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Magnetic microswimmers, composed of hard and soft ferromagnets connected by an elastic spring, 

are modelled under low Reynolds number conditions in the presence of geometrical boundaries.  

Approaching a surface, the magneto-elastic swimmer’s velocity increases and its trajectory bends 

parallel to the surface contour.  Further confinement to form a planar channel generates new 

propagation modes as the channel width narrows, altering the magneto-elastic swimmer’s speed, 

orientation and direction of travel.  Our results demonstrate that constricted geometric environments, 

such as occur in microfluidic channels or blood vessels, may influence the functionality of magneto-

elastic microswimmers for applications such as drug delivery. 

 

 

  



2 
 

I. INTRODUCTION 

Modern fabrication techniques make it feasible to manufacture structures of similar scale to biological 

cells and subcellular structures.  This has inspired a drive to produce microbots capable of entering 

the body to perform useful therapeutic functions, such as microdrilling1 or directing drug delivery to 

locally increase concentration in target sites while limiting off-target dosage elsewhere, therefore 

reducing side effects.2 Additionally, the potential of microbots for cell stimulation3 and transportation4 

have made them desirable for chip-based assays and microfluidic applications. Key to the achieving 

this goal is the ability to create directed movement through a fluid.  However this is not trivial, as 

motion at micrometre-sized dimensions is dominated by the effect of viscous forces, characterised by 

a low Reynolds number.  In the low Reynolds number regime, inertial effects are negligible, so a 

swimmer in a Newtonian fluid cannot generate net motion if the deformation attempting to drive 

propulsion is reciprocal under time-reversal.5  Therefore, the challenge has been to design low 

Reynolds number swimmers capable of performing within the environment presented by the body or 

microfluidic devices. 

 

While a number of propulsion methods have been proposed for generating motion under low 

Reynolds number conditions,2,6-8 the most promising strategy for in vivo swimming has been to use 

magnetic elements within the swimmer. 9-19  Magnetic actuation enables propulsion to be controlled 

wirelessly without affecting biological viability, an essential requirement of many biomedical 

applications, with the added benefit that the magnetic field also determines the direction of motion.  

Simple magnetic attraction of particles can be effective, but requires the magnetic field to have both 

a strong magnitude and gradient, so this solution is only viable when the particles are close to the 

magnetic poles (e.g. in surface tissue).20,21  By contrast, swimming in uniform time-varying fields is 

possible via the coordinated movement of magnetic elements.  Several groups have used helical 

structures that are either coated with a layer of magnetic film or which have a ferromagnetic head to 

generate motion in a rotating field via a screw-like mechanism.9-13  Alternatively, swimming has been 

demonstrated using interacting superparamagnetic particles, either to produce flagellum-like motion 

when the particles are physically connected 22 or to produce swarm-like collective motion of individual 

particles.14-17 

 

Our group proposed a third strategy based on two ferromagnetic particles with differing size and 

magnetic anisotropies, connected by an elastic link.18,19  Experimental demonstration of a prototype 

magneto-elastic swimmer can be found in the supplementary material of reference 19.  This breaks 

time-reversal symmetry via the combined actions of the structural asymmetry, the torque induced by 

an oscillating applied field and of the interaction between the ferromagnetic particles, which 

alternates between repulsion and attraction due to reversal of the magnetically softer particle during 

the field cycle.    By decoupling the mechanism of propulsion from the specific shape of the swimmer, 

the magneto-elastic swimmer could be designed to produce different flow fields around them than 

those generated by corkscrew-type swimmers.11  Given that proposed drug delivery applications will 

involve propulsion around blood vessels, this could be advantageous since the cells lining the 

vasculature produce biological signalling that can either be beneficial or detrimental, depending on 

the specific shear stress conditions they are exposed to.23  As understanding of how physical stimuli 

affect biological responses is still developing, the ability to modify swimmer shape could prevent 

unnecessary inflammatory responses.  In addition, physically linking the magnetic particles makes the 
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magneto-elastic swimmer inherently more stable than swarm-type swimmers24 and therefore less 

likely to break up in the turbulent and divergent flow conditions that exist within the blood stream.25   

 

Current research effort has largely concentrated on establishing structural designs capable of 

producing net translational motion either in purely unconstrained (bulk) fluids or purely along an 

interface (such that the interface does not impede motion). Indeed, many swarm-type swimmers 

cannot propagate in bulk fluids and require the interface to generate propulsion.15-17  While necessary 

for establishing proof of principle for swimming, this approach has neglected to consider the effects 

of encountering a geometrical barrier on motion of otherwise free swimmers.  However, biomedical 

and microfluidic applications will require swimmers initially moving in bulk fluids to interact with 

surface barriers, such as the cell membrane, blood vessel wall or the sides of a microfluidic chamber.  

Such considerations have been studied with regard to understanding biological low Reynolds 

swimmers,26,27 but the implications for efficiency and functionality of artificial swimmers has received 

little attention.  Here, we demonstrate that the magneto-elastic swimmers can move either in an 

unconstrained fluid, near a surface or in a channel, but that the proximity of surface barriers results 

in changes in the swimming propagation mode. The relative orientation of the applied field axes and 

the surface/channel enables velocity to be enhanced and influences the region of the swimmer that 

interacts with the surface.  If only a portion of the swimmer is used to capture cargo, such control over 

the surface interaction could enable a physical mechanism of programmable drugs release by 

postponing final delivery until the field axes are rotated. 

 

II. MODEL DEFINITION 

Building on our previous work,18,19 we consider a swimmer composed of two spherical ferromagnetic 

beads of different size joined by a spring within a rotating elliptical magnetic field (fig. 1).  We assume 

the spring has unstrained length, L = 6.4 m, and spring constant, ks = 0.05 N/m, but presents no 

hydrodynamic drag.  The field rotates clockwise at frequency f = 400 Hz and has major and minor axis 

amplitudes of Ha = 0.5 kG and Hb = 0.01 kG, respectively.  To facilitate modelling of interactions with 

surfaces not aligned with the local coordinate system defined by field axes, the field axes are rotated 

clockwise with respect to the global coordinate system by an angle, .  Therefore the x- and y-fields 

at time t in the global coordinate system are 𝐻𝑥 = 𝐻𝑎𝑐𝑜𝑠(2𝜋𝑓𝑡)𝑐𝑜𝑠𝜓 − 𝐻𝑏𝑠𝑖𝑛(2𝜋𝑓𝑡)𝑠𝑖𝑛𝜓 and 𝐻𝑦 =

−𝐻𝑎𝑐𝑜𝑠(2𝜋𝑓𝑡)𝑠𝑖𝑛𝜓 − 𝐻𝑏𝑠𝑖𝑛(2𝜋𝑓𝑡)𝑐𝑜𝑠𝜓, respectively.  Denoting bead number with indices, the 

beads have saturation magnetization, M1 = M2 = 1400 kA/m; radius R1 = 0.8 m and R2 = 1.6 m; and 

anisotropy field Hk1 = 100 kG and Hk2 = 0 kG.  Magnetization vectors M1 and M2 (with polar angles, 1 

and 2 and azimuthal angles,1 and 2) are defined relative to the global coordinate system, as is the 

vector describing the axis of the spring, L(s,s), which coincides with the uniaxial anisotropy axis of 

both beads.  Propagation occurs in a fluid of dynamic viscosity, , = 0.1 Pa.s, either unconstrained or 

bounded by one or more surfaces in the x-z plane (in the global coordinate system). 

 

Modelling propagation in a high-viscosity fluid, we apply the conditions of low Reynolds number 

swimming: inertial effects are neglected, such that motion in the system can be solved purely by 

considering the total force acting on the swimmer at any particular instance.  The total force, F, acting 

on the swimmer is 𝐅 = 𝐅𝒎 + 𝐅𝑬 + 𝐅𝑯, where Fm is the dipolar magnetic force acting between the 

beads, FE is the elastic force due to the spring and FH is the hydrodynamic force due to the motion of 
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the beads within the fluid.  In addition, the magnetic field applies a torque, T, generating a rotation of 

the swimmer about the centre of reaction.18 

 

T and Fm are both dependent on the effect of the magnetic field on the magnetization of each bead.  

We model the beads as point dipoles. Thus, for a bead j, the magnetic energy, Ej, is a summation of 

the anisotropy and Zeeman energies: 

𝐸𝑗 = 0.5𝑀𝐻𝑘𝑗[1 − 𝑠𝑖𝑛2(𝜃𝑗 − 𝜃𝑠)𝑐𝑜𝑠2𝜑𝑗] − 𝜇0𝐌𝒋 ∙ 𝐇   (1) 

where j = 1 or 2, 0 is the permeability of free space, Mj is the magnetization vector of bead j and H is 

the magnetic field vector.  The polar and azimuth magnetization components can be found by 

computationally minimizing (1) with respect to j and j.  This enables the calculation of the torque 

acting on each bead, 𝐓𝒋 = 𝜇0𝑉𝑗𝐌𝒋 × 𝐇.  As the beads are linked, the net torque generates rotation of 

both beads about the swimmer’s centre of reaction.  Although the applied field is uniform, each bead 

experiences a non-uniform field due to the dipole field of its neighbour.  The force, Fmj, on bead j from 

the dipole field from bead k, Bk, is 

𝐅𝒎𝒋 = 𝑉𝑗∇(𝐌𝒋 ∙ 𝐁𝒌),               𝐁𝒌 =
𝜇0𝑉𝑘

4𝜋
(

3(𝐌𝒌∙∆𝐫)∆𝐫

∆𝑟5 −
𝐌𝒌

∆𝑟3)  (2) 

where k = 3-j, Vj,k is the volume of bead j or k, Δr = r2 - r1 is the vector difference between the position 

vectors of beads 2 and 1 and Δr is the magnitude of Δr. 

 

Depending on the relative directions of the bead magnetizations, the dipolar force may cause the 

beads to either attract or repel.  Counteracting this motion is the elastic force from the spring, which 

resists compression or extension from the relaxed state.  Assuming the bending modulus of the spring 

is infinitely large, the elastic force on bead j, FEj, is given by 

𝐅𝑬𝒋 = (−1)𝑗𝑘𝑠(𝐋 − ∆𝒓)     (3) 

where L describes the orientation of the spring and has magnitude L, the unstrained spring length. 

 

To model the hydrodynamic forces affecting the swimmer, we represent each bead as a perfect sphere 

and make use of the Stokes approximation, but neglect hydrodynamic drag due to the elastic spring.  

As each bead moves through the fluid, it not only experiences a viscous drag force proportional to its 

velocity, but also produces a flow that interacts with the other bead.  We model the flow as uniform 

at the point of interaction and assume no external flow.  Swimmers near a surface boundary are 

modelled under no-slip conditions (at the boundary there is no flow perpendicular or parallel to the 

surface) using the image swimmer method, which adds a mirror reflection of the swimmer on the 

other side of the surface to replicate the reflection of flow from the boundary surface.28  Therefore, 

the hydrodynamic force acting on bead j, FHj, is 

𝐅𝑯𝒋 = −6𝜋𝜂𝑅𝑗 (𝐯𝒋 − 𝐔𝒌 − 𝐔𝒋
𝒊𝒎𝒂𝒈𝒆

− 𝐔𝒌
𝒊𝒎𝒂𝒈𝒆

)   (4) 

where Rj is the radius of bead j, vj is the velocity of bead j, Uk is the flow due to the motion of bead k, 

𝐔𝒋
𝒊𝒎𝒂𝒈𝒆

 is the flow due to the motion of the image of bead j and 𝐔𝒌
𝒊𝒎𝒂𝒈𝒆

 is the flow  due to the motion 

of the image of bead k.   
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Uk follows the general form of the flow field from a sphere at position rk to position rj: 

𝐔𝒌 = 𝑅𝑘𝐺𝑆(𝐫𝒋 − 𝐫𝒌) ∙ 𝐯𝒌    (5) 

where Rk and vk are the radius and velocity of bead k, respectively, and GS is a Stokeslet Greens 

function.  For a general position vector, r = (rx,ry,rz), the Stokeslet Green’s function has the form 

𝐺𝑆(𝐫) =
3

4𝑟3 [

𝑟𝑥
2 + 𝑟2 𝑟𝑥𝑟𝑦 𝑟𝑥𝑟𝑧

𝑟𝑥𝑟𝑦 𝑟𝑦
2 + 𝑟2 𝑟𝑦𝑟𝑧

𝑟𝑥𝑟𝑧 𝑟𝑦𝑟𝑧 𝑟𝑧
2 + 𝑟2

]    (6) 

 

As we define surface boundaries in the x-z plane, the x- and z-coordinates of the image beads are 

identical to the real swimmer, but the y-coordinates are reflected about the boundary surface. 

Defining the separation between the surface of the real bead and the boundary surface as hj (such 

that hj = 0 when the bead touches the boundary), the image bead will be separated from the boundary 

by -hj.  For example, if a boundary exists at y = ysurf, bead j at position vector rj = (rx, ysurf + Rj + hj, rz) 

moving with velocity vector vj =(vx, vy, vz) will have an image at  r’j = (rx, ysurf - Rj - hj, rz) and velocity v’j 

=(vx, -vy, vz), such that the image moves in the opposite direction along the y-axis to the real swimmer.  

To take this into account, and to impose a no-slip condition at the boundary, we apply a modified 

Green’s function for the image swimmer, Gimage, such that 

𝐺𝑖𝑚𝑎𝑔𝑒(𝐫) ∙ 𝐯𝒋 = 𝐺𝑆(𝐫) ∙ 𝐯𝒋 − 2ℎ𝑗𝐺𝑆𝑡𝐷(𝐫) ∙ 𝐯′
𝒋 + 2ℎ𝑗

2𝐺𝑆𝑜𝐷(𝐫) ∙ 𝐯′
𝒋  (7) 

where v’j is the velocity of the image of bead j, GS is the Stokeslet Green’s function given in (6), GStD is 

the Stokes doublet Green’s function (which we reduce here to the form for a surface on the x-z plane) 

and GSoD is the source doublet Green’s function: 

𝐺𝑆𝑡𝐷(𝐫) =
3

4𝑟5 [

−3𝑟𝑥
2𝑟𝑦 + 𝑟𝑦𝑟2 −3𝑟𝑥𝑟𝑦

2 + 𝑟𝑥𝑟2 −3𝑟𝑥𝑟𝑦𝑟𝑧

−3𝑟𝑥𝑟𝑦
2 − 𝑟𝑥𝑟2 −3𝑟𝑦

3 + 𝑟𝑦𝑟2 −3𝑟𝑦
2𝑟𝑧 − 𝑟𝑧𝑟2

−3𝑟𝑥𝑟𝑦𝑟𝑧 −3𝑟𝑦
2𝑟𝑧 + 𝑟𝑧𝑟2 −3𝑟𝑦𝑟𝑧

2 + 𝑟𝑦𝑟2

]  (8) 

𝐺𝑆𝑜𝐷(𝐫) =
3

4𝑟5 [

−3𝑟𝑥
2 + 𝑟2 −3𝑟𝑥𝑟𝑦 −3𝑟𝑥𝑟𝑧

−3𝑟𝑥𝑟𝑦 −3𝑟𝑦
2 + 𝑟2 −3𝑟𝑦𝑟𝑧

−3𝑟𝑥𝑟𝑧 −3𝑟𝑦𝑟𝑧 −3𝑟𝑧
2 + 𝑟2

]  (9) 

Therefore, the flow acting on bead j due to the motion of its own image is 

𝐔𝒋
𝒊𝒎𝒂𝒈𝒆

= 𝑅𝑗𝐺𝑖𝑚𝑎𝑔𝑒(𝐫𝒋 − 𝐫′𝒋) ∙ 𝐯𝒋    (10) 

and the flow acting on bead j due to the motion of the image of bead k is 

𝐔𝒌
𝒊𝒎𝒂𝒈𝒆

= 𝑅𝑘𝐺𝑖𝑚𝑎𝑔𝑒(𝐫𝒋 − 𝐫′𝒌) ∙ 𝐯𝒌    (11) 

where r’j and r’k are the position vectors of the image of beads j and k, respectively.  Where multiple 

boundaries are considered, a second image swimmer is introduced by adding extra terms of similar 

form to (10) and (11) to (4).  Due to the fast decay of flow with distance, we do not consider multiple 

reflections when additional surfaces are added. 
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III. RESULTS AND DISCUSSION 

A. Swimming constrained by a single surface 

Motion of unconstrained swimmers is characterised by a “locomotive” mode of propagation,29 in 

which the hard and soft beads follow circulating paths, generating net linear propagation at 15 m/s 

in a direction perpendicular to the average orientation of the spring axis linking the beads ( = 0°, fig. 

2a and detail shown in Supplementary Material fig. SM1).  This behaviour is replicated when a surface 

boundary is present, but well separated (100 m) from the swimmer (data not shown).  However, as 

the swimmer approaches the surface, the trajectory progressively changes, such that by 5 m 

separation, the trajectory has altered markedly ( = 0°, fig. 2b and detail shown in Supplementary 

Material fig. SM2).  Interactions with reflected flows from the surface repel the swimmer as it 

approaches the boundary, rapidly causing its motion to diverge from the path of the unconstrained 

system until the propagation direction stabilises parallel to the surface.  This behaviour is insensitive 

to the initial orientation of the swimmer, since the swimmer rotates to a preferred orientation with 

respect to the field within the first few field cycles, well before the propagation direction stabilises.  

Although proximity to the boundary changes the propagation direction, the orientation of the 

swimmer is dependent on the angle of the elliptical field with respect to the surface (), so the 

swimmer no longer propagates perpendicular to the spring axis, but at a more acute angle (fig. 2c).  

Since the force due to flow reflected from the boundary (from the image swimmer) is proportional to 

1/r3 [(8) and (9)], the fastest swimming occurs when the beads are closest to the boundary (at  = -

18°, when the swimmer is parallel with the surface).   Due to the field-dependence of the swimmer 

orientation, the final velocity may be reduced to 3 m/s or enhanced up to 40 m/s depending on  

(fig. 2c).  Taken together, the change in velocity and swimmer orientation with respect to swimming 

direction indicate that the presence of a boundary induces a new mode of propagation that is distinct 

from the unconstrained case. 

 

Repulsion of swimmers from a boundary is a consequence of hydrodynamic interactions under no-slip 

conditions and has been widely reported for biological swimmers.26,27  However, biological swimmers 

continue to face parallel to their swimming direction as they are deflected by the surface, so do not 

experience a change in their propagation mode.  The emergence of a new propagation mode in the 

ferromagnetic swimmers is due to differences in propulsion mechanisms.  Ferromagnetic swimmers 

are influenced by a combination of magnetic, hydrodynamic and elastic forces, which decouples 

swimmer orientation, propagation direction and velocity.  By contrast, biological swimmers self-

propel through undulations of flagella or cilia, such that propagation direction is intrinsically linked to 

the swimmer’s orientation and only determined by hydrodynamic effects.  Field control over 

ferromagnetic swimmer orientation may provide additional functionality for applications, for example 

by enabling a drug-labelled region of the swimmer to be withheld from the surface until required. 

 

B. Swimming in a channel 

Lab-on-a-chip applications of magnetic swimmers require understanding of behaviour in 

microchannels, imposing further constraints on the boundary geometry.  Therefore, planar channels 

were modelled by introducing extra image bead terms in (4) to describe an additional surface above 

the swimmer.  We examined the effect of channel width and field angle on the swimmer propagation, 

initialising the swimmer at the centre of the channel. 
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Three distinct swimming modes were observed at different channel widths and field orientations (fig. 

3a).  Typical manifestations of each mode can be seen by considering swimmer motion as the channel 

narrows under a field orientation of  = 90° (figs. 3b-d).  Details of figs. 3b-d are presented in 

Supplementary Material figs. SM3-SM5, in which traces of individual particles and the overall 

displacement (centre of reaction) during the last three field cycles can be resolved.  For the widest 

channels, the swimmer propagates in the single boundary mode (10 m, fig. 3b and Supplementary 

Material fig. SM3).  This mode occurs when both beads complete tight circuits and each bead position 

is biased to one side of the channel throughout propagation.  As (4) and (7) - (11) show the force from 

reflected flows decreases rapidly with distance (GStD and GSoD vary as 1/r3), the contribution of the 

furthest boundary from each bead is weak, while the closest boundary dominates.  Reducing the 

channel width inhibits the ability of the swimmer to adopt the preferred orientation to the field.  

Supplementary figs. SM4 and SM5 show that, although the beads may contact the channel walls in 

narrow channels, the beads neither penetrate nor bounce off the boundary, but instead slide along a 

hard surface due to the combined effect of the magnetic and elastic forces.  Beyond a critical channel 

width, both boundaries produce significant reflected flow forces affecting both beads.  The single 

boundary mode gradually changes into a new configuration in which the circulatory motion of the 

beads becomes very large and propagation occurs almost parallel with the average orientation of the 

spring axis linking the beads, a “pendulum” mode (8m, fig. 3c and Supplementary Material fig. SM4).  

Although the hard bead oscillates across the whole channel width, therefore interacting with both 

boundaries, the soft bead oscillates in much smaller circuits biased to a particular side of the channel.  

A characteristic of this mode is that the soft bead leads the propagation, a consequence of the 

asymmetric positioning of the soft bead, which causes it to receive a stronger, more constant force 

from flows reflecting of the boundaries than the hard bead. This contrasts with the final propagation 

mode that emerges as the channel narrows further, in which the swimmer still moves in a pendulum 

mode, but the hard bead leads the propagation (4m, fig. 3d and Supplementary Material fig. SM5).  

Crucially, the soft bead in the hard-leading pendulum mode oscillates symmetrically about the centre 

of the channel.  The large size of the soft bead means that it has a similar interaction with each 

boundary, leading to a cancelation of forces due to reflected flows.  On the other hand, the smaller 

hard bead periodically moves much closer to one boundary than the other, resulting in less 

cancellation of reflected flows.  On average, this means that the hard bead experiences larger forces 

than the soft bead and therefore drives the propagation. 

 

Swimmer speed and direction depends on a combination of the swimming mode, channel width and 

field orientation (fig. 4).  In general, the single boundary mode produces the slowest swimmers, 

although fast swimming is achieved in wide channels for  = -54° to -9°.  This asymmetry is analogous 

to that observed when only one surface is present (fig. 2c) and occurs due to the interaction between 

the field and the swimmer orientation.  Increased velocity also occurs around the transition between 

the single boundary mode and soft-leading pendulum mode.  Despite this, once swimming enters the 

soft-leading propagation mode, reductions in the channel width progressively reduce the velocity.  In 

this mode, both boundaries contribute to the motion of each bead.  However, since reflections from 

one surface partially cancel the other, the effect of reducing the channel width is to shift the soft bead 

driving motion towards the centre of the channel, where there is lower overall force acting on it and 

therefore lowering the swimming speed.  Around the boundary between the soft-leading and hard-

leading pendulum modes the swimmer becomes almost stationary as the forces acting on each bead 

cancel out.  In the hard-leading propagation mode, motion is driven by the transient periods when the 

hard bead comes close to the channel surfaces.  Initially, this increases the swimming velocity as 
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channel width reduces, since the narrowed channel increases the period of strong interaction.  

However, further narrowing below an optimum channel width results in slower swimming as 

restrictions to the swimmer’s rotational degree of freedom begin to affect its ability to break time-

reversal symmetry.  Nevertheless, under optimum conditions (channel width = 5.6 m and  = ±90°), 

swimmers in the hard-leading pendulum mode travel at 49 m/s, the fastest swimming speeds in this 

study and almost three times faster than the unconstrained swimmer.  

 

The presence of different propagation modes has implications for using the swimmers to deliver cargo 

(such as drugs or bioactive molecules) within the body or in microfluidic devices.  Since the swimmers 

in the phase region between the hard- and soft-leading pendulum modes are almost stationary, the 

model indicates that swimmers may be deliberately trapped in a narrowing channel crossing the phase 

boundary, providing a mechanism of delivering a load to a specific area.  Alternatively, since  

represents the angle between the surface and the elliptical field axes, it will change as the swimmer 

moves along curved channels, enabling geometric control of the propagation mode.  Since the 

pendulum modes involve a much stronger interaction with the channel walls than the single boundary 

mode, geometric modal control could also provide a pathway to autonomous instigation of chemical 

binding. 

 

IV. CONCLUSION 

In summary, we have developed a model describing the motion of geometrically constrained 

microswimmers consisting of elastically-linked ferromagnetic particles.  This is of technological 

importance for potential applications of these swimmers, either in vivo or in microfluidic devices, 

where encounters with surfaces are likely to be an essential part of operation.  When approaching a 

single surface, swimmers are progressively deflected until their direction of propagation stabilises 

parallel to the surface. Depending on the orientation of the elliptical applied field with respect to the 

surface, the final velocity may be enhanced up to 40 m/s, more than twice as fast as an unconstrained 

swimmer, or reduce down to 3 m/s. 

 

When operating between two surfaces, such as within a microfluidic channel, the constraints of the 

channel surfaces further modify swimmer behaviour.  In very wide planar channels, the swimmer only 

feels the presence of one surface.  However, in narrower channels, the propagation mode depends 

on not only the channel width, but also the orientation of the elliptical field with respect to the 

channel.  When both channel walls influence motion, the mode of swimming changes to a “pendulum” 

mode where part of the swimmer undergoes large oscillations across the whole of the channel width.  

Two distinct types of pendulum mode occur, enabling the direction of propagation to be controlled 

either using the channel width or the orientation of the applied field.  For the magneto-elastic 

swimmer studied, an optimum velocity of 49 m/s occurred in 5.6 m channels when the major axis 

of the elliptical field is applied perpendicular to the channel.  While the precise optimum conditions 

may vary for swimmers of different size and composition, we have demonstrated that interaction with 

barrier or channel geometries can lead to the emergence of propagation modes that are not seen in 

bulk fluids and may enhance swimming velocity.  Therefore, operation of magneto-elastic 

microswimmers in a constrained geometry may influence their functionality for potential therapeutic 

or microfluidic applications. 
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SUPPLEMENTARY MATERIAL 

See Supplementary Material for detailed enlargements of particle traces shown in figs. 2 and 3. 

 

ACKNOWLEDGEMENT  

We acknowledge the financial support from EC Contract 665440 “ABIOMATER”. 

 

  



10 
 

  

Figure 1: The coordinate system of the ferromagnetic swimmer and the applied elliptical field.  The 

local coordinate system (a, b) defines the major and minor axes of the clockwise rotating field, H, 

which are rotated clockwise from the global coordinate axes (x, y) by an angle, . 
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Figure 2: Traces of individual bead motion (a) in an unconstrained system and (b) when a single surface 

boundary is placed at y = -5 m.  In each case, swimmers are initialised with the hard particle at (0,0,0) 

and soft particle at (6.5,0,0).  The trajectory arrows are a guide to the eye indicating the overall 

propagation direction of the swimmer at elliptical field orientation  = 0°.  (c) The effect of  for a 

single surface boundary on the swimmer orientation, s, (red diamonds) and the final propagation 

velocity (blue circles).  Details of the traces shown in (a) and (b), in which motion during the final three 

field cycles are resolved, are presented in Supplementary Material figures SM1 and SM2, respectively. 
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Figure 3: (a) Phase diagram of the channel propagation modes: single boundary (SB, blue), soft-leading 

pendulum (SLP, green) and hard-leading pendulum mode (HLP, red).  (b-d) Example traces of individual 

bead motion during each propagation mode when  = 90° for channel widths of (b) 10 m, (c) 8 m 

and (d) 4 m. Swimmers are initialised with the hard particle at (0,0,0) and soft particle at (6.5,0,0).  

Trajectory arrows are a guide to the eye indicating the overall direction of travel.  Details of the traces 

shown in (b), (c) and (d) in which motion during the final three field cycles are resolved, are presented 

in Supplementary Material figures SM3, SM4 and SM5, respectively. 
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Figure 4: Heat map showing the dependence of the x-axis swimming velocity on the channel width 

and angle between the field major axis and the channel plane over a 3 s period.  Dotted lines outline 

the phase boundaries of the propagation modes shown in fig. 3a. 
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