule (photosensitizer) absorb light and injects 

its excited electrons into the conduction band of TiO2 and become oxidized. The redox 

electrolyte act as an intermediate to transfer hole from dye to counter electrode for regeneration 

of dye [11-13]. Although, highly efficient DSSCs have been reported but they are facing long-

term performance and durability problems which are stem to liquid electrolytes; the I1-/I3- redox 

couple, leads to serious problems such as electrode corrosion and electrolyte leakage [14-16]. 

The crucial solution would be the purely solid-state cells, given the expected issues of any 

liquid electrolyte, such as leakage, heavyweight and complex chemistry.  

Chung,  et al [17] has designed an SDSC model with all inorganic material using TiO2, Dye, 

and CsSnI3, where an efficient e-/h+ transferring occurred due to the development of a better 
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band diagram of the mixing constituents [17]. The efficiency of this combination is found to 

have exceeded over the performance of a liquid electrolyte Grätzel cell [17]. The valance band 

(VB) edge positions of all these three interacting materials had sufficient gaps and are best 

suitable for h+ transferring, however, conduction band (CB) edge levels; where the e- of the 

excited dye can go to either side (CsSnI3 or TiO2), has not proper energy gap difference 

(upstairs). Moreover, CsSnI3 is used as hole collector to regenerate dye but contains less 

abundant earth metals and also has processing issue similar to the thin film solar cell, making 

it expensive to fabricate. 

Solid state hole transporting material (HTM)-based DSSC, termed as all solid-state DSSC 

(SDSC), has overcome the liquid electrolyte problems [17], but facing the challenge of modest 

conversion efficiency [18, 19]. Some HTM has a weak interaction with the dye which leads to 

the interruption of the hole-conducting path between HTM and dye molecule. So, designing of 

an efficient, flexible and cost-effective HTM is needed for the high-performance SDSC. 

Conjugated organic polymers (COPs) are promising emerging materials and are considered to 

be superior over other materials (inorganic semiconductors) due to their possibility of 

processing to form useful, tunable, robust structures, having material diversity, mechanical 

flexibility, light weight, low-temperature processing, roll to roll printing (just like a newspaper 

printing) and large-area capability [20-23]. Photovoltaic is one of the efficient applications of 

COPs, especially in the form of donor-acceptor co-polymer, possess low band gaps are much 

suitable for solar energy harnessing technique [24]. These narrow band gap materials have 

better absorption capability within the active region of solar spectrum especially in the near-

infrared region which consequently increases the generation of photocurrent.  

Using our previous experience of COPs, here for the first time we are proposing an efficient 

all-solid-state organic-inorganic hybrid DSSC, preliminary based on their band edge positions 
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(Fig 1), where COP is used as HTM [25-27]. A series of different COPs, such as 3,4-

ethylenedioxythiophene (EDOT), 3,4-ethylenedioxyselenophene (EDOS), 2,1,3-

bezothiadizole (BOD), 2,1,3-benzoselenadiazole (BSD), and their combination in the form of 

donor-acceptor moieties are used (Scheme 1) [28, 29], has been simulated to replace electrolyte 

in the conventional DSSC. 

To design an ideal configuration for the SDSC, which would be cheap, easy to handle, 

environmental friendly and responsible for high efficiency, a perfect upstairs energy level 

diagram of the interacting materials is required where the band edge positions of TiO2, Dye 

and HTM should have difference of at least of 0.50 eV (Fig 1). The HTM used in this work is 

a donor-acceptor co-polymer; a combination of EDOS and BSD moieties. 

Methods 

Quantum mechanical study of the molecular (TiO2)28 cluster, N3, EDOS, BSD, EDOS+BSD 

(HTM) and their non-bonded interacting systems are carried out with the help of density 

functional theory (DFT). GAUSSIAN 09 [30] is used for the DFT calculations [31] while the 

results are visualized through Gabedit [32], GaussSum [33], and GaussView [34]. DFT and 

time-dependent DFT (TD-DFT) calculations are used for the electronic properties simulations 

of the mentioned materials, to predict an efficient model for SDSC. Different oligomeric chain 

lengths of EDOS, BSD and HTM from monomers up to nine repeating are considered and 

extended to polymers, using second order polynomial fit equation [31]. Prior to property 

simulations of the interacting systems such as N3-HTM, N3-TiO2, and HTM-N3-TiO2; the 

DFT method was confirmed through correlation of the HTM simulated HOMO, LUMO and 

band gaps with experimental data (see Table S1) [28, 35]. Hybrid functional such as B3LYP 

has been successfully applied for this type of polymers and has been found to be superior over 

other functionals [35-38]. In the case of inter-molecular study of the proposed model, N3 was 
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sandwiched between TiO2 and HTM and then optimized at B3LYP functional with LanL2DZ 

basis set. The interaction energy of these three components is simulated with the help of inter-

molecular energy simulation as explained elsewhere [25-27, 39, 40]. The quantitative and 

qualitative behavior of charge transferring phenomena of the entitled complexes are simulated 

at natural bonding orbital (NBO) analysis. The prediction of stability, electroactivity, 

conductivity and donor/acceptor nature are estimated from ionization energy (IP), electron 

affinity (EA), and band gap analysis. UV-vis spectra and ∆SCF energy gap (optical gap) were 

simulated in a solvent medium such as chlorobenzene, using a conductor like polarized 

continuum model (CPCM) at TD-B3LYP/LanL2DZ level which unveils our results regarding 

the optical and electrical properties. 

Results and Discussion 

The 84 atoms cluster of titanium dioxide [(TiO2)28] is used as a representative of the [101] 

surface of anatase [41-45]. The choice of a molecular cluster of Ti28O56 contrast to periodic 

calculations is that the excited states within TD-DFT are not generally implemented and in any 

case standard continuum solvation models are not applicable due to the impossibility of 

defining an infinite solvation cavity [41-43]. The major part of this paper is devoted to the hole 

transporting material (HTM), its applicability in SDSC and the corresponding efficiency. 

However, HTM interaction with dye, N3-TiO2, and HTM-N3-TiO2 systems are also 

highlighted. Charge transferring phenomena, electron-hole exchange and band edge positions 

of these systems are simulated and discussed in their respective parts. 

Geometrical and Electronic Properties of HTM.  The light absorption capability of a chemical 

substance can be predicted from its dihedral angles, UV-vis absorption spectra, conjugation of 

π-electrons, and planarity. As discussed elsewhere [46, 47], oligomers up to seven or eight 

repeating units represent the characteristics of their infinite polymer so that is why the chain 



7 
 

length is restricted to nine repeating units. Our current simulations on the nine repeating units 

of HTM also shows a similar trend and corroborates its polymeric properties. The optimized 

geometric structure of HTM is given in Fig 2, where an ideal dihedral angle of 180○ (Table S2) 

is because of donor and acceptor moieties; which has planarized the geometry of the resulting 

polymer through establishing a delocalized π-electronic cloud density over its polymeric 

backbone. 

The electrons and holes carrying properties of a species can be precisely estimated from the 

contours of its molecular orbitals; where the electronic cloud density of the localized HOMO 

represent holes and the LUMO determines the facility with which the electron moves under the 

external electric biased. Both the HOMO and LUMO of HTM are fully covered by electronic 

cloud density (Fig.S1), a clear indication of the free availability of π-electrons in the HTM (Fig. 

3). Moreover, this molecular orbital overlapping (delocalized π-electrons in HTM) of the C, H, 

O, N, and Se atoms provides an easy pathway for the movement of free electrons which make 

it as a donor species (hole donor) in the bulk heterojunction solar cell. 

Reorganization Energy (λ) of HTM. The energy of geometrical distortion of a chemical 

species between the neutral and cationic state can be termed as reorganization energy (λ). Hole 

mobility in an organic semiconductor can be understand in term of its reorganization energy; 

lower the reorganization energy the faster will be the hole transfer and vice versa.  The internal 

reorganization energy (λ) of HTM is 0.21 eV, which is simulated by the adiabatic potential 

energy surface method, using equation 1. 

𝜆 =  𝜆1 +  𝜆2 = (𝐸0
∗ − 𝐸) + (𝐸+

∗ − 𝐸+)       (1) 

where E0 and E+, represent energies of neutral and charged species in their lowest energy 

geometries, while E0
* and E+

* represent the energy of a neutral molecule at the geometry of 

charged molecule and charged molecule at the geometry of the neutral molecule. 
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Comparative analysis of the reorganization energy of HTM with the already reported hole 

transporting materials such as N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-

diamine (0.33 eV) [48], ((N,N′-bis(2,4-dimethyl-phenyl)-N-(4′-((2,4-dimethylphenyl) 

(phenyl)amino)-[1,1′-bi-phenyl]-4-yl)-N′-phenyl-[1,1′-biphenyl]-4,4′-diamine (0.23), 4-(4-

phenyl-4-α-naphthylbutadienyl)-N,N-di(4-tolyl)-phenylamine (0.24) [49] and silole-based 

organic semiconductors (0.50 eV) [50] shows that our proposed HTM has better hole transfer 

ability due to lower reorganization energy. This low reorganization energy of HTM can also 

be correlated to its fully planner geometrical structure, where an ideal dihedral of 180° is 

present. 

Polaron and Exciton Binding Energy of HTM.  

The combination of charge and the associated lattice distortion in a chemical substance can be 

appropriately termed as Polaron, denoted as Ep. Distortion in the polymeric back establishes 

when a π-conjugated polymer donates electronic charge density, this intra-molecular relaxation 

can also be referred to as a polaronic eff ect. The polaron-binding energy that relates to the 

reorganization energy; transfer of a charge from one molecule to other can be calculated from 

this formula Ep=(1∕2 λ), where λ is the reorganization energy. A 0.105 eV polaron-binding 

energy is simulated for the proposed HTM, which evidences its ease of electron donation. In 

terms of molecular orbitals analysis, an electron−hole binding energy is that energy when an 

electron adds in the LUMO and only one (instead of two) electron in the HOMO.  

The electron−hole exciton binding energy (Eb) is actually the energy difference between the 

neutral exciton and the two free charge carriers. This can be simulated as Eb = Eband gap – Eoptical 

gap, or the difference between the electrical gap and optical gap of a particular HTM. For the 

simulations of these gaps, TD-DFT method at LanL2DZ level and CPCM solvent model is 

used. The energy required to fully separate the electron−hole pair against the Coulomb 
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attraction is known as exciton binding energy. In Figure 4, the Eb, optical and band gap are 

schematically illustrated [51]. A lower Eb is responsible for the charge separation (prevent 

electron/hole recombination) and high charge carrier mobility in a particular solar cell. The 

intra-molecular charge transfer (Eb) in HTM has a binding energy of 0.55 eV. The Eb of the 

investigated HTM is also compared with the already reported hole transfer materials which 

concluded its lower binding energy. So, an easier dissociation of free charge carriers can be 

promised in our HTM. Furthermore, binding energy can also be used for the determination of 

short-circuit current density in a solar cell; lower exciton binding energy of a particular HTM 

is responsible for its higher short-circuit current density and vice versa.  

Partial Charge Difference Analysis. Partial charge difference on the conjugated backbone of 

HTM is simulated by using equation 2. NBO charge on a particular atom in the neutral as well 

as in the cationic state is considered for the charge transferring phenomena in HTM. Partial 

charge difference analysis of HTM predicts that H and Se atoms are responsible for the charge 

donation.  

∆QX = ∑QXi
+  - ∑QXi

0          (2) 

Where ∆Q is a charge on particular X atom, either in cationic (X+) or neutral state (X0). 

The partial charge difference of the atoms involved in HTM backbone is given in Table 1, 

which demonstrates that the ΔQH value is slightly larger than ΔQSe to about 0.05 e-. 

Comparative analysis of the data of Table 1 led us to conclude that Se and H atoms are mainly 

involved for the charge transfer in HTM, however, H atom plays a significant role compared 

to Se atom. The partial charge difference of ΔQH is 0.296 e- while that of ΔQSe is 0.24 e-. Partial 

charge difference values for N, O, and C are 0.026, 0.054 and 0 e-, respectively. In summary, 

partial charge diff erence between the neutral and the corresponding cation state directly 

reflects the geometric structures, whether planner, zig-zag or curl. 
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UV-vis Absorption Spectra of HTM. The first allowed maximum electronic excitation energy 

of HTM (λmax) at ca. 925 nm has strong evidence to be an efficient charge transporting material, 

as it can easily absorb in the visible region. Furthermore, it is expected that higher efficiency is 

associated with high absorption ability of solar radiation, especially in the visible part. The 

effect of the alternating donor and acceptor moieties in the polymeric backbone is found in the 

form of visible light absorption as can be seen from Fig 5. Furthermore, the vertical excitation 

energy of the isolated donor, acceptor and HTM increases with chain length elongation (Fig 

S2-S4). Oligomeric chain length elongation produces a single but strong feature in the visible 

region and confirms that this excitation (the one with low energy) is dominated by a single 

absorption during which an electron is transferred from π to π* orbital. Analysis of the data of 

Table S3-S5 proves that chain length elongation shifts the strong absorption to lower energy 

with high intensity and high oscillator strength. Moreover, it is observed that the contribution 

of HOMO-LUMO transition decreases and new absorption from HOMO-1→LUMO+1, 

HOMO-2-LUMO, and HOMO-LUMO+2 excitations start to contribute (Table S2-S4). The 

strong transition (the one with high oscillator strength) of HTM in the visible region 

corresponds to the transitions from HOMO to LUMO (Table 2). 

The UV-vis spectra of HTM has three absorptions band peaks; two in the visible and one near 

to the IR region of the spectrum, which is an indication of its efficient light-harvesting ability. 

Charge-transfer character occurs at the lower energy part of UV-vis absorption and a low-lying 

wide conduction band (Fig 3) [52]. 

HTM and N3 Interacting System. Inter-molecular charge transferring and dye regeneration is 

simulated from the interaction study of HTM and Dye. The interaction between N3 and HTM 

is purely non-dissociative but quite strong due to the establishment of non-covalent bonding. 

The carboxylic anchoring groups of N3 establishes non-covalent bonding with the N and Se of 

HTM (Fig 6) which is a clear evidence of their strong interaction. Two of the oxygen atoms of 
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N3 make an inter-molecular bond with the Se of HTM, each having non-bonding distances of 

3.13 Å. Other atoms involved in this electrostatic type of interaction are H atoms which lead 

to hydrogen bonding i.e., H of N3 with Se at ca. 3.54 Å and two H atoms of N3 with N of HTM 

each having distance of 2.74 Å (Fig 6). The inter-molecular electrostatic energy of this 

interaction is -8.72 kcal/mol, which further confirms the evidence of charge transferring 

between HTM and N3. It is well-known from the literature that a good amount of this type of 

dye work as donor-π-electrons –acceptor where a large orbital density of the LUMO should 

cover the carboxylic anchoring groups and a small electronic cloud density cover their HOMO 

[11-16, 53]. This similar type of phenomenon is observed in the molecular orbitals of N3 

(Fig.S5) which is consistent with the already reported work [11-16, 53]. The higher electronic 

cloud density at LUMO compared to that of HOMO shows that the charge injection is favored 

from HTM to dye and prevents charge recombination in the dye molecule. The energies of 

HOMO, LUMO, band gap and an optical gap of these three species, before and after interaction 

are listed in Table 2.  

Frontier molecular orbitals of HTM-N3 are shown in Fig 7, where the π-electron donation from 

HTM towards dye can be seen. The position of HOMO level of HTM which is considerably 

above (0.61 eV) the HOMO of dye (N3); obviously evidences the hole injection from N3 to 

HTM. Furthermore, the HOMO and LUMO of HTM in the HTM-N3 system indicates how the 

transformation of π-electrons towards N3 is achieved. Frontier molecular orbital analysis led 

us to conclude that a nice overlap in the orbitals coupling of HTM and N3 occurs, which can 

lead to the high efficiency of the corresponding solar cell.  

As discussed earlier, the electrons and holes carrying species can be more precisely determined 

from the contours of their HOMO and LUMO, respectively. Lower the HOMO energy level 

(more negative) of the HTM the higher will be its open-circuit voltage in the corresponding 

solar cells, and a high adiabatic IP ensures its high stability in terms of resistance towards 
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ionization. The high IP (4.57 eV) of HTM which is 1.19 eV above the HOMO of dye is 

responsible for the hole exchange as well as high chemical stability toward oxidation. The 

adiabatic IP and EA are obtained from the negative of the DFT orbital (HOMO and LUMO) 

energy; using Koopman’s theorem. The electrical gap (band gap) is estimated from the 

difference of IP and EA while the optical gap is simulated from the ∆SCF TD-DFT calculation, 

where first allowed electronic excitation with higher oscillator strength is considered (Table 2). 

In a typical DSSC, dye provides an electron to a wide bandgap material (TiO2) and then 

regenerates itself from the liquid electrolyte. In our proposed SDSC configuration the 

regeneration of dye has been achieved from HTM, due to its low reorganization energy (vide 

supra). So, when the charge moves to N3, relaxation energies is needed to remove this charge 

from HTM to regenerate the dye which is about 0.21 eV (eq. 1). 

According to NBO charge analysis, HTM and N3 share about 0.184 e- of electronic cloud 

density (Fig S6a), moreover, the individual charge (NBO) on each atom of this complex is 

shown in Fig S6b. 

N3 and TiO2 Interacting System. In order to understand the electron transferring phenomena 

in the proposed solar cell, we further investigated the MOs analysis of N3-TiO2 system; as 

shown in Figure 8. Contours of the HOMO and LUMO of N3-TiO2 system indicate that dye 

has delocalized π-electrons which are ready for donation. So, a clear and sophisticated picture 

of electron transformation is observed from N3 to mesoporous titanium dioxide. The estimated 

open circuit voltage of this solar cell is 1.49 eV which is simulated from the difference of the 

quasi-Fermi levels of the TiO2 and the HOMO energy level of N3 (Table 2). 

HTM, N3, and TiO2 Interacting System. Finally, the three components are simultaneously 

interacted via non-covalent bonding interaction to find/confirm the net electron-hole 

transformation. The HTM-N3-TiO2 complex is optimized with LanL2DZ pseudopotential, 
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using hybrid functional of DFT such as B3LYP (Fig 9). On the electrostatic energy surface, 

both dissociative and non-dissociative strong interactions are found among these three 

components as can be seen from Fig 9. The interaction of N3 with TiO2 is dissociative where 

oxygen atoms of the carboxylic groups make covalent bonds with the Ti atom of TiO2.  

However, the HTM and N3 interaction is non-dissociative but quite strong, due to the 

establishment of Hydrogen bonding (Se---H), see Fig 9. Furthermore, the HOMO and LUMO 

of this three components system are also simulated to find the contours of the electronic cloud 

density (Figure 10). Results of the HOMO and LUMO are also inconsistent with the previous 

results, where an ideal and classical phenomenon is justified. Based on these simulations, we 

can say that when light shines on the proposed configuration, the delocalized π-electrons of N3 

would become activated and move to TiO2 and ultimately would regenerate itself by sharing 

an electron from the HOMO of HTM.  

An easy pathway for the movement of electrons in the said complex is made possible due to 

the alliance of the energy levels (HOMO and LUMO) of TiO2, N3, and HTM; having an 

upstairs ladder like band diagram (Fig 1). Analysis of the data of Table 2 and Fig 10, led us to 

conclude that it is not unusual for the electron to shift from the LUMO of HTM to N3 or from 

N3 to TiO2 under the applied biased. As the LUMO energy level of HTM is about 0.49 eV 

above the LUMO edge position of N3 while that of dye and TiO2 has 0.85 eV of difference in 

their LUMOs energy levels.  

In summary, if the proposed configuration of SDSC is exposed to light; the excited electrons 

of both of the dye and HTM become delocalize and move from the dye to nanoporous TiO2 

and consequently the oxidized dye would be regenerated from the HTM via exchanging of the 

electron. 

Conclusion 
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It is believed that all-solid-state DSSC (SDSC) is cost effective and a stable solar cell compared 

to the classically reported one. We have carried out structural, electronic, optical, and charge-

transport properties of a donor-acceptor-donor polymer; a Hole transporting material (HTM), 

N3 and TiO2 for the design of an efficient SDSC. We proposed an ideal setup for an SDSC, 

where the HTM, N3, and TiO2 are chosen, based on their upstairs like energy levels (band edge 

positions); having a difference of at least 0.50 eV. Our theoretical simulations prove that if we 

shine a light on the proposed setup, the electron would move from the dye to TiO2 and from 

HTM to dye, to be regenerate. HOMO level of our investigated HTM lies about 1.19 eV above 

the sanitizer, provides an easy pathway for hole injection. Strong overlapped molecular orbitals 

of HTM with that of sensitizer and their lower reorganization energy (0.21 eV) which led to 

0.55 eV exciton binding energy, responsible for high short-circuit current density and high 

power conversion efficiency. The theoretical open-circuit voltage of about 1.49 eV is 

responsible for high quantum yield. Moreover, the HTM is chemically stable to oxidation due 

to 4.57 eV of IP and has excellent transparency in the visible region of sunlight (λmax of 925 

nm). 
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