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Generalised additive point process models for
natural hazard occurrence

B. D. Youngmana∗ and T. Economoua

Summary: Point processes are a natural class of model for representing occurrences of various types of

natural hazard event. Flexibly implementing such models is often hindered by intractable likelihood forms.

Consequently, rates of point processes tend to be reduced to parametric forms, or the processes are discretised

to give data of readily modelled ‘count-per-unit’ type. This work proposes generalised additive model forms

for point process rates. The resulting low-rank spatio-temporal representations of rates, coupled with the

Laplace approximation, makes the restricted likelihood relatively tractable, and hence inference for such

models possible. The models can also be interpreted from a regression perspective. The proposed models are

used to estimate different types of Cox process and then spatio-temporal variation in European windstorms.

Through a combination of thin plate and cubic regression splines, and their tensor product, established

relationships between where windstorms occur and the state of the North Atlantic Oscillation are confirmed,

and then expanded to bring detailed understanding of within-year variation, which has otherwise not been

possible with count-based models.

Keywords: Point process; Generalised additive model; Restricted maximum likelihood; Nonhomogeneous

Poisson process; Natural hazard; European windstorms.

1. INTRODUCTION

Natural hazards have serious impacts on human society, such as causing disruption and loss

of life. Understanding and quantifying the associated risk from natural hazards is therefore of
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particular importance. A main component of risk is of course the probability of occurrence

(the other being exposure), which can be quantified using various data sources, such as

simulations from physical models or noisy observations.

Various challenges can arise when analysing such data. For example, when modelling the

rate at which hazard events occur over some domain, it is often necessary to allow for spatial

and temporal variability. The events, however, are likely to be spatially and temporally

irregular, as opposed, for example, to measured on a grid or at fixed locations. A common

approach to remedy this (Møller and Waagepetersen, 2003) is to impose an arbitrary lattice

structure and aggregate occurrence data. This achieves ‘count-per-unit’ data, which can be

conventionally modelled using Poisson regression, for example. Beyond representing all parts

of the study domain, the choice of the lattice structure is arbitrary, and results are conditional

on its choice. Although the resolution of the lattice may be increased to reduce error, this

increases computational demand, which can become prohibitive.

Point process models allow direct modelling of event occurrence data; see, for example,

Cox and Isham (1980). Various parametric forms of rate variation exist for which point

process models are relatively straightforward to implement; Ogata (1998) gives examples

based on modelling earthquakes and aftershocks. However, such forms may lack flexibility.

Implementing more flexible forms of variation is typically hindered by the corresponding

likelihood of the point process model being analytically intractable. Similar motivation for

Gaussian process models in geostatistics (Diggle and Ribeiro, 2007) makes log Gaussian

Cox processes an attractive class of point process model; see Møller et al. (1998) for various

properties. Simpson et al. (2016) have recently proposed an efficient approach to inference for

log Gaussian Cox processes, which utilises the integrated nested Laplace approximation (Rue

et al., 2009) and stochastic partial differential equation models of Lindgren et al. (2011).

As opposed to an explicit stochastic process representation of rate variation, we adopt a

generalised additive model approach (Hastie and Tibshirani, 1990). This allows variation in
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the occurrence rate to be represented through covariates, each of which is represented by a

finite set of basis functions and coefficients. Simpson et al. (2016) used a fixed (typically low)

rank basis representation to represent log Gaussian Cox processes with Matérn covariance.

We consider spline basis functions, which can also be used to provide low rank approximations

to stochastic processes (Kammann and Wand, 2003), but also give various flexible choices for

representing other forms of smooth and non-smooth variability. Such models can be estimated

from count data once data are discretised using the method of Baddeley and Turner (2000)

to produce data of standard generalised additive model form, for example, but this again

relies on choosing an arbitrary lattice structure to achieve discretisation. We propose to base

inference for the generalised additive point process model on the restricted likelihood (Wood,

2011; Wood et al., 2016). This avoids the need to discretise occurrence data, and offers much

greater tractability than cross-validation; see Wood (2011) for comparison.

This paper is structured as follows. The following section introduces the application of

this paper and provides some further motivating examples. Section 3 presents the modelling

framework. Section 4 presents a simulation study into estimation of Cox processes and then

section 5 presents an analysis of European windstorm occurrence. Finally, a summary and

discussion are given in section 6.

2. BACKGROUND

The present application involves understanding and quantifying European windstorm (extra-

tropical cyclone) occurrence over the North Atlantic and Europe, although the proposed

framework is applicable to other hazards, including tropical cyclones, hail, and tornadoes.

A particular question arising from the study of windstorm risk is whether temporal

occurrence is completely random (in the Poisson sense) or whether storms tend to cluster, and

if so why. Mailier et al. (2006) argued that windstorms do cluster over Europe, by showing
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that windstorm counts are overdispersed with respect to a Poisson distribution. The spatial

unit was defined by imposing an arbitrary grid, and the temporal unit by considering a

season, so that aggregate counts in each spatio-temporal unit were used. Vitolo et al. (2009)

extended that work by fitting Poisson regression models to illustrate that certain climate

covariates potentially explain some of the temporal clustering. The inclusion of covariates

reinforces the arbitrariness of choosing the spatio-temporal unit, as they then have to be

aggregated as well.

Similar approaches were also used to model tropical cyclone (hurricane) occurrences. Elsner

et al. (2012) discuss various ways of defining the spatial grid for the aggregation. Various

studies of tornado occurrence both in the UK (Mulder and Schultz, 2015) and the USA

(Elsner et al., 2013) have also used aggregated counts over fairly arbitrary spatio-temporal

units. Furthermore, Allen et al. (2015) impose a spatial grid to capture the relationship

between hail occurrence and large-scale meteorological variables.

The imposition of arbitrary spatio-temporal grids on data available at much higher

resolution seems to be common practice, presumably because modelling simplifies. However,

aggregation can lead to loss of information especially if the spatial or temporal unit is not

chosen to reflect the spatio-temporal variability of the data-generating process. Furthermore,

comparison of results across studies becomes more difficult as the results are conditional on

the choice of aggregation level. The unifying framework of point processes considered here,

enables direct modelling of the rate of occurrence, making use of actual occurrence locations

and times of events to construct the likelihood, thus avoiding the need to define aggregation

units and then aggregate data.
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3. METHOD

3.1. Non-homogeneous Poisson processes

We assume that occurrences of a natural hazard event can be modelled by a non-homogeneous

Poisson process (NHPP; Cox and Isham, 1980). Whereas a Poisson process can be shown

to represent complete spatio-temporal randomness by assuming the rate of occurrence is

constant, a NHPP allows the rate to vary in space and time making it a very flexible

model able to capture deviation from complete randomness, in terms of either clustering

or regularity.

We consider a NHPP on a domain V = S × T , where S ⊂ R2 and T ⊂ [0,∞) represent

spatial and temporal sub-domains, respectively. Let v = (s, t) denote an arbitrary point in V ,

where s = (x, y) denotes an arbitrary point in S, defined in terms of its longitude and latitude,

and t represents an arbitrary point in T . The rate of the process, quantifying the propensity of

occurrence at any given point and time, will be denoted by λ(v;θ, z(v)), where θ represents

unknown parameters and z(v) =
(
z1(v), . . . , zp(v)

)
represents p covariates. Consider the

sub-region V = S × T , where S ⊆ S and T ⊆ T . It follows that the number of hazard events

in V is Poisson distributed with mean

Λ(V ;θ, z(V )) =

∫
V

λ(v;θ, z(v))dv, (1)

where z(V ) = ∪v∈V z(v).

Now consider a finite data set of hazard events, indexed by i = 1, . . . , n, occurring on V .

Denote data on events by {vi}i=1,...,n, where for event i vi = (si, ti) collects its location,

si = (xi, yi), defined by longitude xi and latitude yi, and occurrence time ti. Inference for the

Poisson process model is then based on the likelihood

L(θ) = exp{|V | − Λ(V ;θ, z(V ))}
n∏

i=1

λ(vi;θ, z(vi)). (2)
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Parametric models for λ(v;θ, z(v)) are conventionally chosen so that Λ
(
V ;θ, z(V )

)
in

equation (2) is tractable, which typically compromises flexibility. Here we propose a semi-

parametric approach to modelling λ
(
v;θ, z(v)

)
, and discuss solutions to computing equation

(1) in §3.4.1.

3.2. Generalized additive point process models

This work focuses on generalized additive model (GAM) forms for f
(
v;θ, z(v)

)
=

log
{
λ
(
v;θ, z(v)

)}
. Such forms allow the rate (on the log scale) to be modelled as a

potentially smooth and unknown function of space, time and/or any covariates. Subtracting

larger multiples of the penalty

∫
V

f ′′
(
v;θ, z(v)

)
dv (3)

from log likelihood (2) promotes smoother estimates of f(·). GAMs are particularly appealing

since f(·) can be represented using regression splines, which essentially involve linear

combinations of regression coefficients.

More specifically, we consider a basis representation for f(·) so that

f
(
v;θ, z(v)

)
=

K∑
k=1

Dk∑
d=1

βkdbkd
(
z(v)

)
, (4)

for basis functions bkd(·) (to be specified in the subsequent section). This formulation allows

f(·) to be represented by a combination of different bases, k = 1, . . . , K, each of which have a

finite Dk-dimensional representation. The upshot of this representation is that we maximise

a penalised log-likelihood of the form

`p(θ) = logL(θ)− 1

2

K∑
k=1

ρkβ
T
k Skβk, (5)

6



Generalised additive point process models Environmetrics

where for k = 1, . . . , K, βk = (βk1, . . . , βkDk
)T are basis coefficients, smoothing parameter

ρk > 0 control the smoothness of
∑Dk

d=1 βkdbkd
(
z(v)

)
, and Sk is a penalty matrix determined

by the basis functions bk1(·), . . . , bkDk
(·).

3.3. Suggested basis representations

For most types of natural hazard, λ(·) should capture spatial, temporal and also spatio-

temporal variation. As opposed to two one-dimensional bases with potential interactions, we

suggest representing spatial variation using two-dimensional bases; for example, bkd
(
zk(v)

)
=

bkd(x, y). The thin plate regression spline is a robust two-dimensional basis; see Duchon

(1977), Wood (2003) and Wood (2006, Section 4.1.5) for further details. Thinking of spatial

variability as a stochastic process with spatial correlation, this basis imposes the same

amount of correlation in all directions. If such isotropy is inappropriate, then Duchon splines

(Duchon, 1977) are a natural anisotropic extension, and are readily incorporated in the

proposed framework.

For other covariates, such as time itself, one-dimensional bases are suggested. In general we

choose cubic regression splines, or special cases thereof; for example, cyclic cubic regression

splines. For two covariates, represented by bases bk.(·) and bk′.(·), the following additive form

may be assumed:

fkk′
(
zk(v), zk(v′)

)
=

Dk∑
d=1

βdbk,d(zk(v)) +

Dk′∑
d′=1

βd′bk′,d′(zk′(v)). (6)

We should also consider that some covariates may interact. This can be captured through a

tensor product representation where

fkk′(zk(v), zk′(v)) =

Dk∑
d=1

Dkk′∑
d′=1

βkk′bk,d(zk(v))bk′,d′(zk′(v)), (7)

which can be extended to higher-order interactions.
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We reiterate at this point that these bases are merely suggestions, albeit ones that are

intended to be robust yet flexible, and thus to suit various types of hazard event. The model

of §3.2 readily accepts other representations for λ(·).

3.4. Model fitting

Prior to fitting the model, i.e. estimating the basis coefficients β, there are two difficulties

that must be addressed. The first is evaluating the integral of equation (1), which occurs

in likelihood (2), and the second is choosing optimal values for the smoothing parameters

ρ = (ρ1, . . . , ρK)′.

3.4.1. Integral approximation

To evaluate Λ
(
V ;θ, z(V )

)
in equation (1), with V as defined in §3.1, we use quadrature, as

in Simpson et al. (2016). Noting that the choice of quadrature scheme is effectively arbitrary,

the simplest scheme is to partition V as a lattice and represent each of its N parallelotopes

as nodes {ṽi}i=1,...,N with corresponding quadrature weights {wi}i=1,...,N . We then assume

that

Λ
(
V ;θ, z(V )

)
'

N∑
i=1

wiλ
(
ṽi;θ, z(ṽi)

)
.

Larger N increases the computational cost of this approximation. In general, though, a

fairly large range for N exists such that the approximation is sufficiently accurate. This

range decreases, however, if smoothing parameters are small, i.e. surfaces are rough.

Note that, if V comprises a spatial component, and the corresponding slice of its lattice

representation is a regular grid, then the weights will be equal. However, as we propose

allowing covariates in λ(·), although each dimension of the lattice may be represented by

equal-width bins, weights may not be equal. An example is given in §5, where we allow λ(·)
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to vary with the North Atlantic Oscillation index, which is not uniformly distributed over

the time period studied. The two simplest solutions to this are to define bins by equally-

separated quantiles, which will give equal weights, or to approximate the distribution of the

covariate (e.g. fixing bins and using a histogram), which may give non-equal weights.

3.4.2. Smoothing parameter estimation

We follow the notation and method of Wood (2011) and recognise that the penalty term

on the right-hand side of equation (5), 1
2

∑K
k=1 ρkβ

T
k Skβk, can be re-written as 1

2
β′Sβ,

where β′ = (β′1, . . . ,β
′
K) and S =

∑K
k=1 ρkS

∗
k, where S∗k(D†k−1 + i,D†k−1 + j) = Sk(i, j) for

i, j = 1, . . . , Dk and D†k−1 =
∑k−1

k=1Dk, and S∗k(i, j) = 0 otherwise. This formulation has

the interpretation that `p is proportional to the log posterior of β if β has a zero-mean

multivariate Gaussian prior with covariance matrix S−, where S− is the generalised inverse

of S. It follows that the approximate sampling distribution of β̂ is multivariate Gaussian

with mean β and covariance matrix V̂β = H−1, where H = −∇2 log `p(β)|β=β̂.

As proposed by Wood (2011), the Laplace approximation can be used to integrate out β

from `p, which results in the restricted log likelihood taking the form

`R(ρ) = `p(β̂) +
1

2
log |S−| − 1

2
log |H|+ constant. (8)

Maximising the restricted log likelihood of equation (8) w.r.t. ρ involves inner and outer

iterations, which are described in detail in Wood et al. (2016, Section 3). Inner iterations give

β̂ given ρ by maximising `p(β) w.r.t. β given ρ. This will almost inevitably require numerical

methods. Gradient-based methods, such as quasi-Newton algorithms, are found to perform

robustly for our simulation study of §4 and application of §5. Significant speed increases are

had by supplying analytical gradients instead of using numerical estimates based on finite

differences. Outer iterations give ρ̂ by maximising `R(ρ) w.r.t. ρ, each iteration of which

requires obtaining β̂ given ρ. Numerical methods are again likely to be required to maximise
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`R(ρ). However, efficiency gains from supplying the analytical gradient tend to be much less

when using gradient-based methods as ρ usually comprises many fewer elements than β.

Convergence is relatively simple to monitor when using gradient-based methods by requiring

that elements of ∇ log `p(β)|β=β̂ and ∇ log `R(ρ)|ρ=ρ̂ are close to zero.

3.5. Model checking

From a statistical perspective, there are various aspects of the fit of the model described

in §3.1–3.4 that can be checked. When modelling natural hazard events, and in the light

of the suggested basis representations of §3.3, we focus on assessing whether events’

spatial variability, variation with covariates, and spatial variation with covariates are all

well represented. Each of these can be checked in a general and yet intuitive way. As

in §3.4, we suppose that the domain V can be partitioned into parallelotopes and, for

simplicity, let V ∗ ⊂ V denote an arbitrary parallelotope, and define µ = Λ
(
V ∗;θ, z(V ∗)

)
and Y =

∑n
i=1 I(vi ∈ V ∗). Deviance residuals are then given by

R = sign(Y − µ)
√
Y log(Y/µ)− (Y − µ). (9)

These can be used to identity areas of space, values or ranges of covariates, or combinations

of the two, for which the model fit is poor. Multiple parallelotopes can also be simultaneously

considered and compared to the Chi-squared distribution with suitable degrees of freedom.

High- and low-resolution partitions of V may also be used to avoid sensitivity to paralleotope

choice. These are chosen to be robust tests of model fit. If results are inconclusive,

more thorough tests, such as those described in detail in and Baddeley et al. (2005), are

recommended.
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4. SIMULATION STUDY

This section presents a two-dimensional simulation study into the effect of basis dimension

and numerical integration grid resolution on rate estimate accuracy, and compares the

proposed point process model to kernel estimation. The study considers two domains:

Ssim = [−1, 11]× [−1, 11] and Sest = [0, 10]× [0, 10]. The former is used for point simulation

and model estimation, whereas the latter is used for model comparison. A reduced

domain is used for comparison to avoid adverse boundary effects, which may occur with

the point process model or kernel estimation. Rates of the form λ(s) = g
(
Z(s)

)
are

considered, where g is a link function and Z(s) ∼ GP
(
0, σ2c(s, ·)

)
is a Gaussian process

with c(s, s′) = exp{−(||s− s′||2)/φ}, σ2 = 0.5 and φ = 0.3. This rate form and covariance

function combination is intended to mimic a plausible natural hazard occurrence rate that is

reasonably smooth. Three forms for g are considered: g1(x) = exp(x), g2(x) = Φ(x), where

Φ(x) is the standard Gaussian distribution function, and g3(x) = − log
(
1− Φ(x)

)
. These

give rise to Cox processes in which rates have log-Gaussian, uniform and exponential

distributions, respectively. Cox processes are simulated for a regular 500× 500 grid on Ssim.

Realisations from each of these processes are shown in Figure 1, each represented by simulated

points superimposed on the underlying rate that generated the points.

[Figure 1 about here.]

The point process model is specified as log λ(s) = fTPRS,D(s), where fTPRS,D denotes a

thin-plate regression spline with basis rank D. Here D = 20, 40 and 80 are used. Knots

are automatically chosen according to a truncated eigendecomposition of points simulated

on Ssim, as detailed in Wood (2003). Kernel estimation uses the kde2d function from the

R package MASS (R Core Team, 2016; Venables and Ripley, 2002), which forms a two-

dimensional kernel from the product of two one-dimensional Gaussian kernels. Here the

bandwidth, h, is set at h = 2, 4 and 8. Let N denote both the number of integration nodes
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for the point process model and knots for kernel estimation. Nodes and knots are chosen as a

regular
√
N ×

√
N grid on Ssim, where

√
N ranges from 15 to 45 in steps of 5. Each of these

models is fitted to each of the three Cox processes described above, and 1,000 simulations

performed for each. Examples of point process model and kernel estimates can be seen in

Figure 1 for a single simulation. These estimates use D = 80, h = 4, and
√
N = 30. Models

are assessed by comparing the mean squared error (MSE) between the generated Cox process

rate, λ(s), and its estimate, λ̂(s), say, which is evaluated at each point of Sest (which is a

416× 416 grid comprising the points of Ssim lying within Sest). MSE values for different point

process model, kernel estimation and Cox process specifications are shown in Figure 2.

[Figure 2 about here.]

Based on Figure 2 the number of integration nodes used for the point process model has

little effect on MSE values. The effect of basis rank, D, is that MSE is lowest for D = 80

and highest for D = 20, although this difference is relatively small for Cox processes with

uniformly distributed rates. For kernel estimation, the relative performance of the bandwidth,

h, in terms of reduced MSE, depends on both type of Cox process and number of knots. For

rates with a log-Gaussian distribution, h = 8 gives highest MSE. Comparable MSE values are

seen for h = 2 and 4 with between 15 and 25 knots; however h = 4 notably outperforms h = 2

with 30 or more knots. If rates are uniformly distributed h = 2 is outperformed by h = 4 and

8, which perform similarly; the number of knots has little effect. Results for exponentially

distributed rates are similar to those for the log-Gaussian case, apart from h = 4 consistently

outperforms h = 8 and is less sensitive to the number of knots.

In comparison to kernel estimation, the point process model is seen to be less sensitive

to N , and to outperform kernel estimation for the simulated Cox processes with log-

Gaussian rates and to a lesser extent Cox processes with exponential rates for the model

specifications considered. Point process models and kernel estimates with higher basis

ranks and bandwidths, respectively, perform similarly for Cox processes with uniform rates,
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irrespective of number of integration nodes or knots; best performance is found for the kernel

estimate with h = 8. Overall point process models with D = 80 can be seen to be at least

as good as the best-performing kernel estimates, except for the case of uniform rates when

estimates are slightly inferior. Rates for Cox processes range from heavy- to light-tailed.

Altering kernels or link functions relating f
(
v;θ, z(v)

)
and λ

(
v;θ, z(v)

)
may help improve

performance across a range of tail behaviour. These results also only apply to Cox processes

based on a single Gaussian process specification.

5. APPLICATION TO EUROPEAN WINDSTORMS

Intense extra-tropical cyclones or windstorms are a major source of risk in Europe, and can

cause severe damage, disruption and insurance/human losses due to extreme wind speeds

and flooding. An interesting problem, both from a meteorological and societal point of view,

is understanding where the storm peaks occur and how this might vary with time—both in

terms of seasonal variation and background large-scale climatic conditions.

[Figure 3 about here.]

5.1. Data

Storm tracks are extracted from the ERA-Interim reanalysis (Dee et al., 2011) using the

tracking algorithm of Hodges (1995, 1999). These reanalysis data may be considered a

historical realisation of weather produced by a physical coupled model of the atmosphere and

ocean. Actual observations are assimilated in the process to provide a data constrained best

estimate of historical weather. Hodges’ (1995, 1999) tracking algorithm extracts storm tracks

by locating maxima in the vorticity field from the ERA-Interim reanalysis. The data span

1979–2014 and the study domain is most of Europe and the North Atlantic. Windstorms

typically form over the North Atlantic and track east. The spatial domain was chosen to
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reflect the main area of windstorm activity. Figure 3 shows the spatial domain and windstorm

tracks for the year 2014, with locations at which storm peaks occur indicated. Each track is

defined as the location of the centre of the windstorm in three-hourly time steps.

[Figure 4 about here.]

[Figure 5 about here.]

5.2. Windstorm peaks

The location of the peak of a windstorm is defined here as the point where the lowest mean

sea level pressure (MSLP) occurs along the track, which results in 3133 storm peaks. MSLP

is a variable quantifying windstorm intensity, and has been shown to be highly correlated

with wind speed (Economou et al., 2014), both at the extremes and non-extremes. Figure 4

shows a gridded summary (counts, on annual scale) of where storm peaks occurred during

1979–2014. It is clear that storm peaks do not occur uniformly over the study domain: most

tend to occur just south-east of Iceland, west of the United Kingdom. Storm peaks seldom

occur over land, especially in the western part of the study domain. Figure 5 also shows

a summary of storm counts per month, indicating that storm frequency is at its highest

mid-winter and lowest mid-summer, ranging by a factor of approximately 15 times.

We also consider the North Atlantic Oscillation (NAO) as a possible covariate affecting the

occurrence of storm peaks. The NAO is defined as the difference between sea-level pressure

in Iceland and the Azores, and is standardised to have zero mean and unit variance. It is a

large-scale climate index and has been shown to influence the development of extra-tropical

cyclones (Pinto et al., 2009). Observed values of the NAO index matching the reanalysis

tracks were taken from the National Oceanic and Atmospheric Administration (NOAA)

webpage (http://www.noaa.gov; accessed 2 November 2016). A summary of storm peak

occurrence with the NAO is shown in Figure 6, which suggests a tendency for storm peaks

to occur further south if the NAO is below -1. The distribution of NAO is not uniform over
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its approximate range of [-3, 3]: instead it qualitatively resembles a Gaussian distribution.

If only NAO values coinciding with the times at which storm peaks occur are considered, a

slightly positively skewed distribution results in which approximately 50% of NAO values lie

between -0.2 and 0.9.

[Figure 6 about here.]

5.3. Model specification

Let s ∈ S represent a storm peak location, t represent its occurrence time in years and nao(t)

represent the value of NAO at time t, so that z(v) =
(
s, t, nao(t)

)
. We model the rate of

storm occurrence, λ
(
v;θ, z(v)

)
, i.e. the propensity of storm peak occurrence at point s, time

t and NAO value nao(t). We assume that

log
{
λ
(
v;θ, z(v)

)}
= ftensor

(
fTPRS,49(s), fCR,5(nao(t))

)
+ fCC,10(t− btc), (10)

where ftensor represents a tensor product, f·,D is a spline of basis dimension D, and fTPRS,

fCR and fCC denote thin plate, cubic and cyclic cubic regression splines, respectively. In

equation (10), fTPRS,49(s) and fCR,7(nao(t)) allow smooth variation over space and with

NAO, while their tensor product lets the spatial distribution of storm peaks smoothly vary

with NAO. Function fCC,10(t− btc) captures within year variability; its cyclic form ensures

continuity from year to year. Knots for the thin plate regression spline are defined by an

eigendecomposition of the 3133 data points, as in §4 and Wood (2003). The number of knots

for the cubic and cyclic cubic regression splines matches their corresponding basis dimensions

and their positions are defined by equally-spaced quantiles on [0, 1] of the variable that they

represent. The model is formulated so that λ
(
v;θ, z(v)

)
represents the annual occurrence

rate for given z(v).
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The model is fitted following the method described in §3.4.2. Smoothing parameters are

estimated by maximising the restricted log likelihood of equation (8) using a quasi-Newton

algorithm, each iteration of which requires that equation (5) is maximised to find β̂ given ρ.

Analytical gradients are supplied throughout. These estimates are based on the assumption

that storm peak occurrences are independent from one storm to another, conditional on

NAO, which is consistent with physical understanding of windstorm occurrence (Vitolo et al.,

2009). The total number of integration nodes is N = 154: each variable (longitude, latitude,

NAO and within-year time) has 15 equally-spaced values, which form a 15× 15× 15× 15

regular lattice of integration nodes. Uncertainty estimates for λ
(
v;θ, z(v)

)
are obtained by

drawing samples of β from a multivariate Gaussian distribution with mean β̂ and covariance

matrix Vβ (see §3.4.2), and using these to calculate λ
(
v;θ, z(v)

)
(for example, by plugging

samples in to equation (4)). Confidence intervals are based on quantiles of the sampled values

of λ
(
v;θ, z(v)

)
.

5.4. Results

[Figure 7 about here.]

Figure 7 shows estimated storm rates aggregated over space. The spatial estimate

consistently matches that empirically estimated (shown in Figure 4). The model-based

estimate, however, makes clearer that although most storms reach their peak south-west of

Iceland, a secondary group reach theirs in a channel south-east of Iceland and north-west of

the United Kingdom. The accompanying uncertainty estimate of Figure 7 broadly shows that

rate uncertainty is greatest where model-based estimates are highest. Model-based estimates

of storm rates aggregated over NAO and (within-year) time, together with uncertainty

estimates, are shown in Figure 7. These consistently match the empirical estimates of Figure

5, once the non-uniform distribution of NAO has been taken into account.

[Figure 8 about here.]

16



Generalised additive point process models Environmetrics

We use the aggregated model-based and empirical counts to assess the model’s fit, using

the method outlined in §3.5. Specifically, we compare counts aggregated over a spatial grid

and bins for NAO and time within year. Resulting deviance residuals are shown in Figure

8. In general the deviance residuals, defined in equation (9), are evenly distributed about

zero, and not overly large in absolute value. For the spatial part, there are no striking signs

of systematic areas where the model is over- or under-estimating rates, which indicates

that, although smooth, the thin plate spline is sufficiently flexible at capturing storm rate

variability over the domain. Similar support for the model is found by analysing the model-

based counts aggregated over NAO bins and months. We also analyse residuals collectively

through χ2 tests based on the sums of squared deviance residuals. Studying spatial, NAO and

within-year parts as a whole yields χ2 test statistics of 99.21, 4.54 and 19.99, none of which

clearly indicate model inadequacy when compared to the χ2
100, χ

2
20 and χ2

12 distributions,

respectively.

[Figure 9 about here.]

Finally, we show how the locations of storm peaks vary with NAO. Figure 9 shows model-

based estimates of the rate for different NAO values between -3 and 3. The plots show that

for each value of NAO, storm peaks tend to occur out in the Atlantic. However, if we consider

the NAO ranging from -3 to 3, storm peaks can be seen to occur south-west of the United

Kingdom and move north until over Iceland. This is consistent with the findings of Mailier

et al. (2006) and Vitolo et al. (2009), although they studied locations of tracks, whereas our

analysis is of peaks. Note though that relatively few storm peaks occur when the NAO index

is outside [−1, 1], giving relatively large uncertainty estimates.
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6. SUMMARY

We have presented and illustrated a point process framework for modelling spatio-temporal

occurrence of natural hazards. The framework relies on generalised additive model forms for

flexibly modelling the intensity or rate of hazard event occurrence. This formulation allows

rates to be represented as potentially smooth—yet unknown—functions of space and time,

and other covariates, thus avoiding making assumptions about regularity in the occurrence

of events in any dimension; for example, assuming linearity. We capture spatio-temporal

variability by combining thin plate and cubic regression splines though a tensor product

form. Irrespective of spline choice, model fitting based on restricted maximum likelihood is

efficient, even for large data set, such as the one used in §5.

A simulation study of different types of spatial Cox process was given in §4. This compared

various specifications of point process model to kernel estimation with different bandwidths

and numbers of knots. The study showed that, irrespective of the number of integration

nodes, and provided sufficiently high basis dimensions are used, the point process model

offers similar or better accuracy than the best performing kernel model. The latter, however,

required careful choice of bandwidth and, for some Cox processes, number of knots. We

therefore think that the speed, off-the-shelf nature, ability to quantify uncertainty and

reliability make generalised additive point process models fitted by restricted maximum

likelihood useful for understanding and quantifying natural hazard occurrence.

The model was then applied to windstorm peak occurrence over Europe and the North

Atlantic. Results indicated almost all peaks occur over the Atlantic ocean, although this

varies significantly with the NAO: during negative phases peaks tend to have similar latitudes

to central Europe and the UK, whereas during positive phases most peaks occur around

Iceland.

From an impact perspective, an analysis of whole storm tracks rather than peaks might

have been more relevant, as damage does not necessarily coincide with a peak’s location;
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instead it may be anticipated anywhere along a storm’s track. The proposed model can be

fitted to track data using exactly the same method as used in §5.4, apart from uncertainty

estimation, as it would be unreasonable to assume that locations of points from the same

storm occur independently over the domain, given the time of year or NAO state. This

is because, given a point on a storm track, the next point to occur in time is likely to

be relatively close to the previous point. This can be resolved by applying the sandwich

correction to the Hessian matrix (White, 1980), to allow for this dependence.

SUPPLEMENTARY MATERIAL

The file ppgam.tar.gz contains R functions to fit point process models of the form described

in §3.2. The function ppgam is inspired by—and uses—the gam function from the mgcv

package, and allows generalised additive point process models to be fitted using a single

function; e.g. we use

> ppgam(te(lon, lat, nao, d=c(2, 1), k=c(49, 7), bs=c(‘tp’, ‘cr’))

+ s(cyc, bs=‘cc’), data, quadlist, ...)

where data comprises a data frame of points and corresponding covariates and quadlist

can be used to provide representative values of non-uniformly distributed covariates, such

as NAO, used in §5.3. The file ppgam.tar.gz also gives the data used here and R code to

recreate the model fitted and plots presented in the present paper.

ACKNOWLEDGEMENTS

We thank two reviewers and an associate editor for their comments that have improved the

clarity of this paper, and Kevin Hodges for kindly providing the storm track data. BDY

thanks the Willis Research Network for its support.

19



Environmetrics B. D. Youngman and T. Economou

REFERENCES

Allen JT, Tippett MK, Sobel AH, 2015. An empirical model relating U.S. monthly hail occurrence to

large-scale meteorological environment. Journal of Advances in Modeling Earth Systems 7(1): 226–243.

Baddeley A, Turner R, 2000. Practical maximum pseudolikelihood for spatial point patterns. Australian &

New Zealand Journal of Statistics 42(3): 283–322.

Baddeley A, Turner R, Møller J, Hazelton M, 2005. Residual analysis for spatial point processes (with

discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(5): 617–666.

Cox DR, Isham V, 1980. Point processes. Chapman and Hall.

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo

G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R,

Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, K̊allberg P, Köhler M,
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Figure 1. Cox processes with log-Gaussian (row 1), uniform (row 2) and exponential (row 3) rates. Each process is represented by a

realisation of points superimposed on the underlying process rate (column 1), and corresponding point process model (column 2) and

kernel (column 3) estimates. Note that each Cox process is based on the same Gaussian process realisation. Point process models used

thin plate spines basis rank 64 and a 30× 30 grid of integration nodes. Kernel estimates use a bandwidth of 4 and a 30× 30 grid of

knots.
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Figure 2. Mean squared error estimates comparing point process model (PPM) and kernel (Kern) estimates.
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Figure 3. Storm tracks for the year 2014 extracted from the ERA-Interim reanalysis with locations of storm peaks indicated.
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Figure 4. Gridded empirical storm peak counts on annual scale.
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Figure 5. Storm peak occurrence by month (left) and North Atlantic Oscillation (NAO) value (right) on annual scale.
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Figure 6. Plots summarising the spatial distribution of storm peaks for different NAO ranges: (-∞, -1] (left), (-1, 1] (center) and (1,

∞) (right).
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Figure 7. Model-based estimates of storm peak occurrence represented on annual scale. Plotted are spatial mean estimates (upper left)
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Figure 8. Deviance residuals comparing model-based and empirical counts aggregated over space (left), NAO (center) and months

(right). Deviance residuals are calculated according to §3.5.
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Figure 9. Model-based estimates of annual storm peak occurrence locations for different values of the NAO index.
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