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Abstract

In this article, reinforcement learning is used to obtain optimal reactive con-
trol of a two-body point absorber. In particular, the Q-learning algorithm
is adopted for the maximization of the energy extraction in each sea state.
The controller damping and stiffness coefficients are varied in steps, observ-
ing the associated reward, which corresponds to an increase in the absorbed
power, or penalty, owing to large displacements. The generated power is
averaged over a time horizon spanning several wave cycles due to the peri-
odicity of ocean waves, discarding the transient effects at the start of each
new episode. The model of a two-body point absorber is developed in order
to validate the control strategy in both regular and irregular waves. In all
analysed sea states, the controller learns the optimal damping and stiffness
coefficients. Furthermore, the scheme is independent of internal models of
the device response, which means that it can adapt to variations in the unit
dynamics with time and does not present modelling errors.
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point absorber, wave energy converter (WEC).

1. Introduction

Wave power is a renewable energy resource that can considerably con-
tribute to the future energy generation thus reducing society’s dependence
on fossil fuels. Although a potential of up to 2.1 TW of power has been
estimated globally [1], wave energy converter (WEC) devices are not eco-
nomically viable yet, despite a large number of different designs having been
suggested [2]. The design of an effective control strategy is fundamental
in order to address this problem, since it can result in substantial gains in
absorbed energy without additional hardware costs.

Over the years, different control strategies have been proposed for the
maximization of power extraction of WECs. A review of the first studies
can be found in [3], while [4] presents a review of recent techniques. From
hydrodynamic considerations, complex-conjugate control would theoretically
provide optimal energy absorption by achieving resonance between the WEC
and the incident waves [3]. Nevertheless, delivering optimal control may be
infeasible in reality due to the associated excessive motions and loads in
extreme waves. Hence, alternative suboptimal control schemes have been
implemented, which include physical constraints on the motions, forces and
power rating of the device [4].

Latching, declutching, model-predictive and simple-but-effective control
are instances of real-time WEC control schemes. Firstly suggested by [5],
latching control achieves resonance conditions by adjusting the time period
when the machine is locked in place through a dedicated mechanism [6, 7].
During the remaining part of the wave cycle, the device motions are linearly
damped. Declutching control presents a similar concept, but in this case the
power take-off (PTO) system is disconnected during part of the wave cycle
through a by-pass valve (with hydraulic PTOs) as opposed to being fixed
in place [8]. Model predictive control applies at each time step the force
that is expected to result in maximum energy absorption over a future time
horizon [9, 10, 11, 12]. Simple-but-effective control obtains an estimate for the
optimal controller force by modelling the current excitation force as a narrow-
banded function [13]. These control strategies can include constrains on the
motions and loading of WECs. While it is hard to scale latching control to
farms of WECs, model predictive control has been successfully implemented
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for multi-body devices and even small array problems [14, 15, 16, 17, 18].
However, model predictive control presents high computational requirements.
Simple-but-effective control results in similar performance, but with a simpler
implementation [4]. Nevertheless, these methods are strongly affected by the
accuracy of the prediction of the future wave excitation force, usually over a
short time horizon, as well as of the model of the machine dynamics [4].

Resistive and reactive control represent alternative types of schemes that
rely on time-averaged sea states, so that stationary wave conditions are as-
sumed [3]. Numerical simulations are performed so as to obtain the PTO
damping (resistive control) or combination of damping and stiffness (reac-
tive control) that result in maximum energy absorption in each sea state
[19]. It is possible to include force saturation within the numerical model
and displacement constraints in the cost function. On the one hand, these
techniques may present a lower efficiency as compared with on-line control
schemes [18]. On the other hand, resistive and reactive control are conceptu-
ally simple to understand, and they present much lower computational costs
than real-time methods. Furthermore, they are easily scalable to multi-body
or multiple-device problems, as for instance shown by [19].

The aforementioned schemes suffer from a significant problem: the op-
timal control action is determined based on internal models of the body
dynamics. Therefore, modelling errors can severely affect the performance of
these algorithms, with significant drops in efficiency. In addition, these con-
trol strategies do not account for changes in the device dynamics over time,
e.g. due to slow marine growth or sudden non-critical subsystem failures.
For these reasons, the authors have proposed the application of reinforce-
ment learning (RL) to resistive control in a previous work [20]. With this
machine learning algorithm, the controller learns the optimal PTO damping
coefficient in every sea state directly from experience. Penalties for large
displacements are included to prevent failures in extreme waves.

In this article, the developed control strategy based on RL is generalised
to reactive control. Although WECs are expected to be deployed in arrays
so as to exploit the advantage of economies of scale [19], we consider a single,
axisymmetric device for simplicity. In particular, a more realistic WEC than
that in [20] is analysed: a two-body point absorber, similar to the reference
model 3 in [21, 22, 23]. Point absorbers, which extract energy by resisting
the motions of a small floating body subject to wave loading through a PTO
system, represent a well-understood and simple offshore WEC technology [2].
The performance of the algorithm is assessed in both regular and irregular
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Figure 1: Diagram of the point absorber with its hydraulic PTO.

waves.

2. Optimal Reactive Control of a Point Absorber

2.1. System Description

The selected point absorber features a hydraulic PTO system as shown
in Fig. 1, as envisioned by [21]. The mechanical energy associated with the
relative motion between the float and the reaction plate is converted into
electrical energy through a hydraulic stage. The advantages of a hydraulic
PTO unit, whose design is inspired by [24, 25, 26], are its robustness, capacity
for energy storage and speed control. Furthermore, no expensive, fully-rated
power converters are necessary because through the PTO system it is possible
to control the output current [26].

The point absorber comprises of two bodies: a float and a reaction plate
connected to a vertical spar. The wave excitation causes the float and reac-
tion plate to move. However, the oscillations of the reaction plate present a
much lower magnitude than the float because of the higher inertia, viscous
drag and depth of the plate. Hence, the motion difference is used to drive a
two-way, single-degree-of-freedom ram that pumps high-pressure oil into the
circuit. A rectifying valve prevents flow reversal. Furthermore, the flow is
smoothed out through a gas accumulator system. In the reference model 3
[21], this comprises of four high-pressure (HP) cylinders and a low-pressure
reservoir, designed to prevent cavitation [26]. The flow drives a hydraulic
motor, which is connected to an induction generator. The produced electri-
cal power is fed into the national grid after the voltage is stepped up through
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a transformer.
As can be seen from Fig. 1, the input variables to the controller are

the generated power, P , the displacement and velocity at the PTO, xPTO

and ẋPTO, respectively, and the wave elevation, ζ, from which the sea state is
derived. The controller then adjusts the flow in the hydraulic circuit by open-
ing or closing the valves connected to the accumulators. This corresponds to
changing the damping and stiffness in the system.

2.2. Optimum Reactive Control

In reactive control, the controller force is calculated as the sum of a
damping and a stiffness term [19]:

FPTO(t) = −BPTOẋPTO(t)− CPTOxPTO(t), (1)

where xPTO is the displacement at the PTO. It is assumed that the PTO
damping and stiffness coefficients, BPTO and CPTO, respectively, can be mod-
ified by changing the pressure within the hydraulic circuit. By varying BPTO

and CPTO directly, the developed algorithm can be easily applied also to
other PTO systems such as electromechanical or direct-drive.

In reality, the PTO force is saturated with a limit FMax due to the gen-
erator rating, as shown in Fig. 6 in Sec. 4.1. The generated power P can be
calculated as:

Pgen(t) = −FPTO(t)ẋPTO(t), (2)

and the power fed into the grid is given by:

P (t) =

{
ηPgen if Pgen ≥ 0

Pgen/η if Pgen < 0
. (3)

For simplicity, in Eq. 3 a single measure is employed for the overall
efficiency of the PTO unit: η=80% [21]. In Eq. 2, Pgen is the generated power.
From Eq. 3 it is clear that with reactive control not only is power extracted
from the waves, but during part of the wave cycle it is also fed into the
environment in order to increase the motions of the device through resonance
and thus increase energy absorption [3]. From this behaviour comes the name
of the algorithm ”reactive control”.

The optimal PTO damping and stiffness coefficients that result in max-
imum energy extraction depend on the wave period in regular waves [27]
or the energy wave period, Te, in irregular waves. If the force saturation
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is included, the optimum BPTO and CPTO values become also functions of
the significant wave height, Hs. Similarly, the maximum displacement at
the PTO, which is of interest to prevent failures in extreme waves, is also a
function of the sea state, given by Hs and Te.

The state-of-the-art optimum reactive control algorithm employs a tabu-
lar approach, where the optimal PTO damping and stiffness coefficients are
stored in a table for the main sea states that are encountered at the opera-
tional site, given by the combinations of a number of discrete values of BPTO

and CPTO. During the operation of the WEC, the controller tries to achieve
the prescribed PTO stiffness and damping coefficients in the current sea state
through the hydraulic PTO system. The optimal coefficients are usually pre-
calculated using an optimization algorithm, such as the Nelder-Mead simplex
algorithm as in [19], with a time-domain hydrodynamic model. For this rea-
son, this technique can be affected by modelling errors and it cannot account
for changes in the device response with time, e.g. due to ageing or marine
biofouling.

3. Reinforcement Learning Control

In reinforcement learning, the controller learns an optimal behaviour, or
policy, from direct interaction with the environment. In this work, the on-
line, off-policy Q-learning algorithm [28] is selected as in [20]. With this
strategy, at each time step n the agent, which is in a specific state sn, selects
an action an. As a result of the interaction with the surrounding environment,
the controller lands in a new state, sn+1, while observing a reward, rn+1,
which depends on the outcome of the chosen action. The action selection,
modelled as a Markov decision process, depends on the value function, which
is a measure of the expected future reward. By considering present as well
as future rewards, RL is able to learn the optimal policy with time for the
maximization of the total reward [28].

Model-free RL techniques employ the action-value table Q, which presents
an entry for every combination of discrete states and actions. For instance,
Q(sn, an) represents the action-value for the current state and action. The
one-step update of the Q-learning algorithm is given by [28]:

Qn+1(sn, an) = Qn(sn, an) + αn

[
rn+1 + γmax

a′∈A
Qn(sn+1, a

′)−Qn(sn, an)

]
,

(4)
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Figure 2: Block diagram of the RL control of the point absorber.

where αn is defined as the learning rate, which determines the proportion
of previous learning that is retained in the update of the action-value table,
and γn is the discount factor, which can be used to stress either current or
future rewards.

3.1. Application to the Reactive Control of Wave Energy Converters

Fig. 2 shows how Q-learning is used to learn the optimal combination
of PTO damping and stiffness coefficients in each sea state without relying
on any internal models of the device dynamics. At each step of the algo-
rithm, the controller selects a step change in the coefficients (action), which
is implemented by the PTO unit (agent). After interaction with the waves
(environment), the controller receives a reward, which is a function of the
generated power, and moves to a new state, as given by the significant wave
height, the energy wave period, and the PTO damping and stiffness coeffi-
cients.

The generated power must be averaged over multiple wave cycles so as
to ensure transient effects from changes in BPTO and CPTO do not affect the
learning process. In particular, a longer time is required in irregular waves
due to their random nature. Hence, the averaging is performed over a time
horizon, H, during which the state sn and action an are constant. As a
result, the time steps of the Q-learning algorithm now have length H. As a
new action is selected, there is an immediate change of state to sn+1 and a
new averaging process.

3.1.1. State Space

As aforementioned, the selected state variables are the significant wave
height, the energy wave period, and the PTO damping and stiffness coeffi-
cients. Hence, the adopted RL state space is given by:
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S =

s|si,j,k,l = (Hs,i, Te,j, BPTO,k, BPTO,l),

i = 1 : I,
j = 1 : J,
k = 1 : K,
l = 1 : L

 . (5)

The choice of I, J , K, and L is based on a compromise between avoiding
slow convergence associated with large values and ensuring sufficient learning
accuracy, which may be affected by small values. In particular, due to the
extra state variable as compared with resistive control [20] the learning time
can become an issue with reactive control if large values are selected. I and J
are usually determined by the wave resource at the deployment site. Typical
ranges of the significant wave height and energy wave period are Hs = [0, 9]
m and Te = [5, 14] s, in steps of 1 m and 1 s, respectively [29]. With a
hydraulic PTO system, K and L are set by the number of accumulators.

3.1.2. Action Space

For reactive control, the action is a combination of increase, decrease, or
not change the PTO damping and stiffness coefficients. This gives 9 possible
actions as opposed to only 3 in the case of resistive control [20]. It has been
preferred, however, to vary only one variable at a time in order to limit the
action-state space thus decreasing the size of the Q-table. This has a direct
consequence on the overall learning time. The action space A is now given
by:

A = {a| [(−∆BPTO, 0), (0,−∆CPTO), (0, 0), (+∆BPTO, 0), (0,+∆CPTO)]},
(6)

where ∆BPTO and ∆CPTO are predefined step changes in the PTO damp-
ing and stiffness coefficients respectively.

The states corresponding to the minimum or maximum PTO damping
and stiffness coefficients, i.e. BPTO,1, BPTO,K , CPTO,1 and CPTO,L, present a
smaller action state to prevent the controller from exceeding the state space
boundary. For instance, for CPTO,L, the action ∆CPTO is invalid.

3.1.3. Reward

In this work, the same reward function, which represents the goal the
controller needs to maximise, as in [20] is used. As shown in Fig. 2, the
reward is dependent on the absorbed power. Nevertheless, the significant

8



wave height can have stronger influence on the mean generated power, Pavg,
than variations in BPTO and CPTO. As a result, Pavg/H

2
s is used instead

because the absorbed power is proportional to the square of the significant
wave height [29]. Additionally, in order to help the learning process by
filtering out the noise associated with random seas, the reward function is
in fact based on the mean value of a number M of Pavg values (which are
themselves time-averaged) for each RL state. This is necessary because of
the discretization of the state variables and the stochastic nature of irregular
waves. Hence, the M most recent Pavg/H

2
s values are stored for each RL

state in a matrix, R, which presents at most ns ·M entries so as to prevent
memory issues, where ns is the total number of states, ns = I · J · K · L.
Thus, the mean value corresponding to each state can be calculated and
then expressed with the vector m = 〈R(s,m)〉m=1:(M∨end) of size ns, with 〈〉
indicating the averaging process. In this vector, the states are arranged with
a vectorised version of Eq. (5) so that the discrete values of BPTO correspond
to the innermost loop, CPTO the inner middle loop, Te the outer middle loop
and Hs the outermost loop.

In order to speed up the learning process, it is advantageous to present a
cost function that is equal to one at the optimum and zero everywhere else.
This is achieved by first normalizing the values of m by the maximum in
each sea state, i.e. for the same Hs and Te. This means that the maximum
value is searched between the indices o = floor((sn − 1)/(K · L)) ·K · L + 1
and p = floor((sn − 1)/(K · L)) ·K · L + K · L of the vector m. Then, the
normalized values should be raised to a very high power, u = 25, so that the
optimum will present a value of one and the other terms will tend to zero.
This process is necessary because the location of the optimum is unknown,
and results in the algorithm giving greater importance to the optimum over
suboptimal PTO coefficients, even if they result in mean generated power
with only a slightly smaller magnitude. Fig. 3 enables the user to fully
understand this point, which is of primary importance in the derivation of
a suitable reward function for the control of WECs. As an example in Fig.
3, the reward function is assumed to be given by a Weibull distribution [29]
with scale and shape parameters 0.6 and 1.5 respectively, whose values are
normalized. From Fig. 3, it is clear that a greater value of u corresponds to a
more pronounced peakiness. However, a plateau is reached for large values.

Additionally, with reactive control, negative mean power values are pos-
sible, which may present a magnitude greater than the maximum power by
which the corresponding value in m is normalized. In this case, it is best not
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Figure 3: Influence of u on the peakiness of the reward function, based on the example of a
normalized Weibull distribution with scale and shape parameters 0.6 and 1.5 respectively.

to raise them to a power, so that a preliminary reward function is given by:

w (sn) =


[

〈m(sn)〉
maxs=o:p〈m(s)〉

]u
if m (sn) > 0

〈m(sn)〉
maxs=o:p〈m(s)〉 if m (sn) ≤ 0

. (7)

For greater clarity, the calculation of the reward function is shown graph-
ically in Fig. 4 for the final step of the RL algorithm using the simulation in
Fig. 10 in Sec. 5.2. Looking at the table R, it is possible to make two ob-
servations. Firstly, despite an 8-hour-long wave trace being analysed, not all
states (i.e. rows of the table) present fully M entries, which means they have
been encountered for less than M times (with M = 25 in this simulation).
Secondly, even for each state, the values of Pavg/H

2
s can present a wide range

due to the variation in wave energy for the same discrete sea state. This is
the main reason behind selecting a relatively large value of M , which should
result in outliers playing a minor role in the calculation of the vector of the
mean values, m. In Fig. 4, only one sea state is used, so that all entries of
m are normalized with respect to the maximum power. However, if more
sea states were present, it would be sufficient to update the portion of m
corresponding to the current sea state only as defined by indices o and p in
Eq. (7). Finally, Fig. 4 shows that the use of a high value of the power u,
where u = 25 is used in this case, results in a smaller reward being associated
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Figure 4: Calculating the reward w (excluding penalties for large motions) at one step of
the RL algorithm in irregular waves. This corresponds to the last step in 10 in Sec. 5.2.

with suboptimal combinations of the PTO damping and stiffness coefficients,
as expected from Fig. 3.

Furthermore, some combinations of PTO damping and stiffness coeffi-
cients may result in large motions in extreme waves that may lead to failure.
For this reason, a penalty, -2, is returned whenever the magnitude of the
maximum displacement at the PTO exceeds a set value, xPTO,Max. Hence,
the complete reward function is given by:

rn+1 =

{
w (sn) if |max (xPTO) | ≤ xPTO,Max

−2 if |max (xPTO) | > xPTO,Max

. (8)

3.1.4. Exploration Strategy, Learning Rate and Discount Factor

Particularly at the start of the learning process, it is advantageous for the
agent to try unseen actions in new states, also known as exploration. As the
learning progresses, the controller can shift towards the selection of actions
that result in greater reward (exploitation), since there is greater confidence
in their values. In this work, this has been achieved through an -greedy
exploration strategy, which results in the following action selection at each
step of the Q-learning algorithm [28]:

an =

{
arg maxa′∈AQn(sn, a

′) with probability 1− εn
random action with probability εn

. (9)
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In order to ensure exploration at the start and then shift the focus to
exploitation, the exploration rate n is calculated as:

εn =

{
ε0 if N ≤ 0

ε0/
√
N if N > 0

, (10)

where N =
∑

i=1:5Nn(sn, ai)−Nmin ε, with na = 5 indicating the number of
actions. N is the matrix containing the count of the number of visits to each
state action pair, Nmin ε = 25 is the minimum number of visits to each state
for an initial random exploration, and ε0 = 0.6 is the initial exploration rate.

Similarly, the learning rate αn should also decrease as the learning goes
on. Nevertheless, a slower decay is sought in order to ensure the controller
keeps on updating the Q-table throughout the exploration stage:

αn =

{
α0 if Nn(sn, an) ≤ Nminα

α0/Nn(sn, an) if Nn(sn, an) > Nminα

. (11)

In this article, α0 = 0.4 and Nminα = 5. These values have been selected
based on previous experience with resistive control [20], with less exploration
being allowed to speed up convergence. The learning and exploration rates
should be reset on a predefined, regular basis so as to account for changes
in the WEC dynamics over time, e.g. due to marine growth or non-critical
subsystem failure.

Furthermore, a discount factor γ = 0.95 is employed. This is used to
discount only slightly the future rewards the Q-learning algorithm receives.

3.2. Algorithm

The proposed Q-learning algorithm for the reactive control of WECs can
be seen in Fig. 5. The first step consists of the initialization of all variables.
Q and N are matrices of dimensions ns×na. R is a vector of vectors, whose
dimensions are at most ns ×M , with M = 10 in regular waves and M = 25
in irregular waves. As in [20], the entries of R are pre-calculated in a run
in a similar wave trace, whilst taking random actions. It is expected that
R will be pre-initialized using simulations also for the full-scale device: as
the WEC begins to operate, R will be updated using actual sensor data. In
addition, since some combinations of PTO damping and stiffness coefficients
can result in very large motions, it is necessary to initialize the Q-table during
a pre-training stage using simulations in order to prevent failure in extreme
waves.
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Figure 5: Flowchart of the Q-learning algorithm for the reactive control of WECs.
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After the initialization stage, the algorithm is run indefinitely until main-
tenance is due. At every time step, the selected PTO damping and stiffness
coefficients are implemented by the controller through the PTO system. Fur-
thermore, the generated power and the displacement at the PTO are sampled
in order to update respectively the mean absorbed power and the maximum
displacement value in each time horizon. In particular, the power averaging
is performed only after 8round(Te) have passed in order to remove transient
effects due to change in BPTO or CPTO. A longer time is required than
for resistive control in [20], since a change in PTO stiffness coefficient can
cause large motions. Additionally, the time horizon lasts 20round(Te) in
both regular and irregular waves. This results in a speed-up in convergence
as compared with 30round(Tz) in [20], whilst still ensuring the algorithm is
stable.

From Fig. 5, the Q-learning update at the end of each episode can be
seen. The values of the significant wave height and energy wave period are
computed using spectral analysis and Fast Fourier Transforms (FFT) from
the record of the wave elevation with a unidirectional wave spectrum for
simplicity [29].

4. Simulation System

4.1. Hydrodynamic Model

A representation of the WEC analysed in this work can be found in [21,
22, 23]. Assuming linear wave theory and small body motions, the response of
the device can be obtained from the superposition of the inertial, hydrostatic,
viscous, radiation, diffraction and incident forces in addition to the control
force [30]. The two-body problem can be thus modelled with a twelve-degree-
of-freedom model. However, by considering only planar motion, i.e. surge,
heave and pitch, and the axisymmetric geometry of both float and reaction
plate, which means heave is decoupled from surge and pitch [30], it is possible
to simplify the model to the coupled heave degrees of freedom of the two
bodies. Therefore, using Cummins’ formulation for the radiation force [31],
it is possible to express the equations of motion of the device in the time
domain with the following matrix notation:

(M + A(∞)) ẍ(t) +

∫ t

0

K(t− τ)ẋ(τ)dτ +Cx(t) = fex(t) +fPTO(t) +fv(t).

(12)
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M is the inertia matrix, which can be obtained using the data in [22],
and C the stiffness matrix. The calculation of the heave hydrostatic stiffness
for the float is standard [30], whose dimensions can be found in [22], with
the sea water density ρ = 1025 kg/m3 and the gravitational acceleration
g = 9.81 m/s2. The reaction plate and spar do not present any hydrostatic
stiffness because they are fully submerged. Nevertheless, a stiffness term of
10 MN/m, which is likely to be provided by the mooring system, is specified
in order to prevent an unstable behaviour with reactive control.

In Eq. (12), K is the radiation impulse response function matrix, and
A(∞) the added mass matrix at infinite wave frequency. These variables can
be computed using the commercial program WAMIT, where the geometry is
created following the dimensions in [22]. In particular, panels are included at
the waterline within the float contour so as to remove the effects of irregular
frequencies [32]. Furthermore, the bottom is left with a hole where the top
of the spar fits. Similarly, the top of the spar is left without panels. Care
has been taken in ensuring there is a match in the position of the points
lying on the inner border of the bottom of the float and on the outer border
of the top of the spar to prevent errors in the solution. This arrangement
results in incorrect volume and hydrostatic calculations, but in an accurate
computation of the radiation and diffraction coefficients. In addition, the use
of dipoles on the reaction plate has been found to result in instabilities in the
radiation approximation, described hereafter. For this reason, it has been
preferred to model the reaction plate as a thicker plate, with a thickness of 3
m (1/10th of the diameter [22]). This approximation has been found to have
only a minor effect on the radiation coefficients in heave.

In Eq. (12), fex is the excitation force vector, which is calculated from
the convolution of the excitation impulse response function, also obtained via
WAMIT, and the wave elevation as described in [30]. According to Newton’s
3rd law of action and reaction, fPTO = [FPTO,−FPTO]T is the controller force
vector, with FPTO being computed as in Eq. (1). For this simple case, the
displacement and velocity at the PTO can be obtained from the difference
in the displacement and velocity of the two bodies: xPTO(t) = x3(t)−x9(t),
where 3 and 9 indicate the heave degree of freedom of the float and reaction
plate respectively according to standard practice. The viscous drag force,
fv, can be calculated with Morison’s equation [33]. While no drag force has
been modelled on the water-piercing float, its contribution is expected to be
non-negligible on the motions of the reaction plate. Since the magnitude of
the velocity of the reaction plate is relatively small in all sea states analysed
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Figure 6: Block diagram used for the calculation of the motions of the float and reaction
plate.

in this article, a constant drag coefficient CD = 5 is employed, taken from
[22].

Fig. 6 shows the expression of Eq. (12) in a block diagram. In order
to reduce the computational requirements of the hydrodynamic model, the
radiation convolution integral is approximated by a state-space formulation
as in [20]. Frequency-domain system identification is employed so as to ob-
tain state-space matrices Ass, Bss, Css, and Dss according to the procedure
described by [26], with Dss = 0. The matrix D is used to calculate the
viscous drag force. All its entries are zero, except for D9,9 = 0.5CDρπR

2
plate,

where Rplate = 15 m is the radius of the reaction plate [22]. In addition, the
hydrodynamic model in Fig. 6 has been expressed in a discrete state-space
format through a first-order hold [34] in order to reduce the computational
cost of the solution. The sampling time has been set to ∆t = 0.1 s.

4.2. Simulation Model

Numerical simulations have been run for the Reference Model 3 two-body
point absorber, whose dimensions can be found in [22]. The maximum PTO
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Figure 7: Workflow diagram of the program used to simulate the point absorber.

force that can be exerted due to the generator rating has been assumed to
be FMax = 1 MN, while the magnitude of the maximum displacement at the
PTO has been limited to xPTO,Max = 5 m.

The program employed for the simulations is summarized in Fig. 7. While
a buoy will record the wave elevation in practice as shown in Fig. 1, a wave
model is used to generate the wave elevation time series in Fig. 7. On the
one hand, the wave elevation is used to obtain Hs and Te. On the other
hand, it is required for the calculation of the wave excitation force through
the diffraction convolution integral [30].

In order to generate the wave elevation in irregular waves, the amplitude
wave spectrum S(ω) needs to be specified for a number of circular wave
frequencies [29], ω. The individual wave components are superimposed to
calculate ζ, each having a wave amplitude A(ω) =

√
2S(ω)∆ω, where ∆ω

is the circular frequency step [30]. ∆ω should be selected smaller than the
Nyquist frequency in order to prevent a repetition of the wave trace [34].
This is particularly problematic, since it is evident from Sec. 5.2 that very
long wave traces are required for the RL algorithm to converge. For this
reason, it has been preferred to generate the wave trace as the combination
of 15-minute long wave traces, where a different seed for the random number
generator is used for each one. Furthermore, a 20-point filter is used over
the last and first 20 s of each trace in order to smoothen the connection.
Therefore, ∆ω = 0.005 rad/s has been used, since it meets the Nyquist
criterion [34], which has been possible by fitting the diffraction coefficients
generated by WAMIT with a high-order polynomial.

For simplicity, the PTO damping coefficient is assumed to range from 0
to 4.2 MNs/m in steps of 1.4 MNs/m, so that K = 4. Similarly, the PTO
stiffness coefficient is taken to range from -3.6 MN/m to 0 MN/m in steps
of 1.2 MN/m, so that L = 4. These values have been selected as they fully
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enclose the optimal coefficients for the analysed sea states. As a result of
the choice of PTO damping and stiffness coefficients, 16 RL states are used
when a single sea state, as given by Hs and Te, is considered. Nevertheless,
for a more realistic implementation a finer resolution and a wider range are
expected.

5. Simulation Results

The learning capabilities of the algorithm are assessed in both regular
and irregular waves. Since the same time horizon length has been selected
in both cases, the same wave trace length of 8 hours has been employed as
opposed to [20], where a longer time series was required in irregular waves.
The hydrodynamic model is initialised for 15 minutes to prevent numerical
instabilities, although this trace is not reported in the plots. Additionally, the
RL response is validated against optimal reactive control, whose coefficients
are obtained from Nelder-Mead simplex optimizations [19] in 20-minute-long
wave traces.

5.1. Regular Waves

A single sea state, i.e. I = J = 1, has been analysed in regular waves,
with unit amplitude and a wave period of 8 s. Fig. 8a and Fig. 8b compare
the curves of the PTO damping and stiffness coefficients respectively with
time as selected by the Q-learning algorithm against the optimal values. The
difference in the corresponding mean absorbed power and the optimal mean
generated power of 260.5 kW can be seen in Fig. 8c.

In addition, the reward function is plotted against the PTO damping and
stiffness coefficients in Fig. 9 for the same sea state. In particular, two values
have been used for u, the power of the normalized power in Eq. (7). Note
that because the displacement limit is not reached, r = w in this case (Eq.
(7) and Eq. (8)). The case of u = 1 corresponds to purely the normalized
mean generated power values, while u = 25 is used in the actual cost function
in this article.

5.2. Irregular Waves

Similarly, a single sea state, with a significant wave height of 2 m and
a peak wave period of 9.25 s is considered in irregular waves as a proof of
concept. From the FFT analysis, the energy wave period for the generated
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(a)

(b)

(c)

Figure 8: Time variation of the PTO damping (a) and stiffness (b) coefficients chosen by
the RL control as compared with the respective optimal values in regular waves of unit
amplitude and a wave period of 8 s. (c) shows the difference between the corresponding
mean generated power and the optimal mean generated power.

wave trace is 8 s. As per the regular waves case, I = J = 1 so that the RL
problem reduces to 16 states.

In Fig. 10a and Fig. 10b, it is possible to see the PTO damping and
stiffness coefficients respectively adopted by the RL control scheme as com-
pared with the optimal values in this sea state. Fig. 10c shows the difference
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Figure 9: Reward function for all possible configurations of the PTO damping and stiffness
coefficient for the device in regular waves with Hs = 2 m and Te = 8 s using two values
for u.

in the corresponding mean absorbed power, with the mean generated power
obtained by using the optimal coefficients being 90.582 kW.

6. Discussion

6.1. Regular Waves

As is clear from Fig. 8, in regular waves the Q-learning algorithm learns
the optimal PTO coefficients in approximately six hours from a random start
(Q = 0). This is almost double the time required by the control scheme for
resistive control in [20] mainly due to the longer time horizon employed: 20Te
as opposed to 10Tz, with the energy wave period being typically greater than
the zero-crossing mean wave period. In fact, a shorter time horizon may be
used considering the deterministic nature of regular waves. Additionally, the
convergence time is strongly dependent on the number of discrete BPTO and
CPTO values employed, with only 16 states currently being used.

In Fig. 8, it is also interesting to notice the random initial behaviour
of the controller due to the selected exploration strategy, which enables the
agent to visit most states. As the learning progresses, the exploration rate
tends to zero and the algorithm chooses the optimal, exploitative actions.
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(a)

(b)

(c)

Figure 10: Time variation of the PTO damping (a) and stiffness (b) coefficients chosen
by the RL control as compared with the respective optimal values in irregular waves with
Hs = 2 m and Te = 8 s. (c) shows the difference between the corresponding mean generated
power and the optimal mean generated power.

In order to meet the requirements of the linear wave theory assumption of
the hydrodynamic model, a short wave height has been chosen. As a result,
the prescribed maximum PTO displacement is never exceeded. Hence, the
penalty term in Eq. (8) is not applied. If it were, the controller would be
expected to select a higher PTO damping coefficient, as in [20] for resistive
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control. Conversely, a PTO stiffness coefficient with a smaller, if not zero,
magnitude is forecast, as the controller tries to move away from resonance.
On the other hand, the force reaches the saturation limit even in this mild
sea state. However, a bang-bang behaviour similar to the one in [20] is not
observed with reactive control.

In Fig. 9, it is interesting to compare the developed cost function (u = 25)
with the original normalized generated mean power surface (u = 1) for the
same sea state. As can be seen, raising the non-dimensional power values to
a high power results in a much peakier reward function, similar to what is
observed in Fig. 3 for an example function. This is highly desirable, since
it enables the controller to learn more quickly what the optimal action is, as
there is a more significant gain associated with it as compared with subop-
timal solutions. This results in a considerable speed-up in the convergence
time as opposed to the case of u = 1. Even higher values of the power u may
be required for a finer mesh of PTO damping and stiffness coefficients, since
this can present a flatter region around the optimum. As aforementioned,
this approach is necessary because the actual position of the optimum is un-
known, with the best reward function in terms of convergence time being the
one that presenting a value of +1 at the optimum and 0 everywhere else.

It is important to notice that raising negative normalized mean generated
power values to a high value of u is strongly undesirable. This would have the
effect of decreasing the magnitude of the reward as for positive power values,
but in this case it would actually mean increasing the reward associated with
suboptimal points. It would be even worse to use an even value for u, since
it would turn negative mean generated power values into positive ones, thus
teaching the controller a completely wrong policy. Hence, positive values of
u for negative normalized mean generated power values must be avoided at
all costs.

6.2. Irregular Waves

From Fig. 10, it is evident that the developed statistical reward func-
tion is effective in ensuring convergence in irregular waves as well, despite
their stochastic nature. Furthermore, since the same horizon time length is
employed as per the regular waves run, the learning time is no greater as op-
posed to the study by [20]. Nevertheless, the challenge that irregular waves
pose to the convergence of the correct action selection can be understood by
comparing Fig. 8c and Fig. 10c, where the much more oscillatory nature of
the mean absorbed power in irregular waves is clear.
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A typical sea state has a duration that ranges between 30 minutes and
6 hours [29]. Hence, even though the learning time is smaller than in [20]
despite the larger number of states, convergence is still unlikely to be achieved
before there is a variation in the significant wave height and energy wave
period. However, as shown in [20] for irregular waves with multiple sea
states, the Q-learning algorithm applied to the control of WECs is able to
pick up the learning process from where it left off the last time it encountered
a particular sea state. This represents the main advantage of reinforcement
learning over traditional optimization algorithms, which would be unable to
identify whether a change in the cost function is due to a change in the PTO
damping or stiffness coefficients or due to noise in the wave energy.

In a realistic application, a finer grid of BPTO and CPTO values would
be desired in order to deal with a large range of sea states. Nevertheless,
this may increase the learning time excessively. The Q-table is expected to
be pre-initialized through numerical simulations in order to prevent selecting
PTO settings that result in excessive motions in energetic sea states, which
could be a real problem with reactive control. In addition, the exploration
and learning rates should be reset every season so as to check if there have
been variations in the device response over time, e.g. due to slow marine
growth or abrupt non-critical subsystems failure. Since the operational life
of WEC technologies is envisioned to be 20 to 25 years, a relatively poor
performance during the initial stages of operation should be more than offset
by increases in the absorbed wave power throughout a devices operating life
through the removal of modelling errors.

Finally, it is important to understand that RL is proposed as a method
to remove the dependence of existing WEC control strategies from hydrody-
namic models. Therefore, the overall controller performance is only as good
as the control scheme itself, with reactive control representing a significant
improvement over resistive control treated in the previous study [20].

7. Conclusions

The authors have presented an on-line, model free strategy for the re-
active control of WECs using RL, building on a previous study on resistive
control. The algorithm has been validated through a numerical model of a
two-body point absorber which assumes linear wave theory. In both regular
and irregular waves the controller is shown to learn the optimal PTO damp-
ing and stiffness coefficients that result in maximum energy absorption. In
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order to achieve convergence in irregular waves, a statistical reward func-
tion has been developed, which averages over multiple mean absorbed power
values in each sea state. As the control scheme is independent of internal
models of the device response, it is simple to implement on a real, full-scale
WEC. Additionally, it can adapt to variations in the machine conditions over
time, e.g. due to ageing or marine biofouling. Although the Q-table has been
randomly initialized, in a real application it is expected to be pre-calculated
through simulations in order to prevent the adoption of actions that may
cause failures in extreme waves. The action-values will then be slowly sub-
stituted by the actual measured data during operation with corresponding
necessary adjustments. Finally, this method, which has already been gener-
alised to the application to multi-body devices in this work since a previous
study [20], can be further extended to the treatment of arrays of devices.

Acknowledgements

The authors would like to thank the Energy Technologies Institute (ETI)
and the Research Councils Energy Programme (RCEP) for funding this
research as part of the IDCORE programme (EP/J500847/), as well as
the Engineering and Physical Sciences Research Council (EPSRC) (grant
EP/J500847/1). In addition, Mr. Anderlini would like to thank Wave En-
ergy Scotland (WES) for sponsoring his Eng.D. research project.

WES is taking an innovative approach to supporting the development
of wave energy technology by managing the most extensive technology pro-
gramme of its kind in the sector, concentrating on key areas which have been
identified as having the most potential impact on the long-term levellised
cost of energy and improved commercial viability.

References

[1] K. Gunn, C. Stock-Williams, Quantifying the Potential Global Market
for Wave Power, Proceedings of the 4th International Conference on
Ocean Engineering (ICOE 2012) (2012) 1–7.

[2] A. F. D. O. Falcão, Wave energy utilization: A review of the technolo-
gies, Renewable and Sustainable Energy Reviews 14 (3) (2010) 899–918.
doi:10.1016/j.rser.2009.11.003.

24



[3] S. H. Salter, J. R. M. Taylor, N. J. Caldwell, Power conversion mech-
anisms for wave energy, Proceedings of the I MECH E Part M 216 (1)
(2002) 1–27. doi:10.1243/147509002320382112.

[4] J. V. Ringwood, G. Bacelli, F. Fusco, Energy-Maximizing Control of
Wave-Energy Converters: The Development of Control System Tech-
nology to Optimize Their Operation, IEEE Control Systems Magazine
34 (5) (2014) 30–55.

[5] K. Budal, J. Falnes, Optimum Operation of Wave Power Converter,
Marine Science Communications 3 (2) (1977) 133–150.

[6] A. Babarit, G. Duclos, A. H. Clément, Comparison of latching con-
trol strategies for a heaving wave energy device in random sea, Applied
Ocean Research 26 (5) (2004) 227–238. doi:10.1016/j.apor.2005.05.003.

[7] A. Babarit, A. H. Clément, Optimal latching control of a wave energy
device in regular and irregular waves, Applied Ocean Research 28 (2)
(2006) 77–91. doi:10.1016/j.apor.2006.05.002.

[8] A. Babarit, M. Guglielmi, A. H. Clément, Declutching control of a
wave energy converter, Ocean Engineering 36 (12-13) (2009) 1015–1024.
doi:10.1016/j.oceaneng.2009.05.006.

[9] T. K. A. Brekken, On Model Predictive Control for a point absorber
Wave Energy Converter, Proceedings of the IEEE Trondheim PowerTech
(2011) 1–8doi:10.1109/PTC.2011.6019367.

[10] J. Hals, J. Falnes, T. Moan, Constrained Optimal Control of a Heaving
Buoy Wave-Energy Converter, Journal of Offshore Mechanics and Arctic
Engineering 133 (1) (2011) 011401. doi:10.1115/1.4001431.

[11] G. Li, M. R. Belmont, Model predictive control of sea wave energy
converters - Part I: A convex approach for the case of a single device,
Renewable Energy 69 (2014) 453–463. doi:10.1016/j.renene.2014.03.070.

[12] M. Richter, O. Sawodny, M. E. Magaña, T. K. a. Brekken, Power opti-
misation of a point absorber wave energy converter by means of linear
model predictive control, IET Renewable Power Generation 8 (2) (2014)
203–215. doi:10.1049/iet-rpg.2012.0214.

25



[13] F. Fusco, J. V. Ringwood, A simple and effective real-time controller for
wave energy converters, IEEE Transactions on Sustainable Energy 4 (1)
(2013) 21–30. doi:10.1109/TSTE.2012.2196717.

[14] M. Richter, M. E. Magana, O. Sawodny, T. K. a. Brekken, Nonlin-
ear Model Predictive Control of a Point Absorber Wave Energy Con-
verter, Sustainable Energy, IEEE Transactions on 4 (1) (2013) 118–126.
doi:10.1109/TSTE.2012.2202929.

[15] D. Oetinger, M. E. Magaña, S. Member, O. Sawodny, Decentralized
Model Predictive Control for Wave Energy Converter Arrays, Sustain-
able Energy, IEEE Transactions on 5 (4) (2014) 1099–1107.

[16] G. Li, M. R. Belmont, Model predictive control of sea wave energy
converters - Part II: The case of an array of devices, Renewable Energy
68 (2014) 540–549. doi:10.1016/j.renene.2014.02.028.

[17] K. U. Amann, M. E. Magaña, S. Member, O. Sawodny, Model Predictive
Control of a Nonlinear 2-Body Point Absorber Wave Energy Converter
With Estimated State Feedback, Sustainable Energy, IEEE Transactions
on 6 (2) (2015) 336–345.

[18] O. Sawodny, D. Oetinger, M. E. Magaña, Centralised model predictive
controller design for wave energy converter arrays, IET Renewable Power
Generation 9 (2) (2015) 142–153. doi:10.1049/iet-rpg.2013.0300.

[19] A. J. Nambiar, D. I. M. Forehand, M. M. Kramer, R. H. Hansen, D. M.
Ingram, Effects of hydrodynamic interactions and control within a point
absorber array on electrical output, International Journal of Marine En-
ergy 9 (2015) 20–40. doi:10.1016/j.ijome.2014.11.002.

[20] E. Anderlini, D. I. M. Forehand, P. Stansell, Q. Xiao, M. Abusara,
Control of a Point Absorber using Reinforcement Learning, Transactions
on Sustainable Energy 7 (4) (2016) 1681–1690.

[21] V. S. Neary, M. Previsic, R. a. Jepsen, M. J. Lawson, Y.-H. Yu, A. E.
Copping, A. a. Fontaine, K. C. Hallett, Methodology for Design and
Economic Analysis of Marine Energy Conversion (MEC) Technologies,
Tech. Rep. March, Sandia National Laboratories (2014). doi:SAND2014-
9040.

26



[22] M. Previsic, K. Shoele, J. Epler, Validation of Theoretical Performance
Results using Wave Tank Testing of Heaving Point Absorber Wave En-
ergy Conversion Device working against a Subsea Reaction Plate, 2nd
Marine Energy Technology Symposium (2014) 1–8.

[23] Y. Yu, M. Lawson, Y. Li, M. Previsic, J. Epler, J. Lou, Experimental
Wave Tank Test for Reference Model 3 Floating- Point Absorber Wave
Energy Converter Project, Tech. Rep. January, National Renewable En-
ergy Laboratory (2015). doi:NREL/TP-5000-62951.

[24] R. Henderson, Design, simulation, and testing of a novel hydraulic power
take-off system for the Pelamis wave energy converter, Renewable En-
ergy 31 (2) (2006) 271–283. doi:10.1016/j.renene.2005.08.021.

[25] A. F. D. O. Falcão, Modelling and control of oscillating-body
wave energy converters with hydraulic power take-off and gas
accumulator, Ocean Engineering 34 (14-15) (2007) 2021–2032.
doi:10.1016/j.oceaneng.2007.02.006.

[26] D. Forehand, A. E. Kiprakis, A. Nambiar, R. Wallace, A Bi-
directional Wave-to-Wire Model of an Array of Wave Energy Convert-
ers, IEEE Transactions on Sustainable Energy 7 (1) (2016) 118–128.
doi:10.1109/TSTE.2015.2476960.

[27] E. Tedeschi, M. Carraro, M. Molinas, P. Mattavelli, Effect of control
strategies and power take-off efficiency on the power capture from sea
waves, IEEE Transactions on Energy Conversion 26 (4) (2011) 1088–
1098. doi:10.1109/TEC.2011.2164798.

[28] R. S. Sutton, A. G. Barto, Reinforcement Learning, hardcover Edition,
MIT Press, 1998.

[29] L. H. Holthuijsen, Waves in Oceanic and Coastal Waters, Cambridge
University Press, 2007.

[30] J. Falnes, Ocean waves and Oscillating systems, paperback Edition,
Cambridge University Press, 2005. doi:10.1016/S0029-8018(02)00070-
7.

[31] W. E. Cummins, The impulse response function and ship motions,
Schiffstechnik 47 (9) (1962) 101–109.

27



[32] WAMIT, User Manual: Version 7.0, 2013. arXiv:arXiv:1011.1669v3,
doi:10.1017/CBO9781107415324.004.

[33] J. Morison, J. Johnson, S. Schaaf, The Force Exerted by Surface
Waves on Piles, Journal of Petroleum Technology 2 (5) (1950) 149–154.
doi:10.2118/950149-G.

[34] G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of
Dynamic Systems, 6th Edition, Pearson, 2008.

28


