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Key Points 

 The nucleus reuniens (Re), a nucleus of the midline thalamus, is part of a cognitive 

network including the hippocampus and the medial prefrontal cortex. To date very 

few studies have examined the electrophysiological properties of Re neurons at a 

cellular level. 

 The majority of Re neurons exhibit spontaneous action potential firing at rest. This is 

independent of classical amino-acid mediated synaptic transmission. When driven by 

various forms of depolarizing current stimulus Re neurons display considerable 

diversity in their firing patterns. Due to the presence of a low threshold Ca2+ channel, 

spike output functions are strongly modulated by the prestimulus membrane 

potential. 

 Finally we describe a novel form of activity-dependant intrinsic plasticity which 

eliminates the high-frequency burst firing present in many Re neurons. 

 These results provide a comprehensive summary of the intrinsic electrophysiological 

properties of Re neurons allowing us to better consider the role of the Re in cognitive 

processes. 

 

Running title: Cellular neurophysiology of the nucleus reuniens 

Abstract 

The nucleus reuniens (Re) is the largest of the midline thalamic nuclei. We have performed a 

detailed neurophysiological characterization of neurons in the rostral Re of brain slices 

prepared from adult male mice. At resting potential (-63.7 ± 0.6 mV), circa 90% of Re 

neurons fired action potentials, typically continuously at ~8 Hz. Although Re neurons 

experience a significant spontaneous barrage of fast, amino-acid-mediate synaptic 

transmission, this was not predominantly responsible for spontaneous spiking as firing 

persisted in the presence of glutamate and GABA receptor antagonists. With resting 

potential preset to -80 mV -20 pA current injections revealed a mean input resistance of 615 

M and mean time constant of 38 ms. Following cessation of this stimulus a significant 



rebound potential was seen that was sometimes large enough to trigger a short burst of very 

high frequency (100-300 Hz) firing. In most cells short (2 ms), strong (2 nA) current injections 

elicited a single spike followed by a large afterdepolarizing potential (ADP) which, when 

suprathreshold, generated high frequency spiking. Similarly, in the majority of cells preset at 

-80 mV, 500 ms depolarizing current injections to cells led to a brief initial burst of very high 

frequency firing, although this was lost when cells were preset at -72 mV. Biophysical and 

pharmacological experiments indicate a prominent role for T-type Ca2+ channels in the high-

frequency bursting of Re neurons. Finally, we describe a novel form of activity-dependent 

intrinsic plasticity that persistently eliminates the burst firing potential of Re neurons.     

Abbreviations. ADP, after-depolarization potential; αEPSC, EPSC like waveform; AHP, 

afterhyperpolarization; AP, action potential; HCN, hyperpolarisation-activated cyclic 

nucleotide gated; HPC, hippocampus; mPFC, medial prefrontal cortex; Re, nucleus 

reuniens; TTX, tetrodotoxin; 

 

  



Introduction 

The nucleus reuniens (Re) is the largest of the midline thalamic nuclei. Located within the 

interthalamic adhesion, Re is a component of the higher-order thalamus, a group of thalamic 

structures which receive little sensory input. Instead, such areas form extensive cortico-

thalamo-cortical pathways (Vertes et al 2015). The roles of Re have been the subject of 

growing interest in recent years (Cassel et al., 2013; Aggleton, 2014). In rodents, 

experimentally-induced lesions to Re result in a range of cognitive outcomes (Xu & Südhof, 

2013; Cholvin et al., 2013; Hallock et al., 2013); whereas in man this brain area is selectively 

compromised in Korsakoff’s syndrome (amnesic-confabulatory syndrome), a form of 

dementia resulting from thiamine (vitamin B1) deficiency- often arising from alcoholism or 

malnutrition, but also associated with eating disorders, chemotherapy or persistent vomiting 

such as that in hyperemesis gravidarum (Mair et al., 1979).  

The contributions of Re to cognitive function have a sound grounding in its neural 

connectivity (Cassel et al., 2013; Aggleton, 2014). In particular, Re output is almost 

exclusively directed to the hippocampus (HPC) and limbic cortex. This includes strong 

monosynaptic projections to structures with key roles in cognitive function– notably area CA1 

and the subiculum of (particularly ventral) HPC and much of the medial prefrontal cortex 

(mPFC) (Vertes, 2006; Vertes et al., 2007, 2015; Prasad & Chudasama, 2013; Varela et al., 

2014). This wiring allows the Re to “close a synaptic loop” between the ventral hippocampus 

(HPC)/subiculum and the mPFC. Indeed, afferents from the mPFC have been demonstrated 

to synapse on Re neurones that in turn project to CA1 (Vertes et al., 2007) .  

 

Functionally speaking, Re innervation of the hippocampus appears to be substantial. It is 

reported, for example, that electrical stimulation of the Re in vivo produces substantial, 

monosynaptic latency, excitatory responses in neurons of hippocampal area CA1 (Dolleman-

Van der Weel et al., 1997). Excitation of both pyramidal cells and interneurones is reported 

(Dolleman-Van der Weel et al., 1997; Dolleman-Van der Weel & Witter, 2000). Interestingly, 

Re stimulation is reported to be as effective in discharging hippocampal CA1 pyramidal cells 

as equivalent stimulation of hippocampal area CA3, the presynaptic source of the intensively 

studied Schaffer collateral commissural pathway. Furthermore, Re-CA1 synapses exhibit 

greater frequency facilitation than CA3-CA1 connections, and at least as much long-term 

potentiation (Bertram & Zhang, 1999). The synapses responsible for this robust synaptic 

drive are predominantly located within stratum lacunosum moleculare, where the distal 

dendrites of CA1 cells are found as well as the temporo-ammonic axons that conveying 

direct excitatory input from the entorhinal cortex. Indeed, it is likely that investigators using 



extracellular electrical stimulation of hippocampal slices in attempts to drive the 

temporoamonic input to CA1 cells (Giocomo & Hasselmo, 2006; Ceolin et al., 2011; Booth et 

al., 2016b) are additionally recruiting Re axons. Interestingly, in vivo awake tetrode recording 

has recently revealed that Re has “head direction” cells (Jankowski et al., 2014), a neural 

activity more commonly associated with neurons in the entorhinal cortex and 

hippocampus/subiculum (Taube et al., 1990; Sargolini et al., 2006). This finding prompted 

further investigation of spatially responsive cells in the Re which revealed evidence of both 

place cells and border cells, providing further evidence for the importance of the Re in spatial 

navigation (Jankowski et al., 2015).  

In vivo recordings have also demonstrated the presence of Re neurons which exhibit 

trajectory-dependant firing during a T-maze based continuous alteration task, similar to 

neural activity observed in the CA1 region of the hippocampus and the mPFC. Interestingly, 

lesioning or optogenetic silencing of the Re leads to a substantial reduction in trajectory-

dependant firing in CA1. This suggests that the Re plays an important role in the transfer of 

information from the mPFC to CA1 that pertains to future path choices in goal-directed 

behaviours (Ito et al., 2015). Another recent in vivo study (Hallock et al., 2016) has also 

indicated that structures in the midline thalamus are crucial for the synchronous oscillatory 

behaviour that arises between the hippocampus and pre-frontal cortex during working 

memory tasks (Jones & Wilson, 2005).    

Despite the significant body of data that address the connectivity of the Re, its roles in 

behaviour, and its pathology in disease, neurophysiological understanding of this cognitively 

important thalamic structure is far from comprehensive. Practically all published Re 

neurophysiology to date has been performed with in vivo extracellular recording methods 

either in anesthetized (Dolleman-van der Well 1997, Bertram and Zhang 1999) or, more 

recently, awake behaving rats (Jankowski et al., 2014; Ito et al., 2015; Hallock et al., 2016). 

Unquestionably there have been few detailed cell-level electrophysiological studies of Re 

neurons. Working in the mid-line thalamus, which likely included Re, Graef and colleagues 

examined changes to bursting and T-type Ca2+ channels produced in a pilocarpine-induced 

epilepsy model (Graef et al., 2009). The same group subsequently made a similar study, in 

this case specifically working within Re, examining consequences of ethanol exposure and 

withdrawal (Graef et al., 2011). The only other intracellular data from Re neurons we are aware 

of are a single panel in a supplementary figure in Xu and Sudhof 2013- which presents 

miniature IPSCs recorded from 6 mice at 26ºC.  

Given the growing interest in the neural functionality of Re we have embarked upon a series 

of in vitro brain slices studies designed to better characterize the cellular neurophysiology of 



Re. We outline the intrinsic excitability properties of neurons in the rostral Re, studies entirely 

performed using coronal brain slices prepared from adult male mice.       

 

Methods 

Ethical approval 

All work in this study was approved by the University of Exeter Animal Welfare 

Ethical Review Board.  Animals were sacrificed in accordance with schedule 1 of the 

UK Animals (Scientific Procedures) Act 1986 and the subsequent amendments 

regulations of 2012, as implemented in response to directive 2010/63/EU of the 

European Parliament and of the Council on the protection of animals used for 

scientific purposes.  

Animals and tissue preparation 

All tissues for this study were obtained from male C57-Bl/6 mice bred in the University of 

Exeter Biological Services Unit using founders purchased from Charles River. All animals were 

granted ad libitum access to both food and water and were housed on a 12/12 light dark cycle. 

For this study, all animals were aged 16-18 weeks and were sacrificed by cervical dislocation. 

The brain was rapidly removed and placed an in ice-cold slicing medium consisting of (in mM): 

189 Sucrose, 10 D-Glucose, 26 NaHCO3, 3 KCl, 5 Mg2SO4(7H2O), 0.1 CaCl2, 1.25 NaH2PO4. 

Serial 300 m thick coronal sections were then prepared using a Leica VT1200 vibratome. 

Following preparation, slices were allowed to recover for at least 1 hour at room temperature 

in our standard recording aCSF. This was composed of (in mM):124 NaCl, 3 KCl, 24 NaHCO3, 

1.25 NaH2PO4, 2 CaCl2, 1 MgSO4(7H2O), 10 D-Glucose, and was gassed with carbogen (i.e. 

95% O2 /5% CO2)  

Only one slice, containing a suitable section of rostral Re could be obtained per mouse. This 

was centred at approximately Bregma -0.46 to -0.58. The required slice was identified with the 

aid of the Paxinos and Franklin mouse brain atlas. In coronal slices at this level the location of 

Re can be readily pinpointed as a bi-lobed structure lying atop the third ventricle. We never 

use slices that had been previously treated with any drug for subsequent electrophysiological 

recordings, this has limited the amount of pharmacological data that we have been able to 

gather from Re, as at most one pharmacological intervention can be studied per animal.  

Electrophysiological Recordings 



All recordings were made using the patch clamp technique. The slice containing the rostral 

Re was transferred into a submerged recording chamber which was perfused with gassed 

aCSF and maintained at a temperature of ~33˚C. The recording chamber was mounted on 

the stage of an upright microscope (Olympus BX51) and cells were visualised using infrared 

differential interference contrast optics and a CMOS USB 2.0 camera (Thor Labs). Drug 

applications were made by addition to the perfusing aCSF.   

Microelectrodes of 3-5 MΩ resistance were fabricated from borosilicate glass capillaries 

using a P-97 Flaming Browning micropipette puller. Pipettes were filled with a K-Gluconate 

based internal solution composed of (in mM): 130 K-Gluconate, 20 KCl, 10 HEPES free acid, 

0.2 EGTA, 0.3 GTP-Na salt, ATP-Mg salt, pH adjusted to 7.3 with KOH. The 15 mV junction 

potential error that arises from the pairing this pipette solution with our aCSF was corrected 

for during analysis.  

Cells of the rostral Re were visually identified based on their location relative to the dorsal tip 

of the third ventricle. All recordings were made with a Multiclamp 700B amplifier (Molecular 

Devices) and digitised with a Digidata 1440A interface (Molecular Devices). All data were 

stored on a personal computer (Hewlett-Packard) using pClamp 10.4 software. This package 

was also used to design and deliver the various experimental protocols employed to 

characterize the cells.  

Data Analysis 

Data were analysed using a range of custom written MATLAB scripts and pClamp 10.4 

software. Statistical assessments of differences between populations were made using 

unpaired two-tailed students t-tests and both one and two way analysis of variance (ANOVA) 

as appropriate. Figures were prepared with Origin 9.1.  

 

Results  

Cellular properties at resting potential 

Data collected from intact Re neurons using loose patch/cell-attached recording indicated 

that the majority of cells exhibited a significant degree of spontaneous action potential (AP) 

firing. Figure 1A(a) illustrates a segment of such activity from a typical recording of this 

nature. The timecourse of the instantaneous frequency of action potential firing for this cell 

recorded over 60 s is presented in Figure 1A(b).  



Commensurate with observations made in loose-patch or cell-attached mode (Figure 1A), 

robust spontaneous AP firing was also observed in the majority of Re neurons when we 

entered the whole cell recording mode and immediately collected a 60 s period of current 

clamp data with zero injected current (i.e. recording at resting potential). In 135 of 154 

(~88%) whole cell recordings of this nature, the neuron fired one or more spontaneous APs 

during the 60 s epoch immediately following entry into the whole cell configuration (Figure 

1B). For all cells (i.e. both spontaneously firing and silent) the average membrane potential 

observed over the entire 1 minute period is presented in Figure 1C. The 19 cells exhibiting 

no spontaneous spiking were characterized by a membrane potential (-70.6 ± 3.2 mV) 

somewhat more negative than the overall population mean (-63.7 ± 0.6 mV). The vast 

majority (107) of the 135 cells that exhibited AP firing maintained their spiking activity 

throughout the entire 60 s period, with no single interspike interval longer than 5 s (and in 

most cells no longer than 300 ms). These cells had a mean resting potential of -61.4 ± 0.4 

mV (n=107). For these recordings a histogram presenting the distribution of mean AP 

frequency is shown in Figure1D. This was compiled by calculating the average of the 

reciprocal of all inter-spike intervals for each cell. The average of these mean instantaneous 

frequencies was 9.2 ± 0.5 Hz.  

 

 



Figure 1. Firing properties at rest. (A) (a) Sample trace of spontaneous AP firing recorded 

in cell-attached mode over a 60 s period. (b) A plot showing the Instantaneous frequency vs 

spike interval number for this cell-attached recording. (B) Sample traces from whole cell 

current clamp recordings illustrating (a) a neuron which showed no spontaneous activity and 

(b) a neuron that fired regularly at rest. (c) A cumulative column representation of the 

percentage of silent and spontaneously firing neurons in the Re population. (C) Histogram 

presenting the mean resting membrane potential recorded during a 60 s epoch soon after 

gaining whole cell access (D) Histogram showing, for firing cells, the mean instantaneous AP 

frequency at RMP during this 60 s epoch.  

 

 

In the remaining 27 cells that fired any AP during the 60 s recording epoch a range of spiking 

behaviours was observed. In 9 of the cells APs initially fired regularly at 3-10 Hz, essentially 

in a fashion mirroring the majority group illustrated in Figures 1B and D, but at some stage 

this activity first slowed and then ceased, seemingly as a consequence of modest and 

progressive (2-4 mV) hyperpolarizing shift in resting potential (Figure 2A). In the remaining 

18 cells in which any spontaneous AP generation was seen prolonged spike-free periods (at 

least 5 s) were interrupted by brief periods of spiking. These cells fell into two clear groups. 

The first comprised 12 cells in which the intermittent spiking only comprised low frequency 

(<15 Hz) activity (Figure 2B), essentially similar to the spiking seen in the cells that 

maintained their firing for the whole 60 s (Figure 1). The second group comprised only 6 

cells (Figure 2C), in these occasional brief bouts of spontaneous firing were observed which 

included very much briefer inter-spike intervals (as short as 3.2 ms), and thus considerably 

higher maximum instantaneous frequencies of spiking (75-310 Hz). A noticeable difference 

between the 11 cells with low frequency intermittent firing and the 6 cells with occasional 

high frequency bursting was in resting potential. In the latter group this was always more 

negative than -75 mV (mean -82.2 ± 2.9 mV), whereas in the 11 cells in which the 

intermittent AP  firing comprised only of low frequency spiking the resting potential was 

significantly more depolarized (-66.0 ± 1.9 mV, p<0.005 unpaired t-test). This latter value lies 

between the average membrane potential of the 17 cells that fired no AP in 60 s (circa -70 

mV) and the largest group of cells, those exhibiting maintained regular firing (circa -61 mV). 

The very negative membrane potential of the 6 cells in high frequency spiking group, meant 

that the observed bursts rode atop a substantial transient depolarizing shift which brought 

the cells to threshold, the nature of which will be discussed below.     



  

Figure 2. Heterogeneous firing patterns at rest. Sample current clamp trace of (A) an 

initially regularly firing neuron in which cessation of firing was accompanied by a 

hyperpolarising shift in resting membrane potential, (B) a neuron exhibiting irregular firing at 

a low frequency and (C)  a neuron which fired irregularly in short high frequency bursts. The 

inset shows the very high frequency spiking present in such a burst with 4 AP arising in 

under 30 ms.  

 

As described above, ~70% of Re neurons fired constantly at rest with a frequency of 2-20 Hz 

(Figure 1D). Inspection of the voltage traces revealed that this firing appeared to be 

predominantly paced by a robust afterhyperpolarization (AHP) that followed each AP. On 

average this AHP peaked 13.7 ms after the AP peak and took the membrane potential to -

20.1 mV below the previous spike threshold (Figure 3A). As the AHP decayed and the cell 

depolarized again it was able to initiate another spike; consequently the rate of the AHP 

decay was appeared to be a key determinant of spontaneous firing frequency.    

In the 134 cells firing spontaneously at rest we detected all of the spikes and characterized 

their core waveform properties. For the 120 cells firing a total of 20 or more AP histograms 

plotting the distribution of mean AP threshold, max rate of rise, zenith and width at half 

height (defined as the voltage halfway between AP threshold and zenith) are presented in 

Figure 3B-E. When the distribution of AP thresholds (Figure 3B) is compared with the resting 

potential distribution (Figure 1C) it is apparent why most Re neurons exhibit spontaneous 

firing. As expected, bath application of tetrodotoxin (TTX) (500 nM) first slowed and then 

eliminated spontaneous AP firing in Re neurons (data not shown)).  



 

Figure 3. Action potential properties (A) Average trace of a spontaneous action potential 

measured at RMP. SEM is highlighted in grey. (B-E) Histograms showing the average spike 

properties of spontaneously fired APs, specifically (B) AP threshold, (C) AP peak value (i.e. 

zenith), (D) AP width measured at half height and (E) AHP amplitude.  

 

 

It was clear from close examination of current clamp recordings at rest that Re cells in vitro 

received a significant degree of spontaneous synaptic input (Figure 4A). Classical fast 

spontaneous synaptic activity was also apparent in recordings made in voltage clamp mode 

at a holding potential of -85 mV (Figure 4B). Indeed, spontaneous IPSCs recorded in vitro in 

voltage clamped Re cells at 26°C have been presented in one previous publication (Xu & 

Südhof, 2013). 

When, during voltage clamp recordings, TTX (500 nM) was added to the perfusing aCSF to 

isolate miniature inward-going synaptic events (i.e. post-synaptic responses arising from 

presynaptic release of single quanta), we saw a spread of response amplitudes with a 

median peak of typically around 10-15 pA. Most of these events rose very fast and decayed 

rapidly and exponentially with a time constant of around 1 ms (Figure 4C mPSCs).  



  

 

Figure 4. Spontaneous synaptic input. (A) Sample post-synaptic potentials measured at 

RMP. (B) Sample inward going post-synaptic currents measured at a holding potential of -85 

mV. (C) Sample trace of miniature post-synaptic currents measured at a holding potential of 

-85 mV in the presence of 500 nM TTX. Black current traces in (B&C) are Gaussian filtered 

versions of the raw grey traces. 

We wished to establish if the spontaneous synaptic drive to Re cells could be a major factor 

in their spontaneous AP firing.  We therefore made a series of recordings in the maintained 

presence of NBQX (5 µM), L689560 (5 µM) and gabazine (5 µM) to block AMPA/Kainate, 

NMDA and GABAA receptors, respectively. Under these conditions spontaneous post-

synaptic potentials were absent but the mean resting potential remained relatively 

depolarized (-66.7 ± 2.1 mV, n=29, Figure 5A). Furthermore, spontaneous AP electrogenisis 

was still apparent in the majority (20/29, 69%) of cells (Figure 5B). This spontaneous activity 

occurred with a mean frequency of (8.0 ± 1.0 Hz) very similar to that observed in the 

absence of pharmacological block of amino-acid mediated synaptic transmission (Figure 

1D). The various waveform properties of spontaneous action potentials also appeared 

unaffected by synaptic blockade (data not shown). This indicates that the relatively 

depolarized resting potentials and consequent tonic spontaneous AP firing in Re neurones in 

vitro arises largely from cell-intrinsic properties, rather than synaptic drive, although the latter 

will not doubt shape this activity to some extent. 



 

Figure 5. Firing properties at rest in the presence of synaptic blockers. (A) A plot 

illustrating the distribution of resting membrane potentials in Re cells recorded in the 

combined presence of blockers of AMPA/Kainate, NMDA and GABAA receptors, right. (B) 

An illustration of the relative proportions of spontaneously firing and silent cells under these 

conditions (C) The distribution of mean instantaneous AP frequency at RMP during a 60 s 

epoch recorded in whole cell configuration. All recordings were made in the presence of 

NBQX (5 µM), Gabazine (5 µM) and L-689560 (5 µM). 

Excitability analysis from a defined pre-set membrane potential 

For a variety of underpinning biophysical reasons, the intrinsic excitability properties of all 

neurons depends on their resting membrane potential (see below for data exemplifying this). 

Consequently, to make comparisons across neurons within a population it is helpful to set 

the pre-stimulus membrane potential of each cell to constant defined level. Furthermore, it is 

helpful to choose a pre-stimulus potential at which spontaneous firing is absent, because the 

presence of ongoing background firing complicates interpretation of any subsequent 

stimulus-evoked activity. Thus, to gain a detailed insight into the intrinsic excitability of Re 

neurons we initially chose to make measurements from a pre-stimulus membrane potential 

of -80 mV. This pre-stimulus potential was set by applying a suitable amount of bias current 

via the recording amplifier; this varied in amplitude from +46.8 to -153.7 pA, averaging -45.4 

pA (n=154).  



Having set the pre-stimulus membrane potential to -80 mV, we then applied a range of 

defined current stimuli to probe the sub- and supra-threshold intrinsic properties. Firstly, to 

determine an approximation of “rheobase” for cells at -80 mV we applied an incremental 

series of 100 ms duration, depolarizing current injections.  These were increased stepwise in 

amplitude in small increments at 1 Hz until action potential firing was observed. As illustrated 

in Figure 6A, cells could be divided into those which fired just one AP at rheobase and those 

which produce a burst of between 2 and 6 AP. The mean AP count in latter group was 2.9 ± 

0.2 AP . Data summarizing the amount of current required to produce at least one AP across 

106 cells is shown on the left of Figure 6B. Alongside this are data from an series of similar 

recordings made in the synaptic blocker cocktail described above. These exhibited an 

almost identical  mean rheobase of 25.3 ± 5.1 pA (n=25, Figure 6B).  For the larger drug free 

experimental group Figure 6C  compares the mean rheobases for those cells firing just one 

AP and those producing a burst of 2-6 AP. The latter group had a 25% lower rheobase 

(P=0.01, unpaired t-test), and consequently were both easier to bring to AP threshold and 

once there produced a greater spike output.  

 

 



Figure 6. Approximation of rheobase from a pre-stimulus potential of -80 mV. (A) 

Sample voltage traces extracted from a series of incrementally growing 100 ms current 

injections used to approximate the rheobase from -80 mV. Data are shown are from 2 cells, 

one with a single spile and one with a burst. The traces shown in each are responses to the 

minimal current injection which elicited an AP (rheobase), rheobase – 2 pA and rheobase/2. 

(B) A plot comparing rheobase distributions recorded both in the absence and presence of 

NBQX (5 µM), Gabazine (5 µM) and L-689560 (5 µM). (C) The “no blocker” data from (B) 

broken down by cells which fired only one AP at rheobase and cells which generated a burst 

of 2-6 AP, data are treated . In (B) and (C) each round symbol is a separate recording. The 

diamonds plot the mean, the boxes the standard error and the line crossing the box the 

median.  We next employed a standard incremental current injection protocol in which a 

series of 9 consecutive 500 ms current stimuli were delivered with an inter-stimulus interval 

of 10 s. The amplitude of the first current pulse was -20 pA and each subsequent pulse was 

+10 pA larger such that the final pulse had an amplitude of +60 pA (Figure 7A)). The first 

(i.e.-20 pA stimulus) sweep was used to determine the subthreshold intrinsic properties of 

Re neurons including input resistance, membrane time constant, and capacitance. 

Approximately 12% of Re cells exhibited a significant rebound depolarization following 

cessation of hyperpolarizing current injections. As reported previously by others (Graef 

2011) these rebound depolarizations were capable of driving spiking in some cells (Figure 

7B), and when spiking was seen multiple AP were typically produced within a short time 

window. The basis of this rebound potential will be described later.  

 Input resistance averaged 615 ± 17 MΩ (Figure 7D), and mean membrane time constant 

was 38.5 ± 1.1 ms (Figure 7E). The capacitance estimated by dividing time constant by input 

resistance averaged 66.6 pF, indicating that, for CNS neurons, these cells were modest in 

size.    



 

 Figure 7. Passive membrane properties.  (A) Sample voltage traces a series of current 

injections (-20 – 60 pA) from a set pre-stimulus potential of -80 mV. For clarity the responses 

to 30 and 60 pA stimuli have been offset. (B) Average voltage response to a -20 pA, 500 ms 

hyperpolarising current injection from a set pre-stimulus potential of -80 mV. SEM is 

highlighted in grey. Highlighted in (C) is the high frequency rebound spiking behaviour 

observed from some cells following termination of negative current injections.  (D-F) 

Histograms showing (D) input resistance, (E) time constant and (F) an approximation of 

capacitance. 

A slow depolarizing relaxation of the membrane potential and accompanying decrease in 

membrane resistance during application of a hyperpolarizing current injection is commonly 

known as ”sag”. It is a prominent and important subthreshold feature of a number of CNS 

neurons, and arises from  activation of hyperpolarisation-activated cyclic nucleotide gated 

(HCN) channels. The majority of Re neurons exhibited little or no sag in response to a 500 

ms, 20 pA hyperpolarising current injection, as exemplified by the average voltage traces 

shown inFigure 7B.  The extent to which HCN2 channels, the predominantly expressed HCN 

channel in the thalamus (Santoro et al., 2000), would activate in response to  a relatively 

short hyperpolarising current injection is questionable given this channels long activation 

time constant (in the order of seconds). However when we employed a five fold longer 20 pA 

hyperpolarising step (2.5 s) we also observed no appreciable sag as exemplified by the 



average trace in Figure 8A. In case HCN channels were already largely activated at -80 mV 

we also examined 2.5 s 20 pA current injections at -72 mV and 500 ms current injections at -

64 mV, neither of which exhibited any significant sag.  

To finally confirm this apparent paucity of HCN current, and to look for any potential 

activation from even more depolarized prestimulus potentials, we  also carried out a series of 

voltage-clamp recordings to look for any sign of HCN-like conductances.  Here we applied a 

series of 5 s duration hyperpolarising steps to Re cells at a holding potential of -55 mV. The 

test potential varied from -60 to -125 mV in 5 mV increments (Fig 8B). In such protocols 

HCN channel activity is revealed by a slowly growing inward current that takes 10s or 100s 

of milliseconds to come to steady state level. The cross-cell average current response from 

6 Re neurons can be seen in Figure 8A. In this average there is no sign of any slow gating 

HCN-like current. The presence of HCN currents can be readily revealed by looking for 

difference between the current level in the first few milliseconds following hyperpolarization 

(before the slowly gating HCN channels have opened) and that seen at the end of the 

voltage pulse (when the  HCN channel opening probability has had time grow). Such an 

analysis in presented in Figure 8C. This compares of the inward current level recorded in the 

first and last 60 ms of the voltage step to -125 mV relative to the holding current. This 

revealed that 5 of the 6 neurons recorded exhibited no slow gating inward current 

whatsoever.  The remaining neuron exhibited a small (~50 pA) growth in inward current  

although on average, across the 6 cells, there was no significant difference in current level at 

the start and end of the pulse (Fig 8C). Upon inspection of the average voltage trace (Fig 

8B) it became clear that the amplitude grew in a non-linear fashion across sequential voltage 

steps. This is also evident from Figure 8D, an I-V plot of the current amplitude at the end of 

the 5 s step versus voltage. This form of this curve is suggestive of the presence of inwardly 

rectifying potassium channels as the membrane conductance increases at potentials 

negative to the potassium equilibrium potential. 



 

Figure 8. Absence of HCN channel-like current. (A) Average current clamp trace derived 

from 25 cells showing the response to a 2.5 s, 20 pA hyperpolarising current injection 

applied to cells at a prestimulus potential of -80 mV. (B) Voltage clamp protocol (top) and 

resultant average traces (bottom) of a series of 5 mV hyperpolarising steps from a holding 

potential of -55 mV. (C)  Plot showing the change in membrane current between the first 60 

ms (a) and the final 60 ms (b) of a voltage step to -125 mV. (D) Average I-V plot of the 

current response during the final 60 ms of a 5 s test pulse for series of 5 mV hyperpolarising 

voltage steps applied to 6 neurons held at -55 mV. 

The incrementally growing depolarizing 500 ms current stimuli (Fig 7A) lead to AP firing in all 

Re neurones. A graph plotting the fraction of cells firing 1 AP or more versus the amplitude 

of the depolarizing stimulus is shown in Figure 9A, whereas Figure 9B summarizes the 

relationship between number of spikes elicited and current stimulus applied.  The graph in 

Figure 9B does not provide any information about the temporal dynamics of AP production 

during the 500 ms current stimulus. This feature of excitability is illustrated in Figure 9C 



which plots of mean instantaneous frequency versus spike interval for applied current stimuli 

ranging from 10 to 60 pA. We also gathered an additional dataset from a smaller group 

(n=25) of Re neurons using 2.5 second long current stimuli. An example recording and 

pooled data from the 30 and 60 pA stimuli are shown in Figure 9D. These recordings show 

that maintained lower frequency (8-20 Hz) firing following post-burst accommodation could 

continue for at least 2.5 seconds.  In reality we believe this activity is ostensibly similar to the 

maintained firing observed at resting membrane potential in most Re neurons (Figure 1).   

It is clear from Figures 9C and D that, on average, when Re neurons receive current 

injections sufficient to inducing fire they tend to generate an initial burst of AP around 115-

145 Hz followed by accommodation to maintained spiking rates around 10-30 Hz. Although 

providing a useful and standard summary, data averaged in the way shown in Figure 9C do 

not reflect the full diversity of firing behaviours that we observed in our population of Re 

recordings. In particular the full spectrum of behaviours featured both highly bursty and 

regular spiking cellular responses to the same stimulus (Figure 10A). This diversity of firing 

patterns is illustrated in an alternative manner by the cell by cell data presented in Figure 

10B. Here there relative timing of APs (relative to the first = black symbols) is shown for a 60 

pA depolarizing stimulus. This plot confirms that many cells fire a prominent and very high 

frequency initial AP burst, whereas other cells lack this initial strong burst and fire more 

regularly throughout the applied stimulus (e.g Figure 10A(b)).  

 

 



 

Figure 9. AP production in response to depolarising 500 ms “square-wave” current 

injections. (A) The fraction of cells generating at least one AP and (B) the mean number of 

AP produced in response to a series of 6 incremental 500 ms depolarising current injections 

(10 – 60 pA) from a set pre-stimulus potential of -80 mV. (C) A plot of instantaneous AP 

frequency vs interval number for a 10, 30 and 60 pA 500 ms current stimuli. (D) A plot of 

instantaneous AP frequency vs interval number and inset a sample voltage response, for a 

30 and 60 pA 2.5 s current stimuli.  All error bars represent SEM. All cells were set at -80 mV 

prior to current application. 

 



 

Figure 10. Diversity of firing following a depolarising current injection. (A) Sample 

voltage traces in response to a 10 pA 500 ms depolarising current injection from a set pre-

stimulus membrane potential of -80 mV. Different neurons display diverse firing outcomes for 

this stimulus including (a) high frequency bursting and (b) regular firing. (B) Scatter plot 

displaying the heterogeneity of firing behaviour in response to a 60 pA depolarising current 

step. Each row represents a different neuron and the time at which the first AP is generated 

for each neuron is represented on the graph by a black point at 0 ms.  The timing of all 

subsequent APs generated is plotted relative to the first spike. The second spike is 

represented by a red point, the third by dark yellow, the fourth by yellow and the fifth by 

green etc. Representing the data in this form illustrates the diverse array of different firing 

patterns present in the neuronal population.  

 

In hippocampal pyramidal cells (Jensen et al., 1996; Yue & Yaari, 2004; Brown & Randall, 

2009) and some other “bursty” neurones, the presence of bursting correlates with the 

presence of a fast spike after-depolarizing potential (ADP). This afterpotential is best 

observed when very short (1-2 ms), strong current (1-2 nA) stimuli are used to elicit a single 

(primary) AP. In the period after the very brief current stimulus is removed the primary AP is 

followed by an ADP, which can, when sufficiently large, result in production of one or more 



secondary APs. An ADP of this nature was present in many (67%) Re neurones. Examples 

of a subthreshold and a suprathreshold ADP are show in Figure 11, note the intense short 

burst of firing produced by the latter.       

 

 

 

Figure 11. After-depolarising potential following a single spike. Two sample traces (top) 

of the voltage response following generation of a single spike elicited by a short (2 ms), 

strong (2 nA) square current injection (bottom). 

High frequency firing driven by EPSP-like stimuli 

Although “square-wave” current injections in current-clamp recordings are a very useful and 

standard means to characterise the excitability of neurons, they are not particularly 

representative of how cells are activated in vivo. To examine how physiological synaptic 

inputs might drive firing in Re neurons in vivo we used an approach in which current stimuli 

with EPSC-like waveforms (EPSCs) were applied to Re neurons during current clamp 

recordings, an approach we have previously employed to study the basis of high frequency 

bursting in hippocampal CA3 pyramidal cells (Brown & Randall, 2009). To facilitate 

interpretation, and to parallel the datasets described above for conventional “rectangular” 

current stimuli (Figures 6,7,9,10,11), these stimuli were applied from a defined pre-stimulus 



membrane potential of -80 mV, at which spontaneous firing is absent. We examined stimuli 

in which the decay rate of the injected current was varied across a 4-fold range (Figure 12), 

and also examined different stimulus peak amplitudes between 50 and 250 pA (Figure 13).   

When sufficiently large (e.g 250 pA), EPSC stimuli produced AP generation in 100% of Re 

neurons maintained at a pre-stimulus potential of -80 mV. In contrast, 50 pA stimuli almost 

always failed to produce APs (Figure 13B) and instead produced a subthreshold EPSP like 

waveform. With sufficiently large stimuli the EPSC typically produced a high frequency 

(100-250 Hz) burst of 2 or more AP, as exemplified by Figure 12A. Furthermore as the 

decay of the EPSC was slowed the mean spike output increased, approximately doubling 

as the decay time constant was lengthened from 5 to 20 ms.  

A feature of the spiking response to EPSC stimuli was that the action potential firing often 

occurred considerably after the peak of the injected current. Indeed, with just suprathreshold 

EPSCs (i.e. 150 pA peak amplitude) and a 5 ms decay time constant the first AP occurred 

after the EPSC waveform had decayed practically to baseline (Figure 13A and C). Even 

with the strongest EPSC stimuli examined (250 pA) the first AP occurred some 5-12 ms 

after the peak of the current injection. In either case it was generally apparent that the 

EPSC activated another subthreshold depolarizing current that in turn drove the cells 

towards their AP threshold.   

 

Figure 12. αEPSC current injections can elicit high frequency burst firing. (A) Sample 

voltage responses to 250 pA αEPSC current injections with time constants of 5, 10 and 20 

pA, respectively. Note the resultant high frequency bursting observed in many cells. (B) A 

graph plotting the number of AP elicited versus the time constant of the αEPSC injected. As 

the time constant of the current injection increases so does the number of evoked APs.  



 

 

 

Figure 13. AP production in response to αEPSC current injections of varying sizes. (A) 

Sample voltage responses (top) to incrementally large αEPSC injections (taudecay = 5 ms) 

ranging from 50-200 pA (bottom). (B) Graph plotting the mean number of spikes (column) 

and the percentage of neurons firing any spikes (line and symbol) in response to an αEPSC 

current injection with taudecay = 5 ms. (C) A plot of the post-peak latency (i.e. the time after 

the peak of αEPSC the 1st AP fires) vs αEPSC amplitude (taudecay = 5 ms).  

 

 

Changes to excitability at more depolarized membrane potentials 

The excitability data described above were collected from neurons placed at a set 

prestimulus membrane potential of -80 mV prior to delivery of a current stimulus. This level 

lies in the negative tail of the range of resting potentials seen in the Re population in vitro 

(Figure 1C). In a subset of cells we additionally collected datasets from a somewhat more 

depolarized pre-stimulus potential of -72 mV, although still one at which spontaneous spiking 

at rest was absent (Figure 14A). These recordings demonstrated that quite substantial 

changes in aspects of the excitability profile of Re neurons arose when their resting 



potentials were changed by just a few mV. Perhaps somewhat surprisingly, depolarizing the 

pre-stimulus membrane potential by 8 mV had no effect on the total AP output observed 

during the 500 ms depolarizing current pulses of various amplitudes. Thus, very similar spike 

numbers were observed for each level of stimulus (Figure 14B) and the relationship between 

percentage of cells firing at least 1 AP and injected current was almost identical (Figure 

14C). However, on visual examination of the voltage traces it was clear that the original high 

frequency AP burst seen in the majority of cells at -80 mV (Figures 9 & 10) was almost 

always absent in cells resting at -72 mV, as exemplified in Figure 14A. This is also reflected 

in the pooled data plotted in Figure 14D which present the mean instantaneous frequency for 

the first interspike interval elicited by each level of current injection. The initial spiking rate is 

around 5 to 8 times faster in the cells resting at -80 mV. In a similar vein, whereas 50-60% of 

cells at -80 mV produced a first spike pair with instantaneous frequency of 100-330 Hz, this 

was only around 5% for cells at -72 mV, and in this small population spiking did not exceed 

155 Hz. The reason for the very similar total AP counts during the entirety of the 500 ms 

stimulus (Figure 14 B) was that the average rate of steady state spiking in the latter part of 

the current stimulus was approximately 10% higher in the cells starting from -72 mV.    

 

    

Figure 14. Firing behaviour in response to square current injections are dependent on 

membrane holding potential. (A) Sample voltage responses to a 60 pA square current 



injection applied from pre-stimulus membrane potentials of -72 and -80 mV. (B) Graph 

showing the average number of spikes fired in response to 6 depolarising current injections 

(10-60 pA) from a Vm of -72 or -80 mV. Error bars represent SEM. (C) Graph showing the 

fraction of cells firing one or more AP for each current injection. Number of spikes fired or the 

fraction of cells firing in response to current injections were unaffected by Vm. (D) An 

illustration of the average instantaneous frequency between the first two spikes fired in 

response to a depolarizing stimulus of the indicated amplitude. (E) A graph showing the 

fraction of cells firing two action potentials at a frequency greater than 100 Hz. Both the 

average first instantaneous frequency and fraction of cells firing with a first instantaneous 

frequency >100 Hz were significant decreased by depolarising the membrane by 8 mV.     

Electrophysiological and pharmacological evidence for a T-type Ca2+ conductance 

The presence of both hyperpolarization-induced rebound firing in the absence of significant 

sag (Figures 7, 8), and the sub-threshold depolarizing potentials that trigger subsequent high 

frequency firing when Re neurons are depolarized from more negative potentials (Figures 9, 

10, 12) are suggestive of the presence of T-type (CaV3 family) Ca2+ channels. Classically 

these channels have a low threshold for activation (more negative than AP threshold), and 

are readily inactivated when the resting potential becomes slightly depolarized (Perez-

Reyes, 2003). Commensurate with this, the Allen Brain Atlas (http://mouse.brain-map.org) 

(Lein et al., 2007) indicates robust expression of the CaV3.1 isoform of low threshold Ca2+ 

channel in Re. Furthermore, two previous studies (Graef et al., 2009, 2011) have demonstrated 

expression of T-type Ca2+ channel mRNA and classical low threshold currents in the midline 

thalamus . 

The size and geometrical complexity of CNS neurons in brain slices or in vivo, combined 

with their typically very large current densities can greatly hinder high fidelity voltage-clamp 

analysis of voltage-gated ionic conductances. However, with sufficient care and suitable 

protocols it is possible to gather some useful information particularly with regards to modest 

sized, slower-gating conductances, which suffer less from space-clamp associated issues. 

Voltage-clamp recordings were made pairing our standard pipette solution and our standard 

aCSF supplemented with 500 nM TTX (to eliminate voltage-gated sodium currents). Initially 

we applied an incremental series of voltage steps from a holding potential of -85 mV, this 

produced mixed currents like those presented in Figure 15A. Notably with modest 

depolarizations, for example to -63 mV, only inward currents were observed, whereas once 

the test potential became depolarized beyond about -45 mV large outward-going, partially 

inactivating currents began to dominate the response. These outward currents, which are 

carried by K+ ions, rapidly increased in size to many nanoamps if depolarization was 

http://mouse.brain-map.org/


increased further. The voltage-dependence and waveform kinetics of the inward current 

elicited with modest depolarizations was highly suggestive of a classical low threshold, T-

type current.  Using a series of small voltage steps separated by 2 mV increments we further 

profiled the inward current within the narrow voltage range where it was the predominate 

current. (Figure 15B). The current activated at the negative voltages expected for a T-type 

current and largely inactivated over around 60 ms of depolarization. We also gathered 

steady state inactivation data for these channels by varying the holding potential prior to an 

invariant step to -65 mV (Figure 15D) and profiled the rate of recovery from inactivation with 

a standard variable interval two step protocol (Figure 15E).      

  

 

 

Figure 15. Gating properties of low-threshold inward currents. (A) Voltage-clamp 

protocol (top) and resultant current responses for a series of 8 mV incremental depolarising 

voltage steps applied from a holding potential of -85 mV. (B) Sample voltage trace and the 

subsequent current response to a series of 2 mV incremental depolarising voltage steps 

(from -75 – -47 mV) from a pre-stimulus holding potential of -85 mV. (C) Average I-V plot of 

the observed peak inward current in response to this series of 2 mV voltage steps.  (D) 



Inactivation curve showing the average voltage at which the T-type calcium current 

inactivates in Re neurons. (E) Line and symbol plot showing the rate of recovery from 

inactivation of T-type Ca2+ current determined with a standard variable interval two pulse 

protocol.  

The pivotal neurophysiological roles of low threshold Ca2+ channels have been widely 

studied in other thalamic neurons for many years (Pape et al., 2004), although the 

availability of reasonably potent and selective T-type channel blockers is a more recent 

advance (Xiang et al., 2011). Application of one such molecule ML-218 (3 M) caused a 

substantial decrease in the amplitude of the ADP elicited following a single short strong 

current injection (Figure 16A). The drug also reduced the instantaneous frequency of the first 

pair of spikes produced by a 500 ms depolarizing current step, without changing the total 

spike output from the stimulus. Finally, the drug eliminated the rebound firing produced when 

Re neurons resting at -70 mV (a membrane potential where 59% of neurons exhibit rebound 

firing following a hyperpolarising step) were hyperpolarized for 500 ms with a -50 pA current 

stimulus. The data in Figures 15 and 16 together indicate that T-type channels play a key 

role in the ability of Re neurones to produce very high frequency firing after transient 

sojourns at negative membrane potentials. 

 

 



Fig 16. Pharmacological inhibition of T-type calcium channels alters firing properties.  

(A) Application of the T-type calcium blocker ML-218 (3 M) reduces the amplitude of the 

ADP that arises following a single spike. (a) Average trace of the waveform of a single spike 

elicited by a short, strong current injection (2 ms, 2 nA) recorded during a 5 minute baseline 

(black), and during the last 5 minutes of a 15 minute exposure to 3 µM of T-type calcium 

channel blocker ML-218. Shaded area represents SEM. (b) A plot describing the time course 

of the effect of ML-218 on the average ADP amplitude normalised to the pre-drug baseline. 

(B) (a) Sample trace of the voltage response to a 100 pA depolarising current injection just 

prior to application of ML-218 (black) and following 15 minutes of exposure to ML-218 (grey). 

(b) A graph showing the effect of ML-218 on the first instantaneous frequency normalised to 

the predrug baseline. (C) (a) Sample traces showing the repolarisation driven rebound 

spiking following a -50 pA hyperpolarising current injection just prior to application of ML-218 

(black) and following 15 minutes of exposure to ML-218 (grey). (b) A plot showing the effect 

of ML-218 on the average number of rebound spikes observed following repolarisation. All p 

values represent paired comparisons of the selected measurement between the pre-drug 

baseline and the final 5 minutes of the drug application.      

            

Reduction in burstyness through activity-dependent intrinsic plasticity  

The data in Figure 1-16 outline core aspects of the neurophysiology of rostral Re neurons, in 

particular their intrinsic excitability properties. Although often tonically firing at around 8 Hz at 

rest, after short periods at sufficiently negative potentials (i.e. ~-80 mV) the cells are capable 

of producing very high frequency burst firing, sometimes reaching instantaneous frequencies 

in excess of 300 Hz. The presence of an ML-218-sensitive, low threshold Ca2+ conductance 

seems central to the production of this high frequency burst firing. Intrinsic neuronal plasticity 

describes how the excitability properties of neurons can be modified by “experience” 

delivered experimentally as a conditioning stimulus of some form. For example, we have 

previously described how the burstyness of hippocampal pyramidal neurons can be 

persistently reduced either by brief cell-intrinsic activity patterns or via the activation of 

metabotropic glutamate receptors at synapses (Brown & Randall, 2009; Brown et al., 2011). 

We were curious if we could identify a similar means to transform the excitability of Re 

neurons. In vivo, the nucleus reuniens exhibits a strong theta oscillation and the firing of 

many neurons is synchronized to this (Jankowski et al., 2014, 2015; Ito et al., 2015). We 

therefore decided to employ a theta-paced burst firing protocol as a candidate conditioning 

stimulus for induction of intrinsic plasticity in Re neurons. Notably a similar protocol has 



proved effective in persistently altering excitability of hippocampal neurons (Brown & 

Randall, 2009). In whole cell current clamp recordings we maintained the prestimulus 

membrane potential at -80 mV and collected a data sweep every 10 s. In all sweeps we first 

applied a 2 nA, 2ms stimulus to evoke a single spike and subsequent ADP (as in Figures 11 

and 16A); notably we did not use cells in which the ADP triggered AP firing as this 

complicates quantification of this afterpotential and consequently experimental interpretation. 

In every second sweep the short-strong ADP eliciting stimulus  was followed 1.5 s later by a 

500 ms, 50 pA hyperpolarizing current pulse which could be used to measure passive 

properties (as in Figure 7B). We ran this protocol for at least 5 minutes to collect baseline 

data prior to applying the conditioning stimulus. The conditioning stimulus consisted of using 

short (2 ms) strong (2 nA) current injections to drive the cells to spike 5 times at 150 Hz 

(Figure 16A), this was repeated continuously every 200 ms for 15 s (thus a total of 75 bursts 

of 5 spikes in 15 s). During application of the conditioning stimulus we allowed the 

membrane potential to follow its desired trajectory rather than endeavouring to keep it at the 

fixed prestimulus level of -80 mV. Following application of the 15 s conditioning stimulus we 

returned to the stimulus protocol employed in the pre-conditioning period and followed the 

cell for a further 15 mins. In this post-conditioning period, as in the preconditioning period, 

the interstimulus membrane potential was again maintained at -80 mV.  

As illustrated in Figure 17A and B, application of the 75 spike, theta-patterned conditioning 

protocol caused a progressive, acute change in the membrane potential of Re neurons. 

Thus, the cells on average hyperpolarized by over 6 mV, a change that followed an 

exponential trajectory that was largely complete after circa 9 theta burst cycles (i.e. 45 AP). 

Notably, this change did not stop the current stimuli from producing AP although the post-

burst AHP was lost, likely as a result of the decreased driving force for K+ ion fluxes that 

mediate the AHP. Notably this change was transient and cells returned to their pre-

conditioning membrane potential within <1 min. In line with this the bias current used to keep 

the cells at -80 mV in the pre- and post-conditioning periods was not different. 

More interestingly, following the conditioning stimulus a persistent change in the intrinsic 

excitability of Re neurons was observed. This was manifest as a decrease in the amplitude 

of the ADP observed following a single action potential (Figures 17C and D). Indeed, the 

ADP was largely absent in most cells and the amplitude measured was just that afforded by 

the need for the membrane to discharge (see Brown and Randall, 2009 for a discussion of 

this). The conditioning protocol acutely caused a 10-15% decrease in input resistance but 

this disappeared within 40 s no lasting changes to input resistance were observed. Thus, in 

the last 5 minutes on the experiment the input resistance was 100 ± 3% of its baseline value 

(P>0.98).    



 

Fig 17. Re neurons exhibit intrinsic plasticity of the ADP (A) Sample voltage (top) and 

current (bottom) traces of a theta burst induction protocol used to induce intrinsic plasticity. 

Briefly each burst was driven induced with 5 short, strong (2 ms, 2 nA) current injections at a 

frequency of 150 Hz. 75 bursts were induced at 5 Hz in order to induce plasticity. (B) A plot 

showing the modest hyperpolarisation in the resting membrane potential that developed as 

the induction protocol progressed. (C)  Voltage trace from an example experiment showing 

the average response to a single spike during the baseline period (black) and 10-15 minutes 

after the conditioning protocol(grey). (D) A plot showing the timecourse of the baseline-

normalised ADP amplitude from 10 experiments.  

 

Discussion 

Thalamic neurons that project to the cortex, thalamocortical (TC) neurons, have been the 

subject of substantial neurophysiological investigation over the last 40 years. Amongst the 

most widely studied TC neurons are those which convey sensory information within either 

the visual or somatosensory systems, for example those whose cell bodies reside in the 

lateral geniculate and ventrobasal nuclei. Such studies have produced a general view of the 

intrinsic electrical properties of TC and how these shape the contribution of these neurons to 

network activities associated with sensory processing.  



In this study we have characterized cell-level neurophysiological properties of Re neurons. 

Unlike classical TC neurons of sensory pathways, these cells of the midline thalamus 

receive little if any direct sensory information, but still both send and receive extensive 

cortical connections (Vertes et al 2015).  We specifically focussed this work on neurons 

located in the rostral portion of Re because this is the predominant source of the afferent 

projections to the hippocampal and prefrontal circuits which have recently generated 

considerable interest (Varela et al., 2014). Furthermore, from an anatomical perspective, 

rostral Re is also easy to identify unequivocally in murine brain slices. Although beyond the 

scope of this first study, in future it would be of interest to compare the properties of the 

rostral and caudal aspects of Re. Also given the diversity of intrinsic properties observed it 

would also be of interest to examine if there is a relationship between defined post synaptic 

target of these cells, established with retrograde labelling methods, and their 

neurophysiological properties at the cellular level. 

Brain slice preparations encompassing the rostral nucleus reuniens are somewhat limiting 

for those wishing to examine the effects of pharmacological agents, especially in mice. This 

is because the region is both relatively small and resides on the midline, meaning each 

mouse provides only one slice (unlike, for example, the hippocampus or cerebellum where 

perhaps 10 unilateral slices can be obtained per animal). We stringently avoid recording 

from cells in slices that have been previously treated with a drug during a prior recording. 

Consequently, this typically limits pharmacological analysis to studying effects of one acute 

drug exposed cell per animal. Our only exception to this is studying cells in slices chronically 

treated with drugs to establish a particular background condition– for example, use of 

synaptic blockers throughout all recordings.  

In whole cell recordings the majority of Re neurons were found to be relatively depolarized at 

rest. A major consequence of this was the presence of robust spontaneous firing of fast 

rising and decaying AP in the majority of cells. This firing often, although not always, 

occurred in a tonic fashion with a mean frequency around 8-9 Hz. These observations of 

spontaneous tonic firing in the majority of neurons are in agreement with Re recordings we 

have performed from slices obtained from both younger (6 weeks) and older mice (~1 year 

and ~2 years, unpublished data).  

The depolarized resting potential and resultant spiking does not seem to arise as a 

consequence of entering the whole cell mode as spontaneous spiking was also clearly 

evident in loose patch or cell attached recordings in which the cytoplasmic contents are 

undisturbed. Furthermore, in our laboratory exactly the same recording solutions and 

conditions result in much more negative resting potentials in other neurons, for example both 



CA1 and CA3 pyramidal cells (Brown & Randall, 2009; Booth et al., 2016b) as well as 

various cortical neurons (Tamagnini et al., 2014; Dawson et al., 2015; Booth et al., 2016a). 

Interestingly the depolarised membrane potential also contrasts starkly with the 

hyperpolarised membrane potential observed in both first and higher order thalamic nuclei 

(Jahnsen & Llinás, 1984; Varela & Sherman, 2007; Kolaj et al., 2012). Indeed, to the best of 

our knowledge, in no other thalamic relay nuclei have the majority of neurons been reported 

to fire spontaneously when recorded during the light stage of a 12:12 day-night cycle. 

Although not supported by our loose patch/cell-attached observations, in which the 

cytoplasmic contents are undisturbed, we wondered if the depolarized resting potential seen 

may have reflected the relatively depolarized Cl- equilibrium potential our intracellular 

solution produces combined with a significant level of tonic GABAergic drive. We found, 

however, that blocking GABAA receptors with GABAzine produced little effect on either 

resting potential or firing behaviours. Furthermore, blocking GABAA receptors did not appear 

to result in substantial increases in overall network activity in the Re, whereas in 

hippocampus and many areas of cortex pharmacological elimination of ongoing GABAergic 

inhibition generally produces huge hypersynchronous epileptiform burst events (Brown et al., 

2003). 

Although the properties of synaptic inputs to Re neurons are not a major feature of this 

study, which instead focusses on intrinsic properties, it is notable that Re cells receive a 

significant ongoing spontaneous synaptic barrage. Indeed, even when spontaneous firing of 

neurons throughout the slice was eliminated with TTX, Re neurones received a substantial 

barrage of spontaneous miniature synaptic input. The quantal sizes of many of these events 

measured in voltage clamp, combined with the relatively high input resistance of Re neurons 

would indicate that they are individually capable of transiently driving the membrane 

potential a few mV depolarized. A thorough study of the properties and plasticity of key 

defined synaptic input pathways to Re neurons is unquestionably required to better 

understand how this component of the higher order thalamus contributes to circuit function. 

Optogenetic approaches would seem highly suited to this objective. Having said this, our 

work reveals that blocking all spontaneous ionotropic, amino acid-mediated synaptic function 

had no discernible effect on the rates of spontaneous spiking or the distribution of resting 

potentials within the reduced complexity of a brain slice preparation.  

The predominant spontaneous firing frequencies of Re neurons corresponds well with the 

mean firing rates of Re neurons described in vivo (Ito et al. 2015) as well as the robust theta 

rhythm that can be recorded in vivo with electrodes implanted into Re. Indeed, 

autocorrelations of in vivo extracellular recordings of the firing of single Re neurons also 

reveals a strong phase locking to theta rhythms (Jankowski et al. 2014). Importantly, in brain 



slices, normal CNS circuit connectivity and resultant network activity is lost, consequently the 

observation of spontaneous firing at rates in the theta band suggest that Re could be an 

intrinsic theta generator and may in turn relay this activity to the limbic structures to which it 

is connected. The fact that we found many Re neurons fired tonically at ~8 Hz in blockers of 

glutamatergic and GABAergic synaptic transmission lends further support this concept of a 

theta range oscillator intrinsic to Re neurons. Full testing of the idea that Re can act as a 

theta generator will require in vivo experiments, for example using optogenetic or 

pharmacogenetic manipulation of Re neurons whilst recording network behaviours in Re and 

defined projection targets. One initial study of this nature indicates that theta activity in 

hippocampal area CA1 is preserved when Re is lesioned with ibotenic acid or firing rates are 

optogenetically reduced (Ito et al. 2015). This may be because the primary hippocampal 

targets of Re projections appears to be interneurons, rather than pyramidal cells (M. Craig 

and C McBain, personal communication).     

Although able to intrinsically fire spikes tonically in the theta frequency range in the absence 

of synaptic drive, the spiking behaviour of Re neurons in vivo will unquestionably be 

modulated and modified by various forms of excitatory and inhibitory synaptic drive into 

these cells. These synaptic influences will arises from multiple sources (McKenna & Vertes, 

2004), most notably various components of the limbic system. Synaptic inhibition is likely to 

pivotally involve input from the reticular nucleus of the thalamus and the zona incerta 

(Cassel et al., 2013)(Cholvin et al., 2013)l. As outlined above, for those wishing to 

understand Re contribution to CNS circuits the functional properties of these afferent inputs 

to Re are worthy of much more experimental consideration in the future.    

Compared to the cortical and hippocampal principal cells we have recorded in vitro using 

similar solutions at similar temperatures, Re neurons have a much higher input resistance. 

Hence, the average value in this study was over 600 M, whereas we find, for example, 

adult CA1 pyramidal cells are typically circa 130 M pyramidal cells in layer 2 of perirhinal 

cortex average 100 M (Tamagnini et al., 2014 and layer 2/3 stellate cells in the dorsal end 

of entorhinal cortex average  40 MBooth et al., 2016). To some extent their high input 

resistance likely reflects the smaller size of Re neurons (capacitance circa. 50% lower), but 

also points to a relative paucity of active background K+ channels. Rodent TC neurons in 

other nuclei recorded with broadly similar methods (patch clamp in slices, ~32-35 C, 

Kgluconate pipette solution) typically have an input resistance of ~200 Mand resting 

potentials around -60 to -70 mV. It is notable, however, we have been unable to find any 

methodologically equivalent (i.e. patch clamp at circa 33°C with Kgluconate intracellular 

solution) studies of other thalamic nuclei at the same adult age as our mice (circa 4 months). 



Iindeed, many TC neuron studies employ much younger rodents often <=3-4 weeks of age. 

Cells in such animals might be expected to have higher input resistances than those of trua 

adults as this feature of membrane physiology generally decreases with age.    

A paucity of active background K+ channels is also is a likely contributor to the depolarized 

resting potential of Re neurons compared to various cortical and hippocampal pyramidal 

cells studied under identical conditions. The combination of depolarized resting potentials 

and high input resistances found in Re neurons mean subthreshold cells need little 

depolarizing current to initiate firing. For example, even when set at -80 mV, around the 95% 

percentile of resting potentials, only 20 pA of current is required to bring around 80% of the 

cells to firing threshold (Figures 6 and 9). The large input resistance of Re cells also means 

they have a comparatively long membrane time constant averaging almost 40 ms. This 

means voltage changes in either direction are relatively slow. This maybe particularly 

pertinent for shaping the decay of synaptic potentials and also spike after-potentials. For 

example, the timecourse over which the AHP declines seems to pace firing at rest and 

anything which reduced input resistance without causing substantial hyperpolarization could 

speed firing. This could potentially occur, for example, through a GABAergic shunting 

conductance if the chloride equilibrium potential was not too negative. Additional studies 

utilizing gramicidin-perforated patch or dynamic clamp could be very informative in this 

regard.  

The Ih current and the sag it produces in voltage recordings is a cardinal feature of other TC 

neurons. This conductance plays a role in determination of resting potential and its gating 

has long been considered crucial to facilitate transitions between hyperpolarised potentials 

where burst firing predominates and more depolarised modes of tonic firing. It is also 

considered crucial to the emergence of rhythmic activities in the thalamus (McCormick & 

Pape, 1990; Pape, 1996). Notably Re neurons appear to lack entirely hyperpolarization-

activated sag and Ih-like currents (Figures 7B and 8), although these exact same recording 

conditions are capable of supporting robust Ih-mediated currents in other cells types (Booth 

et al 2016a and 2016b). The absence of Ih-like currents and sag is also in line with the 

relative lack of HCN channel expression in Re as reported in the Allen brain atlas 

(www.mouse.brain-map.org).  

In contrast to other TC cells, the lack of Ih and associated sag in Re neurons means other 

mechanisms must account for their depolarised resting membrane potential..  It seems likely, 

the lack of Ih could produce telling consequences for how Re neurons contribute to their 

cognitive networks, and suggest substantial differences from the behaviours of other more 

widely studied TC neurons. 

http://www.mouse.brain-map.org/


Some degree of diversity was seen in the patterns of spontaneous firing in the Re. 

Unquestionably most cells fired in a tonic fashion at 2-16 Hz, although more intermittent or 

bursty patterns of firing were seen in a minority of cells. Notably, the only cells which 

spontaneously fired high frequency spike bursts where those with very negative mean 

resting potentials. In these cells, the occasional spontaneous bursts of spikes which could 

exceed instantaneous frequencies of 200 Hz, were seen atop an initiating depolarizing 

transient, which based on others observation here, likely reflects a burst of feedforward 

activation of low threshold Ca2+ channels.  

To investigate the intrinsic properties underlying the neurophysiological profile of Re neurons 

we extended our studies to look at how various current stimuli triggered AP production. In 

this work to reduce the variability that arises from cell to cell difference in resting potential we 

initially set the prestimulus resting potential to -80 mV, since at this negative level there is no 

on-going spontaneous firing which also simplifies interpretation of data. From this 

hyperpolarized prestimulus membrane potential sufficiently large depolarizing current 

injections produced firing. For over 80% of cells only 20 pA of applied current was required 

to produce spiking. In many cells the first 2-4 spikes arrived in the form of an initial high 

frequency spike burst, such that the mean instantaneous frequency of the first spike pair was 

around 120 Hz (Figures 9, 10 & 14)- although observations in excess of 200 Hz were not 

uncommon. This was the case with either the weakest or strongest suprathreshold stimuli 

(Figures 9 and 10). Indeed, with the weaker current stimuli, often only an initial high 

frequency burst of spiking was observed (Figures 7A & 9C), whereas with stronger stimuli, 

for example 30 or 60 pA, the initial burst was typically followed by more tonic spiking at 20-

30 Hz (Figures 9 and 10). This behaviour is typical of TC neurons however Figure 10 

highlights the variety of responses we observed. The initial frequency of firing of a Re neuron 

correlates significantly with the size of its observed ADP (r=0.62, p<0.001) suggesting that 

the variable expression of T-type calcium channels in these neurons could be responsible for 

the observed diversity. Neurons in the Re have been classified into 4 groups based on the 

differential expression of Ca2+ binding proteins calbindin and calretinin (Bokor et al., 2002). 

As such it also seems plausible that differential calcium buffering capabilities between 

groups could contribute to the observed diversity. Given that the Re appears to be first 

thalamic nucleus in which such variety of responses from a fixed potential has been 

reported, future studies should focus on the underlying cellular mechanisms responsible. 

High frequency burst spiking was also notable when cells at -80 mV were activated with 

short (2 ms) strong (1-2 nA) current stimuli that rapidly elicited a single primary AP (Figure 

11) or EPSC current stimuli (Figures 12 & 13). In these cases the spike burst occurred after 



the current stimulus was over, indicating that pro-spiking neurophysiological processes 

initiated during the current stimulus continued. These processes were apparent in the ADP 

that followed the single spike driven by short strong current injections (Figure 11) or the 

deviations from a typical EPSP waveform in the EPSC-driven burst firing (Figures 12 & 13).  

The high-frequency burst firing in response to 500 ms depolarizing stimuli was eliminated 

when the Re cells where placed at -72 mV prior to application of the current stimulus. At this 

potential, the low threshold inward current with classical T-type channel biophysics seen in 

voltage-clamped Re neurons is essentially completely inactivated, whereas at -80 mV some 

15% of the channels appear available (Figure 15D). In line with this, high frequency bursting 

driven by depolarizing current stimuli, both short strong (Figure 16A) and longer and weaker 

(Figure 16B) as well as from an “anodal break” following hyperpolarization are also 

attenuated by the selective T-type blocker ML-218.                 

Thus, Re neurons exhibit radically different firing outputs to depolarizing stimuli depending 

on their membrane potential prior to the arrival of the stimulus. A shift of only 8 mV 

completely reconfigures the resultant spiking response. This appears to be predominantly 

due to the presence of low threshold, T-type Ca2+ channels.  The currents arising from these 

voltage-gated channels have long be shown to play a prominent role in the 

neurophysiological profile of various thalamic neurons, in particular those of the reticular 

nucleus and the lateral geniculate. Furthermore, two of the very few prior papers employing 

cellular recordings in the midline thalamic nuclei have focussed on T-type channels and their 

modulation in rodent models of epilepsy and alcoholism (Graef et al., 2009, 2011). T-type 

Ca2+ channels are effectively activated by EPSP-like waveforms (Warre et al., 2002), and T-

type currents have been shown to contribute to the depolarizing envelope of EPSPs in 

cerebellar Purkinje cells (Ly et al., 2016).   

The ability of Re neurons to fire short bursts of AP at very high frequencies either in 

response to depolarizing current stimuli or through “rebound” following  a negative current 

stimulus is important when considering consequences for the synapses these cells form in 

the hippocampus, prefrontal cortex and elsewhere. Due to the effects of short-term synaptic 

plasticity, the glutamatergic drive generated from a Re afferent pathway exhibiting 

occasional bursts of spikes at 100-300 Hz will certainly be very different from that produced 

by tonic 8 Hz firing. Notably, nothing is known about the short-term plasticity of Re 

projections and related features of synaptic function such as their probability of release and 

post-synaptic response kinetics.  



The synaptic terminations of Re projections into area CA1 of the hippocampus are 

concentrated in the stratum lacunosum moleculare, which is also where most 

temporoammonic inputs from the entorhinal cortex terminate. In this distal dendritic region 

far from the CA1 pyramidal cell layer, electrical stimulation of axons with small numbers of 

high frequency bursts produces robust long-term potentiation of excitatory synapses on 

hippocampal neurons (Remondes & Schuman, 2003; Booth et al., 2014, 2016b). Although 

this long-term synaptic plasticity is frequently attributed to temporoammonic afferents, 

unquestionably a component of such responses arise from stimulation of Re neurons which 

have long been known to produce a robust synaptic response in area CA1 (Dolleman-Van 

der Weel et al., 1997; Dolleman-Van der Weel & Witter, 2000) and also to exhibit robust LTP 

(Bertram & Zhang, 1999). On this basis, high frequency burst firing of presynaptic Re 

neurons would seem ideal to drive synaptic potentiation of their inputs to the hippocampus.  

Importantly, our data suggest the means through which Re neurons will communicate with 

their downstream synaptic partners will depend strongly on their resting potential. Cells 

around -65 mV may be tonically firing in the theta frequency range. Assuming these spikes 

generated in the perisomatic region successfully complete their journey to downstream 

synapses, post-synaptic responses will be produced every so often, largely dependent on 

probability of release. One would probably not expect much in the way of EPSP summation 

or short-term synaptic plasticity. Re neurons resting more depolarized than -72 mV but not 

spontaneously firing will not produce high frequency spike bursts when activated, for 

example by excitatory synaptic drive, and thus may only produce single spikes or a period of 

low frequency regular spiking. In contrast Re cells sat at -80 mV or below will likely generate 

a robust multispike burst on activation that could drive a substantial summated, frequency 

facilitated EPSP in post-synaptic cells, a response of the sort that might induce synaptic 

plasticity if repeated a few times. Notably, Re cells do not need to spend long at negative 

potentials for T-type channels to deinactivate and the ability to generate high frequency 

spike bursts to emerge. For example 300 ms at -85 mV deinactivates ~80% of T-type 

channels (Figure 15 E).    

For the reasons described above, both gaining an understanding of the actual membrane 

potentials of Re neurons in vivo and determining key things that control membrane potential 

are crucial to understanding how Re contributes to the function of CNS circuits in which it 

sits. For example, metabotropic receptor-mediated IPSPs (produced by activation of 

GABAB, dopamine D2 or noradrenaline 2 receptors, coupled to GIRK K+ channels) last at 

least 500 ms and can often last many seconds (see North & Surprenant, 1985 for example), 

certainly enough time to deinactivate T-type channels and enable burst firing. Notably Re 



receives inputs from the ventral tegmental area and the locus coeruleus (Cassel et al., 2013) 

and there are correlations between expression of 2 receptors in Re and behaviour (Wilmot 

et al., 1988)  

In vitro electrophysiological recordings are generally performed with the expectation, or at 

least hope, that the recorded neurophysiological outcomes relate to those of the 

corresponding cells in vivo. With faith in this expectation, it is possible to use the data 

obtained in vitro to consider how the neurophysiological properties of the investigated cell 

shape its functional contributions the various neural circuits of which it forms part. Such 

interpretations can be performed at various levels, from the sorts of general ideas voiced 

here to utilization of the data to aid in the building of computational models. By performing 

the first substantial cellular level study of Re neurones, our goal here has been to obtain 

insights of this nature; and accordingly we have discussed some of the ways the properties 

we have observed in vitro may shape the behaviour of Re neurons in CNS circuits. 

Furthermore, based on our data, we are also currently starting to build mathematical models 

of Re neurons.  

We feel, however, it is prudent to introduce a note of caution; it is certainly possible that the 

cellular properties we have documented are not facsimiles of what would be seen with 

cellular recordings performed in vivo. Indeed, as we have discussed before (Brown and 

Randall 2009), the very process of preparing brain slices could induce significant and long-

lasting changes to intrinsic and/or synaptic neurophysiological features of a neuron. 

However, the task of obtaining over 100 in vivo patch clamp (or intracellular) recordings from 

a deep and relatively small midline structure in the murine brain would be daunting, and if 

data gathered without the confounds of anaesthesia were required (for example from head-

fixed recordings), the challenge might best be described as Herculean.  

Consequently, in the absence of equivalent in vivo data we feel this dataset is valuable for 

those who wish to better understand the contribution of Re to various CNS processes, 

particularly so when considered hand in hand with what we have learnt from recent in vivo 

investigations of the activity of these neurons in behaving rodents (Jankowski et al., 2014, 

2015; Ito et al., 2015) as well as studies that outline changes to Re neurons in disease 

models (Graef et al., 2009, 2011).  
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