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Abstract  

The genus Sorbus is an example of a taxonomically complex group (TCG) with 

diversity derived from hybridisation, polyploidy and apomixis. The focus of this 

study was to elucidate the evolutionary relationships among nine Sorbus 

species including endemics of the Devon and north Somerset region of the 

south west UK, determine main routes of polyploid formation and investigate 

reproductive sustainability in order to make recommendations for Sorbus 

conservation. 

Molecular analysis showed that genetic structure patterns and genotypic 

diversity support the hypothesis that the study polyploids are a product of rare 

interspecific hybridisation, of single origins and are maintained through 

apomictic reproduction. PCoA, Neighbour Joining analysis and parental 

simulations reveal a reticulated relationship, with diversification the result of 

hybridisations between sexual diploid Sorbus torminalis and both tetraploid and 

triploid species. Hybridisation between S. torminalis and tetraploid Sorbus 

margaretae (subgenus Aria) have likely given rise to the study members of 

subgenus Tormaria through production of a triploid which has subsequently 

backcrossed to Sorbus torminalis to form further tetraploids. The discovery of a 

cryptic hybrid in subgenus Aria also suggests occasional hybridisation events 

among tetraploids are a possible route for further tetraploid formation These 

events illustrate key routes of polyploid formation, both illustrating the role of 

triploids in tetraploid formation via the triploid bridge and the key role in sexual 

diploids in diversification in Sorbus. Hand pollination experiments showed that 

self-incompatibility in the triploid species (Sorbus subcuneata) means reliance 

on congeneric pollen from sympatric tetraploid species for seed production. 
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Reproductive sustainability in this species is severely compromised through 

spatial isolation from compatible congeners. Our findings are strong support for 

the development of conservation strategies that aim to safeguard current 

diversity through actions that increase reproductive sustainability and 

recruitment opportunities, and promote opportunities for on-going hybridisation 

for future diversification of Sorbus in this region. 
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Chapter 1: General Introduction  

1.1 Plant conservation  

The Global Strategy for Plant Conservation 2011-2020 (GSPC) grew out of the 

Convention on Biological Diversity (CBD) with the aim of supporting global plant 

conservation and halting the continuing loss of plant diversity. It is estimated 

that 25% of plant species globally are threatened with extinction 

(https://www.bgci.org/plant-conservation/threats/ ) and in order to meet set 

targets within the strategy, objective one requires assessment of the 

conservation status of all known plant species to guide conservation action. 

Where status has been evaluated, as in the IUCN red lists of threatened 

species, this often forms the basis for prioritising national conservation efforts 

and resources (IUCN, 2001). However, the determination of factors such as 

population size, demography and distribution of species, depends on the ability 

to recognise delineated species, primarily in the field. For complex plant groups 

which are undergoing active diversification, taxa are often not well differentiated 

phenotypically and genetically. Where such complexes contain species or 

variants of conservation concern, problems arise for both conservationists and 

taxonomists. There are frequently problems with species delineation due to a 

lack of clear morphological differences between taxa, causing much debate 

over what constitutes a species with a knock-on effect on conservation policy ( 

Hollingsworth, 2003, Zink, 2004, Frankham et al., 2012) and representation 

within conservation strategies (Hollingsworth et al., 2006, Rich et al., 2008). 

Whilst we cannot expect to effectively conserve species if we cannot recognise 

and describe them (Mace, 2004), for species complexes, conserving individual 

entities ignores the fundamental evolutionary processes underlying such 

diversification. Taxonomic complexity has led to difficulties in implementing 

https://www.bgci.org/plant-conservation/threats/
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appropriate conservation plans for groups such as Epipactis, Euphrasia 

(Hollingsworth et al., 2006) and Hieracium (Rich et al., 2008).Therefore a more 

process-based approach to the conservation of taxonomically complex groups 

(TCG’s) has been proposed (Ennos et al., 2012), whereby the focus is the 

evolutionary process of diversification and speciation rather than selected rare 

or threatened components of a larger complex. This approach appears to be a 

more holistic and pragmatic solution, particularly where resource allocation for 

many individual priority species may be unreasonable. However, in order to 

apply this approach, we firstly need to understand the process that gives rise to 

biodiversity and elucidate factors that impact upon the process before threats 

can be evaluated and appropriate conservation strategies put in place. 

Therefore the study of diversifying TCG’s represents opportunities to both 

investigate evolutionary divergence and contribute to a more informed approach 

to their conservation.  

1.2 Taxonomic complexity and diversification  

Taxonomically complex groups are often characterised by departure from 

random sexual mating and have mechanisms allowing rapid diversification such 

as hybridisation and polyploidy (Squirrell et al., 2002). These factors often 

produce complex reticulated evolutionary relationships confounding their 

placement in hierarchical classification (Hörandl et al., 2009). In Britain, such 

mechanisms have allowed for the development of endemic taxa since recent ice 

ages. Indeed, a large proportion of the British endemic higher plant species are 

contained within TCG’s (Hollingsworth et al., 2006), many associated with 

hybridisation, uniparental lineages and polyploidy (Stace, 1975).  
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1.3 Hybridisation and polyploidy 

Sexual hybridisation between divergent lineages is a significant route to plant 

speciation but is often given as a reason why species definitions are hotly 

debated (Grant, 1981, Rieseberg & Willis, 2007) since hybrids are often poorly 

defined morphologically and genetically. Because of hybrid speciation, the 

history of plant evolution forms a reticulated network for many groups, rather 

than a ‘tree of life’ (Linder & Rieseberg, 2004). Hybridisation may occur 

between species but also divergent populations of the same species (Soltis & 

Soltis, 2009, Abbott et al., 2013). There may be no resulting change in 

chromosomal number (homoploid speciation) or on occasion hybridisation may 

involve duplication of the genome (polyploid speciation) or indeed occur 

between species of different ploidy where sterility is usually the result and 

further genome duplication is required to restore fertility (Soltis & Soltis, 2009). 

In order for speciation to occur, novel hybrids must be able to establish and 

their genomic integrity protected through isolation mechanisms. Sympatric 

homoploid hybridisation will often be followed by backcrossing, creating hybrid 

swarms, if sexual reproduction is maintained (Mallet, 2007). For example, 

offspring of hybridisation between Geum rivale (Rosaceae) and Geum urbanum 

show an entire spectrum of genetic and morphological variation between the 

parent species (Ruhsam et al., 2013). Barriers to gene exchange are required 

for speciation to occur. This may be brought about by gene expression changes 

induced by hybridisation that allow rapid ecological and spatial divergence from 

the parent species through natural selection (Abbott et al., 2013) as seen in the 

recently formed diploid hybrid species Senecio squalidus (Hegarty et al., 2009, 

Abbott et al., 2010).  
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Polyploid hybridisation results in offspring with three or more sets of 

homologous chromosomes that are strongly, although often incompletely 

reproductively isolated from the parental taxa due to differing ploidy (Abbott et 

al., 2013). As such, polyploidy has long been recognised as playing an 

important role in speciation and plant evolution (Hegarty & Hiscock, 2007, Soltis 

& Soltis, 2009). In fact, it is estimated that 70-80% of plant species have 

polyploid origins (Soltis et al., 2004) as determined through stomatal size of 

fossilised angiosperms (Masterson, 1994), which tends to be significantly larger 

in polyploids, and the frequency of even numbers compared to odd, of haploid 

chromosomes present in current species (Otto & Whitton, 2000). This high 

frequency of polyploidy suggests an evolutionary advantage in possessing more 

than one genome. It is generally considered that increased fitness is likely due 

to fixed heterozygosity (Brochmann et al., 2004) together with a greater pool of 

genes and alleles for natural selection (Hegarty & Hiscock, 2007). Indeed, the 

frequency of polyploids that are found in different environments to that of their 

diploid progenitors and that also possess novel life history characteristics 

(Ramsey & Schemske, 1998) suggests they often have the adaptive capacity to 

colonise new environmental niches (McIntyre, 2012, Laport et al., 2013, 

Theodoridis et al., 2013). Despite the ubiquity of polyploidy there are still gaps 

in knowledge regarding formation and establishment of naturally occurring 

polyploids (Ramsey & Schemske, 1998, Soltis et al., 2016). 

1.4 Polyploid formation  

Polyploids may arise within populations of individual species (autopolyploidy) or 

as a result of interspecific hybridisation (allopolyploidy) (Ramsey & Schemske, 

1998). There is debate about reliable indicators by which each of these types of 

polyploids are recognised and this classification is somewhat dependant on the 
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criteria used to define taxa as species. Ramsey & Schemske (2002) base 

recognition on the degree of pre and / or post-zygotic reproductive isolation 

according to the biological species concept. Since this is also open to 

interpretation and varies among taxa, these two terms (allopolyploidy and 

autopolyploidy) represent extremes of a spectrum (Obbard et al., 2006) with 

many polyploids occupying points in between.  

Two distinct routes of polyploid formation are recognised; somatic doubling and 

the production of unreduced (2n) gametes. Polyploid cells are thought to exist in 

the non-meristematic tissues of most angiosperms (Bennett, 2004) however 

chromosome doubling in meristem tissue may give rise to tetraploid shoots 

(Ramsey & Schemske, 1998). Gametes with the somatic chromosome number 

(2n gametes) is considered to be the most common route to polyploid formation 

(Bretagnolle & Thompson, 1995). Whilst it is known that the production of 

unreduced gametes is frequent in plants, this frequency is highly variable even 

within species (Bretagnolle & Thompson, 1995, Burton & Husband, 2001, 

Carputo et al., 2003) with the tendency of sexual diploids to produce such 

gametes being genetically inherited and environmentally induced (Brownfield & 

Köhler, 2010). A review by Ramsey & Schemske (1998) suggested that the 

natural rates of non-reduction are similar in microsporogenesis and 

megasporogenesis. 

Potentially, unreduced gametes could fuse with other unreduced or reduced 

gametes, providing pathways to higher ploidy (Ramsey & Schemske, 1998). 

The formation of autotetraploids from diploids in one step, via the fusion of 2n 

gametes, is thought to be rare in natural populations since it involves the 

combination of unlikely events (Husband, 2004). Allotetraploids have been 
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produced directly from crosses between distinct diploid subspecies of Dactylis 

glomerata (Sato et al., 1993). However, increasingly, the study of natural, mixed 

ploidy systems is revealing the role that triploids play in the production of 

tetraploids (Husband, 2004, Robertson et al., 2004b, Sabara et al., 2013). 

These often occur in zones where diploids and tetraploid ranges overlap and 

provide an intermediate step to ongoing tetraploid formation through 

backcrosses with diploid progenitors, a phenomenon known as the ‘triploid 

bridge’ (Ramsey & Schemske, 1998). However, reproductive isolation from 

progenitors is required for polyploid hybridisation to result in new species.  

1.5 Polyploid speciation 

Traditionally, polyploid speciation has been described as instantaneous, as 

incompatibilities between ploidy levels leading to hybrid offspring sterility are 

expected to cause immediate reproductive isolation of the newly formed 

polyploid (Soltis & Soltis, 2009). Difficulties arising from the pairing of odd-

numbered chromosomes at meiosis and the formation of unbalanced 

endosperm tissue can both restrict backcrossing with diploid progenitors. The 

term ‘triploid block’ has been used to describe this scenario when diploid × 

tetraploid hybridisations produce sterile triploid offspring (Ramsey & Schemske, 

1998). In this case it is likely that rare tetraploids would suffer minority cytotype 

exclusion in a larger diploid population, as most pollination events would lead to 

sterile or no offspring, leading to eventual extinction (Levin, 1975). However, 

triploids are often found in mixed ploidy populations and are rarely completely 

sterile, as discussed earlier and Felber & Bever (1997) theorised how the 

evolution of tetraploids in diploid populations would depend on the relative 

frequency and fitness of both the tetraploid and the diploid × tetraploid hybrid. 

Empirical evidence for this was provided by Burton & Husband (2000) who 
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compared seed production of various ploidy hybrids resulting from crosses 

between naturally occurring diploid and tetraploid Chamerion angustifolium.   

1.5.1 Reproductive isolation  

Polyploid speciation requires reproductive isolation of novel polyploids from 

their progenitors. Where this is the case, it is usually unclear whether this is due 

to polyploidy per se or whether barriers have formed after the hybrid event 

(Sobel et al., 2010). Barriers may be pre-zygotic, preventing zygotes from 

forming. Some may occur pre-pollination such as geographic isolation, flowering 

asynchrony, pollinator fidelity (Husband & Schemske, 2000) and climatic niche 

separation (Thompson et al., 2014). Post pollination barriers such as pollen 

incompatibility and apomixis (Ludwig et al., 2013) may also prevent 

hybridisation. Post zygotic failure is often due to endosperm imbalance whereby 

there is deviation of the maternal to paternal genome ratio (from 2 maternal: 1 

paternal) in the endosperm tissue, causing failure of the endosperm in 

interploidy crosses (Köhler et al., 2010). Reproductive isolation mechanisms 

that lead to speciation are usually multiple and the primary isolating mechanism 

is often difficult to determine, particularly for species that have been long 

established (Sobel et al., 2010).  Where isolating mechanisms are partial it 

allows for occasional hybridisations resulting in a reticulate network of taxa. For 

this reason we may view the production of polyploid complexes as a balance of 

isolating factors. Polyploid speciation depends on sufficient reproductive 

isolation to establish novel lineages, but for ongoing hybridisation and 

diversification to occur strong isolating barriers may inhibit aspects of this 

evolutionary process. 
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1.5.2 Evolution of new breeding systems: Polyploidy and apomixis 

The transition from sexual to an apomictic breeding system is often associated 

with polyploidization (Otto & Whitton, 2000). Apomixis (here synonymous with 

agamospermy; asexual seed production) overcomes some reproductive 

problems associated with polyploidy described above, since it bypasses meiosis 

during female gamete formation. It also enables novel polyploids to establish 

reproductively isolated populations in sympatry with progenitors.   

Breeding systems shape the nature of evolution with flowering plants displaying 

a huge variety of reproductive systems, which give rise to countless patterns of 

variation even among populations of the same species (Briggs & Walters, 1997, 

Richards, 1986). A combination of asexual and sexual systems, largely within 

perennial plant populations, allows for adaptation to different ecological settings 

due to the benefits imbued by each breeding system.  This may be illustrated by 

the fact that many asexual or apomictic plants co-occur with their sexual 

counterparts with complete or obligate apomixis a rare phenomenon (Richards, 

2003, Vallejo-Marin et al., 2010).  The short term advantages of apomixis such 

as reproductive assurance allowing for rapid colonisation, results in largely 

clonal populations of low diversity. However, even where apomixis is thought to 

be obligate, clonal lineages have been shown to display divergent mutational 

variation (Paun et al., 2006, Majesky et al., 2012) adding to their genetic and 

ecological variability. Theory predicts that obligate apomixis is only of short term 

advantage over sexuality due to the lack of adaptive potential and the fact that it 

does not predominate over sexuality in major systematic groupings (Richards, 

2003). Nevertheless, obligate apomicts may still produce functional pollen, 

retaining some sexuality in their male function.   
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1.6  Methodological challenges for genetic studies of apomictic 

polyploids. 

1.6.1 Molecular markers 

Apomictic, polyploid organisms present particular challenges for selection of 

appropriate markers for use in molecular ecology. They have complex genomes 

potentially with multiple copies of alleles, indeed one of the main problems 

when working with polyploids is the uncertainty of allele dosage which presents 

difficulties for calculating frequency based statistics. Polyploids also have mixed 

inheritance patterns (disomic and polysomic) sometimes at different loci (Otto & 

Whitton, 2000), for reasons explained in section 3.1. When they also exhibit 

mixed breeding systems (apomixis, obligate and facultative, and sexual) they 

are unable to exhibit random mating. Both these factors mean they violate the 

assumptions for Hardy-Weinberg equilibrium (Freeland et al., 2011) another 

prerequisite for most population genetic analysis. The majority of analyses for 

population genetics were developed for sexual diploids, and present difficulties 

for use in polyploids. A recent review of molecular and statistical tools available 

for use with polyploids reveals that the newer sequencing technologies are still 

hampered by these problems (Dufresne et al., 2014).  

Microsatellite markers are tandemly repeated sequences typically shorter than 

100bp (Schlötterer, 2004). They are still often a marker of choice for population 

genetic studies as they are highly polymorphic due to high mutation rates, which 

makes them suitable for use in closely related species, such as in this study. 

The advantages and disadvantages of microsatellites for use in molecular 

ecology compared to other markers have been thoroughly reviewed in many 

texts e.g. Freeland et al. (2011) and Lowe et al. (2009). Microsatellites remain a 
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popular option despite the huge advances in sequencing technology over recent 

years. Indeed, next generation sequencing technology now enables detection of 

large numbers of microsatellites, with high throughput, reducing the cost and 

time traditionally associated with the development of these markers in addition 

to reducing genotyping errors (Zhan et al., 2016).  

The problems of uncertain allele dosage common to polyploids exacerbate 

some of the disadvantages of microsatellites such as genotyping error due to 

stutter bands and increased chances of size homoplasy due to increased 

numbers of potentially similar sized alleles. Null alleles may remain undetected 

since the software for identification of null alleles, scoring of stutter peaks and 

allele dropout uses allele frequencies based on diploids; for example 

MICROCHECKER  (Van Oosterhout et al., 2004). Despite these problems 

microsatellites are still powerful tools which have been widely used for 

population studies on polyploid organisms with sexual and/or apomictic 

breeding systems, for example; (Andreakis et al., 2009, Cunha et al., 2011, 

Garcia-Verdugo et al., 2013). The problem of unknown allele dosage means 

they are often scored as dominant markers with alleles scored as present or 

absent which reduces their usefulness as co-dominant markers. This problem 

has been addressed in some studies by calculating the likely frequencies of 

alleles using the MAC-PR (microsatellite DNA allele counting-peak ratios) 

method devised by Esselink et al. (2004) and outlined in Chapter 3.  This 

enabled exploration of microsatellite inheritance patterns in allopolyploid 

Bordera spp.(Catalán et al., 2006), determination of genotypic configurations 

and comparison of genetic diversity of diploid, triploid and tetraploid Crataegus 

spp.(Lo et al., 2009). This method becomes less reliable at higher ploidy levels 

beyond tetraploid and depends on each sample producing clear repeatable 
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electrophoretic peaks during fragment analysis as well as sufficient comparable 

allele pairs of which to compare peak area ratios. More recently developed 

software specifically designed to analyse polyploid microsatellite data 

e.g.POLYSAT (Clark & Jasieniuk, 2011) adopt various ways of estimating allele 

frequencies, see Dufresne et al. (2014) for a review of these approaches.   

1.6.2 Development of molecular methods for this study 

I decided to use a selection of previously developed nuclear microsatellite 

markers already shown to be useful in determining evolutionary relationships of 

mixed ploidy groups of Sorbus; see Robertson et al. (2010) and González-

González et al. (2010). In order to minimise scoring errors due to stutter peaks 

and unknown allele numbers we set up a sequence of checks. Initially, a test 

panel of the nine species were used test the optimal specificity of each primer 

pair based on the literature. A 4 µl aliquot of each PCR product was subjected 

to electrophoresis on a 1% agarose gel containing ethidium bromide and the 

resulting bands were visualised by UV illumination (G:BOX Sygene, Cambridge 

UK). Negative controls were always run to test for contamination. For loci that 

produced clean consistent bands I selected 14 forward primers for labelling with 

a florescent tag (WellRED D2, D3 or D4, which are indicated as black, green 

and blue, respectively). Capillary electrophoresis of the PCR products was 

carried out on an eight capillary Beckman Coulter sequencer (Beckman Coulter, 

Fullerton, USA) and fragment analysis, to determine allele size, was performed 

using CEQ 8000 Genetic Analysis system (Beckman Coulter) followed by a 

manual verification of each call to ensure proper peak designation. Primer pairs 

were grouped into three multiplex groups according to size and tag colour and 

re-optimised using a touchdown PCR cycle; see Tables S2.2 and S2.3 for 

details. Amplification and fragment analysis of the test panel was repeated 
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several times to check for consistency of allele scoring and genotyping. 

Automated binning of the raw allele lengths into size classes defined by the 

repeat unit of each locus was set up based on the size ranges of the diploid 

samples since these were most variable. 

The electropherograms of the diploids were used to characterise the allele peak 

shapes at each locus and these were used as references when deciding which 

peaks represented true alleles rather than stutter peaks for the polyploid 

samples. For those polyploid species with mixed genomes from both diploid 

species it was occasionally visible which peaks were inherited from which 

genome (for an example see Fig. 3.4). We predicted the maximum allele 

number through the use of flow cytometry (Chapter 2) to determine ploidy level 

for the majority of samples. Unfortunately, it was not possible to confirm allele 

dosage for all samples at all loci using the MAC-PR method due to variation in 

the peak quality of the samples, however, the mean values for the polyploid 

species allowed for resolution of allele dosage at some loci at a species level for 

use in the parentage simulations of Chapter 3.  

1.6.3 Molecular analysis of mixed ploidy groups containing sexual and 

apomictic individuals. 

The violation of the basic assumptions of random mating and gene frequencies 

remaining constant from one generation to the next makes many traditional 

measures of population genetic diversity inappropriate for polyploid apomicts 

where individual loci are not free to recombine. The genetic studies of many 

fungal and bacterial pathogens commonly encounter these issues and the 

literature concerning these groups can be fruitful for investigating suitable 

approaches to genetic analysis in this situation. For the investigation of 
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population structure the multiple occurrences of the same multilocus genotypes 

(MLG’s) can complicate analysis, therefore ‘clone mates’ are censored 

(Milgroom, 1996) and all duplicates removed from the analysis which is then 

performed on single MLG’s. This accounts for the lack of non-random mating in 

populations caused by asexual (or apomictic in this case) reproduction of many 

clones and more closely approximates panmictic populations (Kamvar et al., 

2014).  

Analysis of diversity cannot be based on allele frequencies since these are not 

generally known in polyploids (allele dosage uncertainty) and therefore involves 

calculation of the numbers of genotypes observed (richness), evenness and 

diversity. Thus, typically studies use diversity measures from ecology such as 

Shannon-Wiener, or Stoddart and Taylor (Arnaud-Haond et al., 2005, Kamvar 

et al., 2014), although there are problems with these when comparing genotypic 

diversity between different sized samples and when diversity is low (Grünwald 

et al., 2003). A review of the commonly used richness, evenness and diversity 

measures is given by Arnaud-Haond et al. (2007).  The most widely used index 

measuring clonal richness and evenness is the Simpson index (λ) which can be 

modified to account for sample size and vary positively with heterogeneity by 

using the complement (1- λ), see Chapter 2.  

The remaining methodological approaches are detailed in the relevant following 

chapters.  
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1.7 Pollination and population sustainability 

When insect pollination is required for both seed production in the first instance 

polyploid formation via hybridisation, it is both ecologically and evolutionarily 

important. This is discussed in detail in Chapter 3; I therefore only provide a 

short overview of a number of pertinent factors here. For apomictic plants that 

rely on pollination for seed set (pseudogamy; see 1.7.2), pollen transfer 

between anther and stigma may be assured if there are sufficient pollinators 

and the plants are self-compatible. However, when seed production is 

dependent on pollen movement between plants, i.e. for self-incompatible 

species, sufficient pollen movement becomes a requirement for population 

sustainability. It is also a requirement for hybridisation to occur between 

different lineages (sometimes species) thus sustaining an evolutionary process 

dependent on hybridisation.  

Pollen flow in the landscape is affected by a number of factors. It is well known 

that pollinator mediated gene flow is heavily influenced by distance, with the 

majority of pollen moving relatively short distances.  Dispersal patterns typically 

follow leptokurtic decay from a point source (Fig. 1.1) which also means a small 

amount of long distance pollen dispersal still occurs (fat-tailed curve) 

(Cresswell, 2006). The implications are that both reproductive sustainability and 

frequency of hybridisation events will be greatly affected by fragmentation and 

isolation of progenitors, although the fat-tail to the dispersal curve will mean that 

for large, long lived perennial plants a small amount of long distance pollen flow 

may sustain isolated individuals (Lander et al., 2010). The relative numbers of 

flowers produced by progenitors may also affect the likelihood of pollinator 

mediated gene flow since increased floral display size results in increased 
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geitonogamous (within plant) pollination (Richards et al., 1999). For self-

incompatible plants this results in high pollen wastage and failure of seed 

production. Differing relative fitness and pollen viability of sympatric progenitors 

may play a significant role in determining the frequency and nature of 

hybridisations via the impact of ‘pollen pressure’ i.e. the relative abundance of 

pollen from different hybridising species in the pollen cloud. For example the 

frequency of hybridisation between diploid and tetraploid cytotypes was high 

when the diploids were in a minority (Hajrudinović et al., 2015b), with an 

increased probability of tetraploid pollen successfully fertilising a diploid egg cell 

despite the likely poor outcome of this interploidy cross (Ludwig et al., 2013).  

  

 

Figure 1.1 Typical pollinator mediated gene flow model using an exponential 

power function with leptokurtic decay.  
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For TCG’s that rely on pollen movement for both reproductive sustainability and 

diversification through hybridisation, factors that affect pollen flow in the 

landscape are of great importance and form a vital component of the study of 

these groups. 

1.8 Sorbus as a model system of a Taxonomically Complex Group 

Summary 

The genus Sorbus L. (Rosaceae) is contained within the subtribe Pyrinae 

(formerly the Maloideae) and is an example of a taxonomically complex group 

(TCG), due to a combination of interspecific hybridisations, associated 

polyploidy and mixed breeding systems which drive diversification and 

reticulated evolution (Liljefors, 1955, Richards, 1975, Nelson-Jones et al., 2002, 

Rich et al., 2010, Robertson et al., 2010). It is a good example of a genus with 

recently diverging species complexes; novel genotypes have been recorded 

within the last 100 years e.g. Sorbus × motleyi (Rich & Proctor, 2009) thus it 

makes a useful model for research into the evolutionary processes of TCG’s.  

Gene flow within this genus is dependent on pollen transfer between individuals 

by pollinating insects and seed dispersal. Therefore both pollen flow and seed 

production are vital components in both sustaining current diversity of Sorbus 

populations and in the generation of future diversity for long term evolution and 

adaptation in a changing environment. Successful hybridisation events are rare 

with reproductive isolation occurring at the individual (for the apomictic species) 

and species level. The components of reproductive isolation may be pre and 

post-zygotic and are likely a combination of ecological and non-ecological. 

However, the contributions of different reproductive barriers in Sorbus are 

poorly understood.  
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The interest in gaining a better understanding of evolutionary processes in 

Sorbus also stems from a desire for the development of more informed 

conservation strategies which are currently mainly targeted at individual species 

of conservation concern. Therefore, we need to both unravel the process of 

diversification and try to elucidate environmental factors that may affect the 

survival of the current diversity and future evolutionary potential if we are to 

conserve Sorbus diversity in perpetuity.  

This research project aims to inform a process-based conservation strategy for 

Sorbus in Britain by investigating further how diversification occurs in this genus 

and what barriers may exist to ongoing hybridisation events. 

1.8.1 Life history 

Sorbus is a genus of small, mostly deciduous trees with a mainly temperate 

distribution across the northern hemisphere (Aldasoro et al., 1998). Flowering 

occurs in the spring with the timing of flowering varying with species, year and 

situation (Rich et al., 2010). The flowers are pollinated by insects, mainly bees 

(Ludwig, 2013) and borne on inflorescences arranged as slightly convex 

panicles to corymbs (Fig. 1.2). Sorbus flowers are hermaphrodite with most 

having five petals and sepals and 10 - 20 stamens. They appear to be slightly 

protandrous, with anthesis occurring some hours before maturation of the 

stigma (pers. obs.). Figure 1.3 shows an inflorescence of S. admonitor with 

yellow anthers at anthesis and the immature stigma.  
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Figure 1.2 Sorbus vexans inflorescence with close up of single flower with 

creamy pink anthers. Oxen Tor, north Devon.  

 

 

Figure 1.3 Sorbus admonitor in flower.  
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The two styles (more in some species) may be fused together, at least at the 

base and carpels number two to five, each forming a locule that contains two 

ovules (Bednorz, 2007) (Fig. 1.4; S. torminalis has two carpels). Pollen size and 

morphology differs between subgenera with pollen from S. aucuparia and 

associated species being the smallest (Boyd & Dickson, 1987, Bednorz et al., 

2005). 

  

Figure 1.4 Illustration of hermaphroditic flower of Sorbus torminalis. Illustrator: 

Gaëtan Oddou (Oddou-Muratorio et al., 2006).  

Fruits (pomes) vary in colour, shape and size and are a diagnostic feature used 

for identification. There is variability in the production of fruit without developed 

seed. Mostly, these are aborted, but some species e.g. S. minima, S. 

bristoliensis (Rich et al., 2010) and S. subcuneata (pers. obs.) produce fruits of 

two sizes (notably these species are all triploid). The smaller fruits are either 

without seed or contain undeveloped seed and the larger fruit are as other 

species which contain 1 to 4 seed, rarely 5 (Hajrudinović et al., 2015b). Seed is 



39 
 

dispersed primarily by birds and small mammals which feed off the fruits in 

autumn (Snow & Snow, 1988, Bednorz, 2007). 

 

Figure 1.5 Sorbus devoniensis in fruit. Little Haldon (lat.50.56476, long.-

3.52589) south Devon.  

The habitat type for Sorbus varies widely. Rich et al. (2010) provides an 

overview of the ecology of British and Irish Sorbus. The key points to note are 

that the three native British sexual diploid species, S. aria, S. aucuparia and S. 

torminalis are associated with different habitat types and this is probably 

reflected in their hybrid derivatives although the author is not aware of any 

detailed studies to investigate niche differentiation of these intermediate 

species. The majority of British Sorbus appear to prefer open sunlit conditions 
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where flowering and fruiting is more prolific. Many of the rarer polyploid species 

are found on cliffs and open slopes where they also escape the grazing and 

browsing of sheep, deer and goats. S. torminalis is an exception, being a forest 

tree and is more shade-tolerant than the other sexual species, a feature that 

appears to have been conferred to at least some members of subgenus 

Tormaria (see section 1.7.3). S. aucuparia occupies a wide range of habitats 

and the saplings show shade tolerance. S. aria is a characteristic species of 

open woodland and scrub on chalk and limestone in southern England, 

although it can be found on a wide range of soil types and has now been widely 

planted and naturalised; as such, its native U.K. distribution is difficult to 

ascertain.  

1.8.2 Reproduction in Sorbus 

There are close links between polyploidy, self-compatibility, gametophytic 

apomixis and hybridisation in the subtribe Pyrinae which contains the genus 

Sorbus (Dickinson et al., 2007). The type of breeding system shapes the 

patterns of evolution in Sorbus. Sexual diploid Sorbus are typically outcrossing 

and self-incompatible (Oddou-Muratorio et al., 2005; Pías & Guitián, 2006) 

relying on pollen flow among individuals for seed production. Polyploid Sorbus 

exhibit gametophytic apomixis in which embryo-sacs develop apomeiotically 

from somatic cells containing a female gametophyte with the somatic 

chromosome number. This unfertilized egg cell then goes on to form an embryo 

(Talent, 2009) with an identical genotype to the maternal tree. The unreduced 

central cell still requires fertilisation by pollen for normal endosperm 

development (pseudogamy) although there is no contribution of male genetic 

material to the embryo (Liljefors, 1953, Ludwig et al., 2013). The requirement for 

pollination to produce seed could render polyploids succeptible to pollen limited 
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seed production if self pollen is incompatible, as would be the case for the 

sexual species. However, tetraploid Sorbus species show a break down of self-

incompatibility enabling self pollination to assure seed production, although 

some triploid species are self-incompatible (Ludwig et al., 2013), potentially 

exposing them to constraints on seed production. Self-incompatibility results 

from the pollen either being rejected on the stigma or pollen tubes failing to 

grow down the style. In some triploid Sorbus, incompatible pollen tubes fail to 

reach the bottom of the style due to gametophytic self-incompatibility (GSI). GSI 

was considered the most likely reason for this failure since male sterility had 

been discounted (Ludwig et al., 2013).  GSI resuls from an S allele product in 

the pollen interacting with RNase of the style (Horandl, 2010).  

Apomixis in polyploid Sorbus may be obligate or facultative and the requirement 

for pollination (pseudogamy) provides a pathway for sexual reproduction on 

occasion. Robertson et al. (2004a) showed that although tetraploid S. 

pseudofennica reproduced primarily by apomixis, 17.5% of its seed was of 

sexual origin and that it was involved in ongoing hybridisation with diploid S. 

aucuparia. Apomixis has allowed the establishment and persistence of isolated 

populations that consist of only a few trees. For example the global population 

of S. leyana is approximately 17 trees (Rich et al., 2010). The genes conferring 

apomixis appear to be carried on the Aria genome (Rich et al., 2010) although it 

is unknown which are the main factors that affect the frequency of sexual 

reproduction in apomictic Sorbus. Indeed, some apomictic triploid Sorbus have 

shown high rates of hybridisation when brought into cultivation, for example S. 

leyana, a triploid species, was observed to produce offsping with a wide range 

of leaf morphology when grown in proximity to a diversity of other Sorbus 

species (both native and non-native to the UK) (N. deVere, pers. comms.). This  
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suggests environmental factors on the wild sites contribute greatly to the 

likelihood of sexual reproduction, perhaps availability of compatible pollen.  

Pollen viability as estimated via stainability using Alexander’s stain varies 

among the different cytotypes. Pollen viability is highest in the diploid species 

although many tetraploids have similar viability. Triploids show the lowest 

stainability; however, this is highly variable between species (2.4 - 95% across 

studies). The hybrids within subgenus Aria have higher stainability than those in 

other subgenera (Bednorz et al., 2005, Rich, 2009, Hajrudinović et al., 2015a, 

Hajrudinović et al., 2015b). Seed set per fruit is again highest in the diploid 

species with S. aria having almost twice the number as triploid and tetraploid 

cytotypes (Hajrudinović et al., 2015b). S. torminalis produces slightly fewer seed 

per fruit than S. aria (Price & Rich, 2007). The relative high fitness of S. aria as 

measured by pollen viability and seed production may affect the rates of 

successful hybridisation at certain sites; although where it outnumbers polyploid 

species it would not be unreasonable to imagine it would be a competitor for 

resources, unless there is some degree of ecological niche separation whereby 

the polyploids have certain adaptive advantage in particular microhabitats.  

1.8.3 Taxonomic complexity of Sorbus 

Research has shown the main centres of Sorbus diversity in Europe to be 

Scandinavia, Great Britain and south east Europe (Aldasoro et al., 1998, Rich et 

al., 2010, Hajrudinović et al., 2015b). The genus contains obligate outcrossing 

diploids and hybridogenous apomictic, generally self-compatible polyploids.  

Current taxonomy of Sorbus is based firstly on morphology, primarily leaf 

shape, veining patterns and abaxial tomentum, together with fruit size, shape, 

lenticels and colour. The parental diploid taxa have distinct leaf and fruit 
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features and the intermediate characters of hybrids largely reflect their broad 

origins. Cytological and molecular studies have further informed Sorbus 

classification and biology, enabling detailed exploration of the evolutionary 

relationships within some Sorbus groups resulting in ongoing taxonomic 

revision and the discovery of newly formed hybrids and species (Lepší et al., 

2008, Rich et al., 2009, Rich et al., 2014, Hajrudinović et al., 2015a, Lepší et al., 

2015). Thus evidence shows diversification within this genus is active and how 

use of molecular tools is able to reveal the complexity of polyploid speciation.  

In Europe, Sorbus is represented by five diploid, outcrossing sexual species 

Sorbus aria L., S. torminalis (L.) Crantz ,S. aucuparia L., S. chamaemespilus 

(L.) Crantz and S. domestica L. This group of species (except S. domestica) is 

responsible for the formation of numerous hybridogenous polyploids that are 

largely apomictic (Liljefors, 1953, Aldasoro et al., 1998). In Britain, S. aria, S. 

torminalis and S. aucuparia have given rise to upwards of 35 described 

apomictic polyploid species of hybridogenous origin. The British polyploid taxa 

are classified into subgenera according to their broad origins and here I follow 

that described by Rich et al. (2010). The subgenus Aria contains the sexual S. 

aria s.s. but also a number of polyploid species of S. aria origin. This group is 

often referred to as the S. aria aggregate or S. aria s.l. The remaining polyploid 

taxa originate from hybridisations involving members of subgenus Aria and 

either S. torminalis or S. aucuparia and are classified into subgenera Tormaria 

and Soraria respectively. Sorbus domestica is genetically distinct from the other 

diploid species and does not hybridise with them (Rich et al., 2010).  
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1.8.4 What constitutes a species in Sorbus? 

The question of what constitutes a species in Sorbus has implications for both 

taxonomy and conservation for reasons discussed earlier (1.1). There is 

ongoing debate on the definition of the species category, particularly in 

hybridogenous apomictic groups (Lepší et al., 2008). The most popular and 

often quoted concept is the Biological Species Concept (BSC) as presented by 

Mayr (1942) “Species are groups of actually or potentially interbreeding natural 

populations, which are reproductively isolated from other such groups.’’ This 

definition suits the discontinuous patterns of relationships found in many 

animals and some higher plants. This concept has been constantly reviewed 

with various interpretations over time (De Queiroz, 2005) and one reason for 

this is that the central themes of interbreeding and reproductive isolation makes 

this an inadequate definition for organisms exhibiting uniparental reproduction 

or those that occasionally hybridise (Grant, 1981), features particularly 

associated with recently diverging species complexes and common to the 

genus Sorbus. A solution to this is to accept any polyploid hybrid as species if it 

forms a sufficiently morphologically discrete group (although this can be 

somewhat challenging) with distinct geographic distribution and is biologically 

sustaining (Rich et al., 2010). There are some areas of uncertainty such as 

whether to classify products from repeated hybridisation involving the same 

parents as individual species with single origins or one species with multiple 

origins. It is not known how common this recurrent evolution is within Sorbus 

and the outcomes of multiple origins are dealt with differently depending on the 

morphological distinction of each hybrid product. For example, on Arran, 

Robertson et al. (2004b) demonstrated that repeated hybridisation events 

between S. rupicola and S. aucuparia, have given rise to S. arranensis at least 
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three times, each of which is genetically identifiable but morphologically 

indistinct. This may be compared with the ongoing hybridisations within Avon 

Gorge. Here, a number of direct or indirect hybridisations between diploid S. 

aria and tetraploid S. porrigentiformis have resulted in S. porrigentiformis like 

clones e.g. S. leighensis and S. × avonensis, which are recognised as distinct 

morphological and genetic entities (Robertson et al., 2010).   

1.8.5 Diversification in Sorbus  

The diversity seen in extant Sorbus across Europe is a product of hybridisation, 

allopolyploidy, autopolyploidy and mixed sexual and apomictic (both obligate 

and facultative) mating systems (Liljefors, 1953, Nelson-Jones et al., 2002, 

Robertson et al., 2004a, Chester et al., 2007, Robertson et al., 2010, Ludwig et 

al., 2013, Hajrudinović et al., 2015b). Hybridisation is the key factor in creating 

Sorbus diversity, leading to large numbers of intermediate species across 

Europe (Aldasoro et al., 1998) via hybridisations and backcrosses among the 

four widely distributed diploid, sexual species; Sorbus aria, S. torminalis, S. 

aucuparia and S. chamaemespilus (Liljefors, 1955, Richards, 1975, Rich et al., 

2010). In the UK, all the hybridogenous polyploid species are derived from 

hybrid events involving a member of subgenus Aria as one of the parents. 

Subgenera Tormaria and Soraria have maternally inherited chloroplast DNA 

haplotypes corresponding to S. torminalis and S. aucuparia respectively 

(Nelson-Jones et al., 2002, Chester et al., 2007) which may suggest that there 

is a tendency for hybridisations to occur predominantly in one direction. 

However, where the diploids S. torminalis and S. aria produce the primary 

diploid hybrid S. × tomentella, S. torminalis is the female parent in the UK (Fay 

et al., 2002, Chester et al., 2007) but in France hybridisations in both directions 

appear to occur but predominately (75%) with S. aria as the female parent 
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(Oddou-Muratorio et al., 2001). In addition, the endemic polyploids of Arran, 

Scotland were produced with sexual diploid S. aucuparia as female and male 

parent for triploid S. arranensis and tetraploid S. pseudofennica respectively 

(Robertson et al., 2004b) illustrating that hybridisation can occur with the sexual 

diploid as the male or female parent. The initial hybrid events between sexual S. 

aucuparia and tetraploid S. rupicola (subgenus Aria) were with S. rupicola 

(subgenus Aria) as the male parent. Tetraploid S. rupicola is the most 

widespread polyploid (UK, north-west Europe and Scandinavia) and thought to 

be a parental species for other hybridogenous polyploids throughout its range 

(Liljefors, 1955, Robertson et al., 2004b, Rich et al., 2010). Liljefors (1955), 

proposed an autopolyploid origin for S. rupicola from S. aria, which may have 

been the case, perhaps via a spontaneous S. aria triploid backcrossing to the 

diploid form or fusion of two 2n gametes (Ramsey & Schemske, 1998). It is 

unknown how often spontaneous triploid forms of the sexual diploids are 

produced and whether they are fertile. Interploidy hybridization in Sorbus can 

lead to speciation as apomixis prevents introgression. However, the facultative 

nature of apomixis in Sorbus, allowing occasional ongoing hybridisation has 

produced the current array of reticulate relationships. The activity of this 

process i.e. frequency of successful hybridisation, will be partly due to inherent 

characteristics of the species involved; such as mating system, mate 

compatibility and pollen and seed viability; however, these processes take place 

in environments where many other factors e.g. pollinator abundance, may affect 

stages of the hybrid process including survival of the component individuals and 

species. 
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An aim of this research project is to investigate how some of these factors may 

affect short term species survival and discuss the implications for long term 

evolution of the complex.  

1.8.6 Conservation status 

Due to the endemic nature and small population sizes of many apomictic 

Sorbus species [all features of vulnerable species (IUCN, 2001)], many are 

considered of conservation concern with threats primarily from changing land 

management, browsing and invasive non-native species. Indeed, approximately 

54% of native British Sorbus fall into the IUCN threatened categories (Rich et 

al., 2010) although their status is currently being re-assessed (T. Rich pers. 

comms.). The allocation of currently scarce resources available for conservation 

is impractical if each species is managed separately, indeed, Sorbus has been 

highlighted as a model TCG for a process-based approach to conservation on 

Arran (Ennos et al., 2012) and the Avon Gorge (Robertson et al., 2010, Ludwig 

et al., 2013), particularly as the commonly occurring diploids appear to perform 

a key role in polyploid formation (Liljefors, 1953, Robertson et al., 2010, 

Hajrudinović et al., 2015b) and would therefore need to be included within such 

plans.  

Whilst a process-based approach may put the emphasis on the evolutionary 

process rather than necessarily the products of that process, there is worth to 

the recognition and naming of regional variants such as the Devon whitebeam 

(S. devoniensis) as it gives cultural significance to some of these species. This 

is of great value when securing funding for conservation management and 

engaging public support for their protection. It also illustrates the detail of 
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variation in this genus which would otherwise be lost if they were taxonomically 

combined together into broader groups (Rich et al., 2010). 

1.9 Sorbus in Devon and north Somerset  

The presence of a number of naturally occurring polyploid Sorbus species in 

this region makes this an ideal area to study the evolutionary dynamics of 

Sorbus diversification over an extensive area. Here, I review their ecology, 

systematics and conservation status followed by an outline of identification and 

sampling methodology.  

1.9.1 Distribution 

 The stretch of coastline along north Devon and into the western parts of north 

Somerset is known for its endemic Sorbus species. The underlying geology is 

largely slates, shales and grits of varying pH (Rich et al., 2010). Coastal cliffs 

and woodlands are the main habitat types for the rarer species and there are 

several key sites in this region where multiple polyploid species occur together. 

There are also a number of sites in south Devon where multiple polyploid 

Sorbus species are found, again in woodland and on cliffs primarily on 

Devonian limestone. A summary of sample sites is given in Table 1.1 from 

information compiled by Rich et al. (2010).  

There are eight polyploid species native to Devon and north Somerset; Sorbus 

subcuneata Wilmott, S. admonitor M.C.F. Proctor, S. vexans E.F. Warb and S. 

margaretae M.C.F. Proctor are endemic to the north coastal stretch of Devon 

and Somerset. S. devoniensis E.F.Warb, S. porrigentiformis E.F.Warb and S. 

rupicola (Syme) Hedlund have wider distributions, although S. devoniensis is 

largely restricted to Devon and assumed to have arisen there. S. 

porrigentiformis has a south-west England and South Wales distribution whilst 
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S. rupicola is the second most widespread Sorbus in Britain. S. anglica Hedl. is 

widely scattered in south-west England, Wales and Killarney in Ireland (Rich et 

al., 2010). Of the three native sexual diploid species, S. aucuparia L. is common 

throughout this region, occurring alongside all the polyploid species at many of 

their sites but curiously there are no apparent associated syngameons in this 

region with S. anglica the only local hybrid derivative (see pg 48). S. torminalis 

(L.) Crantz., is also widespread in this region but rather infrequent and often 

associated with hedgerows, as is S. devoniensis, with which it is occasionally 

found. S. torminalis also occurs with S. porrigentiformis at one site in Torbay. S. 

aria L. is not thought to be native this far southwest (Rich et al., 2010). The 

western limit of its native distribution range is further to the east near Cheddar 

Gorge where it grows with other polyploid taxa (Houston et al., 2009). Local 

distribution has influenced hypothesised relationships in this group to an extent 

so clarification is required. 
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Table 1.1 Study species with a summary of sample sites. For full details see sample map Fig 2.2, page 88 and Table S2.1 pages 116-

124. Site designations are also given. SSSI = Sites of Special Scientific Interest. 

 

Study species Common 

Name 

Reported 

ploidy  

Geographic 

distribution 

Sample collection sites with location (Site designation 

(SSSI) and NGR only given at first mention) 

S. aria Common 

whitebeam 

diploid Central & southern 

Europe; southern 

England in UK 

Leigh Woods & Avon Gorge SSSI (ST5573-5574);Cheddar 

Gorge  SSSI (ST4754). 

S. torminalis Wild service 

tree 

diploid Central Europe, rare in 

north Africa and near 

East. Central and 

southern England and 

Wales in UK. 

Numerous sites across S Wales, Avon, Somerset, Devon and 

Cornwall (see Table S2.1) 

S. rupicola Rock 

whitebeam 

tetraploid NW Europe; Scattered 

in Wales, SW England, 

Scotland & northern and 

western Ireland in UK. 

Neck wood SSSI (SS6348); Churston, Torbay (SX9165-

9257); Babbacombe, Torbay SSSI (SX9265); Creagh Dhubh 

SSSI (NN6795);  Darren Fach, Brecon Beacons SSSI 

(SO0110);  Penmoelallt, Brecon Beacons SSSI (SO0109).    

S. porrigentiformis Grey-leaved 

whitebeam 

tetraploid SW England & South 

Wales 

Fishermans car park, Watersmeet SSSI (SS7348);Woody 

Bay SSSI (SS6649); Leigh Woods & Stokeleigh Camp , Avon 

Gorge; Babbacombe, Torbay; Walls Hill SSSI, Torbay 

(SX9365); Redgate SSSI, Torbay (SX9364); Cheddar Gorge; 

Broadridge Woods SSSI, Newton Abbot (SX8371); Darren 

Fach, Brecon Beacons. 
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Study species Common 

Name 

Reported 

ploidy  

Geographic 

distribution 

Sample collection sites with location  

S. vexans Bloody 

whitebeam 

tetraploid Coast of N Devon and S 

Somerset 

Fishermans car park, Watersmeet SSSI; Oxen Tor SSSI 

(SS7249); Neck wood;Dogsworthy nr Desolation SSSI 

(SS7749);  Culbone (SS8348); Woody bay SSSI (SS6748). 

S. margaretae Margaret’s 

whitebeam 

tetraploid Coast of N Devon and S 

Somerset 

Watersmeet SSSI (SS 7448); Neck wood; Desolation 

(SS7749-7849); Culbone; Embelle woods, nr Culbone 

(SS8149) 

S. subcuneata Slender 

whitebeam 

triploid Coast of N Devon and S 

Somerset 

Watersmeet; Neck wood; Woody bay SSSI (SS6749); 

Culbone (SS8448); Greencliff (SS9647) & Greenaleigh 

(SS9746) nr Minehead  

S. devoniensis Devon 

whitebeam 

tetraploid Devon, Cornwall & 

Somerset. Also SE 

Ireland 

Eleven sites across Devon see Table S2.1 pgs 117-118 

S. admonitor 

 

No Parking 

whitebeam 

tetraploid N Devon Watersmeet  
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Figure 1.6 The steep river valleys of Watersmeet (lat. 51.22675, long.-3.79965) 

near to the north Devon coast feature oak woodland, rock outcrops and scree 

slopes. 

 

Figure 1.7 Desolation (lat. 51.2337, long. -3.7434) is a coastal cliff site in north 

Devon with open scrub and rock, home to many S. margaretae individuals.
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1.9.2 History and origins of the Devon and north Somerset Sorbus. 

Seven of the eight polyploid species of this region along with diploids               

S. torminalis and S. aria are thought to be closely related. S. anglica, a 

tetraploid, occurs in Devon (as part of a widely scattered SW England and 

Wales distribution) but is a member of subgenus Soraria derived from S. 

aucuparia × S. porrigentiformis (Robertson et al., 2010). The remaining seven 

polyploids are from subgenera Tormaria and Aria and these two groups form 

the basis of this study.   

Subgenus Tormaria, formerly known as the S. latifolia aggregate, has fruit and 

leaf morphology intermediate to S. aria and S. torminalis (Sell, 1989). Wilmott 

(1934) recognised the forms of S. latifolia found in Devon and Cornwall as 

separate from the form in the Avon Gorge at Bristol (S. bristoliensis A. J. 

Wilmott). These Devon and Cornish forms showed some variation at 

Watersmeet, Devon, and a form with particularly narrow leaves was recorded 

near Minehead, Somerset. The narrow leaves with whiter tomentum beneath 

than other forms suggested it arose from S. rupicola × S. torminalis (or the 

Devon form of S. latifolia) (Sell, 1989). These forms were separated by their 

uniform appearance and noted that they came ‘true’ from seed.  Wilmott 

described the Minehead variety as S. subcuneata and stated that it should be 

distinguished as a species. He also made a note that if they were apomictic (he 

refers to parthenogenesis) and long established, it would be expected that they 

would occur in much greater numbers. The Devon form was later described by 

Warburg as S. devoniensis (Warburg, 1962) and the Watersmeet variety, S. 

admonitor, was finally separated from S. devoniensis and described by Rich & 

Proctor (2009).  S. admonitor was long maintained as a variant of S. 

devoniensis, or even S. subcuneata, having a similar leaf form to S. devoniensis 
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but more sharply lobed (Fig’s. 1.12 to 1.14). The broad leaf shape has also 

prompted suggestions that S. aria may be a parental species along with S. 

torminalis (Sell, 1989).  

S. rupicola, S. porrigentiformis, S. vexans and S. margaretae all belong to 

subgenus Aria as they are all thought to be direct or indirect derivatives of S. 

aria s.s., which is also contained in this subgenus (Rich et al., 2010). If this is 

the case their genome is entirely S. aria derived. S. rupicola and S. 

porrigentiformis are undoubtedly the oldest species of this group with their 

larger distribution ranges and have long been recognised as species with 

various synonyms (Wilmott, 1934, Keble & Fraser, 1939, Liljefors, 1955). S. 

rupicola has a more northern limit to its distribution than S. aria and is thought to 

have given rise to a number of polyploid species through hybridisation with S. 

aucuparia both in Britain (Robertson et al., 2004b) and Scandinavia (Liljefors, 

1955). S. porrigentiformis has also been found to be a parental species for other 

polyploids via hybridisation with S. aria and S. aucuparia, most likely as the 

pollen donor (Robertson et al., 2010). S. vexans was described as the Devon 

form of S. rupicola in the Devon Flora of 1939 (Keble & Fraser, 1939) due to 

their similar leaf morphology and S. margaretae was only fully differentiated and 

described recently by Rich & Proctor (2009).  

This group of species was studied by Proctor et al. (1989) using peroxidase 

isoenzymes. S. rupicola, S. porrigentiformis from Devon and S. vexans all 

consisted of individuals with the same phenotype with minor variations, sharing 

all bands with S. aria. S. vexans had very similar banding patterns to S. rupicola 

suggesting a close relationship.  A new form of S. vexans, ‘Taxon D’, now 

known as S. margaretae was confirmed, which also showed some variation with 
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a ‘western form’. S. subcuneata and S. devoniensis both shared bands with S. 

aria and S. torminalis confirming their taxonomic position as intermediate to the 

two diploid species. S. admonitor was also found to have unique banding 

patterns, although at this time it was still considered a variant of S. devoniensis 

and in fact only differed by the lack of one band. Whilst the isoenzymes had 

proved useful as a taxonomic tool the precise hybrid origins of these species 

were still unclear. RFLP analysis confirmed the above close relations (Nelson-

Jones et al., 2002) and cpDNA patterns revealed the female parent of subgenus 

Tormaria to be S. torminalis (Nelson-Jones et al., 2002, Chester et al., 2007). 

An extensive study of the Sorbus species found in the Avon Gorge (Robertson 

et al., 2010) using molecular analyses and parentage mating simulations 

showed that the majority of polyploid species arose as a result of hybridisations 

involving the diploid species. Ploidy screening of seed endosperm and embryos 

from sexual diploid and putatively apomictic polyploid Sorbus supported the 

prominent role of sexual diploids in hybrid events (Hajrudinović et al., 2015b). 

Pellicer et al. (2012) established ploidy levels for the study polyploids as 

tetraploid except for S. subcuneata which is triploid. However, for some species 

(S. admonitor, S. margaretae, S. devoniensis and S. vexans) sample sizes were 

small (4-6 individuals) and unexpected ploidy levels were found for some more 

intensively sampled species, e.g. a pentaploid (5x) S. porrigentiformis in Wales, 

potentially formed from union between an unreduced gamete from a triploid (3n) 

with a reduced tetraploid gamete (2n). 

1.9.3 Conservation and threats 

Of the nine study species (seven polyploids and two diploids), S. vexans, S. 

margaretae and S. admonitor are considered Endangered (circa 70, 100 & 110 

plants respectively); S. subcuneata is Vulnerable (c. 300 plants) and the 
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remainder are of Least Concern (IUCN, 2001). Whilst species based 

conservation may be appropriate for some Sorbus, it does not necessarily 

consider the interactions among species which may result in further 

diversification. As mentioned previously, process-based action plans have been 

suggested to be more appropriate for Sorbus and these may also include 

common species of least concern, such as the sexual diploids (Ennos et al., 

2012). However, it is unknown to what extent these study species are of 

common ancestry and whether they arose from single hybrid events or from 

several events in different areas. Their hybrid origins are largely unknown 

despite the several theories put forward, as summarised above. These 

problems have implications for the development of conservation strategies 

aiming to promote gene flow and Sorbus diversification in this region. If 

evolutionary processes are ongoing in this region, it is vital to know which 

species predominantly take part. These should form the focus of any 

conservation actions in order to preserve the potential for further gene flow. 

However, if these species are remnants of a once active process, then we 

should seek to conserve these remaining species. 

It is unknown whether the populations of these study species are declining and 

comprehensive surveys are required for S. margaretae and S. vexans to fully 

ascertain population sizes (Rich et al., 2010). Since these species occur over 

an extensive area, the threats to their short term survival and long term 

evolutionary potential are likely to be different at the various sites. The main 

threats come from the invasive Rhododendron ponticum (Fig. 1.8) which has 

formed extensive stands along the north Devon / Somerset coastline, effectively 

fragmenting Sorbus habitat by shading out other tree species and preventing 

regeneration. This is especially pertinent for the light demanding Sorbus 
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species of this area. This has also happened with Quercus ilex, another 

invasive evergreen species with a dense canopy which has had a negative 

impact on the calcareous grassland and scrub habitats of the Torbay coast 

where S. rupicola and S. porrigentiformis are found. Sorbus is highly palatable 

and browsing is a problem on many Sorbus sites (Rich et al., 2010) and this is 

almost certainly the case on many of the study sites in Exmoor where deer 

numbers can be high and likely prevent regeneration. 

 

Figure 1.8 Invasive Rhododendron ponticum in flower, seen as a purple swathe 

along the Exmoor coast of north Devon.  

Changing land management allowing development of dense woodland 

canopies, or secondary woodland on once open scrub and grassland sites both 

create shaded conditions which has resulted in reduction in numbers of shade 

intolerant Sorbus species (Hamston, T. unpubl. MSc.). Land slips and rock falls 

may also eradicate whole groups of trees (pers. obs) but create new, open 

colonising opportunities.   
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These threats all potentially impact on the short term survival of these species 

by destroying individual trees and preventing regeneration. Fragmentation of 

populations also reduces potential gene flow via pollen and seed among the 

species and may affect colonisation of new areas. Indeed, the current pollinator 

decline may impact on pollinator services to wild plant communities (Potts et al., 

2010) including those containing Sorbus.  

1.9.4 Tree identification and sampling 

Identification of taxa is problematic due to the cryptic nature of this genus, 

containing species of very similar morphology. For this study, identification 

training was given by expert botanist, Tim Rich and Botanical Society of the 

British Isles (BSBI) vascular plant recorder, Roger Smith. Sorbus identification 

is based on leaf and fruit characteristics, with leaf shape and vein number as 

key components. Fully expanded leaves from a non-flowering lateral side shoot 

(Fig. 1.9) in a sunny position are required and young seedlings or saplings may 

be impossible to identify with confidence due to their juvenile leaf forms. 

 

Figure 1.9 Sorbus branch showing short lateral shoot. Re-drawn from Rich & 

Jermy (1998).  

Lateral shoot 

Flowering shoot  
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These side shoots were collected as voucher specimens for all trees sampled 

for DNA. These provide a reference for later examination of morphological 

features. The vouchers were labelled accordingly, pressed and dried and sent 

to the Welsh National Herbarium in Cardiff (NMW). Due to difficult access to 

many trees, particularly those growing on cliffs, long-handled loppers were used 

to collect vouchers. See Appendix 1 for a selection of herbarium images of all 

study species. The identity of all sampled trees were determined via their 

vouchers and subsequently confirmed by their genetic profile. The shape, size 

and colour of fruits also provide important identification characters but often 

samples were collected at other times of the year, so identification was made on 

leaf characters only. The identification keys in ‘Whitebeams, Rowans and 

Service Trees of Britain and Ireland. A monograph of British and Irish Sorbus L. 

B.S.B.I. Handbook No. 14.’(Rich et al., 2010) and ‘Plant Crib’ (Rich & Jermy, 

1998) were used. S. aucuparia was easily distinguished from the nine study 

species by its compound leaf (Fig. 1.10). 

 

Figure 1.10 Sorbus aucuparia from Rich et al. (2010). The bar represents 1cm. 
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Figures 1.11 to 1.19 show the leaf shapes for all nine study species and were 

provided by Tim Rich. The bar represents 1cm.

 

Figure 1.11 Wild service tree Sorbus torminalis with lobed leaves 

 

Figure 1.12 Devon whitebeam Sorbus devoniensis 
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Figure 1.13 No Parking whitebeam Sorbus admonitor 

 

Figure 1.14 Slender whitebeam Sorbus subcuneata 
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Figure 1.15 Common whitebeam Sorbus aria with very variable simple leaves 

 

Figure 1.16 Rock whitebeam Sorbus rupicola 
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Figure 1.17 Grey-leaved whitebeam Sorbus porrigentiformis 

 

Figure 1.18 Bloody whitebeam Sorbus vexans  
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Figure 1.19 Margaret’s whitebeam Sorbus margaretae with broader fruits than 

S. vexans. 

Sampling sites varied in their habitat composition; hedgerow, deciduous 

woodland, scrub and woodland edge, cliffs and rocky outcrops. The sample 

sites were chosen based on prior information from the (BSBI) vice-county 

recorders and the extensive personal knowledge of Tim Rich who also 

contributed his own database of records, hand-drawn maps and location 

descriptions which proved invaluable for locations where only one or two trees 

existed. Previous surveys of the study species on both north and south coasts, 

carried out by M. E. Proctor in1984 under contract for the Nature Conservancy 

Council, also provided detail on population sizes, identification and location. Tim 

Rich, Libby Houston, Martin Lepší, Natasha deVere and Jack Hamston-

Goodfellow assisted with the sampling.  



65 
 

Site owners were approached where necessary (i.e. SSSI sites) and necessary 

permissions granted with Natural England via the landowners if requested. 

None of the actions on site were in breach of SSSI restrictions so this was out 

of courtesy. The main study site of Watersmeet (lat. 51.22675, long. -3.79965) 

is a National Trust property and site personnel were kept informed of 

experimental plans and progress. 

In order to capture any variation within and among species I sampled across the 

range of the south west endemic species at as many sites as possible where 

species were known to occur. Where species occupied many sites (i.e. S. 

devoniensis) I sampled a sub set of sites to represent the full geographic range. 

Sampling at sites where populations exceeded 50 individuals was performed 

following a non-random sampling method, where all parts of the site were 

sampled so as to encompass any within site variation and avoid re-sampling of 

clonal groups (Bayer, 1990). In order to try and encapsulate the widest range of 

alleles available to this taxon group the non-endemic taxa, S. torminalis, S. aria, 

S. rupicola and S. porrigentiformis were sampled across the wider south west 

area. Although S. aria was included, its current range does not naturally extend 

westwards of Cheddar (Lat. 51.2879, long. -2.74631). Maps and location details 

are provided in Chapter 2. Access and variable population sizes resulted in 

fewer samples for some species. Samples were also collected for all trees 

participating in all studies; hence more samples of these species were collected 

e.g. S. torminalis (chapter 4) and S. subcuneata (chapter 5).   
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1.10 Conclusion 

The presence of naturally occurring polyploid Sorbus species in this region, four 

of which are endemic to north Devon /Somerset, makes this an ideal area to 

study the evolutionary dynamics of Sorbus diversification over an extensive 

area.  

The prevalence of apomixis in polyploid Sorbus maintains the integrity of the 

hybrid genome with the offspring of each successful hybridisation maintained in 

the environment. This is in contrast to sexual hybrids which may be quickly 

subsumed within a hybrid swarm or systems where genomic downsizing quickly 

follows polyploidisation. These features give us opportunities to study the 

processes involved in generating polyploid diversity and unravelling the steps of 

polypoid formation.  

The pseudogamous nature of apomictic Sorbus enables the investigation of 

pollen flow among species occurring at relatively low densities. This is vital if we 

are to develop appropriate conservation strategies aimed to maximise 

opportunities for further polyploid formation. We need to be able to predict the 

effects of known threats such as habitat degradation and fragmentation on 

pollen flow, reproductive sustainability and potentially gene flow among species.  

1.11 Thesis aims and structure  

This study concerns evolutionary diversification and reproductive sustainability 

in a TCG using Sorbus as a model system. Using a combination of molecular 

techniques and field experiments I investigate the reticulate patterns of 

evolution among a regional group of Sorbus species and determine the 

reproductive sustainability of threatened Sorbus species.  
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This study has three main aims. 

 Firstly, to elucidate the evolutionary relationships of a TCG of Sorbus 

species in the Devon and north Somerset region of England, determine 

hybrid origins and likely route of formation.  

 The second aim is to investigate the reproductive sustainability of a key 

triploid population occurring at low density, with implications for both 

viability and long term evolutionary potential.  

 Thirdly, in light of my findings, I aim to determine whether the current 

approach to the conservation of the individual threatened species is 

appropriate or if the process-based approach advocated for TCG’s will 

better conserve the diversity of Sorbus in this region.  

The first aim is addressed in chapters 2, 3 and 4. In chapter 2 I use nuclear 

DNA microsatellite markers and flow cytometry to investigate the reticulate 

relationships among seven polyploid and two diploid Sorbus species. Analysis 

of patterns of genetic diversity within and among these species across their 

range is used to determine the number of origins for the endemic polyploid 

species and the dominant breeding system of the study species. The 

investigation into the relationships among the study species is expounded in 

Chapter 3 using genome-specific markers and parentage simulations to 

examine the hybrid origins and routes of polyploid formation in Sorbus. I used 

this method to determine whether certain species are responsible for producing 

hybrids and are possibly important in driving diversification in this region and 

identify if particular sites are hot spots for the generation of novel diversity. In 

Chapter 4 I use flow cytometry to determine the frequency of triploid forms of 
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the normally diploid progenitor S. torminalis across the region, to assess 

whether this is a potential route for polyploid formation. 

The second aim is addressed in chapter 5. Having noticed that seed production 

was exceedingly low in the only triploid species of this group and identified that 

this vulnerable endemic has performed a key role in the production of 

tetraploids, I decided to conduct a series of pollination experiments and 

molecular analysis of embryo and endosperm to identify how breeding system 

and factors affecting pollination may cause reproductive failure.  

In chapter 6, I synthesize the findings of the experimental chapters and use 

them to address the third more philosophical aim of conservation approach and 

ethics. Should we be concerned less about the rarity of some of these species, 

accepting them as transient stepping stones in a diversifying process and 

focussing more on promoting the interaction among key species? Or is there a 

role for a more traditional species based approach with perhaps ex situ 

components performed by botanic gardens and living collections. 

The research chapters are intended to be self-contained and independent 

documents are formatted for submission to relevant journals; however some 

cross referencing has been allowed to avoid repetition of common methods. 
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Abstract    

Hybridisation and polyploidy are major forces in the evolution of plant diversity 

and the study of these processes is of particular interest to understand how 

novel taxa are formed and maintain genetic integrity. Sorbus is an example of a 

genus where active diversification and speciation are ongoing and as such, 

represents an ideal model to investigate the roles of hybridisation, polyploidy 

and apomixis in a reticulate evolutionary process. To elucidate breeding 

systems and evolutionary origins of a complex of closely related Sorbus taxa we 

assessed genotypic diversity and population structure within and among taxa 

combining data from nuclear DNA microsatellite markers and flow cytometry. 

Clonal analysis and low genotypic diversity within the polyploid taxa suggest 

apomixis is obligate. However, microsatellite profiles and site demographics 

suggest hybridisation events among apomictic polyploid Sorbus may have 

contributed to the extant diversity of recognised taxa in this region. The patterns 

of mutational variation previously undocumented in polyploid Sorbus represent 

a source of genetic diversity within apomictic lineages. Clonal variation has led 

to groups of ‘clone-mates’ within apomictic taxa that strongly suggests mutation 

is responsible for the genotypic diversity of these clonal lineages. This research 

demonstrates that both macro- and micro-evolutionary processes are active 

within this reticulate Sorbus complex. Conservation measures should be aimed 

at maintaining this process and should therefore be prioritised for those areas of 

Sorbus species richness where potential for interspecific gene flow is greatest.  

Key words  

Hybridisation, polyploidy, apomixis, Sorbus, evolution, diversification
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2.1 Introduction  

Hybridisation between species resulting in the formation of new polyploid 

populations that are distinct and reproductively isolated from the parental taxa is 

the most common mechanism for sympatric speciation (Grant, 1981; Mallet, 

2007; Hendry, 2009). However, the frequency and the main formation routes of 

polyploid taxa remain unclear (Soltis et al, 2010) and studies of hybridisation 

processes in polyploid species complexes may help to understand this form of 

speciation.  

Apomixis (synonymous with agamospermy; asexual seed production) is often 

associated with polyploidy (Whitton et al, 2008) and effectively causes instant 

reproductive isolation of novel polyploids from sexual progenitors, enabling 

sympatric establishment while maintaining the heterozygosity associated with 

hybridisation. Where apomixis is partial or facultative it allows for occasional 

exchange of genetic material where such apomicts co-occur with sexual 

counterparts (Richards, 2003). Apomictic groups develop an intricate variety of 

morphologically uniform clonal lineages which may be designated as species or 

microspecies (Grant, 1981), hence leading to much debate over species 

delineation; examples include: Rubus L. (Newton, 1980), Taraxacum (Hughes 

and Richards, 1988), Crataegus L. (Dickinson et al, 2008) and Sorbus L. 

(Liljefors, 1955; Rich et al, 2010). Hybridisation, polyploidy and apomixis are all 

features of these and other complex genera and those groups that contain 

evolutionary young species represent good models to investigate the roles of 

these processes in plant speciation.  

Sorbus (Rosaceae) is a good study group to test the extent of hybridisation 

among species of varying ploidy and elucidate the role of breeding system in 
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creation of novel polyploids and establishment of polyploid populations, as the 

ongoing speciation in Sorbus is well described, particularly in Britain (Rich et al, 

2010; Robertson et al, 2010; Ludwig et al, 2013). Sexual diploid taxa are pivotal 

in the creation of novel Sorbus polyploids (Liljefors, 1953; Robertson et al, 

2004b; Lepší et al, 2008; Lepší, 2009; Robertson et al, 2010; Hajrudinović et al, 

2015b). Contact zones between sexual diploids and partially apomictic 

polyploids has produced a reticulation of allopolyploids (polyploids produced 

from interspecific hybridisation) with varying fertility and ploidy (Ludwig et al, 

2013; Hajrudinović et al, 2015a), In Sorbus, where polyploids are geographically 

isolated from diploids, the role of hybridisation among allotetraploids and 

divergent mutation of polyploids, both of which may have contributed to the 

genetic diversity of the Sorbus complex has not been fully investigated. 

The interest in this genus stems from its evolutionary biology and the 

conservation status of many Sorbus species. Many of the apomictic polyploid 

taxa are narrow endemics and only exist as small populations; 12 UK species 

are threatened according to IUCN (2015), making them a priority for 

conservation. Since the production of these endemic taxa relies on hybridisation 

there is a growing awareness that process-based conservation is most 

appropriate, focusing on the evolutionary mechanisms that generate taxonomic 

complexity rather than a collection of possibly ill-defined individual taxa (Ennos 

et al, 2005). Indeed, such a plan has been proposed for the endemic Sorbus of 

Arran, Scotland (Ennos et al, 2012). However, the development of appropriate 

conservation strategies depends on a detailed knowledge of the processes 

concerned. 
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Several important UK sites for Sorbus diversity occur in Devon and along the 

north Somerset coast (Rich et al, 2010). This study focuses on a group of seven 

polyploid taxa, four of which are narrowly endemic and of conservation concern. 

Their sexual diploid progenitors, S. torminalis (L.) Crantz and S. aria L. exist at 

low densities or are not currently native to the region, respectively.  

Sorbus rupicola (Syme) Hedlund and S. porrigentiformis E.F.Warb. are thought 

to be the oldest polyploids in our study group, based on their wide distribution 

(Rich et al, 2010) and are possible progenitors for other polyploid Sorbus in this 

region as they have been elsewhere (Liljefors, 1955; Robertson et al, 2004b; 

Robertson et al, 2010). Sorbus vexans E.F.Warb., S. margaretae 

M.C.F.Proctor, S. admonitor M.C.F.Proctor and S.subcuneata Wilmott are 

restricted to areas along the north coast of Devon and Somerset. 

Sorbus devoniensis E.F.Warb. is largely found in Devon, however a number are 

found on sites in southeast Ireland (Rich et al, 2010). A schema of proposed 

relationships between the study species is presented in Fig.2.1a and b. 

Evidence for these relationships comes from both morphological (Sell, 1989; 

Warburg, 1962) and molecular studies; Nelson-Jones et al (2002) used 

restriction fragment length polymorphisms (RFLP) to assign hybridogenous 

polyploid Sorbus taxa to various subgenera and plastid DNA identified the 

ancestral maternal parent (Chester et al, 2007). These taxonomic groupings 

were also supported by previous peroxidase isozyme studies (Proctor et al, 

1989) which also suggested there may be variation within some polyploid taxa. 

However, the hybrid origins of our study taxa and in particular the pollen donors 

were not identified. 
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Figure 2.1a. Previously hypothesised relationships among the study Sorbus 

species based on the following literature. 1. Wilmott (1934), 2. Sell (1989), 3. 

Proctor (1989), 4. Chester (2007), 5. Rich et al. (2010)  

b. Summarised relationships among study polyploid and diploid members of 

three subgenera from Nelson-Jones et al (2002). Sorbus torminalis is the 

ancestral maternal parent for subgenus Tormaria (Chester et al, 2007) and 

members of subgenus Aria are derived from S. aria. Assumed ploidy is in 

parenthesis, from Pellicer et al (2012). * Taxa largely restricted to study region.  

a. 

b. 



86 
 

 

To differentiate among closely allied species with possible common ancestry we 

chose nuclear DNA microsatellite markers as they are codominant and highly 

polymorphic due to high mutation rates which allow identification of hybrid 

parentage (Freeland et al, 2011). We used flow cytometry to determine relative 

nuclear DNA contents and infer ploidy for our species. Flow cytometry is a 

useful tool for rapidly screening of samples and has been used increasingly to 

explore hybrid speciation (Siljak-Yakovlev, 2010; Pellicer et al, 2012; 

Hajrudinović et al, 2015b). Our sampling strategy sought to encompass the 

geographical ranges of S. admonitor, S. subcuneata, S. devoniensis, S. vexans 

and S. margaretae whilst the remaining potential parental species were 

sampled more widely to obtain a representative selection of alleles for these 

taxa (Fig. 2.2).   

The principal aims of this study were to elucidate evolutionary relationships 

among the study taxa and to determine breeding systems within this species 

complex; in addressing these aims, we explored patterns of genetic structure 

and diversity. Specifically we addressed the following questions. (1) What are 

the most likely hybrid origins of the polyploid taxa? (2) Are single or multiple 

origins evident for the polyploid taxa? (3) Is the apomictic breeding system of 

polyploid taxa obligate or facultative? (4) What is the source of genetic diversity 

within and among the polyploid taxa? Finally, we draw on our genetic findings to 

make robust recommendations for conservation and management of these 

often rare and complex taxa.  
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2.2 Materials and Methods 

2.2.1 Plant material 

Molecular analysis was carried out on 207 individuals of nine Sorbus species 

from 35 sites (Fig. 2.2). Fully expanded disease-free leaf material was collected 

and small pieces, approximately 1cm2, were torn into small zip lock plastic bags 

containing self-indicating silica gel, which dries the sample within 12 hours 

(Chase & Hills, 1991). They were subsequently stored at room temperature until 

required. In addition, 145 trees were re-sampled to provide fresh leaf material 

for use in flow cytometry which was carried out by Jaume Pellicer and Tracey 

Hamston at the Jodrell Laboratory, Royal Botanic Gardens, Kew. The fresh 

samples were stored in moist tissue, in polythene bags at 4°C for up to 7 days 

before use. Voucher specimens were placed in the Welsh National Herbarium, 

Cardiff (NMW). Each tree had its location described and recorded with a GPS 

unit. Full details of sample locations, site codes and herbarium accession 

numbers can be found in Table S2.1, supplementary information.  

2.2.2 DNA extraction and molecular markers 

DNA was extracted from dried leaf samples with the Qiagen DNeasy plant mini 

kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol with lysis 

buffer added to samples before being processed at room temperature using a 

Qiagen TissueLyser bead mill (Qiagen, Hilden, Germany) set at 30Hz for two 

two-minute cycles with the tube racks rotated between cycles to ensure even 

levels of tissue disruption. The pure DNA was eluted into 200 µl AE buffer (10 

mM Tris·Cl, 0.5 mM EDTA, pH 9.0) and then frozen at -20°C until use. 
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Fourteen previously published microsatellite loci were used; CH01F02, 

CH01F09 and CH02D11 were developed for use in Malus × domestica 

(Gianfranceschi et al, 1998); MSS5, MSS16 and MSS13 for S. torminalis 

(Oddou-Muratorio et al, 2001); SA01, SA19.1, SA03, SA06, SA02, SA08, SA09 

and SA14 for S. aria (González-González et al, 2010). Primers for CH01F02, 

CH01F09, CH02D11 and MSS16 were redesigned by Robertson et al (2010) for 

use in a wide range of Sorbus taxa. 

 

Figure 2.2. Geographic distribution of samples included in our study.  Each pie 

chart represents a site, with pie size relative to site sample size. The inset 

shows the area covered by the map. Site codes match those in supplementary 

Table S2.1.  (The map was created using ArcGIS Desktop version 10.2.2, 

ESRI, California, USA, URL: http://www.esri.com/). 

Thirteen of the loci were combined in three multiplex groups according to 

fragment size ranges and dye colour at the amplification stage. SA14 was 

amplified separately. Microsatellite primer details and multiplex design are given 
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in Tables S2.2 and S2.3. PCR conditions followed a touchdown cycle modified 

from Hamilton et al (2014) and consisted of  95°C for 5 min followed by 30 

cycles of 95°C for 30 s, annealing temperature for 1 min 30s and 72°C for 3 

min. Annealing temperatures were 62°C (4 cycles), 58°C (4) , 55°C (7), 53°C 

(12), 51°C (5), 49°C (5), 47°C (5) with a final extension of 72°C for 10 min. 

Capillary electrophoresis of the PCR products was carried out on a Beckman 

Coulter sequencer (Beckman Coulter, Fullerton, USA) and fragment analysis 

was performed using CEQ 8000 Genetic Analysis system (Beckman Coulter) 

followed by a manual verification of each call to ensure proper peak 

designation. To determine a standard genotype for each polyploid taxon, a 

reference selection of all study species was subjected to three PCR repeats and 

used as an internal standard against which we checked for mutations and 

scoring error. Any subsequent inconsistent samples were repeated to ensure 

observed allele sizes were not artefacts of PCR amplification or scoring error.  

2.2.3 Estimation of ploidy  

Since variation in ploidy within species indicates different routes of formation 

and origins we investigated cytotype diversity within the study species, 

extending that of Pellicer et al. (2012). Confident ploidy allocation for our study 

species also avoided potential problems arising from unknown or inconsistent 

ploidy when interpreting microsatellite amplification patterns. We used flow 

cytometry to estimate nuclear DNA content and infer ploidy for our species 

samples. Propidium iodide flow cytometry (FMC) analysis was performed as 

described by (Pellicer et al, 2012) at the Jodrell Laboratory (Royal Botanic 

Gardens, Kew, UK). Ploidy was inferred by means of the ratio between the 

target sample peak and that of a known internal standard (Oryza sativa ‘IR36’, 
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2C = 1 pg, (Bennett and Smith, 1991). Previous FCM sample: standard ratios of 

all the diploid Sorbus species (Pellicer et al, 2012) provided an additional 

baseline against which to compare our samples.  

2.2.4 Data analyses  

The 14 primer pairs successfully amplified across all polyploid taxa, but primers 

for four loci (SA19.1, SA02, SA09 and CH01F09) failed to amplify alleles in 

many S. aria and S. torminalis individuals (the two putative ancestral diploid 

taxa). Therefore, analyses which included both diploid and polyploid taxa were 

based on only ten loci. The additional four loci were included for analysis of 

polyploids only.  

Population genetic structure within Sorbus 

A prevalence of apomictic reproduction within the polyploid taxa results in clonal 

groups of genetically identical individuals. To investigate relationships among 

these groups the samples were assembled into 82 multi-locus genotypes 

(MLG’s) and the following analyses were performed on these genotypes. 

STRUCTURE was used to carry out Bayesian clustering analyses to assign a 

probability to each genotype of belonging to each of K genetic clusters. It 

allowed identification of putative hybrids and admixed individuals. This was 

carried out in two steps; firstly with microsatellite data using ten loci for all taxa 

and secondly using all sample data from fourteen loci for the polyploid taxa.  

This approach allowed us to describe the patterns of genetic variation among 

the polyploid groups after allowing for the genetic divergence between diploid 

and polyploid taxa.  
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An admixture model was used with a burn-in period of 50,000 with 150,000 

iterations on a range of K values (1 to 15) and maximum ploidy was set to 4. 

This analysis was repeated seven times to enable determination of the optimum 

number of population clusters (K). The numbers of clusters (K) that best fits the 

data is inferred by simulating a range of K values. STRUCTURE HARVESTER 

(Earl and vonHoldt, 2012) executes the ‘Evanno’ method (Evanno et al, 2005) 

where the mean posterior probability of the data for each given K, L(K) is 

calculated and the point of maximum rate of change for this value (ΔK) is 

returned showing a peak corresponding to an optimal K value. For visual 

representation of the aligned cluster assignments we used the programme 

STRUCTURE PLOT (Ramasamy et al, 2014).   

Genetic distance 

Where analyses were carried out on matrixes of pair-wise genetic distances 

between genotypes they were constructed using the Bruvo distance (Bruvo et 

al, 2004) in the POLYSAT package in R (Clark and Jasieniuk, 2011). Bruvo 

genetic distance is calculated to take into account step-wise mutation processes 

without the requirement for allele copy number and for individuals to be the 

same ploidy, thus making it appropriate for use with mixed ploidy samples 

(Dufresne et al, 2014). Different sample sets were used to investigate the 

various aspects of genetic structure and diversity of our study species. Ploidy 

information was added according to the results of flow cytometry (FCM). 

To infer evolutionary relationships among the study taxa and determine likely 

hybrid origins, patterns of genetic structure were examined using a principal 

coordinate analysis (PCoA) of genetic distances using the single MLG 

microsatellite data at ten loci. The results of the PCoA were visualised in 3D 
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using the R package ‘pca3d’ (Weiner, 2015). To summarise the relationships 

among the groups, the distance matrix was also used to construct a neighbour-

joining (NJ) tree using SplitsTree 4 (Huson and Bryant, 2006).   

Genotypic diversity  

To determine whether the polyploid taxa have simple or multiple origins, identify 

the breeding systems prevalent within the group of study species and identify 

sources of any genetic diversity within the polyploid taxa, we analysed the 

genotypic diversity within and among our study taxon group.  

The following diversity calculations were carried out using the microsatellite 

data at 10 loci from all samples and implemented in POLYSAT. To ensure 

sample sizes were comparable for allelic diversity statistics, which are affected 

by sample size, rarefaction was applied to the diploid species S. torminalis with 

the 33 samples randomly sub-sampled to match the sample size of S. aria (13 

individuals) (Pruett and Winker, 2008). Genotypic diversity within and among 

study taxa was determined by calculating allelic richness or total number of 

unique alleles for each species summed across ten loci (A), total number of 

MLG’s (Ng) and genotypic diversity for each of the polyploid species, in terms of 

the complement of Simpson’s index λ (1- λ) (Arnaud-Haond et al, 2007). The 

actual number of MLG’s present (Ng) was determined using the ‘assign clone 

function’ in POLYSAT with zero as threshold, which considers all pairs of 

individuals with a non-zero genetic distance as separate MLG’s. The threshold 

value of zero was used to assign individuals to genotypes before calculating 

Simpson’s diversity index (λ) as follows;  
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This equation gives an unbiased estimator of λ for a sample size of N where p is 

a vector of genotypes. This calculated a value for genotypic diversity based on 

the number of MLG’s which varies positively with clonal heterogeneity. The 

complement of λ (1- λ) was used to compare genotypic diversity among all 

species and described the probability of encountering distinct MLG’s when 

taking two units at random from the sample. The Simpson’s complement was 

recalculated using the polyploid sample data at 14 loci for comparison.  

To determine whether any of the diversity seen within the polyploid taxa was 

best explained by genetic recombination either as a result of an interspecific or 

intraspecific hybridisation or may be attributed to somatic mutation, we assigned 

each polyploid sample to a clonal lineage, within which any diversity was 

considered due to mutation using the method of Douhovnikoff and Dodd (2003). 

In this case we used data from the 160 polyploid samples at 14 microsatellite 

loci. To establish a threshold of genetic distance, above which a recombination 

event would be indicated, we plotted a frequency histogram of all pairwise 

genetic distances between samples.  Such histograms are often multi-modal 

due to highly uneven relative abundance of clones in the dataset. The position 

of the valley between the first peak which is close to zero and represents nearly 

identical genotypes perhaps due to the presence of somatic mutations or 

scoring errors in the data set, and the second, which represents distinct but 

closely related clones each deriving from a single reproductive event, is 

considered an appropriate threshold (Meirmans and Van Tienderen, 2004; 
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Arnaud-Haond et al, 2005). The resulting threshold was then employed to 

assign all samples to clonal groups using POLYSAT.  

Flow cytometry data 

Differences among species were tested with one-way ANOVA’s with post-hoc 

Tukey comparisons of means to determine where differences lay. The normality 

of the data distributions was tested using the Shapiro-Wilk test and the 

homogeneity of variances by Levene’s test. All statistical analysis was 

performed using R (R Development Core Team, 2015).  

2.3 Results 

2.3.1 Microsatellite markers 

Fourteen microsatellite loci were successfully amplified across the seven 

polyploid species with ten of these successful across all nine study species.  

Ten loci yielded a total of 154 unique alleles from 186 Sorbus samples, ranging 

between eight (MSS13 and SA03) and 24 (SA14) per locus. The alleles 

observed at all loci for each polyploid species are given in Table S2.4 

(supplementary information). The maximum number of alleles for any individual 

sample at all loci corresponded with expected ploidy with the exception of one 

sample of the normally diploid S. torminalis which had three alleles at two loci 

(SA19.1 and SA1; see ploidy analysis).  

2.3.2 Population genetic structure and evolutionary relationships. 

Our investigation of genetic structure revealed that each of the study species is 

genetically differentiated although clustering patterns varied between the two 

subgenera.  
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STRUCTURE analysis indicated that five clusters best described our data when 

both diploid and polyploid species were analysed together (Fig S2.1). Of these 

five clusters, the two sexual, diploid species S. aria and S. torminalis are distinct 

but the seven polyploid species are grouped into three clusters irrespective of 

ploidy. S. porrigentiformis clustered separately and contains some microsatellite 

alleles not found in the other polyploids. It also occupied a position furthest 

away from all other polyploid taxa in the PCoA. When the polyploid data was 

analysed separately using an additional four loci, STRUCTURE assigned all 

individuals to two clusters (K=2), corresponding to the two subgenera. However, 

one species, S. margaretae, clearly shows an intermediate position, along with 

two samples within S. vexans, which we have referred to hereafter as vex2.  

The sexual diploid taxa S. aria and S. torminalis were both differentiated from 

each other and all the polyploid individuals in the PCoA and NJ trees (Figs. 2.3 

and 2.4). Samples from the polyploid taxa fall into two groups in the NJ tree 

which correspond to the two subgenera. However, the three members of 

subgenus Tormaria [one triploid (S. subcuneata) and two tetraploids (S. 

admonitor and S. devoniensis)], are closely grouped in the PCoA, particularly 

the latter two tetraploids. Their separation is also weak in the NJ tree where, 

although distinct clusters are observed they are positioned at the tips of short 

branches. Individuals of S. vexans (4x) and S. rupicola (4x) are also tightly 

grouped in the PCoA with the exception of vex2 that clearly occupies an 

intermediate position between S. vexans and S. margaretae (4x). These 

intermediate positions mirror those seen in the PCoA and NJ tree analyses 

(Figs. 2.3 and 2.4). Sorbus margaretae and S. porrigentiformis (4x) samples all 

conform to single, highly differentiated clusters in both analyses.  
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Figure 2.3. Principal Coordinate Analysis of the Bruvo distance matrix of 82 

MLG’s from nine species based on ten microsatellite loci. Percentages of total 

variance explained by the co-ordinates are given in parentheses explaining a 

total of 81.3% of the variation in the matrix. The triploid S. torminalis individual is 

indicated by the black box.  S. aria,  S. torminalis,  S. subcuneata,             

 S. devoniensis,  S. admonitor,  S. margaretae,  S. vexans,  vex2,        

 S. rupicola,  S. porrigentiformis. 
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Figure 2.4. Neighbour-joining (NJ) tree of 82 Sorbus MLG’s constructed using a 

Bruvo distance matrix in SplitsTree 4.0. Colours are the same as for Fig. 2.3. 

Vex2 indicates the second S. vexans clone. The triploid S. torminalis individual 

is indicated by the black box.    

2.3.3 Genotypic diversity within and among taxa  

The outcrossing diploid species show high levels of genotypic variation (1-   λ) 

in comparison to the polyploid species which are characterised by few MLG’s.  
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Allelic richness (A), measured across ten loci, was highest for the diploid, 

sexual species S. aria and S. torminalis. In contrast, the polyploid taxa had 

approximately half the number of alleles, despite the larger genome size. There 

were no private alleles (present in no other taxa) in any of the seven polyploid 

taxa across the ten loci and there were high levels of allele sharing across all 

species. Only four of the 95 alleles present in the polyploid taxa were not 

sampled within the diploid species. The polyploids together contained 62% of 

the total alleles observed. When we used a zero threshold to identify unique 

MLG’s (Ng), the number of MLG’s observed in the diploids equalled the sample 

number as would be expected for sexual, outcrossing taxa. In contrast, low 

numbers of MLG’s were detected within the apomictic polyploid species, 

although all showed more than one MLG except tetraploid S. admonitor. The 

complement of Simpson’s diversity (1 - λ) at ten loci also reflects this pattern 

with members of subgenus Tormaria ranging from 0 (S. admonitor) to 0.27 for 

triploid S. subcuneata. Sorbus margaretae shows the lowest genotypic diversity 

in subgenus Aria, and S. vexans s.l. the highest. At 14 loci, the values of 1 - λ 

are higher; reflecting the greater number of loci but the relative diversity of the 

polyploid taxa follows a similar pattern. These diversity statistics are 

summarised in Table 2.1. 

The frequency histogram of all pairwise distances is multi-modal with a clear 

peak at zero indicating the abundance of replicate genotypes due to an 

apomictic mode of reproduction (Fig. 2.5). The threshold distance between the 

first and second peak is 0.09, and this was used to assign all polyploid 

genotypes to a clonal lineage. Each polyploid species corresponded to a single 

clonal lineage with the exception of S. vexans which had two clones which 

conformed to two distinct genotypes that differed at all 14 loci. This result is 
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inconsistent with only mutational variation and reveals a separate sexual origin 

for each S. vexans clone. Vex2 forms the second clone, consisting of two 

identical samples.  The diversity statistics for S. vexans were calculated with 

and without vex2; S. vexans s.l. and S. vexans s.s., respectively. 

 

Figure 2.5. Distribution of pair-wise genetic distances between all polyploid 

individuals. The dashed line represents the threshold distance applied to 

separate asexually and sexually related individuals = 0.09. 

2.3.4 Ploidy analysis 

We allocated ploidies for 145 samples from all nine species. The flow cytometric 

analysis revealed three cytotypes; diploid (2x), triploid (3x) and tetraploid (4x). 

The Sorbus samples and the internal size (Oryza sativa) produced clear flow 

histogram peaks with low coefficients of variation (Table 2.3. CV%: 1.91-3.74; 

mean = 2.54 ± 0.39).  

Determination of ploidy levels. The ratios between the peaks and internal size 

(S) were used to infer the ploidy of each sample based on previous results in 

Sorbus (Pellicer et al, 2012). Comparison of the mean peak ratios confirmed 

that each of the three ploidies is of significantly different size [Fig. S2.2; One-
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way analysis of means (not assuming equal variances); F = 15132, DF = 2, n = 

145, p = < 2.2e-16]. 
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Table 2.1. Allelic and genotypic diversity found in the studied Sorbus species. N = approximate population size in study region 

across sampled sites (Rich et al, 2010); Ni = number sampled; X = ploidy from flow cytometry and total number of alleles at 

any locus; A = total number of alleles observed at ten loci;  Ng = Total number of multi-locus genotypes;  1- λ = Simpson’s 

complement for all species at both ten and 14 loci with values in parenthesis for S. vexans s.s.; Nc = number of clonal linages 

when a threshold of 0.09 is applied to delineate between sexual and asexual relations between samples (apomictic polyploid 

species only). Diversity indices for S. torminalis were calculated on a sub sample of 13 of the 33 sampled individuals. 

Taxon N Ni X A Ng 1-   λ  (10 loci) 1-   λ  (14 loci) Nc 

S. aria  13 2 65 13 1 n/a - 

S. torminalis  13 2, 3 74 13 1 n/a - 

S. admonitor c.110 19 4 29 1 0 0 1 

S. devoniensis >450 31 4 30 2 0.06 0.17 1 

S. subcuneata c.300 27 3 26 3 0.27 0.34 1 

S. margaretae c.100 29 4 33 5 0.43 0.48 1 

S. porrigentiformis >100 17 4 36 7 0.74 0.78 1 

S. rupicola c.40 13 4 35 6 0.79 0.79 1 

S. vexans s.l. c.70 24(22) 4 46 (35) 9 (8) 0.86(0.84) 0.86(0.84) 2 
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Apomictic taxa were all polyploid and the S. torminalis sample analysed, which 

showed three alleles at two loci had a 2C = 2.381 pg confirming its triploid 

status. We also confirmed that S. subcuneata is a triploid as all samples had 

nuclear DNA contents of 2.286 - 2.386 pg, which is consistent with a triploid 

cytotype. Previously, S. subcuneata had been thought to have both triploid and 

tetraploid cytotypes. The remaining six polyploid species were all confirmed as 

tetraploid. However, the tetraploids had a larger variance than the other groups, 

with the subgenus Tormaria species (S. admonitor and S. devoniensis) 

displaying significantly larger genome sizes than the four tetraploids of 

subgenus Aria (Fig. S2.3; ANOVA; F = 16.738, n = 87, p = <0.001).  

Table 2.2 Nuclear DNA content (pg) of each of the clusters with inferred ploidy 

and chromosome number (2n). Triploid S. torminalis is shown separately. N = 

sample size. 

Ploidy 2n N 

Relative 2C DNA (pg) CV 

(%) Min-max (pg) Mean ± s.d. 

2x (S. torminalis) 34 26 1.600 - 1.678 1.63 ± 0.018 3.25 

3x (S. torminalis) 51 1 2.38 2.38 2.98 

3x (S. subcuneata) 51 31 2.286 - 2.386 2.33 ± 0.022 2.52 

4x 68 87 2.857 - 3.231 3.07 ± 0.084 2.53 
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2.4 Discussion  

Our investigation of relationships among often sympatric populations of 

polyploid Sorbus taxa revealed that each taxon is genetically differentiated and 

characterised by few multi-locus genotypes.  Each MLG is composed largely of 

alleles common to other taxa resulting in high levels of allele sharing among all 

study taxa. These results support the broad hypothesis based on previous 

studies (Robertson et al, 2004b; Robertson et al, 2010; Hajrudinović et al, 

2015b) that the route of polyploid formation in Sorbus taxa is via interspecific 

hybridisation and the genetic integrity of each polyploid taxon is maintained via 

apomixis. 

2.4.1 Relationships among polyploid and diploid taxa  

The use of nuclear microsatellite markers has enabled us to refine the 

hypothesised evolutionary relationships shown in Fig. 2.1a and b. Using the 

data from this study we now propose the evolutionary relationships among our 

study taxa shown in Fig. 2.6. This is discussed below and routes of formation 

are explored further in Chapter 3.  

The currently classified species correspond to discrete genetic clusters shown 

in the PCoA and NJ trees (Figs. 2.3 & 2.4). The close relationships among 

polyploid taxa indicate probable linkage through ancestral hybrid events or 

ongoing gene flow. Shared hybrid origins are the most likely reason for the 

many shared alleles observed with frequent gene flow an unlikely explanation 

due to the predominance of apomixis among the study polyploid taxa.  

Sorbus rupicola is the most likely parental polyploid species for endemics S. 

vexans and S. margaretae, either directly or indirectly, rather than S. 

porrigentiformis. Although they both occur across the range of the local endemic 
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taxa within our group, the PCoA shows S. rupicola is more closely related to 

other members of subgenus Aria in our study group. This is in contrast to other 

sites within its range where S. porrigentiformis is thought to be one of the 

primary parental taxa, hybridising with diploid S. aria s.s. (Houston et al, 2009; 

Robertson et al, 2010). 

 

 

Figure 2.6 Proposed relationships among the south-west Sorbus taxa. Ploidy 

levels as determined by FCM are given in parentheses. Dashed lines indicate 

speculative relationships and ? indicates possible missing intermediate species. 

Sorbus porrigentiformis shares alleles with S. rupicola at 11 of the 14 loci, so it 

seems likely that S. porrigentiformis is also derived from S. rupicola, maybe 

indirectly, in line with proposed theories (Rich et al, 2010). However, as with 

previous studies (Robertson et al, 2010), their relationship remains unclear. Our 

results also suggest that S. margaretae may have a more recent origin than S. 
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vexans s.s. Their relative genotypic variation due to mutation (1-  λ values:      

S. margaretae,  0.43 vs S. vexans s.s., 0.84) indicated a more recent origin, 

since mutations accrue over time since divergence (Ellegren, 2000b). We 

postulate that if this is so, S. margaretae is most likely derived from a 

hybridisation involving S. vexans s.s and unknown taxa. They are closely 

related, sharing alleles at every locus except SA01 (Table S2.4) and have very 

similar leaf morphologies, being hard to distinguish in the field. However, they 

are genetically distinct and our clonal analysis attributes their genetic 

differences to sexual reproduction rather than genetic mutation. Sorbus vexans 

s.s. showed greater affinity to S. rupicola in the PCoA analysis which would be 

explained if it is directly derived from S. rupicola. Both S. vexans and S. 

margaretae are endemic to this region and in the absence of S. aria their origin 

could be via allotetraploid hybridisation rather than a diploid × polyploid cross.  

The second S. vexans clone (vex2) represents a separate genotype resulting 

from interspecific hybridisation rather than sexual reproduction within the taxon, 

since alleles from more than one diploid taxon are present. The intermediate 

position of the vex2 between S. vexans and S. margaretae in the PCoA, 

suggests it may be a hybrid involving these two tetraploids, especially since the 

ancestral diploid progenitor for subgenus Aria, S. aria, is not present in the 

locality. Vex2 occurs on a small (<3 ha) coastal site (Neck Wood, north Devon, 

Fig. 2.2), which has a high diversity of polyploid Sorbus species: S. subcuneata, 

S. devoniensis, S. margaretae, S. rupicola and S. vexans, and specimens of S. 

intermedia (Ehrh) Pers., a non-native that has become naturalised. The vex2 

variant is genetically unique and its possible derivation from polyploid taxa in 

the absence of parental diploid forms suggests a possible route for polyploid 
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Sorbus formation and provides strong evidence of ongoing diversification in the 

region.  

Our analyses confirm the accepted view that members of subgenus Tormaria 

(S. subcuneata, S. admonitor and S. devoniensis) are distinct from, but 

intermediate to S. torminalis and subgenus Aria, in line with the hybrid origins 

proposed by (Nelson-Jones et al, 2002). The larger genome size of S. 

admonitor and S. devoniensis, when compared to the tetraploid members of 

subgenus Aria, adds weight to their hybrid origin with S. torminalis as an 

ancestral parent (Chester et al, 2007) since S. torminalis has the largest 

genome size of the three diploid Sorbus species tested by Pellicer et al (2012). 

The intermediate position of these members of subgenus Tormaria between S. 

torminalis and tetraploid S. margaretae (subgenus Aria) suggests 

S. margaretae may be the male ancestral parent of these representatives of 

subgenus Tormaria rather than S. aria or S. rupicola as proposed by Sell 

(1989). This relationship would explain the many shared alleles among 

S. margaretae, S. devoniensis, S. admonitor and S. subcuneata. Subgenus 

Tormaria forms a tight group of very closely related taxa in all our cluster 

analyses. Sorbus subcuneata, a triploid, shares all its alleles with both 

tetraploids S. devoniensis and S. admonitor, across all 14 loci, implying a 

common recent origin for the group, possibly with S. subcuneata as an 

ancestral species for S. admonitor and S. devoniensis, which poses the 

taxonomic question as to whether these should be considered variants of the 

same species with multiple origins as suggested by Proctor et al (1989) and Sell 

(1989). The geographical distribution of triploid S. subcuneata overlaps with 

S. admonitor and S. devoniensis, but the spatial separation of the latter two 

suggest they may have arisen in different locations.  



 
 

107 
 

These relationships suggest the triploid S. subcuneata may be involved in 

tetraploid formation. Closer analyses of allelic patterns to test whether this is via 

the ‘triploid bridge’ are performed in Chapter 3. However, this route would be 

consistent with the formation of tetraploid Sorbus elsewhere (Hajrudinović et al, 

2015b; Robertson et al, 2004b; Robertson et al, 2010).  

Based on our evidence, S. torminalis must have historically occurred along the 

north coastal areas of our study region in sympatry with S. subcuneata and S. 

admonitor, although there are no records of it having done so.It currently co-

occurs with S. devoniensis at a number of sites, which may indicate a similar 

ecology; S. devoniensis is found on a wider range of geologies and soil types 

than the other study polyploid species (Rich et al, 2010).  

The sexually reproducing S. aria and S. torminalis are clearly differentiated from 

each other and from the polyploid taxa in all our cluster analyses. The triploid 

form of S. torminalis clusters with its diploid forms (Figs. 3), suggesting its origin 

is due to intraspecific rather than interspecific hybridisation. It is thought that 

such cryptic autopolyploids, often formed via the fusion of unreduced gametes 

(Ramsey and Schemske, 1998) are a more common and important component 

of plant diversity than historic views suggest (Soltis et al, 2007; Barker et al, 

2015). Indeed, Pellicer et al (2012) identified a number of polyploid S. aria 

samples. However, the triploid S. torminalis was found close to tetraploid S. 

devoniensis (Hamston et al, 2015), so the fusion of gametes from diploid and 

polyploid Sorbus cannot be ruled out. Indeed, wide-scale screening of Sorbus 

seed ploidy showed this to be the most likely origin of polyploid seed embryos 

from S. aria occurring in the Balkan peninsula (Hajrudinović et al, 2015b).  
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2.4.2 Breeding system & genotypic variation in Sorbus  

The patterns of genetic diversity within and among our study taxa are a 

consequence of breeding system and mutational load. Our results demonstrate 

that the polyploid Sorbus populations in our study are predominantly apomictic, 

in accordance with the findings from isoenzyme studies (Proctor et al, 1989). 

This is evident in the low levels of genetic variability within each polyploid 

species in contrast to the sexual diploids S. aria and S. torminalis which were 

highly variable, having a unique genotype for each sample (Table 2.1) as would 

be expected for self-incompatible, outcrossing species. Sexual reproduction is 

likely to be a rare event within the polyploid taxa as we were unable to find 

evidence of it within the individuals we sampled. However, due to the few allelic 

combinations of gametes produced among plants of the same clone, 

recombination will only be revealed if certain alleles disappear from the 

offspring which will, therefore, only represent a portion of those produced via 

sexual reproduction. We also sampled established trees, representatives of 

viable seeds and successful seedlings. It may be that the apomictic clones 

sampled are those best adapted to their environment with other genetic 

combinations less viable. 

Each clonal lineage has arisen from a single hybridisation event rather than 

multiple origins as seen elsewhere (e.g. Arran, Scotland; Robertson et al 

(2004b) and, with the exception of vex2, represents a delineated polyploid 

species. If we accept that the principal route of polyploid formation in Sorbus is 

hybridisation involving a diploid parental species and a facultative apomict 

(Robertson et al, 2004a; Robertson et al, 2010; Hajrudinović et al, 2015b), the 

rate of novel polyploid formation will depend on the abundance and relative 
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distributions of the parental taxa and to what degree apomixis is facultative. The 

sexual diploids, S. torminalis and S. aria, currently rarely co-occur with any of 

our endemic study polyploid taxa so opportunities for hybridisation between 

diploid and polyploid taxa would be rare, although this may not always have 

been the case.  

2.4.3 Source of genetic variability within apomicts 

Our study has revealed genetic variability in each apomictic polyploid. Although 

the levels of variation were low, this study nonetheless revealed groups of 

‘clone mates’ associated with particular sites. In the absence of recombination 

events, mutation plays a key role in the generation of genetic variation in 

apomictic lineages (Paun et al, 2006; Majesky et al, 2012). Polymorphisms at a 

number of loci were sufficient to identify divergent ‘clone mates’ within some 

apomictic species. Sorbus subcuneata, S. rupicola, S. porrigentiformis, S. 

margaretae and S. vexans all showed small numbers of site-associated 

mutations. One of these mutational variants (S. subcuneata from Greenaleigh, 

near Minehead, Somerset; Fig.2.2) had been identified previously as having 

some variation in leaf morphology compared to those at other sites (T.C.G. 

Rich, pers. comm.). If so, this could suggest a greater level of phenotypic 

variation than that detected with our microsatellite loci. The small site of Neck 

Wood was associated with specific clonal variants for S. margaretae and S. 

rupicola (at loci SA06 and SA09). Wider interpretation of spatial patterns evident 

using the SA06 locus should be cautioned against since there is high likelihood 

of allele size homoplasy due to combinations of expansion and contraction in 

different lineages, a feature linked to high mutation rates particularly of 

dinucleotide repeats (Schlötterer et al, 1998; Ellegren, 2000a; Vigouroux et al, 
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2002). However, the use of more variable markers may reveal spatial patterns 

that relate to possible colonisation routes, a potentially interesting line of 

investigation. The variation seen previously in isozyme banding patterns in S. 

margaretae at the western end of its distribution (Proctor et al, 1989) could 

correspond with some of the site-specific mutational variation associated with 

S. margaretae at Neck Wood (the most western location for this species) or 

indeed be the vex2 variant, also of Neck Wood.  

Members of subgenus Tormaria show little mutational variation compared to 

Aria. They may be of more recent origin than the members of subgenus Aria, 

particularly S. admonitor which has the most restricted distribution of all our 

study species. 

2.4.4 Conservation 

Strategies developed for the conservation of polyploid complexes that contain 

threatened species need to encompass any local adaptation of particular 

groups, together with the long-term ability of the complex to evolve through 

natural selection in a changing environment. Our results show discrete species 

with close evolutionary relationships derived from hybridisation and mixed 

mating systems which should be accounted for when devising conservation 

plans to optimise future diversification. There should be some assessment of 

the status of progenitor species, however common, to ensure they are protected 

from detrimental human activities and conservation measures should also be 

targeted at high diversity sites containing many constituents of species 

complexes.  
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Chapter 2: Supplementary Information 

Table S2.1 Site location and herbarium voucher accession numbers for DNA samples. 

Sample 
no: 

Accession no: Taxon Lat. Long. Site 
Site 
code 

5 V.2014.003.143 S. admonitor 51.22675 -3.79965 Watersmeet WM 

6 V.2014.003.142 S. admonitor 51.22501 -3.79907 Watersmeet WM 

56 V.2014.003.140 S. admonitor 51.22467 -3.80003 Watersmeet WM 

57 V.2014.003.141 S. admonitor 51.22494 -3.80024 Watersmeet WM 

161 V.2014.003.171 S. admonitor 51.22509 -3.80029 Watersmeet WM 

162 V.2014.003.181 S. admonitor 51.22474 -3.80033 Watersmeet WM 

163 V.2014.003.168 S. admonitor 51.22469 -3.80019 Watersmeet WM 

164 V.2014.003.182 S. admonitor 51.22443 -3.80045 Watersmeet WM 

168 V.2014.003.166 S. admonitor 51.22477 -3.80015 Watersmeet WM 

169 V.2014.003.167 S. admonitor 51.22459 -3.80014 Watersmeet WM 

170 V.2014.003.169 S. admonitor 51.22661 -3.79892 Watersmeet WM 

171 V.2014.003.170 S. admonitor 51.22456 -3.79831 Watersmeet WM 

174 
 

S. admonitor 51.22451 -3.79974 Watersmeet WM 

178 V.2014.003.162 S. admonitor 51.22301 -3.79608 Watersmeet WM 

180 V.2014.003.164 S. admonitor 51.22436 -3.79841 Watersmeet WM 

183 V.2014.003.165 S. admonitor 51.22504 -3.80014 Watersmeet WM 

214 V.2014.003.180 S. admonitor 51.22669 -3.79968 Watersmeet WM 

234 
 

S. admonitor 51.22681 -3.79968 Watersmeet WM 

553 V.2014.003.163 S. admonitor 51.22451 -3.80147 Watersmeet WM 

191 
 

S. aria 51.46904 -2.62975 Avon Gorge AG 

192 
 

S. aria 51.46867 -2.63051 Avon Gorge AG 
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Sample 
no: 

Accession no: Taxon Lat. Long. Site 
Site 
code 

193 
 

S. aria 51.46867 -2.63051 Avon Gorge AG 

194 
 

S. aria 51.46955 -2.63484 Avon Gorge AG 

215 V.2014.003.175 S. aria 51.2879 -2.74631 Cheddar gorge CG 

216 V.2014.003.176 S. aria 51.2879 -2.75157 Cheddar gorge CG 

217 V.2014.003.173 S. aria 51.28788 -2.75276 Cheddar gorge CG 

219 V.2014.003.179 S. aria 51.28812 -2.75229 Cheddar gorge CG 

220 V.2014.003.174 S. aria 51.28674 -2.75364 Cheddar gorge CG 

222 V.2014.003.177 S. aria 51.2867 -2.75541 Cheddar gorge CG 

224 V.2014.003.172 S. aria 51.28748 -2.75555 Cheddar gorge CG 

36 V.2014.003.178 S. aria 51.45552 -2.63963 Leigh woods LW 

44 
 

S. aria 51.4661 -2.63564 Leigh woods LW 

105 V.2014.003.096 S. devoniensis 50.9119 -4.07305 Beaford 
 

246 V.2014.003.016 S. devoniensis 50.8323 -4.13558 Highampton 
 

103 V.2014.003.093 S. devoniensis 50.88709 -3.98226 Hollocombe 
 

78 V.2014.003.014 S. devoniensis 50.77751 -4.02974 Inwardleigh 
 

79 V.2014.003.011 S. devoniensis 50.77758 -4.02977 Inwardleigh 
 

80 V.2014.003.008 S. devoniensis 50.77732 -4.02965 Inwardleigh 
 

51 V.2014.003.017 S. devoniensis 50.56476 -3.52589 Little Haldon LH 

52 V.2014.003.018 S. devoniensis 50.56479 -3.52554 Little Haldon LH 

89 V.2014.003.006 S. devoniensis 50.56573 -3.5364 Little Haldon LH 

90 V.2014.003.003 S. devoniensis 50.56619 -3.53573 Little Haldon LH 

91 V.2014.003.007 S. devoniensis 50.56491 -3.53645 Little Haldon LH 

92 V.2014.003.004 S. devoniensis 50.56546 -3.534 Little Haldon LH 

93 V.2014.003.005 S. devoniensis 50.56544 -3.53406 Little Haldon LH 

184 V.2014.003.084 S. devoniensis 50.11504 -3.52031 Little Haldon LH 

228 V.2014.003.083 S. devoniensis 
  

Little Haldon LH 
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Sample 
no: 

Accession no: Taxon Lat. Long. Site 
Site 
code 

229 V.2014.003.086 S. devoniensis 50.56541 -3.5341 Little Haldon LH 

230 
 

S. devoniensis 
  

Little Haldon LH 

231 
 

S. devoniensis 
  

Little Haldon LH 

110 V.2014.003.085 S. devoniensis 50.92121 -4.1573 Little Torrington 
 

516 
 

S. devoniensis 
  

Luckbarrow ENHS 
collection  

517 
 

S. devoniensis 
  

Luckbarrow ENHS 
collection  

19 V.2014.003.073 S. devoniensis 51.21864 -3.95849 Neck wood NW 

70 V.2014.003.009 S. devoniensis 50.73087 -3.8987 South Tawton 
 

71 V.2014.003.012 S. devoniensis 50.72905 -3.90449 South Tawton 
 

72 V.2014.003.010 S. devoniensis 50.73076 -3.89058 South Tawton 
 

73 V.2014.003.015 S. devoniensis 50.73155 -3.89127 South Tawton 
 

118 V.2014.003.094 S. devoniensis 51.00979 -4.20639 Upcott 
 

113 V.2014.003.089 S. devoniensis 50.93744 -4.18177 Watergate Bridge 
 

10 V.2014.003.070 S. devoniensis 51.22129 -3.89988 Woody Bay WB 

11 V.2014.003.071 S. devoniensis 51.22084 -3.89829 Woody Bay WB 

15 V.2014.003.072 S. devoniensis 51.22832 -3.90799 Woody Bay WB 

101 
 

S. margaretae 51.22463 -3.66655 Culbone CB 

102 
 

S. margaretae 51.22416 -3.66752 Culbone CB 

197 
 

S. margaretae 51.22473 -3.66602 Culbone CB 

198 
 

S. margaretae 51.22471 -3.66685 Culbone CB 

204 
 

S. margaretae 51.22501 -3.66679 Culbone CB 

221 
 

S. margaretae 51.22450 -3.667753 Culbone CB 

26 V.2014.003.066 S. margaretae 51.2337 -3.7434 Desolation  DL 

27 V.2014.003.065 S. margaretae 51.23388 -3.74425 Desolation  DL 
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Sample 
no: 

Accession no: Taxon Lat. Long. Site 
Site 
code 

29 V.2014.003.082 S. margaretae 51.23509 -3.75604 Desolation  DL 

30 
 

S. margaretae 51.23509 -3.75604 Desolation  DL 

31 V.2014.003.126 S. margaretae 51.23509 -3.75604 Desolation  DL 

35 V.2014.003.067 S. margaretae 51.22761 -3.73556 Desolation  DL 

54 
 

S. margaretae 51.23509 -3.75604 Desolation  DL 

122 
 

S. margaretae 51.23516 -3.75698 Desolation  DL 

123 
 

S. margaretae 51.23511 -3.7567 Desolation  DL 

124 
 

S. margaretae 51.23547 -3.75818 Desolation  DL 

125 
 

S. margaretae 51.23522 -3.75512 Desolation  DL 

126 
 

S. margaretae 51.2353 -3.75522 Desolation  DL 

127 
 

S. margaretae 51.2352 -3.7553 Desolation  DL 

128 
 

S. margaretae 51.23521 -3.75532 Desolation  DL 

129 
 

S. margaretae 51.23544 -3.75565 Desolation  DL 

130 
 

S. margaretae 51.2352 -3.75586 Desolation  DL 

131 
 

S. margaretae 51.23509 -3.75604 Desolation  DL 

132 
 

S. margaretae 51.23509 -3.75604 Desolation  DL 

137 
 

S. margaretae 51.22913 -3.6964 Embelle woods CB 

18 V.2014.003.146 S. margaretae 51.21869 -3.95807 Neck wood NW 

24 V.2014.003.068 S. margaretae 51.2193 -3.95883 Neck wood NW 

25 V.2014.003.069 S. margaretae 51.21927 -3.95887 Neck wood NW 

3 V.2014.003.062 S. margaretae 51.22528 -3.79756 Watersmeet WM 

53 
 

S. porrigentiformis 50.48037 -3.51315 Babbacombe slopes TB 

86 V.2014.003.152 S. porrigentiformis 50.47946 -3.51364 
Babbacombe slopes, 
Torbay 

TB 

88 V.2014.003.150 S. porrigentiformis 50.47946 -3.51364 
Babbacombe slopes, 
Torbay 

TB 
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Sample 
no: 

Accession no: Taxon Lat. Long. Site 
Site 
code 

218 V.2014.003.151 S. porrigentiformis 51.28799 -2.7524 Cheddar gorge CG 

223 V.2014.003.158 S. porrigentiformis 51.28732 -2.75596 Cheddar gorge CG 

7 V.2014.003.159 S. porrigentiformis 51.22465 -3.81605 Fishermans car park WM 

47 V.2014.003.161 S. porrigentiformis 51.46611 -2.63517 Leigh woods LW 

533 
 

S. porrigentiformis 
  

Luckbarrow ENHS 
(Torbay)  

67 V.2014.003.153 S. porrigentiformis 50.4742 -3.50361 Redgate, Torbay TB 

188 
 

S. porrigentiformis 50.47497 -3.50271 Redgate, Torbay TB 

81 V.2014.003.157 S. porrigentiformis 50.47382 -3.50242 Redgate, Torbay  TB 

82 V.2014.003.155 S. porrigentiformis 50.47371 -3.50248 Redgate, Torbay  TB 

83 V.2014.003.156 S. porrigentiformis 50.47336 -3.50251 Redgate, Torbay  TB 

84 V.2014.003.183 S. porrigentiformis 50.47152 -3.50211 Redgate, Torbay  TB 

41 V.2014.003.160 S. porrigentiformis 51.45721 -2.63513 Stokeleigh Camp AG 

68 V.2014.003.154 S. porrigentiformis 50.47691 -3.50228 Walls Hill, Torbay TB 

14 
 

S. porrigentiformis 51.22802 -3.90778 Woody Bay WB 

910  S. porrigentiformis 51.78454 -3.42401 Darren Fach  PDF 

B9-F10  S. rupicola 51.78454 -3.42401 Darren Fach PDF 

B9-910  S. rupicola 51.77683 -3.42755 Penmoelallt PDF 

85 V.2014.003.050 S. rupicola 50.47946 -3.51364 
Babbacombe slopes, 
Torbay 

TB 

87 V.2014.003.055 S. rupicola 50.48036 -3.51367 
Babbacombe slopes, 
Torbay 

TB 

62 V.2014.003.019 S. rupicola 50.40265 -3.52442 Churston, Torbay TB 

63 V.2014.003.144 S. rupicola 50.4013 -3.52397 Churston, Torbay TB 

64 V.2014.003.149 S. rupicola 50.40164 -3.52092 Churston, Torbay TB 

65 V.2014.003.051 S. rupicola 50.40312 -3.52474 Churston, Torbay TB 
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Sample 
no: 

Accession no: Taxon Lat. Long. Site 
Site 
code 

66 V.2014.003.147 S. rupicola 50.40228 -3.52467 Churston, Torbay TB 

172 V.2014.003.052 S. rupicola 50.40248 -3.52423 Churston, Torbay TB 

173 V.2014.003.053 S. rupicola 50.40349 -3.52598 Churston, Torbay TB 

267 
 

S. rupicola 57.03369 -4.19312 
Creagh Dhubh, 
Scotland  

121 
 

S. rupicola 
  

Luckbarrow ENHS 
collection (Neck Wood)  

22 V.2014.003.145 S. rupicola 51.21917 -3.95852 Neck wood NW 

265 
 

S. subcuneata 51.2205 -3.49021 Greencliff, Minehead GC 

266 
 

S. subcuneata 51.2205 -3.49021 Greencliff, Minehead GC 

33 V.2014.003.022 S. subcuneata 51.21227 -3.47574 
Greenleigh Wood, 
Minehead 

GL 

34 V.2014.003.122 S. subcuneata 51.21227 -3.47574 
Greenleigh Wood, 
Minehead 

GL 

23 V.2014.003.123 S. subcuneata 51.21917 -3.95874 Neck wood NW 

2 V.2014.003.121 S. subcuneata 51.22534 -3.79637 Watersmeet WM 

4 V.2014.003.077 S. subcuneata 51.22642 -3.80044 Watersmeet WM 

58 V.2014.003.078 S. subcuneata 51.22539 -3.80008 Watersmeet WM 

59 V.2014.003.120 S. subcuneata 51.22575 -3.80083 Watersmeet WM 

144 V.2014.003.125 S. subcuneata 51.22343 -3.79845 Watersmeet WM 

145 V.2014.003.103 S. subcuneata 51.22436 -3.79837 Watersmeet WM 

146 V.2014.003.107 S. subcuneata 51.2242 -3.79833 Watersmeet WM 

147 V.2014.003.102 S. subcuneata 51.22439 -3.79816 Watersmeet WM 

157 V.2014.003.114 S. subcuneata 51.22379 -3.79796 Watersmeet WM 

165 V.2014.003.111 S. subcuneata 51.22469 -3.79219 Watersmeet WM 

166 V.2014.003.109 S. subcuneata 51.22556 -3.80064 Watersmeet WM 
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Sample 
no: 

Accession no: Taxon Lat. Long. Site 
Site 
code 

167 V.2014.003.112 S. subcuneata 51.22566 -3.80075 Watersmeet WM 

181 V.2014.003.075 S. subcuneata 51.22468 -3.79828 Watersmeet WM 

182 V.2014.003.056 S. subcuneata 51.22459 -3.79833 Watersmeet WM 

186 V.2014.003.117 S. subcuneata 51.22644 -3.80035 Watersmeet WM 

187 V.2014.003.116 S. subcuneata 51.22533 -3.79862 Watersmeet WM 

212 
 

S. subcuneata 51.22394 -3.79374 Watersmeet WM 

226 
 

S. subcuneata 51.22453 -3.79459 Watersmeet WM 

269 
 

S. subcuneata 51.22365 -3.79811 Watersmeet WM 

280 
 

S. subcuneata 51.22493 -3.79729 Watersmeet WM 

235 V.2014.003.115 S. subcuneata 51.22144 -3.8989 Woody Bay WB 

237 V.2014.003.113 S. subcuneata 51.22839 -3.90739 Woody Bay WB 

106 V.2014.003.037 S. torminalis 50.91148 -4.0721 Beaford 
 

251 
 

S. torminalis 50.716897 -4.408505 Beardon 
 

261 
 

S. torminalis 50.707611 -3.716723 Berryhead plantation 
 

273 
 

S. torminalis 50.52844 -3.63954 
Broadridge wood, 
Newton Abbot 

NA 

256 
 

S. torminalis 50.876113 -4.5402991 
Coombe Valley, nr 
stibb  

250 
 

S. torminalis 50.503475 -4.2524213 Halton Barton 
 

243 V.2014.003.046 S. torminalis 50.83352 -4.10751 Hatherleigh 
 

242 
 

S. torminalis 51.64024 -4.1388192 Hatherleigh 
 

245 
 

S. torminalis 50.830912 -4.1418027 Highampton 
 

247 
 

S. torminalis 50.832512 -4.1349456 Highampton 
 

255 
 

S. torminalis 50.869228 -4.5317944 Houndapitt, Nr Stibb 
 

42 V.2014.003.135 S. torminalis 51.46256 -2.63963 Leigh woods   LW 

232 
 

S. torminalis 50.562964 -3.533977 Little Haldon LH 
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Sample 
no: 

Accession no: Taxon Lat. Long. Site 
Site 
code 

241 
 

S. torminalis 50.787998 -3.817363 Little Langford 
 

95 
 

S. torminalis 
  

Luckbarrow ENHS 
collection  

94 
 

S. torminalis 51.203371 -3.5844902 Luckbarrow, ENHS 
 

252 V.2014.003.048 S. torminalis 50.76732 -4.48058 Odd Mill 
 

254 V.2014.003.049 S. torminalis 50.76711 -4.47862 Odd Mill 
 

249 V.2014.003.127 S. torminalis 50.44776 -4.30243 Pillaton Mill 
 

260 
 

S. torminalis 50.666518 -3.7051913 Plaston Green 
 

69 V.2014.003.039 S. torminalis (3n) 50.7294 -3.9037 South Tawton 
 

74 V.2014.003.042 S. torminalis 50.7547 -3.83881 Spreyton 
 

75 
 

S. torminalis 50.758138 -3.8243868 Spreyton 
 

76 
 

S. torminalis 50.761542 -3.8136719 Spreyton 
 

77 
 

S. torminalis 50.769495 -3.8169577 Spreyton 
 

259 
 

S. torminalis 50.764303 -3.8400693 Spreyton 
 

49 
 

S. torminalis 51.841978 -2.6377618 Symonds Yat  SY 

257 V.2014.003.138 S. torminalis 50.85228 -4.52043 Tiscott- nr Stibb 
 

117 
 

S. torminalis 51.008554 -4.2065583 Upcott 
 

116 
 

S. torminalis 51.008409 -4.2066227 Upcott   
 

114 V.2014.003.034 S. torminalis 51.00523 -4.20671 Upcott Wood 
 

115 V.2014.003.036 S. torminalis 51.0052 -4.20681 Upcott Wood 
 

96 
 

S. vexans 51.22402 -3.66306 Culbone CB 

97 
 

S. vexans 51.22459 -3.66623 Culbone CB 

98 
 

S. vexans 51.22471 -3.66642 Culbone CB 

99 
 

S. vexans 51.2247 -3.6665 Culbone CB 

100 
 

S. vexans 51.22471 -3.66642 Culbone CB 

199 
 

S. vexans 51.22471 -3.66685 Culbone CB 
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Sample 
no: 

Accession no: Taxon Lat. Long. Site 
Site 
code 

200 
 

S. vexans 51.22434 -3.66681 Culbone CB 

201 
 

S. vexans 51.22442 -3.6667 Culbone CB 

202 
 

S. vexans 51.22442 -3.6667 Culbone CB 

205 
 

S. vexans 51.22501 -3.66645 Culbone CB 

32 V.2014.003.148 S. vexans 51.23509 -3.75604 Desolation  DL 

28 V.2014.003.057 S. vexans 51.23385 -3.75227 
Dogsworthy Combe, nr 
Desolation 

DL 

8 V.2014.003.064 S. vexans 51.22456 -3.81578 Fishermans car park WM 

20 V.2014.003.063 S. vexans 51.21893 -3.95847 Neck wood NW 

21 V.2014.003.059 S. vexans 51.21893 -3.95847 Neck wood NW 

60 V.2014.003.001 S. vexans 51.22595 -3.82097 Oxen tor OT 

61 V.2014.003.025 S. vexans 51.226 -3.82156 Oxen tor OT 

133 V.2014.003.023 S. vexans 51.22615 -3.82165 Oxen tor OT 

134 V.2014.003.028 S. vexans 51.2291 -3.83256 Oxen tor OT 

135 V.2014.003.024 S. vexans 51.22613 -3.82128 Oxen tor OT 

136 V.2014.003.026 S. vexans 51.22609 -3.82127 Oxen tor OT 

138 V.2014.003.029 S. vexans 51.22611 -3.82171 Oxen tor OT 

139 V.2014.003.027 S. vexans 51.22611 -3.82164 Oxen tor OT 

9 V.2014.003.060 S. vexans 51.22148 -3.89927 Woody Bay WB 
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Table S2.2.  Nucleotide sequences of nuclear microsatellite primers used in this 

study. 1Microsatellite primers were redesigned by Robertson et al (2010);  

2Microsatellite primers from S. aria (González-González et al, 2010); 

3Microsatellite primers from S. torminalis (Oddou-Muratorio et al, 2001); 

4Microsatellite primers derived from Malus domestica (Gianfranceschi et al, 

1998); + SA19.1, CH01F09, SA02 and SA09 were excluded from analyses 

involving the diploid species. MS14 was only used in Chapter 3 for 

determination of inheritance patterns using primers developed for Malus 

domestica (Nelson-Jones et al, 2002). 

Multiplex Locus Primer sequence (5’ to 3’) Dye Repeat  

MPLX 1 CH01F021 F - CCACATTAGAGCAGTTGAGGATGA 

R - ATAGGGTAGCAGCAGATGGTTGT 

D4-PA (AG)22 

 SA012 F - ATGGAGTTGAGCTCCACATC  

R - GGTGGAGGGACAATTGTGTC 

D2-PA (GA)13 

 SA19.1+2 F - AAGTTTACAAGAGTGTGTTCAG 

R - GAATTCATGAAAGCAGCTAATG 

D3-PA (GA)24 

 MSS53 F - CCCCAACAACATTTTTCTCC  

R - CCTCTCGCTCTTTGCCTCT 

D2-PA (GA)19 

 MSS161 F - ATGTCACATCTCTCCCCTTGTGT  

R - TTTTGCCCTCAAAGAATGCCTTA 

D3-PA (GA)28 

MPLX 2 CH01F09
+1 

F - ATGTACATCAAAGTGTGGATTG 

R - GGCGCTTTCCAACACATC 

D3-PA (AG)22 

 CH02D111 F - AAATAAGCGTCCAGAGCAACAG 

R - GGGACAAAATCTCACAAACAGA 

D4-PA (AG)21 

 SA032 F - CACTTCTTCCTGCTGTTTGG 

R - ACTACTGCTACTTCTGTGGG 

D2-PA (GA)12 

 SA062 F - ATTTGATCCATGTGCGACTGCA 

R - TGCAGCGGTTGCAGATTGCA 

D4-PA (GA)32 

 MSS134 F - GAAAATTCCTTCCCGAACTTCAT 

R - AACTCACTCGGATTTTGGAACCT 

D3-PA (GA)12 
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Multiplex Locus Primer sequence (5’ to 3’) Dye Repeat  

MPLX 3 SA02+2 F - CTAGGTATCATCTCCGACCA 

R - ACGTAGCACTGAATGGTATAG 

D2-PA (GA)16 

 SA082 F - CAGAGAGAGTGCACTGCCT 

R - GAATTCTTGGCAGTTTGCCT 

D3-PA (CT)16 

 SA09+2 F - CTTGTTGGACGGATTTCTTC 

R - CCAATACTTGAGTAGCATAC 

D3-PA (AG)17 

 MS14 F - CGCTCACCATCGTAGACGT 

R - ATGCAATGGCTAAGCATA3 

D4-PA  

 Single SA142 F - ATGGATTTAGGTTAACAGTTGTC 

R - GAGGTAAAACCTACCAGTATAC 

D4-PA (TC)30 
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Table S2.3. Multiplex design for PCR reaction of Sorbus. MS14 was only used 

for analysis of inheritance patterns in chapter 3. 

Multiplex Marker Final 
concentration in 

PCR (µM) 

Dilution for capillary 
electrophoresis 

MPLX 1 CH01F02 0.06 20% 

 SA01 1.25  

 SA19.1 1.25  

 MSS5 0.375  

 MSS16 0.125  

MPLX 2 CH01F09 0.375 0% 

 CH02D11 0.125  

 SA03 0.25  

 SA06 0.125  

 MSS13 0.25  

MPLX 3 SA02 0.125 0% 

 SA08 0.075  

SA09 0.125  

MS14 0.025 

SINGLE SA14 0.25 80% 

PCR 10 sample reaction mix: 50 µl 

HotStarTaq Master mix, 10 µl MPLX primer mix, 

30µl water. 

1 µl DNA sample template + 9  µl PCR reaction 

mix 

Capillary electrophoresis 

mix: 25µl SLS + internal 

size standard, 5 µl PCR 

product at specified 

dilution. 
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Table S2.4 Multilocus genotypes for the polyploid study taxa at 14 loci. X = ploidy level, Fq. = number of individuals sampled,                   

XXX = rare allele sizes. Loci in bold are the ten loci used in the combined diploid and polyploid analysis. 

 Alleles at each microsatellite loci 

Taxon X Fq. CH01F02 SA19.1 MSS16 SA01 

S. admonitor 4 19 187 195 199  224 232   158 160 188 204 224 232 242  

S. devoniensis 4 30 187 195 199  224 232   158 160 198 204 224 232 234 242 

S. devoniensis 4 1 187 195 199  224 232   158 160 198 204 224 232 234 242 

S. subcuneata 3 21 187 195 199  224 232   158 160 204  224 232 242  

S. subcuneata 3 3 187 195 199  224 232   158 160 204  224 232 242  

S. subcuneata 3 2 187 195 199  224 232   158 160 202  224 232 242  

S. margaretae 4 23 191 195 199 221 216 224 232 250 158 160 162  224 232   

S. margaretae 4 1 191 195 199 221 216 224 232 250 158 160 162  224 232   

S. margaretae 4 2 191 195 199 221 216 224 232 250 158 160 162  224 232   

S. margaretae 4 1 191 195 199 221 216 224 232 250 158 160 162  224 232   

S. margaretae 4 2 191 195 199 221 216 224 232 250 158 160 162  224 232   

S. porrigentiformis 4 5 191 197 201 203 216 228 238  158 162 170  214 236 244  

S. porrigentiformis 4 9 191 197 201 203 216 228 238  158 162 170  214 236 244  

S. porrigentiformis 4 1 191 197 201 203 216 228 238  158 162 170  214 236 244  

S. porrigentiformis 4 1 191 197 201 203 216 228 238  158 162 170  214 236 244  

S. porrigentiformis 4 1 191 197 201 203 216 228 238  158 162 170  214 236 246  

S. porrigentiformis 4 1 191 197 201 203 216 228 238  158 162 170  214 236 244  

S. porrigentiformis 4 1 191 197 201 203 216 228 238  158 162 170  214 236 244  
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 Alleles at each microsatellite loci 

Taxon X Fq. CH01F02 SA19.1 MSS16 SA01 

S. rupicola 4 4 191 199 201 209 216 250   158 162   224 230 234 236 

S. rupicola 4 1 191 199 201 209 216 250   158 162   224 230 234 236 

S. rupicola 4 1 191 199 201 209 216 250   158 162   224 230 234 236 

S. rupicola 4 5 191 199 201 209 216 250   158 162   224 230 234 236 

S. rupicola 4 1 191 199 201 209 216 250   158 162   224 230 234 236 

S. rupicola 4 1 191 199 201 209 216 250   158 162   224 230 234 236 

S. vexans 4 1 191 195 201 203 216 224 236 250 158 160 162  236    

S. vexans 4 1 191 195 201 203 216 224 236 250 158 160 162  236    

S. vexans 4 1 191 195 201 203 216 224 236 250 158 160 162  236    

S. vexans 4 7 191 195 201 203 216 224 236 250 158 160 162  236    

S. vexans 4 2 191 195 201 203 216 224 236 250 158 160 162  236    

S. vexans 4 7 191 195 201 203 216 224 236 250 158 160 162  236    

S. vexans 4 1 191 195 201 203 216 224 236 250 158 160 162  236    

S. vexans 4 2 191 195 201 203 216 224 236 250 158 160 162  236    

vex2 4 2 191 195 203 221 224 234 236 256 158 160   232 236 238  
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Table S2.4 

 Alleles at each microsatellite loci 

Taxon X Fq. MSS5 CH01F09 CH02D11 MSS13 

S. admonitor 4 19 119 121 123 127 113 123   152 162 182  187 193 195  

S. devoniensis 4 30 119 121 123 127 113 123   152 162 182  189 193 195  

S. devoniensis 4 1 119 121 123 127 113 123   152 162 182  189 193 195  

S. subcuneata 3 21 119 121 123  113 123   152 162 182  193 195   

S. subcuneata 3 3 119 121 123  113 123   152 162 182  193 195   

S. subcuneata 3 2 119 121 123  113 123   152 162 182  193 195   

S. margaretae 4 23 119 121 135  113 115 123  152 154 182  193 195 197  

S. margaretae 4 1 119 121 135  113 115 121 123 152 154 182  193 195 197  

S. margaretae 4 2 119 121 135  113 115 123  152 154 182  193 195 197  

S. margaretae 4 1 119 121 135  113 115 123  152 154 182  193 195 197  

S. margaretae 4 2 119 121 135  113 115 123  152 154 182  193 195 197  

S. porrigentiformis 4 5 115 127 131 137 115 123 125 129 152 198   193 195 197 203 

S. porrigentiformis 4 9 115 127 131 137 115 123 125 129 152 198   193 195 197 203 

S. porrigentiformis 4 1 115 127 131 137 115 123 125 129 152 198   193 195 197 203 

S. porrigentiformis 4 1 115 125 127 131 115 123 125 129 152 198   193 195 197 203 

S. porrigentiformis 4 1 115 127 131 137 115 123 125 129 152 198   193 195 197 203 

S. porrigentiformis 4 1 115 127 131 137 115 123 125 129 152 198   193 195 197 203 

S. porrigentiformis 4 1 115 127 131 137 115 123 125 129 152 198   193 195 197 203 
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 Alleles at each microsatellite loci 

Taxon X Fq. MSS5 CH01F09 CH02D11 MSS13 

S. rupicola 4 4 119 127 131 173 113 115 121  152 162 168  193 195 197  

S. rupicola 4 1 119 127 131 173 113 115 121  152 162 168  193 195 197  

S. rupicola 4 1 119 127 131 173 113 115 121  152 162 170  193 195 197  

S. rupicola 4 5 119 127 131 173 113 115 121  152 162 168  193 195 197  

S. rupicola 4 1 119 127 131 173 113 115 121  152 162 168  193 195 197  

S. rupicola 4 1 119 127 131 173 113 115 121  152 162 168  193 195 197  

S. vexans 4 1 119 121 127  115 121   150 154   193 195 197 199 

S. vexans 4 1 119 121 127  115 121   150 154   193 195 197 199 

S. vexans 4 1 119 121 127  115 121   150 154   193 195 197 199 

S. vexans 4 7 119 121 127  115 121   150 154   193 195 197 199 

S. vexans 4 2 119 121 127  115 121   150 154   193 195 197 199 

S. vexans 4 7 119 121 127  115 121   150 154   193 195 197 199 

S. vexans 4 1 119 121 127  115 121   150 154   193 195 197 199 

S. vexans 4 2 119 121 127  115 121   150 154   193 195 197 199 

vex2 4 2 121 127 129 135 115 123   152 154 182  193 195 199  
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Table S2.4 

 Alleles at each microsatellite loci 

Taxon X Fq. SA03 SA06 SA09 SA14 

S. admonitor 4 19 224    258 268   162 194   170 178 208 226 

S. devoniensis 4 30 224    258 268   162 194   170 204 208 226 

S. devoniensis 4 1 224    258 268   162 186   170 204 208 226 

S. subcuneata 3 21 224    258 268   162 194   170 208 226  

S. subcuneata 3 3 224    258 268   162 194   170 212 226  

S. subcuneata 3 2 224    258 268   162 194   170 208 226  

S. margaretae 4 23 224    258 268 280 312 162 182 194  194 208 226  

S. margaretae 4 1 224    258 268 280 312 162 182 194  194 208 226  

S. margaretae 4 2 224    258 268 280 314 162 182 194  194 208 226  

S. margaretae 4 1 224    258 268 282 312 162 182 194  194 208 226  

S. margaretae 4 2 224    258 268 284 314 162 182 194  194 208 226  

S. porrigentiformis 4 5 228 240   256 264 270  174 176 184 186 196 222 224 226 

S. porrigentiformis 4 9 228 240   256 264 270  174 176 184 186 196 222 224  

S. porrigentiformis 4 1 228 240   256 264 270  174 176  186 196 222 224  

S. porrigentiformis 4 1 228 240   256 264 270  174 176 184 186 196 222 224  

S. porrigentiformis 4 1 228 240   256 264 270  174 176 184 186 196 222 224 226 

S. porrigentiformis 4 1 228 240 242  256 264 270  174 176 184 186 196 222 224  

S. porrigentiformis 4 1 228 240   256 264 270  174 176 184 186 196 222 224 226 
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 Alleles at each microsatellite loci 

Taxon X Fq. SA03 SA06 SA09 SA14 

S. rupicola 4 4 224 240   258 264 280 312 162 164 176  194 206 208  

S. rupicola 4 1 224 240   258 264 280 300 162 164 176  194 206 208  

S. rupicola 4 1 224 240   258 264 280 300 162 164 176  194 206 208  

S. rupicola 4 5 224 240   258 264 282 300 162 164 178  194 206 208  

S. rupicola 4 1 224 240   258 264 284 300 162 164 178  194 206 208  

S. rupicola 4 1 224 240   258 264 282 302 162 164 178  194 206 208  

S. vexans 4 1 224 240   258 268 280 312 162 176 178 182 206 224 226  

S. vexans 4 1 224 240   258 280 290 302 162 176 178 182 206 224 226  

S. vexans 4 1 224 240   258 280 294  162 176 178 182 206 224 226  

S. vexans 4 7 224 240   258 280 302  162 176 178 182 206 224 226  

S. vexans 4 2 224 240   258 280 302  162 176 178 182 206 224 226  

S. vexans 4 7 224 240   258 280 312  162 176 178 182 206 224 226  

S. vexans 4 1 224 240   258 280 312  162 176 178 182 206 224 226  

S. vexans 4 2 224 240   258 282 312  162 176 178 182 206 222 226  

vex2 4 2 224    258 264 268 278 160 178 182 194 204 212 224 226 
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Table S2.4 

 Alleles at each microsatellite loci 

Taxon X Fq. SA08 SA02 

S. admonitor 4 19 261 285   292 294   

S. devoniensis 4 30 261    292 294   

S. devoniensis 4 1 261    292 294   

S. subcuneata 3 21 261    292 294   

S. subcuneata 3 3 261    292 294   

S. subcuneata 3 2 261    292 294   

S. margaretae 4 23 247 263   278 282 292 294 

S. margaretae 4 1 247 263   278 282 292 294 

S. margaretae 4 2 247 263   278 282 292 294 

S. margaretae 4 1 247 263   278 282 292 294 

S. margaretae 4 2 247 263   278 282 292 294 

S. porrigentiformis 4 5 249 257 277  294 300 324  

S. porrigentiformis 4 9 249 257 277  294 300 324  

S. porrigentiformis 4 1 249 257 277  294 300 324  

S. porrigentiformis 4 1 249 257 277  294 300 324  

S. porrigentiformis 4 1 249 257 277  294 300 324  

S. porrigentiformis 4 1 249 257 277  294 296 300 324 

S. porrigentiformis 4 1 249 257 277  294 300 324  
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 Alleles at each microsatellite loci 

Taxon X Fq. SA08 SA02 

S. rupicola 4 4 263 277   282 292   

S. rupicola 4 1 263 277   282 292   

S. rupicola 4 1 263 277   282 292   

S. rupicola 4 5 263 277   282 292   

S. rupicola 4 1 263 277   282 292   

S. rupicola 4 1 263 277   282 292   

S. vexans 4 1 247 263 275  286 292 294  

S. vexans 4 1 247 263 275  286 292 294  

S. vexans 4 1 247 263 275  286 292 294  

S. vexans 4 7 247 263 275  286 292 294  

S. vexans 4 2 247 263 279  286 292 294  

S. vexans 4 7 247 263 275  286 292 294  

S. vexans 4 1 247 263 279  286 292 294  

S. vexans 4 2 247 263 275  286 292 294  

vex2 4 2 247 275   278 286 294 300 
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Table S2.5 Microsatellite allele sizes for the sexual diploid species 

  Microsatellite loci   

Taxon CH01F02 MSS16 SA01 MSS5 

S. torminalis 157 167 175 187 154 166 170 178 190 192 212 216 105 113 117 119 

 189 209   182 184 186 188 226 230 234 236 123 125 127 129 

     190 194 196 198 238 240 242 244 135 137 139 141 

     200 202 204 206 246 256       

     208 210 216 222         

     230            

S. aria 191 195 197 201 156 158 160 164 212 220 230 232 115 121 127 129 

         234 240 242 246 135 139 141  

Taxon CH02D11 SA03 SA06 MSS13 

S. torminalis 148 150 152 154 214 224 234  258 260 268 270 181 183 187 189 

 156 162 164 170     278 308 310  191 193 195 197 

 172 176 178 194             

 196                

S. aria 154 156 164 172 224 240 242 250 256 258 260 268 189 195 197 199 

 186    252 253 254  280 282 288  203    
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  Microsatellite loci  

Taxon SA14 SA08 CH01F09 

S. torminalis 170 176 178 180 229 232 259 260     

 182 184 186 188 261 265 267 269     

 190 198 200 202 271 273 277 281     

 204 206 208 210 283 285       

 212 214 224 226         

S. aria 194 202 210 212 249 251 253 259 111 115 117 121 

 216 230 240 242 273 275 277  125 133   

 258            
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Figure S2.1 Results of Bayesian clustering for all Sorbus genotypes and 

assignment to genetic clusters as determined by STRUCTURE.  The colours 

represent the probability of assignment to different clusters. Arrows represent 

the second S. vexans clone (vex2). 

a). Diploid and polyploid taxa. K=5 (mean L(K) = -3274.64) each vertical bar 

represents a single multilocus genotype. 82 samples at 10 microsatellite loci. 

b). Polyploid taxa only. K=2(mean L(K) = -12481.6) each vertical bar represents 

a polyploid individual. 160 samples at 14 microsatellite loci. 
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Figure S2.2 Relative nuclear DNA for each of the distinct clusters 

corresponding with chromosome number (ploidy level). ANOVA p= < 2.2e-16  

 

Figure S2.3 Relative nuclear DNA content of the tetraploid species. a and b 

indicate which comparisons were statistically significant in Tukey post hoc 

pairwise analysis with p< 0.01. Sample sizes = 12, 31, 13, 7, 11, 13, left to right. 
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Abstract  

The hybrid formation of polyploids is accepted as a key mode of speciation in 

plants.  Unravelling the processes that give rise to polyploid taxa is essential to 

our understanding of plant evolution. In this study we use microsatellites to 

reconstruct parentage and elucidate the hybrid origins for seven polyploid 

Sorbus species endemic to the south west of England. Exact pairwise 

parentage matches for tetraploids S. devoniensis and S. admonitor reveal their 

formation is most likely via the ‘triploid bridge’ with triploid S. subcuneata and 

diploid S. torminalis as parental species. Distribution patterns of this group 

indicate a wider historic range for S. torminalis in southwest England. Allele 

composition of the highly endemic study members of subgenus Aria hints at 

possible links with other polyploid species approximately 100km east. This may 

suggest possible colonisation routes. Our results demonstrate a dynamic 

system of diversification in Sorbus, but that the production of persistent novel 

species is a rare event.  
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3.1 Introduction 

It has long been recognised that polyploidy, in the presence of more than two 

sets of chromosomes, has been of major importance in the diversification of 

angiosperm lineages (Grant, 1981, Soltis et al., 2009). Indeed, estimates 

suggest 70% of flowering plants are descended from polyploid ancestors with 

different ploidy levels seen within and among closely related species, often 

arising on multiple occasions (Ramsey & Schemske, 1998, Soltis, 2005). This 

apparent profusion of polyploidization and its significance for plant evolution has 

led to increasing interest in processes involved in the formation and 

establishment of polyploids. However, a recent review highlights the huge gaps 

in coverage of well-known polyploids and the need for more studies of natural 

evolutionary models, as most of what is known about polyploidy comes from a 

few crop and genetic model systems (Soltis et al., 2016).  

Polyploids are generally classified into autopolyploids and allopolyploids.  

Following the definition of Ramsey & Schemske (1998), those that have arisen 

within populations of single species are termed autopolyploids, and 

allopolyploids are those arising from interspecific hybridisation events. The type 

of polyploid also affects the mode of genome inheritance. Autopolyploids, will 

generally have chromosomes with similar structure derived from a common 

parental species, so duplicated chromosomes can pair at random (Fig. 3.1a). 

This gives rise to polysomic inheritance, for example alleles at a given locus in 

an autotetraploid ABCD, may segregate A-B, A-C, A-D, B-C, B-D or C-D. 

Allopolyploids have homeologous (partially homologous) chromosomes derived 

from different lineages (Fig 3.1b). The homologous pairs tend to remain 

differentiated and inheritance is similar to a diploid organism, termed disomic 
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(Ramsey & Schemske, 2002). Some groups may exhibit a mixture of disomic 

and polysomic inheritance patterns, sometimes at different loci (Lerceteau-

Köhler et al, 2003). 

 

 

 

Figure 3.1. Polysomic a) and disomic b) inheritance of auto and allotetraploids 

showing possible allele combinations in gametes.  

Polyploid hybridization results in novel combinations of genotypes combined 

with high levels of heterozygosity which may increase adaptive potential of 

a) 

b) 
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novel polyploids compared to diploid progenitors (Sobel et al., 2010) and there 

are a growing number of examples of ecological divergence associated with 

polyploidy (Ramsey & Ramsey, 2014, Thompson et al., 2014, Segraves & 

Anneberg, 2016).  Despite its evolutionary and ecological importance, it may be 

difficult to determine the steps involved in the polyploid speciation process due 

to the complex and often reticulate patterns of hybridisations and the cryptic 

nature of many hybridogenous taxa. Indeed, the process of polyploidization 

often leads to extensive chromosomal rearrangements and loss of duplicated 

genes within a few generations (Paun et al., 2007, Hegarty & Hiscock, 2009, 

Soltis et al., 2016). Therefore, in order to study polyploid evolution, it is 

necessary to choose a polyploid complex with a high level of genome stability 

so patterns of inheritance and hybrid origins may be determined 

unambiguously. The study of largely asexual or apomictic populations of closely 

related polyploids offers this potential as asexual reproduction will maintain the 

original genomic composition, with less subsequent reshaping of novel hybrids 

seen in fully sexual polyploids (Wendel, 2000, Mandáková et al., 2016).  

Apomixis, asexual seed production, synonymous with agamospermy is often 

associated with polyploidy (Whitton et al., 2008) in combination with a loss of 

self-incompatibility (Ramsey & Schemske, 1998). The asexual formation of 

seed from the maternal ovule tissue bypasses meiosis and thus potentially 

enables establishment of viable novel polyploids in sympatry with their 

progenitors re-enforcing reproductive isolation and generating clonal lineages. 

This eliminates rapid introgression and allows investigation into formation routes 

by studying allele segregation among the clonal species. Since apomixis is 

generally considered facultative at some level (Nogler, 1984), occasional sexual 

reproduction offers opportunities for further polyploid production and even 
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where apomixis is obligate, apomicts may still pollinate sexual plants (Richards, 

2003). The development of apomictic lineages of some polyploid hybrids means 

that combinations of genotypes may be maintained within the polyploid genome 

and provide a snapshot of the evolutionary process at the moment of inception. 

Such polyploids could be seen as reservoirs of alleles from ancestral sexual 

progenitors.  

A primary route of polyploid formation is via unreduced 2n gametes that retain 

the somatic chromosome number (Bretagnolle & Thompson, 1995, Rieseberg & 

Willis, 2007). The tendency of sexual diploids to produce 2n gametes can be 

environmentally induced and genetically inherited (Ramsey & Schemske, 1998, 

Köhler et al., 2010). Successful fusion of such gametes with reduced gametes 

within the same population will produce triploids. However, the presence of post 

zygotic reproductive barriers such as hybrid sterility, often brought about by the 

inability for chromosomes to pair during meiosis due to the presence of odd 

numbered ploidy, a phenomenon known as ‘triploid block’, has been proposed 

to prevent establishment of novel polyploids in a sexual system (Marks, 1966). 

Triploid block has also been proposed as a mechanism which may prevent 

establishment of tetraploids in a diploid population as they can suffer minority 

cytotype exclusion brought about via a frequency-dependant mating 

disadvantage as the majority of pollinations will produce sterile triploids (Levin, 

1975, Husband & Schemske, 2000). However, triploids contribute significantly 

to the ongoing production of polyploids both in sexual and asexual or apomictic 

systems (Ramsey & Schemske, 1998). Although their fitness is generally lower 

than either diploids or tetraploids they may still enhance the production of 

tetraploids when present in sufficient numbers (Husband, 2004), often via the 
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‘triploid bridge’ where unreduced triploid gametes combine with reduced diploid 

gametes (Fig. 3.2).  

 

  

Figure 3.2. One possible route of triploid and tetraploid formation illustrating the 

‘triploid bridge’. 

The genus Sorbus contains both sexual diploids and apomictic polyploids of 

hybrid origins. Although the polyploids are largely apomictic they still require 

pollination for the initiation of seed (pseudogamy). Sorbus are long lived tree 

species, thus novel hybrids can persist for tens or hundreds of years, combined 

with potentially long generation times they offer a window into hybrid events that 

have occurred over long time periods. Genome sizes in Sorbus are very 
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consistent with little evidence of downsizing (Pellicer et al., 2012, Hajrudinović 

et al., 2015) which suggests a degree of stability making the genus suitable for 

the investigation of hybrid origins in a polyploid complex. 

The primary route for polyploid formation in Sorbus is via backcrossing of 

triploid and tetraploid with diploid parental taxa with the polyploid as either the 

maternal or paternal parent (Nelson-Jones et al., 2002, Robertson et al., 2004b, 

Robertson et al., 2010, Ludwig et al., 2013). Chloroplast and mitochondrial DNA 

have identified the ancestral maternal lineages of many UK polyploid species 

(Nelson-Jones et al., 2002, Chester et al., 2007) but the pollen donors are 

largely unknown as is the nature of any further hybridisation events.  

Devon and north Somerset in south-west England contain four apomictic 

polyploid Sorbus species endemic to the region (Sorbus subcuneata Wilmott, S. 

admonitor M.C.F. Proctor, S. vexans E.F. Warb and S. margaretae M.C.F. 

Proctor) along with three other closely related polyploid taxa with wider 

distributions (S. devoniensis E.F. Warb, S. porrigentiformis E.F. Warb and S. 

rupicola (Syme) Hedlund) and one putative parental sexual diploid S. torminalis 

(L.) Crantz. S. aria L. which is also closely related, although it is not thought to 

be native to this southwest peninsular. It occurs naturally further to the east in 

Somerset, where it grows with other polyploid taxa (Fig. 3.3). It is, however, 

widely planted across the region so its native distribution is difficult to ascertain 

(Rich et al., 2010).  
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Figure 3.3. Species distribution records for study species supplied by T. C. G. 

Rich. Note that records for S. aria are restricted to eastern areas of this 

region.  (The map was created using ArcGIS Desktop version 10.2.2, ESRI, 

California, USA, URL: http://www.esri.com/). 

 

Following the classification described by Rich et al. (2010), the polyploid 

species in this study are taxonomically divided into two subgenera; subgenus 

Aria is composed of diploid S. aria and its polyploid derivatives (S. rupicola, S. 

porrigentiformis, S. margaretae and S. vexans); subgenus Tormaria is 

represented by three species (S. devoniensis, S. admonitor and S. subcuneata) 

resulting from hybridisation between diploid S. torminalis as the ancestral 

maternal parent (Chester et al., 2007) and members of sub genus Aria. All 

polyploids are tetraploid with the exception of S. subcuneata which is a triploid 

(see section 2.3). The exact hybrid origins of all the polyploid species are 

unknown. Morphology and AFLP analysis place diploid S. aria and / or 
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tetraploid S. rupicola, which has a northern European distribution and likely 

originated outside the UK, as parental species’ for the remaining study polyploid 

species of subgenus Aria (Sell, 1989, Lemche, 1999).  

By determining the hybrid origins of recently formed hybridogenous polyploids it 

may be possible to determine the genome contributions of each parental 

species which would give insight into the mode of inheritance and possible 

routes of polyploid formation.  Due to their high variability, microsatellites are 

often used for pedigree or parentage analyses where often only a few 

informative loci are required for identification of parents through the comparison 

of genotypes (Gerber et al., 2000). This chapter extends the microsatellite 

analysis of the 207 samples of nine Sorbus study species described in Chapter 

2.   

The main aims of this study were to determine the hybrid origins of this group of 

polyploid species, to ascertain genome configurations of subgenus Tormaria 

and to identify likely routes of polyploid formation in Sorbus.  
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3.2 Materials and methods 

3.2.1 Molecular methods 

In order to reconstruct the hybrid origins of the seven polyploid taxa we used 12 

nuclear DNA microsatellite loci previously used in the genus Sorbus to 

determine genotypes for 206 individuals from the nine study species as 

described in Chapter 2 (2.2). Loci used for this study were CH01F02, MSS16, 

SA01, MSS5, CH02D11, SA03, SA06, MSS13, SA14 and SA08, and to 

elucidate the inheritance patterns in subgenus Tormaria, we used an additional 

two loci which had been found to only amplify in either S. aria or S. torminalis, 

CH01F09 (Robertson et al., 2010) and MS14 (Nelson-Jones et al., 2002) 

respectively. DNA extraction and PCR conditions are described in Section 

2.2.2. For details of the microsatellite primers and multiplex design see Tables 

S2.2 and S2.3 in supplementary information for Chapter 2.  

3.2.2 Allele dosage 

To overcome the problem of defining which alleles occur in more than one copy, 

allele dosage for the majority genotype of each of the polyploid species was 

determined using the MAC-PR (microsatellite DNA allele counting-peak ratios) 

method (Esselink et al., 2004). This method utilises the quantitative values for 

microsatellite allele peak areas provided by the fragment analysis software 

(CEQ 8000 Genetic Analysis system, Beckman) to determine allele copy 

number, therefore only loci which produced unambiguous, consistent peaks 

may be used. As polyploid Sorbus are primarily apomictic, each species has a 

multi-locus genotype profile and allele copy was calculated at species level. 

Using the mean peak area for each species allows for some variation in peak 

quality which precludes use of this method for individual samples. The alleles 
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from all species were inspected at each locus and ratios between the mean 

peak areas for pairs of alleles occurring in more than one species were 

analysed in pair-wise combinations. Species where the maximum number of 

alleles equalled ploidy, the allele ratio thus equalling 1:1, were used as a 

baseline. The mean ratios for each species of unknown copy number were 

divided by the mean baseline taxon ratio to give relative proportions. Thus, if 

differences in peak amplification produce a peak ratio of 1.2 from a known 1:1 

allele ratio used as a baseline, all unknown ratios were then divided by 1.2. This 

allowed for variation in amplification between different sized alleles. ANOVA 

was used to test for variation among species for each allele pair and if this was 

significant the relative peak ratios were plotted for further inspection to compare 

size ranges and only those peak ratios that were clearly separated without 

overlap were used to infer allele copy.  

This method can only be used where the same pairs are present in more than 

one group and where a robust baseline can be established. The MAC-PR 

method is also useful for the detection of null alleles as, unlike diploids, there is 

currently no software available to test for the presence of null alleles in a 

polyploid population.  

3.2.3 Inheritance patterns of subgenus Tormaria 

To identify the relative contributions of S. aria and S. torminalis genomes to 

study members of subgenus Tormaria, we used the genome specific loci 

CH01F09 and MS14 in addition to any loci where allele copy number could be 

determined for members of this subgenus. All alleles were matched to either S. 

torminalis or S. aria wherever possible. The proposed genome contributions are 

summarised in Table 3.1.   
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Table 3.1. A summary of ploidy level, breeding systems and proposed genome 

composition of the study species (commonly suggested genome compositions 

are indicated by a capital letter A = aria genome and T = torminalis genome). X 

= ploidy based on flow cytometry data (see Section 2.3.4), ♀ = maternal 

chloroplast type from Chester et al. (2007) and Nelson-Jones et al. (2002).   

Taxon X 
Breeding 

system 
♀

  
Proposed genome 

composition  

S. torminalis 2x Out-crossing n/a TT 

S. subcuneata 3x Apomictic  S.torminalis AAT 

S. devoniensis 4x Apomictic  S.torminalis AATT 

S. admonitor 4x Apomictic  S.torminalis AATT 

S. aria 2x Out-crossing n/a AA 

S. porrigentiformis 4x Apomictic  S. aria AAAA 

S. rupicola 4x Apomictic  S. aria AAAA 

S. vexans 4x Apomictic  S. aria AAAA 

S. margaretae 4x Apomictic  S. aria AAAA 

 

3.2.4 Parentage analysis 

The most likely parental species for each polyploid taxon were assessed by 

compiling and comparing multi-locus genotypes. The accumulation of mutations 

is likely to be an issue for determining hybrid origins as it may be many 

generations since the occurrence of the hybrid event. Therefore, the majority 

genotype was used for each apomictic polyploid species where >80% of 

individuals follow type, since small allele variations, ascribed to mutations were 

observed in the minority (chapter 2). The exception to this was the highly 

variable locus SA06 where several allele size variants were included for S. 
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rupicola and S. vexans. For the sexual parental species all alleles from all 

samples were considered together as a pool of potential alleles, since the 

original genotype was presumed extinct. The diploid species sample sites 

included Cheddar Gorge, Somerset (lat. 51.287249, long. -2.7470425) and 

Avon Gorge, Bristol (lat. 51.468669, long. -2.6305114) and we included alleles 

reported in previous studies of Sorbus at these sites for microsatellite markers 

common to our  study; CH01F02, CH02D11, MSS5 and MSS16 (Houston et al., 

2009) plus MSS13 (Robertson et al., 2010). Since reported allele sizes depends 

on the calibration of the fragment analysis process, we verified allele sizes from 

these studies using S. porrigentiformis as baseline genotypes for the Avon 

Gorge study and S. anglica for the Cheddar study and adjusted the reported 

allele sizes accordingly. S. anglica was not part of our study group but had also 

been sampled and genotyped by the author.  This also enabled us to make 

comparisons at these common loci between our study species and other highly 

endemic polyploid taxa at these other sites. To investigate the most likely 

parental species for each polyploid species, each species was considered a 

putative parent in turn and the genotype was compared to a target offspring 

species and the number of loci where there was a contribution of at least one 

allele from the putative parental species was recorded. 

We then compiled the various possible parental pairwise combinations of alleles 

and scored each combination based on the number of mismatches of alleles 

missing from the pairing required to generate the putative offspring genotype. 

This follows the method of Robertson et al. (2010) where an exact match with 

no missing alleles scores zero, two missing alleles scores two etc. This was 

achieved most simply by converting all genotypes to a binary presence / 

absence matrix (1, 0) where presence of an allele = 1 and absence = 0, which 
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was carried out in the POLYSAT package in R (Clark & Jasieniuk, 2011). 

Where an allele was missing from both putative parents (0, 0) the sum equalled 

zero and was scored as a mismatch. The number of mismatches or missing 

alleles was compiled for each putative parent pair.   

All analysis was done at the species level except for S. vexans which has two 

distinct genotypes S. vexans s.s. and vex2, both of which were analysed 

separately.  

The results from all these analyses, relative levels of genetic variation (See 

Chapter 2) plus morphological features are combined to suggest the sequence 

of hybrid events and probable parentage for each species.  
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3.3 Results 

3.3.1 Microsatellites  

All ten loci amplified alleles for all samples. The additional two loci, CH01F09 

and MS14 proved to be genome specific, but both loci yielded alleles for all 

three members of subgenus Tormaria confirming their status as hybrids 

between subgenus Aria and S. torminalis. The tetraploid members of subgenus 

Aria all had four alleles at the Aria genome specific locus CH01F09 and no 

alleles at locus MS14 (Torminalis genome specific). Thus, S. torminalis and 

members of subgenus Tormaria are eliminated as potential parents of any 

member of subgenus Aria. The relative allele sizes for S. porrigentiformis 

corresponded with those from the Avon gorge study with matching size 

increments between alleles at all the common loci. This was also the case for 

the S. anglica samples from the Cheddar Gorge study. For the two diploid 

species, seven alleles were added from Cheddar and Avon for S. aria and 

seven alleles from Avon for S. torminalis from previous studies (see method 

section 3.2.4). These two diploid species had overlapping allele size ranges 

with common alleles at all loci. The alleles used in this study are shown in Table 

3.2. Microsatellite electropherograms for the polyploid species showed 

maximum peaks which corresponded to ploidy (e.g.Fig. 3.4). 

3.3.2 Allele dosage 

Where allele copy number was determined, it enabled the inference of 

inheritance patterns for subgenus Tormaria, with alleles allocated to either S. 

torminalis or S. aria where possible. Mean peak area ratio (MAC-PR) analysis 

successfully elucidated all allele copy numbers for all the polyploid species at 

four loci, CH01F02, MSS16, MSS5 and SA14 and subgenus Aria at locus 
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CH01F09 (Table 3.2). Allele copy number was not elucidated where there were 

ambiguous relative peak area ratios or insufficient comparable allele pairs. 

Table 3.3 summarises the relative peak ratios and ANOVA results. Typical box 

plots used to inspect the relative peak ratios among species are shown in Fig. 

3.5.  

3.3.3 Inheritance patterns for subgenus Tormaria 

The most likely genome composition of members of subgenus Tormaria was 

determined where alleles were matched exclusively to either S. torminalis or 

subgenus Aria. This was achieved at the genome specific loci CH01F09 and 

MS14, i.e. triploid S. subcuneata = AAT; tetraploids S. admonitor and S. 

devoniensis = AATT. These combinations were also supported by the allele 

configurations at locus MSS16. This pattern was not contradicted at any other 

loci, although due to overlap in size ranges and common alleles to S. aria and 

S. torminalis, genome composition was ambiguous at the remaining loci. 

Tetraploids S. admonitor and S. devoniensis shared the three alleles of triploid 

S. subcuneata at all loci plus one additional allele, suggesting a common origin 

for all three species. This additional allele could be detected in seven loci and 

attributed to S. torminalis at these loci; however, it was also shared with S. aria 

at three loci for S. devoniensis and one locus for S. admonitor.  



 
 

160 
 

 

Figure 3.4 Sample electropherogram of one locus (MSS16) showing the 

polyploid genotype patterns for the study group. Allele sizes are in base pairs 

(bps). Note, the larger alleles (188-204) derived from diploid S. torminalis in the 

members of subgenus Tormaria. The copy number for each allele was inferred 

from a comparison of peak area ratios as described by Esselink et al. (2004)  

 = one copy;     = two copies;  = three copies. 
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Figure 3.5 Exemplar box plots for visual comparison of the peak area ratios of 

allele pairs from two microsatellite loci. The allele pair is labelled on the y axis. 

Species codes are: AD = S. admonitor, D = S. devoniensis, M = S. margaretae, 

S = S. subcuneata (the baseline 1:1 for both plots), V = S. vexans s.s. 

1. Locus CH01F02; ANOVA, F = 21.13, p = 0.000117, df = 2, n = 5, 5, 5.         

S. devoniensis and S. admonitor both have two copies of allele187. 

2. Locus MSS5; ANOVA, F = 322.0, p <2e-16, df = 4, n = 13, 27, 22, 31, 19.    

S. margaretae has two copies of allele 119.  
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Table 3.2. Genome composition of SW endemic taxa. X = ploidy level. Allele sizes are from the majority (80%) genotype for polyploid 

taxa. Red text indicates where allele copy number has been determined using the MAC-PR method (Esselink et al., 2004), see Table 3.3. 

Underlined alleles are from Avon Gorge and Cheddar Gorge (Houston et al., 2009, Robertson et al., 2010). Coloured cells indicate 

possible sources of alleles for the six endemic taxa. TTT Alleles associated with S. torminalis samples, AAA alleles associated with S. 

aria samples, AAA alleles associated with non-endemic polyploids S. rupicola and S. porrigentiformis, no colour indicates alleles common 

to more than one of the above groups and AAA alleles unique to the six local endemic polyploid taxa. 
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   Microsatellite loci   

Taxon X CH01F02 MSS16 SA01 MSS5 

S. admonitor 4 187 187 195 199 158 160 188 204 224 232  242 119 121 123 127 

S. devoniensis 4 187 187 195 199 158 160 198 204 224 232 234 242 119 121 123 127 

S. subcuneata 3 187  195 199 158 160  204 224 232  242 119 121 123  

S. margaretae 4 191 195 199 221 158 160 162 158 224 232 224 232 119 121 119 135 

S. vexans 4 191 195 201 203 158 160 162 158 236 236 236 236 119 121 127 127 

S. vexans (vex2) 4 191 195 203 221 158 160 160 158 232 236 238  121 127 129 135 

S. porrigentiformis 4 191 197 201 203 158 162 170 158 214 236 244  115 127 131 137 

S. rupicola 4 191 199 201 209 158 162 158 158 224 230 234 236 119 127 131  

S. torminalis 2 157 167 175 187 154 166 170 178 190 192 212 216 105 113 117 119 

  189 209 191 195 182 184 186 188 226 230 234 236 123 125 127 129 

      190 194 196 198 238 240 242 244 135 137 139 141 

      200 202 204 206 246 256       

      208 210 216 222         

      230 192 214          

S. aria 2 191 195 197 201 156 158 160 164 212 220 230 232 115 121 127 129 

  193 207       234 240 242 246 135 139 141  
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  Microsatellite loci 

Taxon X CH02D11 SA03 SA06 MSS13 

S. admonitor 4 152 162 182  224    258 268   187 193 195 193 

S. devoniensis 4 152 162 182  224    258 268   189 193 195 193 

S. subcuneata 3 152 162 182  224    258 268   193 195 193  

S. margaretae 4 152 154 182 152 224    258 268 280 312 193 195 197 195 

S. vexans 4 150 154   224 240   258 280 302 312 193 195 197 199 

          294 282       

S. vexans (vex2) 4 152 154 182 152 224    258 264 268 278 193 195 199 195 

S. porrigentiformis 4 152 198   228 240   256 264 270  193 195 197 203 

S. rupicola 4 152 162 168 162 224 240   258 264 280 282 193 195 197  

          300 312 302      

S. torminalis 2 148 150 152 154 214 224 234  258 260 268 270 181 183 187 189 

  156 162 164 170     278 308 310  191 193 195 197 

  172 176 178 194             

  196 174 193 200             

S. aria 2 154 156 164 172 224 240 242 250 256 258 260 268 189 195 197 199 

  186 150 174 176 252 253 254  280 282 288  203    

  180                
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  Microsatellite loci 

Taxon X SA14 SA08 CH01F09 MS14 

S. admonitor 4 170 178 208 226 261 285   113 123   123 131   

S. devoniensis 4 170 204 208 226 261    113 123   123 133   

S. subcuneata 3 170  208 226 261    113 123   123    

S. margaretae 4 194 208 208 226 247 263   113 115 123 115     

S. vexans 4 206 206 224 226 247 263 275  115 115 121 121     

S. vexans (vex2) 4 204 212 224 226 247 275   115 115 123 123     

S. porrigentiformis 4 196 222 224 226 249 257 277  115 123 125 129     

S. rupicola 4 194 206 208 206 263 277   113 115 121 121     

S. torminalis 2 170 176 178 180 229 232 259 260     122 123 125 127 

  182 184 186 188 261 265 267 269     129 131 133 135 

  190 198 200 202 271 273 277 281         

  204 206 208 210 283 285           

  212 214 224 226             

S. aria 2 194 202 210 212 249 251 253 259 111 115 117 121     

  216 230 240 242 273 275 277  125 133       

  258                
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Table 3.3. Mean peak ratio values for each allele pair tested. Shaded boxes indicate the baseline ratio and those marked with $ are 

derived from the pairwise comparisons of other allele pairs. F values from one way ANOVA’s are shown with significance level. *p < 0.05; 

** p < 0.01; *** p < 0.001.The upper values for each taxon are the mean peak area ratios and the lower values are the relative values to 

the known ratio. Sample sizes are in parenthesis. All taxa are tetraploids except S = S. subcuneata which is triploid. AD = S. admonitor, 

D = S. devoniensis, M = S. margaretae, V = S. vexans s.s., V2 = vex2, P = S. porrigentiformis, R = S. rupicola.  

Locus Allele pair F 
Mean peak ratio for each taxon 

S AD D M V V2 P R 

CH01F02 187/199 21.13 *** 1.41 (5) 2.47 (5) 2.32 (5)      

 1:1 1.94 1.86      

195/199 1.03 n.s. 1.23 (29) 1.24 (14) 1.21 (27) 1.27  (21)     

 1:1 1 0.98 1:1     

187/195 125.7*** 1.05 (29) 1.89 (14) 2.01 (27)      

 1:1 1.78 1.86      

MSS16 158/160 260.3*** 1.1 (31) 1.08 (12) 1.1 (27) 1.88 (23) 1.85 (17) 1.06 (2)   

 1:1 1:1 1:1 1.71 1.68 0.96   

158/162 90.1***    2.11 (23) 2.1 (17)  2.23 (9) 3.1 (11) 

    2:1 $ 2:1 $  1.1 1.5 
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Locus Allele pair F 
Mean peak ratio for each taxon 

S AD D M V V2 P R 

CH02D11 

 

162/152 90.81*** 0.24 (19) 0.17 (10) 0.17 (18)     0.78 (9) 

 1:1 0.69 0.72     3.27 

152/182 31.39*** 1.88 (19) 2.37 (10) 2.43 (18) 2.89 (24)  2.95 (2)   

 1:1 1.26 1.29 1.54  1.57   

MSS5 119/127 71.99***  1.82 (13) 1.89 (27)  1 (18)   2.23 (11) 

  1:1 1:1  0.5   1.22 

119/121 322.9*** 1.1 (31) 1 (13) 1.03 (27) 2.1 (22) 1.1 (19)    

 1:1 1:1 1:1 2.1 1    

SA14 208/226 50.1*** 1.45 (10) 1.5 (2) 1.45 (16) 0.7 (11)     

 1:1 1:1 1:1 0.5     

194/208 173.9***    1.7 (11)    0.7 (7) 

    2:1    0.41 

CH01F09 115/123 364***    2.69 (24)  1.28 (2) 0.95  

    2.82  1.34 1:1  

121/115 581***     0.79 (20)   1.6 (11) 

     0.49   1:1, 2:1 or 1:2 

115/113 214.9***    1.57 (24)    0.98 (11) 

    1.6    1:1 $ 
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Locus Allele pair F 
Mean peak ratio for each taxon 

S AD D M V V2 P R 

MSS13 193/195 88.08*** 1.98 (13) 1.85 (3) 2.04 (6) 0.5 (18) 1.1 (16) 0.7 (2) 0.93 (4) 0.9 (8) 

 1.8 1.7 1.9 0.5 1:1 0.6 0.8 0.8 

195/199 39.07***     1.64 (16) 3.13 (2)   

     1:1$ 1.9   

SA01 224/232 0.19 n.s. 1.78 (9) 0.55 (12) 0.48 (22) 1.18 (19)     

 1:1 1:1  1.05     
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3.3.4 Parentage analysis 

The three study members of subgenus Tormaria, S. subcuneata, S. devoniensis 

and S. admonitor had matching alleles at all 10 loci. They also had common 

alleles with S. torminalis at every locus, as mentioned in section 3.3.3. For 

these three species, the pairwise comparisons generated multiple genotype 

matches including a match of S. margaretae × S. torminalis (Table 3.4). The 

most likely of these potential matches are discussed below and are highlighted 

in Table 3.4. 

Of the study members of subgenus Aria, only S. margaretae and the second S. 

vexans clone, vex2, had matching alleles with any other study taxa at all ten 

loci. The pairwise comparisons generated no exact matches for potential 

parentage of members of subgenus Aria among the study group. All missing 

alleles for each parentage match were subsequently checked against the 

minority genotypes for each potential progenitor without resolution.  The next 

best match was recorded with a score for the number of missing allele matches 

against each pairwise cross. Tables for the pair wise comparison of each 

species can be found in supplementary information Tables S3.1 to S3.8. Table 

3.4 summarises the best parentage matches for each polyploid species and 

vex2. 
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Table 3.4 Summary of the parentage simulation. For each study polyploid taxon 

the best matched pairs of potential parent genotypes are shown. The best 

matches have the lowest number of mismatched or missing alleles as shown in 

the right column. Based on the results from all analyses the most likely pairings 

are highlighted and discussed in 3.4. 

Taxon                     Parent pair 

                        X 
Number of 

mismatched 
alleles 

S. subcuneata S. admonitor S. devoniensis 0 

S. admonitor S. margaretae 0 

S. admonitor S. vexans 0 

S. admonitor S. porrigentiformis 0 

S. admonitor S. rupicola 0 

S. admonitor S. torminalis 0 

S. admonitor S. aria 0 

S. torminalis S. margaretae 0 

S. admonitor S. torminalis S. devoniensis 0 

S. torminalis S. subcuneata 0 

S. torminalis S. margaretae 0 

S. devoniensis S. torminalis S. devoniensis 0 

S. torminalis S. subcuneata 0 

S. torminalis S. margaretae 0 

S. margaretae S. vexans S. admonitor 3 

S. vexans S. devoniensis 3 

S. vexans S. subcuneata 3 

S. aria S. rupicola 4 

S. vexans S. rupicola 5 

S. vexans S. margaretae S. porrigentiformis 5 

S. aria S. rupicola 6 

S. margaretae S. rupicola 6 

S. margaretae S. aria 6 

S. margaretae S. torminalis 6 

Vex2 S. vexans S. torminalis 4 

S. margaretae S. torminalis 5 

S. vexans S. margaretae 6 

S. porrigentiformis S. aria S. torminalis 12 

S. aria S. rupicola 13 

S. aria S. vexans 13 

S. torminalis S. vexans 13 
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3.4 Discussion 

The parentage approach in this study has provided strong support for some of 

the relationships proposed in Chapter 2. The allelic configurations of the 

polyploid study species confirm their close associations. The many shared 

alleles among the south west endemics suggest they have common ancestry or 

are derived from each other. The parentage analysis (Table 3.4) upholds the 

close relationship of S. rupicola with the other members of the study group 

compared to S. porrigentiformis proposed in Chapter 2. It shares more alleles 

(Table 3.2) and is therefore a possible parent for more species (Table 3.4). 

3.4.1 Origins and genome configuration of Tormaria members in the 

southwest UK 

Our results confirm the findings of previous studies that subgenus Tormaria is 

derived from ancestral hybridisations between diploid S. torminalis and 

members of subgenus Aria (Nelson-Jones et al., 2002, Chester et al., 2007).  

That S. subcuneata shares all its alleles with both S. devoniensis and S. 

admonitor suggests it is the common link between the two and that they are 

both derived from S. subcuneata rather than the reverse. The fact that the 

additional alleles found in S. devoniensis and S. admonitor match those seen in 

S. torminalis suggest that S. torminalis is the source of these alleles via 

hybridisation events. This formation of S. admonitor and S. devoniensis via a 

common triploid (S. subcuneata) hybridising with diploid S. torminalis places 

strong support for the formation of Sorbus tetraploids via the triploid bridge.  

A less parsimonious explanation for the pairwise matches for S. subcuneata is 

from a fusion of diploid gametes from S. devoniensis or S. admonitor with 
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reduced n gametes from S. torminalis, S. aria or any member of subgenus Aria. 

These possibilities have less validity primarily because if either S. devoniensis 

or S. admonitor gave rise to triploid S. subcuneata they would contribute a pair 

of alleles at each locus along with a third allele from a contributing diploid or 

tetraploid. This would fail to explain how both tetraploid species share the 

complete set of alleles common to S. subcuneata. A hybrid event among any 

pair of tetraploids would most likely result in a further tetraploid (2x + 2x), rather 

than a triploid which would require the production of unbalanced gametes.  S. 

devoniensis has been proposed as a progenitor for S. subcuneata (Wilmott, 

1934) on morphological grounds and possibly due to its far larger distribution 

range (Fig. 3.3), but we dismiss this as the least likely scenario due to the 

above reasons. Its relatively large distribution is most likely due to fitness and a 

possible wider ecological niche. Seeds readily germinate and are produced in 

abundance most years (pers. obs.).  

The combination of two gametes with double sets of chromosomes to produce a 

novel tetraploid AATT cannot be ruled out and the discovery of a triploid form of 

S. torminalis (Hamston et al., 2015) suggests unreduced gamete formation in 

diploid Sorbus has occurred in this region, however the allelic configuration of 

the study members of subgenus Tormaria suggests this was not their direct 

route of origin. The production of unreduced 3x gametes from triploids leading 

to the formation of allotetraploids by backcrossing is seen in other systems 

(Ramsey & Schemske, 1998). The maternally inherited chloroplast haplotype 

found in S. admonitor and S. devoniensis (Chester et al., 2007) could have 

been inherited from either S. torminalis or S. subcuneata so it is unclear in 

which direction this hybridisation occurred. The prevalence of apomixis in S. 

subcuneata would suggest it was most likely the pollen donor rather than the 
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maternal progenitor species since it does produce stainable pollen, a proxy for 

viability (Rich, 2009).  

If we accept that S. subcuneata gave rise to S. devoniensis and S. admonitor, 

S. admonitor can be eliminated as a progenitor of S. subcuneata. Therefore,  

our parentage analysis suggest that S. margaretae is the most likely parental 

species to have given rise to S. subcuneata, via an original single hybrid event 

with S. torminalis, since they all share a common pair of Aria derived alleles at 

ten of the eleven loci that amplified in S. margaretae (Table 3.2). No common 

alleles were amplified at SA08 although the presence of null alleles at this locus 

cannot be excluded since we were unable to resolve allele dosage at this locus. 

This deviates from previous hypotheses based on morphology which place S. 

rupicola as progenitor of S. subcuneata, and S. aria s.s. as progenitor for S. 

devoniensis with a doubling of chromosomes (Sell, 1989). Lemche (1999) also 

suggests S. rupicola and S. vexans as probable progenitors for this group.  

The most likely scenario is that a reduced 2x pollen grain from S. margaretae 

fused with a normal reduced female gamete from S. torminalis (Chester et al., 

2007) to produce a triploid AAT, e.g. S. subcuneata, which is supported by the 

common pair of AA alleles across the group. Since Sorbus polyploids are 

pseudogamous they generally retain male fertility, thus tetraploids produce 

viable haploid pollen through regular microsporogenesis (Gornall, 1999). The 

prevalence of apomixis among these polyploids (see Section 2.4.2) would imply 

that pollen from an apomictic is more likely to fertilise an ovum of a sexual 

species than vice versa. These results are consistent with the findings of 

Proctor et al. (1989) who found that S. admonitor and S. devoniensis shared a 

common peroxidase phenotype, similar to S. subcuneata and S. margaretae.  
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Hajrudinović et al. (2015) showed that this type of interploidy cross was frequent 

(31% of seed from diploid S. aria at one site) where diploids were in the minority 

and pollen pressure from tetraploids was high. Therefore is seems that the 

successful hybridisation between diploid S. torminalis and S. margaretae was 

most likely where S. torminalis was rare, relative to S. margaretae. However, 

cross pollination experiments performed by Ludwig (2013) where pollen from 

tetraploids was used to pollinate sexual diploid S. aria resulted in pollen tube 

growth but only a few deformed seeds which showed a triploid profile. It may be 

that successful hybrid seed production may be a low proportion of overall 

hybridisation events.  

Our findings reiterate the roles of tetraploids and triploids in the repeated cycle 

of polyploid formation in the Rosaceae (Robertson et al., 2004b, Dickinson et 

al., 2007, Ludwig et al., 2013). The repeated hybridisation events involving 

sexual diploid S. torminalis create opportunities for new alleles to ‘refresh’ the 

polyploid gene pool. The likely sequence of hybrid events and origins for this 

group is shown in figure 3.6. 
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Figure 3.6 Hypothesis for the hybrid origins of the study members of subgenus 

Tormaria in the southwest UK based on parentage simulation data and 

inheritance patterns 

3.4.2 Origins of members of subgenus Aria in southwest UK 

We confirm the placement of S. rupicola, S. porrigentiformis, S. vexans and S. 

margaretae within subgenus Aria. Resolution of allele dosage at locus 

CH01F09, which only amplifies for the Aria genome, revealed four alleles for all 

four species and vex2. Therefore, we can rule out S. torminalis as a potential 

progenitor from Table 3.4. The reasons for a lack of exact matches for all 

members of this group are discussed below but the nearest matches can still 

indicate possible hybrid origins.  
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If we accept that S. margaretae gave rise to S. subcuneata, S. devoniensis and 

S. admonitor we must look to other members of subgenus Aria for the origins of 

S. margaretae. S. vexans has a comparable distribution to S. margaretae and 

they occur together on the majority of their sites. This fact and their similar 

morphology suggest that one species is derived from the other. The probability 

that S. aria is a progenitor for these two species cannot be ruled out as it may 

once have occurred in this region but the sympatric distributions of the polyploid 

species make them more likely contenders; however the matching of S. aria 

alleles not found in other polyploids could suggest involvement of unsampled 

genotypes. 

S. margaretae has the lowest genetic diversity of this group (Table 2.1) and is 

highly endemic to this region. These features point towards a more recent origin 

than S. porrigentiformis and S. rupicola and possibly S. vexans. The closest 

match for S. margaretae is S. rupicola × S. aria (4 mismatches, Table 3.4) 

followed by S. rupicola × S. vexans (6 mismatches). If S. margaretae is more 

recent than S. vexans and possibly derived from S. vexans (rather than S. aria), 

the other most closely matched parent is then S. rupicola. This then makes S. 

rupicola × S. aria (6 mismatches) the most likely origin for S. vexans.  

These relationships are more speculative than for members of subgenus 

Tormaria due to the lack of complete matches. 

The second clone, vex2, was identified in Section 2.5 as a product of 

hybridisation rather than mutations or sexual recombination within one of the 

apomictic species. As its origins are within subgenus Aria the most likely parent 

pair is S. vexans × S. margaretae (6 mismatches). There are only two known 

trees with this genotype that occur on a small (<3ha) highly diverse site with six 
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other polyploid Sorbus species so it may be assumed to be of recent origin so it 

is surprising that no parental match could be ascertained for vex2. However, all 

alleles are present in the wider study group, which may suggest intermediate 

unsampled genotypes.  

The hybridisation of two tetraploid Sorbus species is thought to be a rare event 

(Rich et al., 2010). Where hybrid parentage has been determined it has 

involved diploid species (Robertson et al., 2010), although sexual reproduction 

within tetraploid Sorbus species (Robertson et al., 2004a) suggests that it may 

be possible especially between closely related tetraploids. Therefore, where 

heterospecific pollen pressure is high, which is the case for the vex2 site, cross 

pollination becomes more likely.  

It is not known where S. porrigentiformis arose but it is present on the south 

coast of Devon (circa 20 trees; T. Hamston unpublished data, MSc thesis) and 

in smaller numbers along the north coast (Fig. 3.3), often occurring with S. 

rupicola. Within the study members of subgenus Aria its two closest parentage 

pairings of S. rupicola × S. aria and S. vexans × S. aria, however the large mis-

match (Table 3.4; 13 mismatches of a total of 32 alleles) suggest it arose 

elsewhere. 

That exact matches for the members of subgenus Aria could not be achieved 

could be due to a number or reasons such as mutations in the offspring since 

inception; non-sampling of progenitor variants within the sampled species; 

progenitors are extinct or occur outside the sampling region; the presence of 

null alleles or genotyping errors.   
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Mutations in study members of subgenus Aria that have occurred since origins 

most likely account for the variation in allele sizes at some loci e.g. SA06. In 

Chapter 2 we showed that low levels of genetic variation within S. rupicola, S. 

porrigentiformis, S. margaretae and S. vexans (Section 2.3.3) were attributed to 

mutational changes rather than recombination events. Even small mutations 

mean exact parental matches may not be possible even if all parental 

genotypes were sampled.  

The likelihood of exact parental matches decreases with increasing numbers of 

markers; with mutations, null alleles and genotyping errors possibly leading to 

the false exclusion of true parents (Jones & Ardren, 2003). It is also possible 

that other offspring of hybridisations will be more closely related than detectable 

parents (Marshall et al., 1998), leading to false conclusions unless the 

sequence of speciation events can be determined. For this reason error rates 

are generally used to determine the number of mis-matches allowed before 

excluding a single parent (Gerber et al., 2000). The two phase model and 

generalised stepwise model are considered to be the most realistic models for 

microsatellites describing the occurrence of mutation steps by an absolute 

number which may be more than a single tandem repeat (Estoup et al., 2002). 

All microsatellite loci used in this study are dinucleotide repeats and many of the 

alleles present at any one locus differ in size by two base pairs (Table 3.2).  In 

fact, fifty eight percent of the reported ‘missing alleles’ reported above are two 

base pairs different from the nearest match (24% are 4bp removed) and only 

two alleles present in the endemic taxa are not found in any other sampled 

species. This means that mutations occurring in two or four base pair steps are 

likely to lead to size homoplasy between species, obscuring relationships 

among very similar genotypes.  
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It is unknown how old these species are; pollen analysis on Arran found non 

diploid Sorbus pollen present from c. 5400 B.P. (Boyd & Dickson, 1987) so it is 

possible that some of these south west endemics may have been in existence 

that length of time. Therefore, the likelihood of being able to sample the exact 

parental genotypes will decrease with the age of the polyploid. There is a 

probability that there may be missing genotype ‘links’ either now extinct or 

existing as cryptic hybrids within the current Sorbus distributions. The discovery 

of vex2, which has always been identified as S. vexans indicates the likelihood 

for such a scenario. These may include once native S. aria or extinct triploids 

acting as the bridge between diploids and tetraploid formation. Triploid Sorbus 

in common with other triploids in Rosaceae are less fertile than diploids and 

tetraploids when seed production is measured (Talent & Dickinson, 2005) and 

they may occupy a more transient position in polyploid formation particularly as 

some have been shown to be self-incompatible (Ludwig et al., 2013).    

Long distance gene flow via seed dispersal may account for the presence of 

alleles found in endemic polyploid species but which appear to be absent in the 

diploid species of the locality. The two alleles unique to the endemic polyploid 

species were compared to alleles of other polyploid species at Cheddar which is 

approximately 60 -100km east of the north Somerset coast sites. We were able 

to match allele 182 at locus CH02D11 (see Table 3.2) with S. rupicoloides 

(Houston et al., 2009), which also had this as a unique allele (scored as 189) 

among the Cheddar polyploid taxa. It also had three of the seven alleles within 

our study species that were not present in either S. porrigentiformis  or S. 

rupicola, which we had matched to S. aria (some of which were sampled at 

Cheddar). Whilst this does not confirm a link it does illustrate the close 

relationships among Sorbus populations in the broader southwest region of the 
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UK. Bird mediated seed dispersal could link these south west sites particularly 

since Sorbus fruit are a known food for migrating thrush species Turdus 

spp.(Snow & Snow, 1988, Huttunen, 2004; pers.obs) as they move across the 

country from Scandinavia during autumn when Sorbus fruits are ripe.  

Null alleles were not detected in those loci where all allele copy numbers were 

determined so this problem can be discounted in those loci. However, it is 

possible at other loci and the missing alleles at SA08 causing the mis-match of 

S. margareate as a parent of S. subcuneata seems most likely due to this as 

discussed above. The probability of genotyping errors were eliminated by 

repeating PCR amplification of inconsistent samples to ensure observed allele 

sizes were not artefacts of PCR amplification or scoring error. 

The lack of obvious pairing of inherited alleles in subgenus Aria (see Table 3.2) 

suggest a deviation from disomic inheritance at some loci (refer to Fig. 3.1). The 

common pairs of Aria derived alleles in S. margaretae and S. subcuneata are 

not necessarily associated elsewhere. Whilst this observation cannot 

substantiate inheritance patterns due to the lack of clarity in parent/offspring 

pairs, progeny analysis of sexual S. aria × tetraploid S. porrigentiformis showed 

polysomic inheritance patterns at the only locus with parent specific alleles, 

MSS5 (Ludwig, 2013); both species had common alleles at the remaining loci. 

Polysomic inheritance might be expected in this subgenus of very closely 

related species where structurally similar chromosomes may exhibit the 

multivalent pairing characteristic of autopolyploids.   

Conclusion 

Evidence was obtained for the formation of hybridogenous polyploids both via 

the triploid bridge route and via reduced gametes from tetraploids combining 
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with those of sexual diploids to form triploid cytotypes. Therefore the role of 

outcrossing diploids in refreshing the genetic ‘pool’ of apomictic polyploid 

complexes is apparent. The closely related genomes of the study members of 

subgenus Aria suggest tetraploid hybridisations have occurred and similarities 

with those of more geographically distant members could suggest colonisation 

routes but also that many of the Sorbus polyploids in southwest England may 

have common polyploid ancestors.  

 

 

ACKNOWLEDGEMENTS 

This research was funded by the Whitley Wildlife Trust, Paignton Zoo, UK. 

Identification in the field was provided by specialist botanist Tim Rich and Libby 

Houston assisted in sample identification and collection at Avon and Cheddar 

Gorge.  



 
 

182 
 

3.5 References 

Boyd WE, Dickson JH. 1987. A post-glacial pollen sequence from Loch 

a'Mhuilinn, north Arran: A record of vegetation history with special 

reference to the history of endemic Sorbus species. The New 

Phytologist, 107: 221-244. 

Bretagnolle F, Thompson JD. 1995. Gametes with the somatic chromosome 

number: mechanisms of their formation and role in the evolution of 

autopolyploid plants. The New Phytologist, 129: 1-22. 

Chester M, Cowan RS, Fay MF, Rich TCG. 2007. Parentage of endemic 

Sorbus L. (Rosaceae) species in the British Isles: evidence from plastid 

DNA. Botanical Journal of the Linnean Society, 154: 291-304. 

Clark LV, Jasieniuk M. 2011. POLYSAT: an R package for polyploid 

microsatellite analysis. Molecular Ecology Resources, 11: 562-566. 

Dickinson TA, Lo E, Talent N. 2007. Polyploidy, reproductive biology, and 

Rosaceae: understanding evolution and making classifications. Plant 

Systematics and Evolution, 266: 59-78. 

Esselink GD, Nybom H, Vosman B. 2004. Assignment of allelic configuration 

in polyploids using the MAC-PR (microsatellite DNA allele counting—

peak ratios) method. Theoretical and Applied Genetics, 109: 402-408. 

Estoup A, Jarne P, Cornuet JM. 2002. Homoplasy and mutation model at 

microsatellite loci and their consequences for population genetics 

analysis. Molecular ecology, 11: 1591-1604. 

Gerber S, Mariette S, Streiff R, Bodénès C, Kremer A. 2000. Comparison of 

microsatellites and amplified fragment length polymorphism markers for 

parentage analysis. Molecular Ecology, 9: 1037-1048. 

Gornall RJ. 1999. Population genetic structure in agamospermous plants. In: 

Hollingsworth PM, Bateman RM, Gornall RJ, eds. Molecular systematics 

and plant evolution. London: Taylor & Francis. 

Grant V. 1981. Plant speciation. New York: Columbia University Press  

Hajrudinović A, Siljak-Yakovlev S, Brown SC, Pustahija F, Bourge M, 

Ballian D, Bogunić F. 2015. When sexual meets apomict: genome size, 

ploidy level and reproductive mode variation of Sorbus aria s.l. and S. 

austriaca (Rosaceae) in Bosnia and Herzegovina. Annals of Botany, 116: 

301-312. 



 
 

183 
 

Hamston TJ, Pellicer J, Fay MF. 2015. Polyploid wild service tree: first record 

of a triploid Sorbus torminalis (Rosaceae) in Britain. New Journal of 

Botany, 5: 34-36. 

Hegarty MJ, Hiscock SJ. 2009. The complex nature of allopolyploid plant 

genomes. Heredity, 103: 100-101. 

Houston L, Robertson A, Jones K, Smith SCC, Hiscock S, Rich TCG. 2009. 

An account of the Whitebeams (Sorbus L., Rosaceae) of Cheddar 

Gorge, England, with description of three new species. Watsonia, 27: 

283. 

Husband BC. 2004. The role of triploid hybrids in the evolutionary dynamics of 

mixed-ploidy populations. Biological Journal of the Linnean Society, 82: 

537-546. 

Husband BC, Schemske DW. 2000. Ecological mechanisms of reproductive 

isolation between diploid and tetraploid Chamerion angustifolium. Journal 

of Ecology, 88: 689-701. 

Huttunen MJ. 2004. Autumn migration of thrushes over eastern Finland: a 

comparison of visible migration and ringing recovery patterns. Ringing 

and Migration, 22: 13-23. 

Jones AG, Ardren WR. 2003. Methods of parentage analysis in natural 

populations. Molecular Ecology, 12: 2511-2523. 

Köhler C, Mittelsten Scheid O, Erilova A. 2010. The impact of the triploid 

block on the origin and evolution of polyploid plants. Trends in Genetics, 

26: 142-148. 

Lemche EB. 1999. The origins and interactions of British Sorbus species. 

Unpublished PhD thesis, University of Cambridge, Cambridge. 

Lerceteau-Köhler E, Guérin G, Laigret F, Denoyes-Rothan B. 2003. 

Characterization of mixed disomic and polysomic inheritance in the 

octoploid strawberry (Fragaria × ananassa) using AFLP mapping. 

Theoretical and Applied Genetics, 107: 619-628. 

Levin DA. 1975. Minority cytotype exclusion in local plant populations. Taxon: 

35-43. 

Ludwig S, Robertson A, Rich TCG, Djordjevic M, Cerovic R, Houston L, 

Harris SA, Hiscock SJ. 2013. Breeding systems, hybridization and 

continuing evolution in Avon Gorge Sorbus. Annals of Botany. 



 
 

184 
 

Ludwig SC. 2013. Breeding systems, pollen flow and continuing evolution in 

Avon Gorge Sorbus (whitebeams, rowans and service trees), PhD 

Thesis, University of Bristol, Bristol. 

Mandáková T, Gloss AD, Whiteman NK, Lysak MA. 2016. How diploidization 

turned a tetraploid into a pseudotriploid. American Journal of Botany, 

103: 1187-1196. 

Marks GE. 1966. The origin and significance of intraspecific polyploidy: 

experimental evidence from Solanum chacoense. Evolution: 552-557. 

Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical confidence 

for likelihood‐based paternity inference in natural populations. Molecular 

ecology, 7: 639-655. 

Nelson-Jones E, Briggs D, Smith A. 2002. The origin of intermediate species 

of the genus Sorbus. Theoretical and Applied Genetics, 105: 953-963. 

Nogler GA. 1984. Gametophytic apomixis. Berlin: Springer-Verlag. 

Paun O, Fay MF, Soltis DE, Chase MW. 2007. Genetic and epigenetic 

alterations after hybridization and genome doubling. Taxon, 56: 649-656. 

Pellicer J, Clermont S, Houston L, Rich TCG, Fay MF. 2012. Cytotype 

diversity in the Sorbus complex (Rosaceae) in Britain: sorting out the 

puzzle. Annals of Botany, 110: 1185-1193. 

Proctor MCF, Proctor ME, Groenhof AC. 1989. Evidence from peroxidase 

polymorphism on the taxonomy and reproduction of some Sorbus 

populations in south-west England. New Phytologist, 112: 569-575. 

Ramsey J, Ramsey TS. 2014. Ecological studies of polyploidy in the 100 years 

following its discovery. Philosophical Transactions of the Royal Society of 

London. Series B, Biological sciences, 369. 

Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of 

polyploid formation in flowering plants. Annual Review of Ecology and 

Systematics, 29: 467-501. 

Ramsey J, Schemske DW. 2002. Neopolyploidy in flowering plants. Annual 

Review of Ecology and Systematics, 33: 589-639. 

Rich TCG. 2009. Pollen stainability in British Sorbus L. (Rosaceae). Plant 

Ecology and Diversity, 2: 85-88. 

Rich TCG, Houston L, Robertson A, Proctor MCF. 2010. Whitebeams, 

rowans and service trees of Britain and Ireland. A monograph of British 



 
 

185 
 

and Irish Sorbus L. B.S.B.I. Handbook No. 14. London: Botanical Society 

of the British Isles. 

Richards AJ. 2003. Apomixis in flowering plants: An overview. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 358: 1085-

1093. 

Rieseberg LH, Willis JH. 2007. Plant speciation. Science, 317: 910-914. 

Robertson A, Newton AC, Ennos RA. 2004a. Breeding systems and 

continuing evolution in the endemic Sorbus taxa on Arran. Heredity, 93: 

487-495. 

Robertson A, Newton AC, Ennos RA. 2004b. Multiple hybrid origins, genetic 

diversity and population genetic structure of two endemic Sorbus taxa on 

the Isle of Arran, Scotland. Molecular Ecology, 13: 123-134. 

Robertson A, Rich TCG, Allen AM, Houston L, Roberts CAT, Bridle JR, 

Harris SA, Hiscock SJ. 2010. Hybridization and polyploidy as drivers of 

continuing evolution and speciation in Sorbus. Molecular Ecology, 19: 

1675-1690. 

Segraves KA, Anneberg TJ. 2016. Species interactions and plant polyploidy. 

American Journal of Botany, 103: 1326-1335. 

Sell PD. 1989. The Sorbus latifolia (Lam.) Pers. aggregate in the British Isles. 

Watsonia, 17: 385-399. 

Snow B, Snow D. 1988. Birds and berries–A study of ecological interactions. 

Poyser, London. 

Sobel JM, Chen GF, Watt LR, Schemske DW. 2010. The biology of 

speciation. Evolution, 64: 295-315. 

Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, 

Sankoff D, Depamphilis CW, Wall PK, Soltis PS. 2009. Polyploidy and 

angiosperm diversification. American Journal of Botany, 96: 336-48. 

Soltis DE, Visger CJ, Marchant DB, Soltis PS. 2016. Polyploidy: Pitfalls and 

paths to a paradigm. American Journal of Botany, 103: 1146-1166. 

Soltis P. 2005. Ancient and recent polyploidy in angiosperms. New Phytologist, 

166: 5 - 8. 

Talent N, Dickinson TA. 2005. Polyploidy in Crataegus and Mespilus 

(Rosaceae, Maloideae): evolutionary inferences from flow cytometry of 



 
 

186 
 

nuclear DNA amounts. Canadian Journal of Botany-Revue Canadienne 

De Botanique, 83: 1268-1304. 

Thompson KA, Husband BC, Maherali H. 2014. Climatic niche differences 

between diploid and tetraploid cytotypes of Chamerion angustifolium 

(Onagraceae). American Journal of Botany, 101: 1868-1875. 

Wendel JF. 2000. Genome evolution in polyploids. Plant Molecular Biology, 42: 

225-249. 

Whitton J, Sears CJ, Baack EJ, Otto SP. 2008. The dynamic nature of 

apomixis in the angiosperms. International Journal of Plant Sciences, 

169: 169-182. 

Wilmott AJ. 1934. Some interesting British Sorbi. Proceedings of the Linnean 

Society of London 146: 73–79. 



 
 

187 
 

Chapter 3: Supplementary Information 

The following tables show results for the pairwise match to simulate possible 

parentage. Species codes: sub = S. subcuneata, adm = S. admonitor, dev = S. 

devoniensis, mar = S. margaretae, vex = S. vexans, por = S. porrigentiformis, 

rup = S. rupicola, torm = S. torminalis, aria = S. aria. AAA Shaded cells show 

the best matches. 

Table S3.1a Parentage match for S. subcuneata at 10 loci (24 alleles) 

Most likely parent Missing loci in parent / loci 
with >0% contribution 
 

S. admonitor 0/10 

S. devoniensis 0/10 

S. torminalis 0/10 

S. margaretae 1/10 

S. rupicola 1/10 

S. vexans s.s. 3/10 

S. aria 3/10 

S. porrigentiformis 4/10 

 

Table S3.1b Parent pair allele matches at 10 loci for S. subcuneata (24 alleles). 

 adm dev mar vex por rup torm aria 

S. admonitor 0        

S. devoniensis 0 0       

S. margaretae 0 0 7      

S. vexans s.s. 0 0 7 14     

S. porrigentiformis 0 0 7 13 19    

S. rupicola 0 0 6 9 12 13   

S. torminalis 0 0 0 4 7 6 9  

S. aria 0 0 6 11 11 7 4 14 
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Table S3.2a. Parentage match for S. admonitor at 10 loci (29 alleles) 

Most likely parent Missing loci in parent / loci 
with >0% contribution 

S. subcuneata 0/10 

S. devoniensis 0/10 

S. torminalis 0/10 

S. margaretae 1/10 

S. rupicola 1/10 

S. vexans s.s 3/10 

S. aria 3/10 

S. porrigentiformis 4/10 

 

Table S3.2b Parent pair allele matches at 10 loci for S. admonitor (29 alleles).  

 dev sub mar vex por rup torm aria 

S. devoniensis 4        

S. subcuneata 4 5       

S. margaretae 4 4 12      

S. vexans s.s. 4 4 11 18     

S. porrigentiformis 4 4 11 17 23    

S. rupicola 4 4 8 13 16 17   

S. torminalis 0 0 0 6 9 6 10  

S. aria 4 4 9 16 15 11 4 19 
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Table S3.3a Parentage match for S. devoniensis at 10 loci (29 alleles) 

Most likely parent Missing loci in parent / loci 
with >0% contribution 

S. admonitor 0/10 

S. subcuneata 0/10 

S. torminalis 0/10 

S. rupicola 1/10 

S. margaretae 1/10 

S. aria 3/10 

S. vexans s.s. 3/10 

S. porrigentiformis 5/10 

 

Table S3.3b. Parent pair allele matches at 10 loci for S. devoniensis at 10 loci 

(29 alleles) 

 adm sub  mar vex por rup torm aria 

S. admonitor 4        

S. subcuneata  4 5       

S. margaretae 4 5 12      

S. vexan s.s. 4 4 11 18     

S. porrigentiformis 4 4 11 14 23    

S. rupicola 3 3 9 8 15 16   

S. torminalis 0 0 0 2 7 6 9  

S. aria 2 2 8 11 13 9 4 16 
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Table S3.4a Parentage match for S. margaretae at 10 loci (24 alleles) 

Most likely parent Missing loci in parent / loci 
with >0% contribution 

S. rupicola 0/10 

S. admonitor 1/10 

S. devoniensis 1/10 

S. subcuneata 1/10 

S. vexans s.s. 1/10 

S. aria 2/10 

S. torminalis 4/10 

S. porrigentiformis 5/10 

 

Table S3.4b Parent pair allele matches at 10 loci for S. margaretae.  

 
adm dev sub vex por rup torm aria 

S. admonitor 11        

S. devoniensis 11 11       

S. subcuneata 11 11 11      

S. vexans s.s. 3 3 3 10     

S. porrigentiformis 8 8 8 9 20    

S. rupicola 4 4 4 5 9 13   

S. torminalis 8 8 8 6 13 8 17  

S. aria 6 6 5 6 10 4 8 14 
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Table S3.5a Parentage match for S. vexan s.s. at 10 loci (29 alleles) 

Most likely parent Missing loci in parent / loci 
with >0% contribution 

S. rupicola 1/10 

S. margaretae 1/10 

S. torminalis 2/10 

S. admonitor 3/10 

S. devoniensis 3/10 

S. subcuneata 3/10 

S. porrigentiformis 3/10 

S. aria 3/10 

 

Table S3.5b. Parent pair allele matches at 10 loci for S. vexans s.s.   

 
adm dev sub mar por rup torm aria 

S. admonitor 18        

S. devoniensis 18 18       

S. subcuneata 18 18 19      

S. margaretae 10 10 11 11     

S. porrigentiformis 10 10 10 5 16    

S. rupicola 8 8 8 6 9 12   

S. torminalis 12 12 12 6 10 10 17  

S. aria 11 11 11 6 8 6 8 14 
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Table S3.6a Parentage match for vex2 at 10 loci (29 alleles) 

Most likely parent Missing loci in parent / loci 
with >0% contribution 

S. vexans s.s. 0/10 

S. margaretae 0/10 

S. admonitor 1/10 

S. devoniensis 1/10 

S. subcuneata 1/10 

S. aria 1/10 

S. rupicola 2/10 

S. porrigentiformis 2/10 

S. torminalis 3/10 

 

Table S3.6b. Parent pair allele matches at 10 loci for vex2 

 
adm dev sub mar 

vex 
s.s. 

por rup torm aria 

S. admonitor 16         

S. devoniensis 14 15        

S. subcuneata 15 14 17       

S. margaretae 11 10 12 12      

S. vexans s.s. 8 7 8 6 12     

S. porrigentiformis 11 10 11 7 10 19    

S. rupicola 13 12 13 9 10 17 20   

S. torminalis 7 7 7 5 4 9 12 15  

S. aria 10 9 10 7 7 7 10 7 14 

 



 
 

193 
 

Table S3.7a Parentage match for S. porrigentiformis (32 alleles) 

Most likely parent Missing loci in parent / loci 
with >0% contribution 

S. rupicola 1/10 

S. torminalis 2/10 

S. aria 3/10 

S. vexans s.s. 3/10 

S. margaretae 5/10 

S. devoniensis 5/10 

S. admonitor 5/10 

S. subcuneata 6/10 

 

Table S3.7b. Parent pair allele matches at 10 loci for S. porrigentiformis. 

 
adm dev sub mar vex s.s. rup torm aria 

S. admonitor 26        

S. devoniensis 26 26       

S. subcuneata 26 26 27      

S. margaretae 23 23 24 24     

S. vexans s.s. 18 18 18 18 19    

S. rupicola 17 17 17 17 15 18   

S. torminalis 18 18 18 16 13 14 20  

S. aria 16 16 16 15 13 13 12 19 
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Abstract 

The genus Sorbus is known for its complex taxonomy involving many polyploid 

species. However, Sorbus torminalis has long been assumed to be uniformly 

diploid. An analysis of DNA content using flow cytometry revealed a triploid 

individual within 0.5 km of tetraploid S. devoniensis at South Tawton, Devon. A 

hypothesis based on the leaf morphology and genetic genotypes described in 

Chapter 2, suggests the novel Sorbus to be a spontaneous S. torminalis triploid 

rather than the result of interspecific hybridisation.  

Key words: evolution, flow cytometry, polyploid, Sorbus, triploid. 



 
 

196 
 

4.1 Introduction 

 

Polyploidy is widely accepted to be an important factor in the evolution of 

angiosperms and the spontaneous formation of novel species (Grant, 1981; 

Soltis et al., 2009). Polyploidy can arise in several ways but occurs most 

commonly via the fertilisation of unreduced gametes containing the somatic 

chromosome number (Ramsey & Schemske; 1998; Köhler et al., 2010). This 

process can result in triploid progeny that may, in turn, give rise to further 

polyploids through back-crossing or via hybridisation events involving other 

polyploid taxa (Husband, 2004).  

In the British Isles the genus Sorbus is represented by four sexually reproducing 

diploid species – Sorbus aria (L.) Crantz, S. torminalis (L.) Crantz, S. aucuparia 

L. and S. domestica L. plus, at least 30 recognised polyploid species that 

primarily reproduce asexually via apomixis (Robertson et al., 2010; Ludwig et 

al., 2013). Within this group there are high levels of endemism, often 

represented as small populations or even a few individuals restricted to one or 

few sites e.g. Sorbus leyana Wilmott (Rich et al., 2010).  This complex array of 

morphologically diverse taxa arose from hybridisation events involving 

crossings between the diploid species and other polyploid apomicts (Rich et al., 

2010), resulting in a taxonomically intricate polyploid network (Pellicer et al., 

2012).  

Chromosome numbers can provide useful information about the origin of certain 

species and the mechanism of speciation. In this case, chromosome counts 

have been carried out on some of the Sorbus taxa with diploid (2n=34), triploid 

(2n=51) and tetraploid (2n=68) individuals found among the genus (Bailey et al., 
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2008). The use of flow cytometry to estimate the relative DNA content, and 

hence to infer DNA ploidies, has recently been used to analyse the cytotype 

diversity in a large-scale survey of UK Sorbus species (Pellicer et al., 2012). 

This study revealed the high incidence of polyploidy in the genus (3x, 4x and 

5x), while also confirming the constancy of 2x cytotypes in parental taxa in the 

British territory, including all samples of S. torminalis evaluated. Although there 

have been previous reports of polyploid S. torminalis from the Balkans and 

Spain (Aldasoro et al., 1998; Siljak-Yakovlev et al., 2010) (tetraploid and triploid, 

respectively), no such plants have ever been reported from the UK. It has been 

suggested that these individuals may be of hybrid origin but this hypothesis has 

yet to be confirmed (Pellicer et al., 2012).  

4.2 Methods and study species 

In Devon, S. torminalis occurs largely as a relatively widespread but infrequent 

hedgerow tree, occasionally growing alongside Sorbus devoniensis E.F.Warb., 

a tetraploid species endemic to the region. Indeed, genetic analyses using 

nuclear microsatellites (see Chapters 2 & 3) and chloroplast microsatellites 

(Chester et al., 2007) have suggested that S. torminalis is a maternal parental 

taxon of S. devoniensis. 

During a study of the polyploid Sorbus species endemic to Devon and 

Somerset, we assessed ploidy levels of 106 samples from six polyploid species 

using flow cytometric analyses at the Jodrell Laboratory (RBG, Kew). We 

initially included two samples of S. torminalis for comparison, but a significant 

deviation in the relative DNA content of one of these samples prompted a wider 

collection of S. torminalis samples from Cornwall and Devon. Fresh leaf 

material was collected from 27 individuals during September 2012, herbarium 
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vouchers being deposited in the Welsh National Herbarium in Cardiff (NMW). 

Locations and voucher accession numbers can be found in supplementary 

information, Table S2.1. The absolute nuclear DNA content was measured 

using propidium iodide flow cytometry, following the method described by 

Pellicer et al. (2012). DNA ploidy levels of all samples were determined by 

comparing their fluorescence profile with that of Oryza sativa, which was used 

as an internal standard of predetermined genome size (Fig. 4.1).  

4.3 Results 

The fluorescence peak ratios between the O. sativa and diploid S. torminalis 

individuals were fairly constant (R = ca.1.58). However, one sample from a 

suckering individual in a tightly flailed hedgerow near South Tawton, Devon 

(SX6693) presented a ratio of R = 2.29, approximately 1.5 × the relative DNA 

content of the diploid samples, thus indicating that it was a triploid cytotype    

(2n = 3x = 51). To illustrate the results, a flow cytometric histogram from a 

combined run that included a diploid S. torminalis, tetraploid S. devoniensis and 

the suspected triploid S. torminalis is shown in Figure 4.1.  Also see flow 

cytometry results in Chapter 2; Table 2.2. 
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Figure 4.1.  Flow cytometric histogram of a combined sample of diploid S. 

torminalis (2x), triploid S. torminalis (3x), tetraploid S. devoniensis (4x) and the 

internal standard Oryza sativa (S). 

A detailed search of the hedgerows within 1 km radius of the triploid individual 

failed to find further specimens of S. torminalis. The nearest confirmed record, 

approximately 5 km away, was included in the sampling, with a diploid result. 

However, several tetraploid S. devoniensis trees occur within 400 m, so one 

plausible hypothesis is that this triploid individual was the result of a back-cross 

between S. devoniensis and S. torminalis. However, Figure 2 shows the leaf 

with characteristic deep triangular lobes, consistent with S. torminalis (Rich et 

al., 2010). Table 4.1 shows data compiled from the study in Chapter 2 at the 9 

loci where alleles in the triploid form amplified. The triploid form has common 

alleles with both S. devoniensis and other diploid S. torminalis at 6 loci, but 3 

loci show no alleles common with S. devoniensis. 
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4.4 Discussion 

The occurrence of a triploid S. torminalis individual has implications for the 

production of further polyploid Sorbus species in this geographic area, 

assuming that it is able to produce viable gametes. It is within pollination 

distance of S. devoniensis and possibly unrecorded specimens of S. torminalis. 

Polyploids could result from a union of reduced (n) and unreduced (2n and 3n) 

gametes of these species if sexual outcrossing were to occur. However, given 

the predominance of apomictic reproduction in Sorbus polyploids, hybridisation 

is not a common occurrence (Rich et al., 2010). The genetic data suggests a 

hybrid origin of S. torminalis x S. devoniensis is unlikely since the triploid has no 

common alleles with S. devoniensis at 3 of the 9 loci and all alleles in common 

with S. devoniensis are also found in the wider populations of S. torminalis.  

Grafted material grown on at Paignton Zoo will eventually enable us to 

investigate the pollen viability and breeding system of this plant and thus further 

evaluate this likelihood. 
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Figure 4.2. View of adaxial leaf surface of (a) diploid S. torminalis (sampled 

from Spreyton, Devon SX7297) and (b) triploid S. torminalis, showing broadly 

similar leaf morphology. Scale bar 1 cm. 
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Table 4.1 Genome composition of S. devoniensis and S. torminalis populations at 9 loci showing the alleles for the triploid form. X = 

ploidy level. See Chapter 2 for methods. TTTT = Common alleles 

  Microsatellite loci 

Taxon X CH02D11 MSS13 CH01F02 MSS16 

S. devoniensis 4 152 162 182  189 193 195 193 187 187 195 199 158 160 198 204 

S. torminalis 2 148 150 152 154 181 183 187 189 157 167 175 187 154 166 170 178 

  156 162 164 170 191 193 195 197 189 209   182 184 186 188 

  172 176 178 194         190 194 196 198 

  196            200 202 204 206 

             208 210 216 222 

S. torminalis 3 152 162   189 193   187    184 190   

Taxon X SA01 MSS5 SA14 SA08 MS14 

S. devoniensis 4 224 232 234 242 119 121 123 127 170 204 208 226 261    123 133   

S. torminalis 2 190 192 212 216 105 113 117 119 170 176 178 180 229 232 259 260 122 123 125 127 

  226 230 234 236 123 125 127 129 182 184 186 188 261 265 267 269 129 131 133 135 

  238 240 242 244 135 137 139 141 190 198 200 202 271 273 277 281     

  246 256       204 206 208 210 282 284       

          212 214 224 226         

S. torminalis 3 230 236 244  123 137   200 204   282 284   123 131   
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Abstract 

 

1. In plants, apomixis results in the production of clonal offspring via seed and 

can provide reproductive assurance for isolated individuals in fragmented 

populations.  However, many apomicts require pollination to fertilise their 

endosperms for successful seed set (pseudogamy) and therefore risk 

pollination-limitation, particularly in self-incompatible species that require 

heterospecific pollen.   

2. We investigated pollen-limitation in Sorbus subcuneata (slender whitebeam), 

a threatened endemic tree of conservation concern that co-occurs with its 

congener, S. admonitor, in the southwestern United Kingdom.  We used 

microsatellite analysis of paternity and hand pollinations to investigate its 

breeding system and pollination ecology.  

3. We confirmed that S. subcuneata is an obligate apomict, because all 

embryos studied had identical genotypes comprising maternal alleles. In 

woodland, open-pollinated flowers of S. subcuneata rarely produced seed 

(flower-to-seed conversion < 1%) even though they rapidly accumulated pollen 

on their stigmas.  

5. Manual self-pollination rarely produced seed (<3% flower-to-seed 

conversion), but manual heterospecific pollination by S. admonitor resulted in a 

high flower-to-seed conversion rate (65%).  However, paternity from S. 

subcuneata and S. admonitor was almost equally represented among the 

endosperms of seeds from open-pollinated flowers, so we estimate that the 

ratio of self: congeneric pollination in open-pollinated flowers was at least 22:1. 

6. Despite the efficacy of heterospecific pollination, the contribution of S. 

admonitor trees to paternity in seed from open-pollinated flowers of S. 
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subcuneata decreased rapidly with the spatial separation between paternal and 

maternal trees.    

Synthesis. Our study indicates that seed set in this principally self-incompatible 

pseudogamous apomict was limited by the spatial proximity of its congener.  

Conservation efforts aimed at maintaining species with this breeding system 

must therefore manage the distributions of congeners in tandem.  Management 

of this kind will also maintain the potential for rare heterospecific fertilisation, 

thereby also preserving the evolutionary processes that typically cause rapid 

diversification in these lineages.  

 

Key-words  

Apomixis, connectivity, conservation, paternity analysis, pollen limitation, 

pollination, polyploidy, pseudogamy, reproductive ecology, self-incompatibility. 
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5.1 Introduction 

 

Asexual reproduction through clonal seed (apomixis) offers reproductive 

assurance to isolated individuals (Richards, 2003) and is often associated with 

colonising species that have wider geographic distributions than their sexual 

counterparts (van Dijk, 2003). Apomixis is widespread among angiosperm 

families (Campbell & Dickinson, 1990), but occurs more frequently in the 

Asteraceae, Poaceae and Rosaceae (Bicknell & Koltunow, 2004; van Dijk & 

Vijverberg, 2005), where it is associated with polyploidy (Whitton et al., 2008).  

Many apomicts are also pseudogamous, which means that they require pollen 

to develop functional endosperm for the maturation of their otherwise clonal 

seed.  For species with a pseudogamous apomictic (PA) breeding system, the 

requirement for pollination may limit seed set just as it often does in sexual 

species (Burd, 1994). The degree of limitation can be measured by the increase 

in seed produced when pollen is added to the stigma by hand (Knight et al., 

2005), but the ecology of pollen-limited seed set in PA species has rarely been 

investigated. 

 

Pollen-limited seed set can have various causes that include both low quantity 

and low quality of pollen available to females (Wilcock & Neiland, 2002).  

Factors that limit the quantity of pollen delivered to stigmas include flowering 

asynchrony between males and females and inadequate service from pollen 

vectors (insects or wind).  Pollen quality limits seed set when too much of the 

pollen that reaches a female’s stigmas is incompatible.  In the Rosaceae, many 

polyploid PA’s are self-compatible (Dickinson et al., 2007), which enables seed 

set through autogamous (within flower) or geitonogamous (within individual) 
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pollen transfer.  Curiously, however, some PA species in the Rosaceae are self-

incompatible (Ludwig et al., 2013), which exposes them to the pressures of 

pollen-limitation without conferring any obvious adaptive benefits. We 

investigated the performance of this perplexing breeding system in a woodland 

community of rare, putatively self-incompatible triploid Sorbus species.   

 

The genus Sorbus L. comprises small and medium-sized trees that produce 

corymbs of showy, hermaphrodite flowers during late spring and early summer. 

In common with many other members of the Rosaceae (Guitián et al., 1993; 

Pías & Guitián, 2006), the floral architecture in Sorbus is entomophilous and its 

flowers attract generalist flower-visiting insects, mainly bees (Ludwig, 2013). 

Diploid Sorbus species are typically self-incompatible out-crossers (Oddou-

Muratorio et al., 2005; Pías & Guitián, 2006), but Sorbus also contains 

apomictic polyploids derived from hybridisation (Campbell & Dickinson, 1990; 

Rich et al., 2010). Recent speciation is evident in Sorbus (Robertson et al., 

2004; Rich & Proctor, 2009; Robertson et al., 2010) and was likely favoured by 

breeding systems where apomixis is facultative and possibly coupled with 

triploid self-incompatibility (Ludwig et al., 2013). This infrequent sexual route for 

gene exchange among otherwise clonal species provides the raw variation for 

adaptation (Nogler, 1984), whilst apomixis maintains the new gene 

combinations and enables sympatric speciation (van Dijk & Vijverberg, 2005).  

Where clonal self-incompatible PA breeding systems exist, females therefore 

require heterospecific cross-pollination for seed set (the males are congeners).  

Consequently, the proximity of suitable mates in both space and time may 

constrain seed production.   
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In Sorbus, many polyploid species have small population sizes and a high 

degree of endemism, which are both features of conservation priority species 

(IUCN, 2001). Threats to the persistence of rare Sorbus species arise 

principally from changing land use, browsing by herbivores (which prevents 

recruitment) and competition from invasive non-native plant species (Rich et al., 

2010).  Conserving this evolutionarily dynamic group relies on understanding 

the factors that affect population viability, which include the influence of 

pollination on seed production.  In order to measure the extent to which pollen 

limitation constrains seed production in a rare PA species in Sorbus, we 

investigated the pollination and breeding system of the slender whitebeam, 

Sorbus subcuneata Wilmott, which is putatively self-incompatible.   

 

Sorbus subcuneata is a rare triploid species endemic to nine sites in Devon and 

Somerset (southwestern United Kingdom), where it co-occurs with six closely 

related tetraploid congeners and the common diploid S. aucuparia L. (Proctor et 

al., 1989; Rich et al., 2010). Sorbus subcuneata typically occurs at low relative 

density as an understorey tree, so spatial isolation may be a constraint on seed 

production.  Here, we report an investigation of the breeding system and 

pollination ecology of S. subcuneata in which we determined: (1) the species’ 

pollination requirements (i.e. compatibility with conspecific and heterospecific 

pollen); (2) the extent to which seed set is limited by pollination; and (3) the 

factors that imposed pollination-limited seed set.  Specifically, we evaluated 

whether pollination limitation arose through either temporal isolation imposed by 

flowering asynchrony between compatible pollination partners or by spatial 

isolation of females from suitable male pollen donors.  
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5.2 Materials and methods  

5.2.1 Study system and sites  

We studied a natural population of the triploid Sorbus subcuneata system in an 

area of ancient woodland dominated by sessile oak (Quercus petraea (Matt.) 

Liebl.) at Watersmeet, Devon (-3.7975, 51.2243 WGS84).  At this site, the S. 

subcuneata population of c. 300 trees occur together with c.100 trees of 

tetraploid S. admonitor M.C.F. Proctor (Rich & Cann, 2009) and individuals 

grow both as stunted specimens on thin soils and rocky outcrops and also in 

woodland as the understorey below an oak canopy. These two species occur as 

scattered individuals along with relatively abundant S. aucuparia, but they have 

somewhat disjunct distributions chiefly on opposite sides of a steep river valley 

(see Results, Fig. 5.1).  Sorbus subcuneata is closely related to S. admonitor 

(Proctor et al., 1989), which is likely to be a source of compatible pollen for S. 

subcuneata. S. aucuparia is a distantly related diploid species, but also may 

provide compatible pollen because it pollinates other polyploids within the 

Sorbus genus (Robertson et al., 2004; Rich et al., 2010).  Sorbus admonitor and 

S. aucuparia appeared to be the most likely sources of cross-pollination for S. 

subcuneata, so we focussed our study on these three species, although very 

small numbers of three other tetraploid Sorbus species are also found on site: 

S. porrigentiformis E.F. Warb.; S. margaretae M.C.F. Proctor and Sorbus 

vexans E.F. Warb. All study species were morphologically distinguishable by 

leaf and fruit features.  The trees in the study were tagged with a unique 

identifying number and location details were recorded using maps and a hand 

held GPS unit. Leaf samples were collected and herbarium vouchers placed at 

the National Museum of Wales (NMW), Cardiff. GPS readings of sample tree 
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locations are included in Table S5.1 in Supplementary Information. Leaf or seed 

samples used for genetic analysis were collected from the study sites, dried and 

stored in silica gel until use. For logistical convenience, we conducted hand-

pollinations to confirm compatibility among the three study species on individual 

trees held in a collection belonging to the Exmoor Natural History Society 

(Luckbarrow, West Luccombe, Somerset, UK).  

5.3.2 Investigation of the breeding system of triploid Sorbus subcuneata   

In order to test whether S. subcuneata requires pollen for apomictic seed 

production (pseudogamy) and to compare its pollen compatibility with the two 

focal congeners, we used two individuals of S. subcuneata as maternal trees to 

conduct four pollination treatments as follows: (1) pollen added from the same 

species to test for conspecific compatibility; (2) pollen added from S. admonitor 

(4x); (3) pollen added from S. aucuparia (2x); (4) no pollen added to test for 

autonomous apomixis. Microsatellite analysis confirmed that these trees are 

representative of the type genotype, and are representative of the species 

(Table S5.2). All maternal S. subcuneata flowers were emasculated on opening 

(anthesis) and pollen supplementation was conducted 24 hours later to allow 

stigma maturation. Twenty inflorescences on each of the two maternal trees 

were randomly assigned among the four pollination treatments.  To prevent 

pollination occurring before hand-supplementation, we excluded insect 

pollinators by placing a mesh bag over each inflorescence when flower buds 

were beginning to ‘balloon’ just prior to anthesis.  At this stage, all but 10 buds 

were removed; those remaining were used for the pollination experiment.  To 

reduce the potential effect of resource limitation on seed set, all other 

inflorescences were removed from the experimental branches.  Pollen donor 
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inflorescences were bagged prior to pollen collection in order to ensure 

sufficient was available for the experiment and to avoid potential contamination 

from other species.  Hand pollination was achieved by gently wiping fully 

dehisced donor anthers across the receiving stigma until pollen was clearly 

visible on the stigma surface. The pollen exclusion bags were then replaced to 

prevent natural pollination. The bags were removed after one week to allow 

fruits to develop. In order to assess the levels of fruit abortion in each treatment, 

fruit set was recorded at three intervals during July, September and finally in 

October when the fruit was ripe.  Mesh bags were placed over the 

infructescences to prevent predation and fruit loss.  Successful pollination of a 

flower was measured by the production of at least one seed and calculated as a 

flower-to-seed conversion rate. Where there was a failure to produce seed in 

any treatment, we used the binomial theorem to determine the maximum 

successful conversion rate that would be statistically consistent with this 

observation at this sample size. The binomial function can be used to calculate 

P (x), the probability of x successes in n trials.  If the probability of success in a 

single trial is denoted p, then P(x) is given by:   

𝑃(𝑥) =  
𝑛!

𝑥! (𝑛 − 𝑥)!
 𝑝𝑥(1 − 𝑝)𝑛−𝑥 

Eq. 1 

Thus, given the condition that x = 0, we solved Eq. 1 for the maximum value of  

p such that P(x)  0.05, which identified the greatest success rate at which n 

flowers producing zero seed is not statistically significant at the conventional 

level. In effect, we determined the upper 95% confidence interval on p. In 
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addition, we also calculated the overall flower-to-seed conversion rate of 

naturally pollinated flowers from three trees on the woodland site. 

To verify that S. subcuneata is an obligate apomict and to determine whether 

interspecific pollen flow contributes to endosperm fertilisation, we also 

investigated breeding patterns in the natural population. To this end, we used 

nuclear DNA microsatellite markers to genotype the embryo and endosperm of 

wild-collected, naturally-pollinated seed. Seed embryos produced by apomixis 

will have a genotype identical to that of the maternal tree.  Pollen donors were 

identified through the presence of their unique alleles in a seed’s endosperm 

and the proportion of seed resulting from pollination by each congener was 

calculated.  

Due to the large quantities of small, parthenocarpic fruit that remained on the 

trees into autumn, we restricted our study to fruits of  9 mm diameter that 

contained seed because the hand pollination experiment had demonstrated that 

smaller fruits were invariably seedless (Table 5.1). During a systematic search 

of the woodland, large fruits were collected from various trees in two fruiting 

seasons (2013 and 2014). Seed was extracted from fruits, air dried and stored 

in silica gel until use. Before dissection, seeds were soaked for 24 hours in 

deionised water on filter paper to soften them before the seed coat was 

removed, which enabled the embryo and endosperm to be cleanly separated 

under a dissecting microscope.  All Sorbus taxa within 2 km of the study 

population were subjected to genetic analysis to provide reference samples for 

comparison genotypes. Since every polyploid Sorbus species on the study site 

is clonal, microsatellite alleles could be matched only to species, not individuals.   
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Microsatellite analyses were conducted as follows. In order to discriminate 

among all species sampled, we selected ten nuclear microsatellites previously 

used for Sorbus taxa (Table S5.2). DNA extraction of leaf and seed material 

followed QIAGEN DNeasy Plant Minikit protocol with lysis buffer added to 

samples prior to disruption using a QIAGEN TissueLyser bead mill set at 30 Hz 

for 4 minutes. The primer pairs were combined into three multiplex reactions 

and a touchdown polymerase-chain-reaction was carried out in a MyCycler 

thermal cycler (Bio-Rad, California, USA) according to the following cycling 

program: 95°C for 5 min; 4 cycles of 95°C for 30 sec, 62°C for 1 min 30 sec and 

72°C for 3 min, followed by 4 cycles at decreased annealing temperature of 

58°C; 7 cycles at 55°C annealing temperature; 12 cycles at 53°C annealing 

temperature followed by 3 further sets of 5 cycles at decreasing annealing 

temperatures in increments of 2°C, and final extension at 72°C for 10 min. The 

amplified products were analysed using CEQ 8000 Genetic Analysis system 

(Beckman Coulter, Fullerton, CA, USA). To identify the pollen donor, identity of 

each species was confirmed by comparing multilocus genotypes of each 

species with the alleles present in the endosperm tissue (Table S5.2). Only 

samples that successfully amplified across all loci were included in the 

endosperm paternity analysis with the exception of locus MS14, which only 

amplified in S. admonitor, S. subcuneata and S. aucuparia.  

In order to estimate a conspecific: heterospecific pollination ratio we combined 

the proportion of seed resulting from pollination by each congener with the 

flower-to-seed conversion rates of the hand pollinated flowers. The estimated 

ratio of self: outcross pollination, denoted R, was calculated by:  
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𝑅 =
𝑆

𝐶𝑠

𝐴

𝐶𝑎
⁄  

Eq. 2  

Where S = total proportion of seed sired by S. subcuneata, Cs = the flower-to-

seed conversion rate for S. subcuneata pollination, A = total proportion of seed 

sired by S. admonitor, and Ca = the flower-to-seed conversion rate for S. 

admonitor pollination. S. admonitor was the only species to pollinate  

5.2.3 Testing pollen limitation of seed set in the natural population 

In order to investigate whether pollen quantity limited seed production in the 

woodland population of S. subcuneata, we recorded pollen deposition on the 

stigmas of target flowers over their three-day blooming period.  Pollen 

deposition was measured among flowers on two individuals of S. subcuneata 

over six days from the onset of the trees’ flowering until the peak. The trees 

were visited each day between 12.00 and 16.00hrs and the calyces of buds 

about to open were uniquely colour-marked and their stigmas were 

subsequently collected at durations of up to 3 days post-anthesis. The collected 

flowers were carefully emasculated to prevent pollen transfer and each flower’s 

stigma was placed in a 1.5ml collection tube containing damp cotton wool in the 

base to enable pollen germination.  The stigmas were refrigerated at 4°C and 

frozen within 3 days of collection. To determine the amount of pollen on each 

stigma, a squash preparation was made by softening each sample in sodium 

hydroxide (8 M NaOH for 10 mins. at 60°C) before counting the number of 

pollen grains at  10 magnification. The accumulation of pollen on the flowers of 

both trees was modelled using a negative binomial generalised linear model 

(GLM) with square-root link function, which allowed for over-dispersed data. We 
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tested the effect of tree and flower age on pollen counts using likelihood ratio 

tests. This analysis was implemented in the statistical software R (R 

Development Core Team, 2015).  

To investigate whether seed production was limited by pollen quality, we tested 

whether the application of supplementary compatible pollen increased seed 

production in open-pollinated flowers of woodland S. subcuneata.   Based on 

the outcome of compatibility testing (see 5.3.1), we used tetraploid S. admonitor 

as the most favourable male donor.  On two maternal trees of S. subcuneata, 

ten inflorescences were selected and each was randomly assigned to one of 

two treatment groups. Group ‘O’ was left to open pollinate naturally whereas 

group ‘H’ had heterospecific pollen applied from mature, dehisced anthers that 

were collected from S. admonitor. The anthers were wiped gently across the 

stigmas of five open flowers per inflorescence. Both groups of inflorescences 

were left to develop fruit, which was collected during October and checked for 

the presence of seeds. We assessed the extent of the pollen deficit by 

comparing the flower-to-seed conversion rate between the H and O treatments.  

To investigate whether temporal isolation (asynchronous flowering) could limit 

pollen flow between maternal trees of S. subcuneata and their congeneric 

pollinator, S. admonitor, we quantified the flowering periods of six trees of each 

species, which were observed directly using binoculars at two day intervals 

throughout the 17-day flowering period during May to estimate the proportion of 

flowers in bloom. On each occasion, we estimated the proportion of flowers in 

bud, fully open or in senescence, which was evident because the anthers and 

petals turned visibly brown.  To test for flowering asynchrony between S. 

subcuneata and S. admonitor, the relationship of the cumulative proportion of 
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opened buds on each tree over time was fitted by a sigmoid curve, which we 

used to estimate the time to 50% of flowers open, denoted F50  (Fig. S5.1). 

Variation in F50 between the two species was analysed using a Wilcoxon Rank-

Sum test. For each species, we also determined the mean flowering day (MFD), 

Eq 3; (Barbour et al., 2006), in which % Fli is the mean percent of the flowers at 

anthesis on observation day i and Daysi is the number of days elapsed at dayi 

from the start of the observation period: 

MFD= 
∑ (𝐷𝑎𝑦𝑠𝑖 × %𝐹𝑙𝑖)𝑛

𝑖=1

∑ %𝐹𝑙𝑖
𝑛
𝑖=1

 

Eq. 3 

To investigate whether spatial isolation (i.e. spatial separation of maternal trees 

from compatible pollen donors) could limit seed set in S. subcuneata, we used 

the genetic paternity data (see microsatellite analysis above) and correlated the 

proportion of seed attributable to S. admonitor with the maternal tree’s 

‘connectivity’ to all potential S. admonitor males. The connectivity (Si) for each 

maternal tree i to every potential paternal tree j was determined by: 

𝑆𝑖 = 𝐴𝑖
𝑐  ∑ exp (−𝛼𝑑𝑖,𝑗) 𝐴𝑗

𝑏 

Eq. 4 

where  modulates the effect of distance between trees i and j, denoted di,j, in a 

negative exponential decay kernel; Ai is the size of maternal tree I; Aj is the size 

of pollen donor j; and b and c are exponents that scale the impact of tree size 

on pollen export and import (Moilanen & Nieminen, 2002).  Connectivity 

analysis was executed using the SI software (Moilanen, 2000). To implement 

the model, we set = 0.01 as extrapolated from pollen dispersal patterns 
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measured for S. torminalis (Oddou-Muratorio et al., 2005) and we assumed that 

connectivity was unaffected by the size of the maternal tree because female 

function is typically satisfied by few pollinator visits (Bell, 1985) (i.e. c = 0) and 

that male success saturated with increasing tree size (b = 0.5) (Oddou-

Muratorio et al., 2005). Distances and tree size were based on raw data 

collected during a comprehensive survey that had measured the association 

between size and fruiting for all the polyploid Sorbus species on the study site  

(Rich & Cann, 2009). Tree size was estimated as crown area, which was 

derived from a measurement of diameter at breast height (DBH) using the 

standard forestry relationship for the architecturally similar congener, S. 

aucuparia (Hemery et al., 2005). In the analysis, we included only trees of 

flowering size (trees >3 cm DBH for S. admonitor and >2 cm DBH for S. 

subcuneata).  

Using values calculated from Eq. 4, we tested whether the proportion of seed 

derived from heterospecific pollen (here S. admonitor) produced by each 

maternal tree (% of total seed) was explained by the connectivity of the 

maternal seed trees to the most effective pollen donor. To test this hypothesis, 

we used a GLM with a binomial error and probit link function in which the 

contribution of each measurement of the response variable was weighted by the 

sample size (number of seeds per tree). This analysis was implemented in the 

statistical software R (R Development Core Team, 2015). All relevant model 

assumptions were checked by examining the model deviance residuals and AIC 

(Akaike information criterion) values were used for model comparisons. 
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5.3 Results 

5.3.1  Breeding system 

We confirmed that triploid S. subcuneata is an obligate pseudogamous apomict, 

because hand-pollinations demonstrated that seed production required 

pollination (Table 5.1) and microsatellite analysis revealed that all of the 95 

embryos studied had microsatellite phenotypes identical to both their maternal 

tree and the S. subcuneata reference samples shown in Table S5.2.  

We found that S. subcuneata nevertheless depends on outcross pollinations, 

because 93 hand self-pollinations failed to produce even a single seed.  

Instead, only fruits resulting from addition of tetraploid S. admonitor pollen 

contained seed, with a corresponding flower-to-seed conversion rate of 65% 

(Table 5.1).  One seed was also produced by a flower in the control group 

(emasculated and no pollen added), which also contained alleles from S. 

admonitor in the endosperm, presumably due to pollen contamination. 
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Table 5.1. Fruit production at three time intervals after manual pollination with 

final seed production for four pollination treatments carried out on cultivated 

specimens of S. subcuneata. The two fruit sizes represent small parthenocarpic 

fruit and larger fruit containing seed at three time intervals after pollination. 

Pollen donors with ploidy level in parenthesis represent the four pollination 

treatments, N = flowers treated, S/F = percentage of flowers that produced seed 

Pollen donor N Fruit set of S. subcuneata S/F (%) 

   July  August  October  

♂  <9mm ≥9mm <9mm ≥ 9mm Total 

fruit 

Total 

seed 

 

S. admonitor 

(4x) 
98 11 46 0 40 40 64 65.3 

S. aucuparia 

(2x) 
92 13 1 11 0 4 0 0.0 

S. subcuneata 

(3x) 
93 39 0 8 0 7 0 0.0 

None 85 33 1 10 1 11 1 1.2 

 

Microsatellite analyses of wild-collected seed showed that endosperm formation 

frequently resulted from heterospecific pollination by S. admonitor (Table 5.2 

and Fig. 5.1).  Very rarely (one seed among 95), endosperm resulted from 

pollination by S. margaretae, which is one of the other tetraploid species on the 

study site (<10 individuals).  One endosperm contained paternal alleles from a 

genotype of S. aucuparia that we did not find on the study site. However, 

endosperm formation was initiated by conspecific pollination in about half of the 

seeds in open-pollinated fruits (Table 5.2).  Our hand-pollinations showed that 

no seed was set in 93 separate self-pollinations, so using the binomial theorem 

(Eq. 2) we sought the largest rate of flower-to-seed conversion such that 

observing 93 seedless fruits is not statistically significant.   Using x=0 and n=93, 
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we solved Eq. 1 at this threshold inequality, which yielded p =0.032.  Thus, a 

small rate of seed production from self-pollination of approximately 3% is 

statistically consistent with the observation that a sample of 93 hand-pollinations 

failed to yield even a single fruit.  

Table 5.2. Summary of paternity results of microsatellite analysis of seed 

endosperm from a total of ten maternal S. subcuneata trees over two years. 

The proportions (%) of seed resulting from the various pollen donor species are 

shown for each tree in both years. N = number of seed sampled. Proportions in 

parenthesis are when only seed from S. subcuneata and S. admonitor are 

considered, to generate values for Eq 1. 

   
Paternity (%) 

 

Maternal 

tree 

ID No. 

Year N S. subcuneata 

(3x)  

S. admonitor 

(4x)  

Other 

S01 2013 8 13 75 12 

S02 2013 3 0 100 0 

S269 2013 12 0 100 0 

S58 2013 1 0 100 0 

S01 2014 14 50 43 7 

S02 2014 10 90 10 0 

S269 2014 5 20 80 0 

S58 2014 1 0 100 0 

S156 2014 5 40 60 0 

S280 2014 16 63 37 0 

S282 2014 1 100 0 0 

S283 2014 5 80 20 0 

S284 2014 8 88 12 0 

S285 2014 6 83 17 0 

 TOTAL 95  50(51) 48(49) 2 
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Figure 5.1. Distribution map of polyploid Sorbus species at the woodland site. 

The locations of S. subcuneata maternal seed trees are indicated by pie charts. 

The sections of the pie charts represent the proportion of seed resulting from 

pollination (2014 data) by; = S. subcuneata or  = S. admonitor. Hatching 

denotes other. ▲= S. margaretae, = S. porrigentiformis. Survey data supplied 

by Rich and Cann, (2009).  (The map was created using ArcGIS Desktop 

version 10.2.2, ESRI, California, USA, URL: http://www.esri.com/). 

5.3.2 Causes of pollen-limited seed set 

Virtually no seed was produced by 1534 open-pollinated S. subcuneata flowers 

on three trees (mean flower-to-seed conversion rate = 0.5 %, SD = 0.46, n = 

3), which probably was not due to a lack of pollen deposition because both test 

trees showed a significant accumulation of pollen on the stigmas with flower 

age over three days (likelihood ratio test for flower age χ2 = 12.11, d.f. = 1, P < 

0.001; Fig. 5.2). There was a large variation in pollen deposition between test 

http://www.esri.com/
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trees (χ2 = 7.7, d.f. =1, P = 0.005), and between flowers, but nevertheless  88% 

of two-day old flowers had more than 50 pollen grains on their stigma. 

 

Table 5.3. Summary of fruit and seed production for two pollination 

supplementation treatments carried out on two maternal S. subcuneata 

individuals (S01 and S02). Each treatment was applied to 25 flowers. H = 

heterospecific pollen from S. admonitor (4x), O= naturally open pollinated, S/F = 

percentage of flowers that produced seed. 

S. subcuneata Pollen treatment No. 

fruit 

No. 

seed 

S/F 

(%) 

♀ ♂   

S01 H 3 3 12.0 

S02 H 2 4 16.0 

S01 O 0 0 0 

S02 O 0 0 0 

 

This pollen accumulation probably was in part due to the activities of the insect 

pollinators (Bombus spp., Apis melifera, Diptera and Lepidoptera) that we 

observed visiting the flowers.  However, when supplementary pollen from S. 

admonitor was applied, flower-to-seed conversion was much higher than in 

open-pollinated flowers, i.e. 12 % and 16 % for treated flowers on the two test 

trees respectively, compared with zero conversion in open pollinated flowers 

(Table 5.3). This suggests that a lack of compatible pollen from S. admonitor 

limited seed production in open-pollinated flowers of S. subcuneata. 
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Figure 5.2. Pollen deposition on the stigmas over the three day life of S. 

subcuneata flowers. Lines show fitted values (±1 SE) from a negative binomial 

GLM (square root pollen count =11.64 [±2.84] + 5.15 [± 1.41] *age - 5.47 [± 

2.06] *tree, where tree 1 is the reference category). Pseudo R2 = 0.102. Tree 1 

(upper line): n = 58 flowers; tree 2 (lower line): n = 68.  

 

The lack of compatible pollen in flowers was not the result of asynchrony in 

blooming of S. subcuneata with its congeneric cross-pollinator, S. admonitor. 

Pollen flow between these species is certainly possible as the mean flowering 

day (MFD) was similar for both species (9.4 for S. admonitor, n = 6; 11.0 for S. 
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subcuneata, n = 7) and there was no significant difference in F50 (occasion of 

50% of flowers open, Wilcoxon test, W = 12; P = 0.23; Figs. 5.3a and b).  

 

Figure 5.3. (a) Flowering phenology of individual trees of both species over a 

16 day flowering period. Each line indicates the flowering period of an individual 

tree; dots represent the 50 percentile stage of the cumulative flowering curve; S. 
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subcuneata (●) n = 7 and S. admonitor (o) n = 6. (b) Flowering phenology of 

both species combined S = S. subcuneata, A = S. admonitor.  

 

Instead, spatial isolation of the maternal trees from compatible pollen donors 

limits pollen flow between them because the proportion of seed initiated by 

heterospecific pollination decreased significantly with increasing spatial isolation 

(i.e. decreasing connectivity) of maternal S. subcuneata seed trees from S. 

admonitor individuals (Binomial GLM: connectivity likelihood ratio test χ2 = 4.78, 

d.f. = 1, P = 0.029; pseudo-R2 = 0.33; Fig. 5.4).  

 

Figure 5.4. Relationship between the connectivity of the maternal S. 

subcuneata seed trees to S. admonitor and the proportion of seed sampled with 
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S. admonitor as pollinator (2014 data). The line shows the fitted values (± 1SE) 

for a weighted binomial GLM of: logit (proportion of seed) = -119.1 (± 60.1) + 

0.81 (± 0.41)* connectivity. N = 71 seeds from 10 trees. 

The greater efficacy of heterospecific S. admonitor pollen in initiating seed 

compared to that from S. subcuneata (Table 5.1) was not reflected in the 

composition of the endosperm genotypes in open-pollinated flowers, where the 

two species were represented fairly equally when total seed production from 

both years was considered (Table 5.2). Solving Eq. 2 to estimate the ratio of 

conspecific: heterospecific pollination with values derived from our study (see 

Tables 5.1, 5.2 and equation 1; S  = 49.5, Cs = 0.03, A = 48.5, and Ca = 0.65), 

we find that R = 22:1, which suggests that the trees incurred very high levels of 

conspecific pollination probably by within-plant selfing (geitonogamy). The 

overwhelming amounts of conspecific pollination were sufficient to initiate some 

seed production despite the very low efficacy of S. subcuneata pollen.  
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5.4 Discussion 

 

Our study has characterised a system where seed production is severely limited 

by the availability of compatible pollination. Our findings provide understanding 

of the factors affecting seed production for partially self-incompatible 

pseudogamous apomicts. This is particularly relevant for Sorbus where, in the 

UK, thirteen of the forty polyploid species tested by Pellicer et al. (2012) were 

triploid. Despite their frequency, the majority of them exist as small populations 

sometimes numbering only a few trees e.g. c.17 individuals of S. leyana Wilmott 

(Rich et al., 2005), so that effective strategies of conservation management are 

critical, which we discuss below.  

5.4.1 Breeding system  

We found that S. subcuneata is normally an obligate apomict that requires 

pollination for successful seed production in common with other pseudogamous 

Sorbus spp. (Liljefors, 1953; Ludwig et al., 2013). Thus, successful pollination of 

S. subcuneata flowers will normally only affect the genotype of the endosperm 

except, very rarely when it will determine the genotype of the embryo of 

resulting seed.  Our hand pollination experiments showed that the sympatric 

tetraploid S. admonitor is by far the most effective pollinator for S. subcuneata 

on our study site. Indeed, S. subcuneata is almost completely dependent on its 

congener because self-pollen is so poorly compatible.  

The most likely explanation for the lack of seed produced by conspecific hand 

pollination is that S. subcuneata has a system of gametophytic self-

incompatibility (GSI), which is common in other triploid Sorbus species (Ludwig 

et al., 2013).  GSI is caused by a disruption of the pollen tube before it reaches 
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the ovules and it is controlled by a multi-allelic S-locus. GSI occurs when the 

pollen tube has an S-allele in common with the pistil and it is the cause of GSI 

in diploid Sorbus but appears to break down in polyploids with tetraploids 

exhibiting self-compatibility (Horandl, 2010).  High prevalence of inviable pollen 

is an alternative explanation for the widespread failure to set seed by self-

pollination, but this is unlikely because the pollen grains from S. subcuneata 

observed during our study appeared rounded and well-formed and had a higher 

than average (of triploids tested) stainability  (Rich, 2009), a proxy for pollen 

viability. We are unable to exclude the possibility that seed failure after selfing is 

also due to an imbalance between maternal and paternal genome components 

(m: p) in the endosperm tissue. The 2m:1p genome ratio of maternal to paternal 

contributions to the endosperm in sexual species is considered a prerequisite 

for successful seed development (Köhler et al., 2010). In pseudogamous 

apomicts, the lack of meiotic division leads to unreduced central cell polar nuclei 

in the ovary and fertilisation of these results in m:p ratios that greatly exceed 

2m:1p.  However, triploid Sorbus such as S. subcuneata can tolerate an 

unbalanced endosperm, which is an attribute shared with other triploid apomicts 

in the Rosaceae (Talent & Dickinson, 2007; Ludwig et al., 2013; Hajrudinović et 

al., 2015).  Thus it seems unlikely that the self-incompatibility that we observed 

in S. subcuneata is due to unbalanced endosperm and, instead, the low rate of 

seed production by self-pollination is likely the result of the operation of GSI.  

 

Despite the greater efficacy of pollination from S. admonitor compared to self-

pollination, about half of the seeds in open-pollinated flowers arose from 

conspecific pollination. This finding contrasts to other studies on triploid Sorbus 

(Ludwig et al., 2013) and suggests that the GSI system in S. subcuneata is 
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partial, but with a very low rate of success.  Self-incompatability can be a 

quantitive and plastic trait affected by environmental conditions such as 

temperature at flowering, the composition and density of the pollen load and the 

internal stylar conditions which change with flower age (Stephenson et al., 

2000). A mentor effect whereby a mix of heterospecific and self pollen on the 

stigma may reduce heterospecific pollination from plants of different ploidy and 

promote increased selfing in natural mixed ploidy populations (KouteckÝ et al., 

2011). Mentor pollination is widely used as a tool to overcome incompatibility in 

commercial plant breeding (Shivanna et al., 2005). S. subcuneata stigmas 

pollinated towards the end of the flower life may show reduced self-

incompatibility since pollen /pistil interactions during pollen tube growth change 

with flower age and can allow successful self pollination as opportunities for 

cross pollination reduce (Stephenson et al., 2000). Whilst these mechanisms 

may be responsible for a weakening of the recognition of self-pollen (pseudo-

self compatibility), we cannot rule out the possibility that potentially unsampled 

genotypes in the S. subcuneata population may carry alternative S-alleles, 

conferring pollen / pistil compatability and allowing succesfull pollination, 

although we were unable to find evidence of genetic variation among both seed 

embryos and adult trees sampled at the study site. The low rate of seed 

production despite ample pollen deposition in naturally pollinated flowers, 

however, suggests self-compatibility is a rare phenomenon in S. subcuneata.  

At our study site, S. subcuneata relied heavily for seed set on heterospecific 

pollination from a congener, S. admonitor.   The diploid congener, S. aucuparia, 

was more common than S. admonitor on our study site, but it was an ineffectual 

male parent.  S. aucuparia can successfully pollinate other triploid Sorbus 

(Robertson et al., 2004; Rich et al., 2010), which shows that compatibility is not 
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determined solely by the comparative ploidy of the parents.  The relative 

efficacy of pollination by tetraploid S. admonitor in enabling seed set in closely 

related triploid S. subcuneata probably reflects a broad gametophytic 

compatibility that permits the successful growth of pollen tubes. Despite the 

greater efficacy of pollination from S. admonitor compared to self-pollination, 

about half of the seeds in open-pollinated flowers probably arose from 

geitonogamous (within-individual) self-pollination.  This observation has two 

implications.  First, it implies that S. subcuneata exhibits a pseudo-self-

compatibility or ‘leakiness’ of self-pollen recognition (discussed above), in the 

sense that self-pollination can result in production of seed, but only with a very 

low rate of success (flower-to-fruit conversion rate in open-pollinated flowers 

was <0.5% despite apparently abundant self-pollination).  Second, it implies 

that levels of pollen transfer between the two species are low.  This is usual 

when insect-pollinated plants have many flowers simultaneously in bloom, 

because the tendency of floral foragers to minimize travel time means that most 

inter-flower transitions are on the same plant (Zimmerman, 1988).   

5.4.2 Causes of pollen-limited seed set 

We found open-pollinated flowers of S. subcuneata frequently produced 

parthenocarpic fruits, suggesting that whereas resources were available for 

fructification, pollination had limited seed production.  We found that seed 

production in our study population was not limited by the quantity of pollen 

accumulated and, instead, it appeared that an active system of insect-

pollination was capable of delivering ample pollen to the stigmas of flowers at 

the study site.  Despite the potential effectiveness of heterospecific pollination 

by S. admonitor that was demonstrated by our hand-supplementation 
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experiments, the low rate of flower-to-seed conversion among open-pollinated 

flowers suggests that the availability of this congeneric pollen constrained seed 

set.  We have shown that pollination from S. admonitor was not restricted by 

asynchronous flowering with S. subcuneata, but instead spatial isolation of the 

maternal trees from congeners (i.e. connectivity) was the limiting factor.   

 

The impact of spatial isolation appears largely due to the disjunct distribution 

patterns of S. subcuneata and S. admonitor.  Despite the fact that insect-

mediated pollen flow can occur over long distances (Kamm et al., 2009; Lander 

et al., 2010; Fuchs & Hamrick, 2011), Oddou-Muratorio et al. (2005),found that 

for forest populations of S. torminalis the majority of an individual’s incoming 

pollen came from its nearest neighbours, although occasionally a male pollen 

donor could be up to 2.2km away from the maternal tree. This contrasts to open 

habitats where the maximum distance for mating pairs was only 11.8 m among 

various Sorbus spp. (Ludwig, 2013, p. 195). Our study site is less than 2 km 

across, so in theory pollen has the potential to be transported between any two 

(or more) trees, but given that both S. admonitor and S. subcuneata individuals 

can produce hundreds of flowers that bloom simultaneously, the majority of 

pollen flow probably occurs within individuals because of the area-restricted 

movements of flower visitors.  Thus, geitonogamy and short distance dispersal 

probably dominated pollen transfer.   

 

The proportion of seed produced from self-pollination was unrelated to the 

maternal tree’s proximity to other S. subcuneata trees, which further suggests 

that the large amounts of Sorbus pollen that accumulated on the flowers of the 

maternal trees was principally geitonogamous in origin.  Moreover, of S. 
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subcuneata and S. admonitor on the study site, the closest extrinsic sources of 

pollen for maternal S. subcuneata seed trees were normally other individuals of 

S. subcuneata, not congeners (Fig. 5.1). Since S. subcuneata is effectively 

clonal, due to its apomictic mode of reproduction, pollen from these conspecific 

individuals is likely to be as incompatible as that from the maternal tree itself.  

Together, these attributes could place additional barriers to heterospecific 

pollination since high levels of geitonogamous pollination will result in increased 

competition for space on the stigma from unsuitable self-pollen, or ‘stigma 

clogging’ (Groom, 2001; Murphy & Lovett‐Doust, 2004). Whilst pollen carryover 

will, to some extent alleviate the effects of geitonogamous pollinator movements 

(Morris et al., 1994), the normally rapid attenuation of carryover (Thomson, 

1986; Morris et al., 1995) and localised movements of insect vectors make it 

inevitable that insect-mediated pollen transfer among large floral displays 

remains highly restricted in space (Levin & Kerster, 1967).  

5.4.3 Evolutionary implications  

The extremely low reproductive output of S. subcuneata in our study population 

is seemingly inherent to its breeding system, which is maladaptive in a 

population comprised of a single-cytotype whose individuals have limited 

access to compatible heterospecific pollen donors. Indeed, although it has been 

previously predicted on theoretical grounds that SI pseudogamous plants 

should not persist (Noirot et al., 1997), we have discovered at our study site an 

established population of c. 300 such trees. However, although triploids such as 

S. subcuneata may be transcient in the long term, where apomixis is facultative, 

they may form important evolutionary stages as part of a recurring process of 

polyploid formation that continually diversifies a lineage (Ramsey & Schemske, 
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1998) because the dependence on heterospecific pollination may increase 

opportunities for hybrid events, although the predominantly apomictic breeding 

system of S. subcuneata implies that such events will be rare. In the case of S. 

subcuneata, for example, the high level of allele sharing between S. subcuneata 

and S. admonitor suggests recently shared origins from an active process of 

reticulate evolution by hybridisation.   

 

5.4.4 Conservation implications 

This system provides valuable insights into the reproductive ecology of self-

incompatible polyploid plants, which may elucidate the conservation ecology of 

similar species. Our study suggests that for a self-incompatible pseudogamous 

apomict that exists at low densities, seed production is likely to be limited. 

Furthermore, Sorbus is a palatable species in which recruitment from seeds is 

threatened by browsing from deer (Rich et al., 2010) which occur in high 

densities at our study site.  

Given the vulnerability of species that are, in effect, locally endemic clonal 

cytotypes, conservation strategies that aim to enhance the short term 

population viability of rare Sorbus species should also safeguard the 

evolutionary process in which extinctions are offset by diversifying hybridisation. 

This may be achieved through maintaining compatible congeneric species in 

close proximity to allow pollen exchange with the dual benefit of increasing the 

potential for hybridisation events and also resulting in increases in seed 

production for self-incompatible species. Given that seed production is likely to 

be chronically low because of the breeding system (self-incompatible) and 

architecture of the floral display (many flowers promoting geitonogamous 
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pollination), conservation strategies should also seek to increase recruitment 

opportunities to maximise the germination chances of the few seeds currently 

produced and control herbivore populations. Some introductions of compatible 

pollinating species should be considered at the dwindling isolated populations 

found in this area. S. subcuneata exists as a few trees at two sites further east 

of the study site where they have been seen to be slowly reducing in number 

within recent years (Rich et al., 2010).  
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Days 

Figure S5.1. Cumulative frequency of flowers opening over the flowering 

period. Time to 50% of flowers open (F50) is calculated from a sigmoid curve 

expression:  

y (% flowering) = a + [(b – a) / (1 + exp(c/d)] 

Where a= y intercept, b = asymptote, c = F50 - time, d = Hill’s slope of the curve 

(i.e. this is related to the steepness of the curve at the inflexion point c). 
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Table S5.1. Location details for study trees. 

Tree ID Species  x (OS GB) y (OS GB) Lat. Long. Site Data 

A174 S. admonitor  274421 148797 51.224511 -3.7997354 Watersmeet Phenology Molecular        - 

A178 S. admonitor  274672 148624 51.223011 -3.7960823 Watersmeet Phenology Molecular        - 

A183 S. admonitor  274431 148995 51.226292 -3.7996617 Watersmeet Phenology Molecular        - 

A211 S. admonitor  274648 148664 51.223365 -3.7964398 Watersmeet Phenology Molecular        - 

A214 S. admonitor  274431 149039 51.226688 -3.7996772 Watersmeet Phenology Molecular        - 

A6 S. admonitor  274469 148851 51.225007 -3.7990673 Watersmeet Phenology Molecular        - 

Au262 S. aucuparia  289584 145973 51.202265 -3.5818184 Horner wood         - Molecular        - 

Au263 S. aucuparia  274762 149051 51.226868 -3.7949435 Watersmeet        - Molecular        - 

Au264 S. aucuparia 274681 148705 51.223741 -3.7959819 Watersmeet        - Molecular        - 

Au507 S. aucuparia 289400 146100 51.203371 -3.5844902 Luckbarrow        - Molecular        - 

M03 S. margaretae 274575 148879 51.225282 -3.7975599 Watersmeet        - Molecular        - 

S01 S. subcuneata  274651 148878 51.225289 -3.7964718 Watersmeet Phenology Molecular Seed analysis 

S02 S. subcuneata  274658 148883 51.225336 -3.7963734 Watersmeet Phenology Molecular Seed analysis 

S156 S. subcuneata 274556 148723 51.223875 -3.7977773 Watersmeet        - Molecular Seed analysis 

S187 S. subcuneata  274501 148886 51.225328 -3.7986216 Watersmeet Phenology Molecular        - 

S208 S. subcuneata  274441 148962 51.225998 -3.799507 Watersmeet Phenology Molecular        - 

S209 S. subcuneata  274353 148926 51.225655 -3.800754 Watersmeet Phenology Molecular        - 

S210 S. subcuneata  274648 148664 51.223365 -3.7964398 Watersmeet Phenology Molecular        - 
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Tree ID Species  x (OS GB) y (OS GB) Lat. Long. Site Data 

S212 S. subcuneata  274838 148723 51.223937 -3.7937411 Watersmeet Phenology Molecular        - 

S269 S. subcuneata 274532 148698 51.223645 -3.798112 Watersmeet        - Molecular Seed analysis 

S280 S. subcuneata 274593 148839 51.224926 -3.7972883 Watersmeet        - Molecular Seed analysis 

S282 S. subcuneata 274930 148758 51.224272 -3.7924365 Watersmeet        - Molecular Seed analysis 

S283 S. subcuneata 274780 148789 51.224518 -3.7945943 Watersmeet        - Molecular Seed analysis 

S284 S. subcuneata 274779 148790 51.224526 -3.7946089 Watersmeet        - Molecular Seed analysis 

S285 S. subcuneata 274797 148774 51.224387 -3.7943457 Watersmeet        - Molecular Seed analysis 

S58 S. subcuneata 274399 148895 51.225387 -3.8000847 Watersmeet        - Molecular Seed analysis 
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Table S5.2. Allele sizes for each study Sorbus species at 10 loci. Ploidy levels in parenthesis. Shaded alleles are not present in S. 

subcuneata. 

Locus S. subcuneata (3x) S. admonitor (4x) S. margaretae (4x) S. porrigentiformis (4x) S.aucuparia (2x)   

MSS5 119 121 123 119 121 123 127 119 121 135  115 127 131 137 115    

MSS16 158 160 204 158 160 188 204 158 160 162  158 162 170  154 156   

CH01F09 113 123  113 123   119 121 135  115 123 125 129 - -   

SA06 258 268  258 268   258 268 280 312 256 264 270  246 

326 

264 272 280 

 

MSS13 193 195  187 193 195  193 195 197  193 195 197 203 183 

199 

187 

203 

193 195 

SA02 292 294  292 294   278 282 292 294 294 300 324  - -   

SA08 261   261 285   247 263   249 257 277  257 265 267  

SA09 162 194  162 194   162 182 194  174 176 184 186 168 180   

MS14 123   123 131   - - - - - - - - 111 123 125 127 

SA14 170 208 226 170 178 208 226 194 208 226  196 222 224 226 212 214 267  
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Chapter 6: General discussion 

This study concerns evolutionary diversification and reproductive sustainability 

in a taxonomically complex group (TCG) using Sorbus as a model system. We 

used a combination of molecular techniques and field experiments to elucidate 

the reticulate patterns of evolution among a regional group of Sorbus species 

and determine the reproductive sustainability of a threatened Sorbus species. 

Here I discuss the findings of this study under each of the aims presented in the 

thesis introduction Chapter.  

6.1  AIM 1. Evolutionary relationships, hybrid origins and polyploid 

formation of Sorbus in Devon and north Somerset. 

In order to elucidate evolutionary relationships among seven polyploid and two 

diploid Sorbus species native to the Devon and north Somerset region of Britain 

we characterized 230 samples into species and multilocus genotypes using 

nuclear DNA microsatellite markers (Chapter 2). These data also provided an 

assessment of genetic diversity within and among the study species which 

revealed an apomictic breeding system and single hybrid origins for each of the 

polyploid species. No evidence for sexuality within the polyploid species was 

found and whilst there is confirmation of sexuality in polyploid Sorbus seed 

(Robertson et al., 2004a , Ludwig et al., 2013, Hajrudinović et al., 2015), this is 

not necessarily evident in the adult population (Robertson et al., 2010) possibly 

due to low fitness either inherently due to post zygotic barriers, or being mal-

adapted to the environment, but see Robertson et al., (2004b).  

Each species was genetically differentiated with an additional interspecific 

hybrid discovered (vex2), representing a novel polyploid lineage. The relative 

genetic distances among the species implied close evolutionary relationships 
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among the five endemic species (including S. devoniensis) and S. rupicola;  in 

particular the parental role of S. margaretae for the three study members of 

subgenus Tormaria (S. subcuneata, S. devoniensis and S. admonitor). Diploid 

S. torminalis is the other parental species. Parental simulations confirmed these 

hybrid origins (Chapter 3) and also revealed the key role of triploid S. 

subcuneata in the production of both tetraploids S. devoniensis and S. 

admonitor via hybridisation with S. torminalis. The inheritance patterns in 

members of subgenus Tormaria combined with plastid haplotype information 

from previous studies (Chester et al., 2007) reveal that triploid formation in this 

group was via fertilisation of a normally reduced S. torminalis gamete with 

reduced pollen from tetraploid S. margaretae. The subsequent formation of the 

tetraploids from S. subcuneata was via fusions of unreduced triploid gametes 

with reduced S. torminalis gametes. Due to the prevalence of apomixis in 

triploid S. subcuneata (also see 5.3.1) we suggest that sexual S. torminalis was 

likely the female progenitor. The lack of exact parental matched pairs for the 

endemics S. margaretae, S. vexans and the hybrid vex2 suggest mutational 

variation or potentially missing intermediary genotypes (perhaps triploid forms) 

due to insufficient sampling or extinction. The presence of a small number of 

alleles unique to the endemic species also suggests missing parental 

genotypes. It is likely that all three scenarios may account for the variation seen 

in the study members of subgenus Aria. Flow cytometry confirmed the ploidy of 

each species and revealed a spontaneous triploid form of the normally diploid 

S. torminalis (Chapter 4).  

These findings suggest that the four endemic polyploid species and S. 

devoniensis all arose from single hybridisation events and subsequently 

colonised other sites. It is likely that the high unstable coastal cliffs provided a 
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colonisation route with many chances for establishment where disturbances due 

to landslips and quarrying provided open conditions for seedling establishment.  

The key roles of sexual diploids in the diversification process in Sorbus is 

supported by our data, however S. torminalis currently only occurs with S. 

devoniensis and not S. margaretae, S. subcuneata or S. admonitor. Given the 

restricted distributions of the latter three species it seems that the distribution of 

S. torminalis has changed since the origin of these polyploids. This is not 

unlikely as it may have been an infrequent tree in this area, as indeed it still is 

across Devon. Its absence from the north Devon and Somerset sites implies 

that further triploid and tetraploid formations via the above routes are unlikely. 

The presence of cryptic hybrids and missing genotypes present a complex 

situation within subgenus Aria and is worthy of further investigation. This group 

is the most challenging of the subgenera with high diversity and ongoing 

evolution (Lepší et al., 2015) and our findings reiterate its critical role in 

speciation within the genus Sorbus. The patterns of reticulate evolution we see 

in this study group are brought about by gene flow via cross pollination among 

diploid and polyploid Sorbus. This is unsurprising since our findings show there 

is reliance on heterospecific pollination for seed production in the triploid 

species that performs a key role in the diversification of this group.  

6.2  AIM 2. Reproductive sustainability of a threatened Sorbus species. 

Pollen flow among the study species provides the conduit for gene flow in the 

process of reticulate evolution we have described in this thesis. It also sustains 

seed production in the threatened triploid S. subcuneata which is shown to have 

played a key role in Sorbus diversification in this region.  The reproductive 

potential of Sorbus is of importance since it directly impacts population viability. 
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The key role of triploid S. subcuneata in the production of endemic tetraploids 

also makes it of interest in an evolutionary context. Reasons for low seed 

production in S. subcuneata were investigated with a series of pollination 

experiments in addition to molecular analysis of embryo and endosperm to 

identify how breeding system and factors affecting pollination may cause 

reproductive failure. We found S. subcuneata to be largely self-incompatible as 

with other triploid Sorbus (Ludwig et al., 2013) and therefore reliant on sufficient 

pollen from other sources to produce seed. Its main compatible partner was 

tetraploid S. admonitor which is the most prevalent other polyploid Sorbus on 

our study site (Chapter 5). Diploid S. torminalis does not occur there and the 

frequent diploid S. aucuparia was an ineffectual father. Pollination by S. 

admonitor resulted in a 65% flower-to-seed conversion rate in hand pollination 

trials compared to <0.5% of open pollinated flowers at the field site, so provided 

sufficient pollen from S. admonitor  is available, sustainable seed production 

should be possible despite a self-incompatible breeding system. Whilst seed 

production may be limited by a number of factors such as resource availability, 

pollen supplementation experiments showed that pollination limitation was the 

reason for the critically low natural levels of seed set. Our results showed that 

spatial isolation from compatible congener S. admonitor was the reason for 

pollen limitation rather than insufficient pollinator activity or flowering 

asynchrony between the two species. The low density of S. subcuneata and the 

disjunct distributions of compatible pollination partners meant limited pollen flow 

from S. admonitor to S. subcuneata. Whilst this low level may be sufficient to 

promote adequate seed production to sustain the population during the lifetime 

of an individual S. subcuneata (if regeneration opportunities were not limiting), 

the potential for further hybridisation is low without S. torminalis. Whilst our 
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study site contains the largest group of S. subcuneata (c. 300 individuals), at 

other sites it exists as only a few trees and the risk of extinction on those sites is 

therefore high. It is unknown if other local tetraploids are effective males and 

this could be important since it only occurs with S. admonitor on the single site.  

Reproductive failure has profound implications for the long term survival of this 

population of triploids. Triploids may be seen as transient entities, in an 

evolutionary sense, due to low relative fitness (as discussed in Chapter 5), 

performing a ‘stepping stone’ role to further polyploid formation and 

diversification (as seen in Chapter 3). However, S. torminalis and S. margaretae 

no longer co-occur, so ongoing production of S. subcuneata is unlikely in the 

current situation. This makes conservation of the current population of S. 

subcuneata a priority. It needs to be managed in tandem with other compatible 

pollen donors to ensure sufficient seed production will offset threats to seedling 

establishment and survival. 

6.3 AIM 3. Determine if the current approach to the conservation of the 

individual threatened species is appropriate or if the process-based 

approach advocated for TCG’s will better conserve the diversity of Sorbus 

in this region.  

To address this aim I first discuss process-based approaches to the 

conservation of other taxonomically complex groups then how it might be 

applied to this group in the light of our findings.  

6.3.1 A process-based approach to the conservation of taxonomically 

complex groups 

Plant conservation aims to protect biodiversity both in its present state but also 

to ensure there is the genetic capacity for diversification and adaptation in a 
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changing environment. For taxonomically complex groups (TCG’s) this can be 

far from straightforward. High levels of endemism, often in specific habitats 

combined with small population sizes are features of many TCG’s largely as a 

consequence of rapid evolutionary divergence (Rich et al., 2008, Ennos et al., 

2012). A process-based approach is advocated for some of these groups where 

the production of novel lineages is ongoing and diversification is associated with 

particular areas which allow for the development of a targeted conservation 

programme (Ennos et al., 2012). Conservation should be a balance between 

conserving the sources of novel lineages to preserve the ongoing process of 

diversification and conserving local lineages with particular adaptations or 

features where appropriate. These concepts apply to actively diversifying 

groups such as Euphrasia, Dactylorhiza and Sorbus. In Euphrasia, rare 

endemics are produced through hybridisation of widespread largely selfing and 

outcrossing species. Backcrossing produces hybrid swarms in places and 

identification of all individual lineages is impractical. Endemics appear adapted 

to particular microhabitats. Currently advocated conservation is to target ‘hot 

spot’ sites where Euphrasia biodiversity but also environmental heterogeneity is 

high, providing opportunities for interactions between the widespread 

progenitors and allowing natural selection of lines for adaptation to the various 

microhabitats (Ennos et al., 2005, Stone, 2012). Hybridisation between diploids 

and autotetraploids in European Dactylorhiza is frequent and has resulted in a 

diverse array of allotetraploids, some of which are also involved in subsequent 

hybridisations. The conservation advocated to preserve ongoing diversification 

within Dactylorhiza is to focus on the progenitors in particular geographic 

regions where genetic diversity is high (southern Greece, Alps and northern 
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Sweden) and habitats such as base-rich fens (Nordström & Hedrén, 2009, 

Ennos et al., 2012) rather than conserving individual taxa.  

Ennos et al. (2012) developed a detailed process-based action plan for the 

Sorbus of Arran, Scotland. This underlines some of the key steps in developing 

and undertaking such a plan which apply to other complex groups and a few 

points are outlined below for comparative purposes. The Sorbus system is well 

understood and relatively simple; hybridisations between two widespread 

species of least concern (Rich et al., 2010), diploid S. aucuparia and S. 

rupicola, have produced triploid S. arranensis. Subsequent back crosses to S. 

aucuparia have produced tetraploid S. pseudofennica and triploid S. 

pseudomeinichii. These individual species have arisen on several occasions 

(Robertson et al., 2004b). One of the key issues is that a main progenitor, S. 

rupicola only occurs as one tree approximately 14.5km south of the current 

populations of hybrids. Distribution, parentage and the recurrence of hybrid 

events suggest it has been much more widespread. Therefore one action is to 

re-introduce S. rupicola into closer proximity to the hybrid species to allow 

resumption of hybridisation to generate S. arranensis. Proximity of progenitors 

as well as site management to promote flowering, pollination and seedling 

recruitment are all advocated. Monitoring on Arran would allow for adaptive 

management and focus on outcomes such as fruiting, recruitment and the 

presence of individuals with a range of morphological features indicative of 

ongoing production of novel lineages rather than the taxing identification of each 

species and variant.  

For all these cases there is an emphasis on conservation of the progenitors in 

areas of contact to promote interaction. Targeted management of these sites 
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may also be required. An underlying understanding of the processes that 

generate diversity and identification of threats to that process is required for 

successful conservation. There may be less emphasis on maintaining particular 

lineages that may be transient ‘stepping stones’ to further diversification.  

6.3.2 Conservation of Sorbus diversity in Devon and north Somerset. 

The current diversity of polyploid Sorbus species in Europe has arisen through 

hybridisation and is maintained via apomixis (Lemche, 1999, Nelson-Jones et 

al., 2002, Robertson et al., 2004a, Lepší et al., 2008, Robertson et al., 2010). 

The results we have presented in this study indicate that this is also the case for 

our study group. Therefore, rather than conserving the individual products of an 

evolutionary process, species in this case, we advocate conservation of the 

processes that have resulted in the current diversity of Sorbus. Therefore, we 

need to focus on maintaining (or restoring) the conditions that promote 

interaction among the various species to maximise opportunities for 

hybridisation and for the establishment of newly formed polyploids.  

Whilst some of the species occur on many sites and have wider distributions 

than the north Devon/ Somerset coast, this is where the four endemic species 

are found and where Sorbus diversity is highest in the region. Site based 

conservation focussed on those with multiple species represents a pragmatic 

approach as many of the key sites are designated SSSI’s with rare Sorbus as 

conservation priorities on those sites (Table 1.1). However, an overarching plan 

that would operate at the landscape scale would reflect the scale at which these 

processes have taken place and thought should be given to increasing 

connectivity between these sites. Critical aspects of a process-based action 

plan for Sorbus in this region are to ensure the current diversity is maintained 
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through management that promotes reproductive sustainability; ensure that 

there are opportunities for on-going hybridisation and speciation by maintaining 

or restoring a diversity of species in close spatial proximity to ensure compatible 

pollination.  Monitoring targets should be focussed on these aspects rather than 

purely population size.  

The findings from this study have highlighted a number of key considerations 

that apply to this specific group. We have shown that pollen flow occurs over 

relatively short distances, this is similar to the findings in the Avon Gorge 

(Ludwig, 2013) however, the Devon / Somerset species occur over a much 

more extensive area, often at low densities in a range of habitats. We also show 

that in the woodland situation the majority of pollination is geitonogamous. To 

increase interspecific pollen flow, critical for the survival of triploid S. 

subcuneata and essential for gene flow among species, management to 

increase flowering and fruiting should be targeted where multiple species occur. 

Such management could consist of thinning around individual trees to allow 

more light for flowering, however, re-instating woodland management such as 

coppicing (cutting tree species to a stump or stool at ground level) or targeted 

clear felling of competing tree species will open up larger areas also creating 

opportunities for seedling establishment. More open conditions may allow 

development of other flowering species to support pollinator populations.  Many 

of the cliff sites are more open but large landslips have obliterated significant 

groups of endemic Sorbus (pers. obs) over recent years. Whilst this is a natural 

occurrence and probably provides regeneration opportunities, when combined 

with habitat fragmentation caused by Rhododendron ponticum it may present a 

serious threat. A combination of continuing eradication of Rhododendron 

ponticum with some re-planting of saplings from local stocks may offset this 
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threat but also create ‘stepping stone’ groups for occasional longer distance 

pollen flow, re-connecting some of the closer sites.  

Our results show that the process underpinning the reticulate evolution of 

Sorbus in this region is the hybridisation of diploid S. torminalis and tetraploid S. 

margaretae to create triploid S. subcuneata followed by subsequent 

hybridisations also involving S. torminalis. S. torminalis is a widespread species 

of least conservation concern. A serious consideration to promote further 

diversification would be to re-introduce S. torminalis into some of the sites 

where S. subcuneata and S. margaretae are found. Based on our parentage 

data S. torminalis must have been present at some of these sites in the past. 

Some research may be required to select areas best suited to the ecological 

requirements of S. torminalis before any planting takes place. Indeed, we do not 

know why it disappeared and S. torminalis may have been at the limit of its 

ecological tolerance on the sites where the polyploids are found. Sites where 

polyploids are in greater abundance than diploids promote interploidy sexual 

hybridisation (Hajrudinović et al., 2015) with the diploid as the maternal parent, 

especially since the diploid species are largely self-incompatible (Ludwig et al., 

2013) therefore low rather than high density S. torminalis may be more effectual 

at producing hybrid offspring.  

An effective conservation policy would combine aspects of species-based 

conservation, including some re-introduction, with a wider process-based 

approach in landscape scale context.  

6.4 Conclusion 

The present study has demonstrated that this group of species has provided a 

good model for investigating how polyploid evolution and routes of formation 
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occur at a regional scale. The evidence for past evolutionary events has given 

insight into historic distribution ranges of progenitor species which has 

implications for the production of new polyploids. This thesis provides evidence 

for the ‘triploid bridge’ as a significant route for allotetraploid formation but that 

reproductive sustainability of triploids is at risk when compatible pollen is 

limited. Therefore triploid range expansion can only occur in tandem with that of 

compatible pollination partners and is the most likely reason for the dwindling 

numbers of isolated groups of triploids in our study. Findings from this study will 

be used to inform a conservation approach that can enable conservationists to 

protect and sustain beautiful endemic species’ that possess such a complex 

and interesting evolutionary history 

6.5 Future research directions 

There remains much further work that could be done both to extend the work 

done in this thesis and using Sorbus as a model to answer broader questions 

about polyploidy and the ecological implications of polyploidy. Further work is 

needed to clarify the role of the diploid progenitors in polyploid formation. There 

appear to be regional patterns and Sorbus hotspots for polyploid diversity yet 

progenitors co-occur at other sites where hybridisation has not occurred. 

Further pollen compatibility experiments as in chapter 5, along with wider 

genetic screening of the diploids at more high diversity areas such as some of 

the Welsh sites, may allow greater understanding of why some sites appear to 

be particularly diverse. We have shown that spontaneous triploid forms of 

diploids occur, and a useful direction of study would be to ascertain their pollen 

fertility and compatibility with other species to investigate whether this is a 

possible route for further polyploid formation.  
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Subgenus Aria is of great evolutionary interest. Whilst our use of microsatellite 

markers was able to illuminate relationships among study members of this 

group, questions remain regarding the extent of tetraploid hybridisation for 

example. Further analysis of pollen flow on the high diversity sites coupled with 

increased sampling at these sites may reveal both potential for, and actual 

Sorbus diversification via this route. Investigations into spatial patterns of 

genetic variation could give clues to colonisation routes. However, for both 

these areas of research the use of molecular markers with greater resolving 

power would be required to elucidate variation among individuals of the same 

species. The rapid development of sequencing technology combined with 

reducing costs now makes the identification of large numbers of microsatellites 

more achievable; however there is increasing use of single nucleotide 

polymorphisms (SNP’s) which would potentially give greater resolution, 

although there are still problems caused by the number of repeated elements in 

polyploids as reviewed by Dufresne et al. (2014). 

The ecological implications of polyploidization are of great interest and this area 

has not been extensively studied in Sorbus. Many sites of high Sorbus diversity 

also have high environmental heterogeneity. It is unknown whether these 

factors are linked and closer examination of ecological niche diversity among 

the study species may help shed light on the ecological implication of Sorbus 

evolution. This would also be of importance in the conservation of Sorbus 

diversity especially where re-planting for mitigating loss of rare species is 

considered. Ecological niche modelling with increasingly fine scale models 

(Maclean et al., 2016) could be used to investigate how environmental change 

may affect the distribution of current Sorbus ecological niches and how this 
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would affect potential for future survival but also hybridisation opportunities 

(Vallejo-Marín & Hiscock, 2016). 
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Appendix: Herbarium voucher specimens.  

Mounted and scanned by the Welsh National Herbarium, Amgueddfa Cymru – 

National Museum Wales, Cardiff (NMW).  

 

S. torminalis, Wild Service-tree. Beaford, north Devon. 
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S. torminalis triploid form, South Tawton, north Devon. Note ‘bulky’ appearance 

of leaves which had a leathery texture. 
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S. aria, Common Whitebeam. Cheddar Gorge, Somerset.  
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S. devoniensis, Devon Whitebeam. Little Haldon, south Devon.  
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S. admonitor, ‘No Parking’ Whitebeam. Watersmeet, north Devon. 



Appendix 1: Herbarium vouchers 

268 
 

 

 

S. subcuneata, Slender Whitebeam. Watersmeet, north Devon.  
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S. rupicola, Rock Whitebeam. Churston Cove, south Devon. 
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S. porrigentiformis, Grey-leaved Whitebeam. Redgate Beach, south Devon. 
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S. vexans, Bloody Whitebeam. Oxen Tor, nr Watersmeet, north Devon. 
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S. vexans (vex2) 2nd clone. Neck Wood, north Devon. 
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S. margaretae, Margaret’s Whitebeam. Desolation, north Devon.

 


