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Abstract
Background: Parameter optimisation is a critical step in the construction of computational biology models. In eye
movement research, computational models are increasingly important to understanding the mechanistic basis of
normal and abnormal behaviour. In this study, we considered an existing neurobiological model of fast eye movements
(saccades), capable of generating realistic simulations of: (i) normal horizontal saccades; and (ii) infantile nystagmus –
pathological ocular oscillations that can be subdivided into different waveform classes. By developing appropriate
fitness functions, we optimised the model to existing experimental saccade and nystagmus data, using a well-established
multi-objective genetic algorithm. This algorithm required the model to be numerically integrated for very large
numbers of parameter combinations. To address this computational bottleneck, we implemented a master-slave
parallelisation, in which the model integrations were distributed across the compute units of a GPU, under the control
of a CPU.

Results: While previous nystagmus fitting has been based on reproducing qualitative waveform characteristics, our
optimisation protocol enabled us to perform the first direct fits of a model to experimental recordings. The fits to
normal eye movements showed that although saccades of different amplitudes can be accurately simulated by
individual parameter sets, a single set capable of fitting all amplitudes simultaneously cannot be determined. The fits
to nystagmus oscillations systematically identified the parameter regimes in which the model can reproduce a
number of canonical nystagmus waveforms to a high accuracy, whilst also identifying some waveforms that the
model cannot simulate. Using a GPU to perform the model integrations yielded a speedup of around 20 compared to
a high-end CPU.

Conclusions: The results of both optimisation problems enabled us to quantify the predictive capacity of the model,
suggesting specific modifications that could expand its repertoire of simulated behaviours. In addition, the optimal
parameter distributions we obtained were consistent with previous computational studies that had proposed the
saccadic braking signal to be the origin of the instability preceding the development of infantile nystagmus
oscillations. Finally, the master-slave parallelisation method we developed to accelerate the optimisation process can
be readily adapted to fit other highly parametrised computational biology models to experimental data.
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Background
Oculomotor control
In human eyes, visual acuity is highest in the foveal region
of the retina, and only when the object of interest is held
steady on this region. Consequently, the oculomotor sys-
tem has evolved to perform eye movements that ensure
these conditions are met. These eye movements can be
voluntary or involuntary, and their role is to fixate the
fovea to visual stimuli, to trackmoving stimuli and to com-
pensate for body movements [1]. Depending on the visual
stimuli and the viewing conditions, up to five of the fol-
lowing subsystems are involved in the execution of an eye
movement: saccadic, smooth pursuit, vestibular, optoki-
netic and vergence. The subsystem of interest in this study
is the saccadic system. This performs the rapid move-
ments of the eyes (saccades) that transfer gaze from one
target to another [2].
Saccades exhibit highly stereotyped behaviour which

are commonly summarised using three key relationships
between saccadic metrics. The first two relationships state
that the saccade duration increases nearly linearly with
amplitude and that peak saccadic velocity increases non-
linearly with amplitude at a decreasing rate. These rela-
tionships are called the main sequence and have been
found to hold for a wide range of normal activities, such
as reading, free scene viewing, visual search and walk-
ing [3]. The third relationship describes how the velocity
profile shape changes with amplitude [4]. It has been
shown that the length of the accelerating segment of the
velocity profile is roughly consistent for all saccade ampli-
tudes, whereas the length of the decelerating segment
increases with amplitude. This causes the velocity pro-
file of small saccades to be symmetrical, whereas those of
larger saccades are skewed [4].

Infantile nystagmus
Infantile nystagmus (IN) is an eye movement disorder
characterised by involuntary, bilateral, conjugate oscilla-
tions of the eyes. The oscillations begin at birth, or shortly
afterwards, and are usually restricted to the horizontal
plane, although vertical and torsional movements (and
combinations of these) have also been observed [5, 6].
Infantile nystagmus can be idiopathic, or associated
with sensory defects (e.g. cataract and oculocutaneous
albinism) [6, 7]. The estimated prevalence of all forms
of nystagmus is 24 per 10000 individuals, of which IN
accounts for 14 per 10000 [8]. Nystagmus has a signifi-
cant impact on the quality of life, with many individuals
registered as partially sighted or blind [9]. This makes
the development of potential treatments for nystagmus
patients an important goal of clinical motor disorder
research.
The key characteristics of IN include: the oscillation

plane, the waveform amplitude and period, the slow and

fast phase, the foveation window and the baseline oscilla-
tion (see Additional file 1: Figure S1) [10, 11]. Typically, a
slow eye movement (the slow phase) takes the eye away
from the target, and a fast eye movement (the fast phase)
returns it to the target. An important characteristic of the
nystagmus oscillation is the foveation window: this is the
cycle interval within which the velocity of the eyes is low
enough (< 4 deg/s) for the patient to be able to see clearly
[12]. The baseline oscillation is a low frequency sinusoidal
oscillation, the amplitude of which is correlated with the
nystagmus amplitude [10].
There have been at least 12 different IN waveforms

identified in clinical studies [12] and the particular wave-
form type observed is influenced by factors including gaze
angle, stress, attention and arousal [5, 6]. These wave-
forms can be divided into three groups: pendular, jerk and
dual jerk, depending on the waveform shape (see Addi-
tional file 1: Figure S2 for schematics of these different
groups). Although these waveformsmay appear unrelated,
it has been shown that they can be described as combi-
nations of different template waveforms, such as sawtooth
and pendular oscillations [13]. In pendular nystagmus,
slow eye movements move the eye towards and away
from the visual target. Jerk waveforms are divided into
two categories: unidirectional and bidirectional. In uni-
directional jerk, there is one fast eye movement in each
period of the oscillation and this is always towards the
target. In bidirectional jerk, there are two fast eye move-
ments per period in alternating directions, both of which
move the eye towards the target. Unidirectional jerk wave-
forms are further subdivided into two subcategories: jerk
with saccadic foveation and jerk with slow eye movement
(SEM) foveation. Jerk with saccadic foveation is subdi-
vided into pure jerk and jerk with extended foveation. Jerk
with SEM foveation is subdivided into pseudo-cycloid and
pseudo-jerk (see Additional file 1: Figure S2).

Computational models of the oculomotor system
Computational models have proved important in gener-
ating and testing hypotheses regarding the mechanisms
underlying normal and pathological functioning of the
oculomotor system [1, 14–19]. Models based on control
theory [14–16] were highly successful in systematically
examining the neural substrate underlying the different
oculomotor subsystems [1, 17]. A key and influential
achievement of this approach was the concept of a neural
circuit to convert eye velocity-coded signals into position-
coded signals (a neural integrator), derived theoretically
from the necessity to hold gaze steady during head move-
ments [20]. The existence of such a neural structure
was subsequently verified experimentally [21]. A comple-
mentary approach based on nonlinear dynamics emerged
towards the end of the 1990s, aiming to understand how
the interactions of specific populations of oculomotor
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neurons could generate both normal and abnormal eye
movements. An example of this approach was the model
of the saccadic system proposed by Broomhead et al. [22],
which was shown to be able to simulate both normal
saccades and IN waveforms. A key implication of this
model was that IN can be treated as a dynamic disease,
in which there is no structural damage to the system
and pathological behaviour is instead due to the system’s
parameters operating outside of their normal range [23].

Optimising the parameters of computational biology
models
Parameter optimisation (or model fitting) is the process of
finding the particular combinations of a model’s parame-
ter values that enable it to reproduce the experimentally
measured behaviour of the system of interest in an auto-
mated fashion. It is a critical step in the construction and
analysis of biological models [24], because determining
the optimal parameter values enables alternative models
to be systematically ranked and experimentally testable
predictions to be formulated [24–30]. This allows the
assumptions made in constructing a given model to be
assessed, and also provides insights into possible mod-
ifications to the model to improve the accuracy of its
predictions [24, 27–29].
The development of robust, computationally efficient

parameter optimisation methods is currently a very active
topic of research [31–35]. Indeed, optimisation methods
have been used previously to fit the parameters of ocu-
lomotor models to experimental data. Cullen et al. [25]
were one of the first to employ such methods, using them
to build a mathematical model of the neurons that gener-
ate saccades. Their methods allowed them to investigate:
(i) the dynamic latency of a saccadic neuron; (ii) the pre-
diction capacity of a given model; (iii) whether a more
complex model increased the prediction capacity of the
model; and (iv) the relationship between the initial condi-
tions and saccade trajectories. Pasquariello et al. [10] used
parameter optimisation to fit a model to experimental
recordings of the infantile nystagmus baseline oscillation.
Their results showed that, on average, the amplitude of
the baseline oscillation was half that of the corresponding
nystagmus oscillation.

The genetic algorithm
A widely used optimisation method for computational
biology problems is the genetic algorithm (GA) [30]. The
GA is a stochastic search method based on mimicking
natural selection, in which an evolving population of
candidate problem solutions (i.e. parameter sets) is used
to find the optimal solution (the parameter set yielding
the best fit to data) [36]. A fitness function (also referred
to as an objective function) is applied to each solution,
yielding a value that represents how successful it is in

solving the problem (the goodness-of-fit). Based on the
values of the fitness function, the GA applies a number
of stochastic genetic operators to the population so as to
guide the search towards the optimal solution. A major
advantage of GAs over deterministic optimisation meth-
ods (e.g. gradient descent) is that they do not require any
prior assumptions about the objective function to hold,
such as continuity or smoothness, with respect to the
model’s parameters.
These advantages notwithstanding, when the optimisa-

tion problem involves large sets of highly parametrised
nonlinear equations being fitted to multiple datasets,
evaluating the fitness function for each parameter com-
bination in the population can be very computationally
intensive. This effect is amplified by two further fac-
tors. Firstly, the stochastic nature of the GA means that
multiple runs are necessary to check that the solutions
have stably converged [36]. Secondly, the GA itself has
a number of parameters which require tuning, including
those specifying the fitness function. It is therefore nec-
essary to systematically test different combinations of GA
parameters to ensure that true optima are returned. Con-
sequently, considerable efforts have been made to reduce
the execution time of GAs. For a given set of GA param-
eters, the same fitness function and genetic operators are
applied to the solutions in the population. Thismakes GAs
very suitable to parallelisation and many parallel archi-
tectures have been developed to exploit this feature to
achieve acceleration [36].
However, for problems involving realistic parameter

numbers, high-performance computing (HPC) clusters
(i.e. multiple connected computers) are required to
obtain results within a reasonable timeframe. Although
HPC clusters provide significant processing power, and
the intrinsic parallel architecture of GAs allows them
to be executed over the multiple central processing
units (CPUs) within a cluster, they also have a num-
ber of disadvantages. Chief amongst these are their pur-
chase price, as well as the high costs associated with
maintenance and energy consumption. An alternative
approach is to use consumer-level graphics processing
units (GPUs). These possess parallel computing power
that can be comparable to that of the CPUs in a small
HPC cluster. Furthermore, GPUs have a considerably
lower cost and require substantially less maintenance.
Recently, parallel GAs have been developed that run
on GPUs, yielding significant speedups compared with
CPUs [37–39].

Multi-objective optimisation
When optimising a computational biology model, it can
be the case that multiple, conflicting objectives have to be
fitted simultaneously (e.g. datasets from different exper-
imental protocols). This gives rise to a multi-objective
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optimisation (MOO) problem [40, 41], which can be
expressed in general form as follows:

minimise fi(x), i = 1, . . . ,m,
subject to: gj(x) ≤ bj, j = 1, . . . , k;

gj(x) = bj, j = k + 1, . . . , l.
(1)

Here, x = (x1, . . . , xn) is a vector which gathers together
the parameters (decision variables) of the model and{
fi : R → R, 1 ≤ i ≤ m

}
are the objective functions which

quantify the quality of the model fit to different experi-
mental features for each choice of x. Finally, the functions{
gj : R → R, 1 ≤ j ≤ l

}
impose any relevant constraints

on the problem (e.g. that the parameters are within a
biologically feasible range) and {b1, . . . , bl} are the corre-
sponding constraint values [41–43]. Optimal solutions of
(1) thus correspond to parameter sets that give the best
fits to the experimental data, within the bounds specified.
One approach to solving such problems is the weighted-

sum method [44], in which the objective functions fi(x)
in (1) are summed with appropriate weights wi to give
a scalar objective function ∑

i wifi(x) to be minimised
(uni-objective optimisation). However, this requires the
wi values that maximally exploit the information provided
by the different objectives to be specified and these are
typically not known a priori [41, 42, 45]. An alternative
approach is the ε-constraint method, in which the MOO
problem is reduced to a uni-objective problem by min-
imising one of the objectives and setting the others to be
constrained to specific values [40, 46]. Different constraint
values for each objective have to be explored in order to
obtain solutions that provide a desirable trade-off between
the objectives.
Other MOO methods are based on the concept of

Pareto dominance, where a solution x is said to dominate
a solution x′ if and only if the following two condi-
tions hold: first, solution x is no worse than x′ on all
objectives ( fi(x) ≤ fi(x′) for all i) and second, solution
x is better on at least one objective (fj(x)< fj(x′) for some j)
[41, 42, 45, 47, 48]. The algorithms return an estimate of
the set of solutions for which none of the objectives can
be improved without compromising one of the others (the
set of non-dominated solutions). These Pareto optimal
solutions (the Pareto set) represent the optimal trade-off
between the individual objectives. The image of this set
in objective space is referred to as the Pareto front. An
effective multi-objective optimisation algorithm returns
an estimate of the Pareto set for which the corresponding
front is close to the true one and on which the individual
points are well separated in objective space [41, 42, 45, 48].
A good spread of solutions facilitates the selection of a
final solution from the Pareto set. The method used for
this final selection procedure is generally dependent on
the particular problem of interest and often utilises the

values of the Pareto optimal solutions on all objectives
[49, 50].
MOO methods have been used previously in a range

of bioinformatics and computational biology applications,
such as RNA inverse folding [51], analysis and design
of gene regulatory networks [52–54], and neural model
fitting [55] (see [56] for a comprehensive review). A
key advantage of MOO methods is that the structure
of the Pareto set provides information about the con-
flicts between the objectives and the distribution of the
possible solutions, which can yield useful insights into
the particular biological system being modelled [56].
Among the most widely used MOO methods are multi-
objective genetic algorithms (MOGAs). A very popular
MOGA is the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [45, 57]. The main characteristics of NSGA-
II are elitism, a fast non-dominated sorting approach
and a selection operator that ensures better spread of
the solutions and better convergence near the Pareto
front. NSGA-II has been successfully applied to a broad
range of optimisation problems in different application
areas [58–60].

Aims and overview
The first aim of this computational study was to optimise
the saccadic model of Broomhead et al. to existing exper-
imental recordings of two types of eye movements: (i)
infantile nystagmus oscillations; and (ii) horizontal sac-
cades recorded from healthy subjects. Both optimisation
problems are multi-objective, as conflicting objectives
must be optimised together to reproduce key experi-
mental characteristics. In the case of saccades, we opti-
mised the model to experimental data measured for
three different saccade amplitudes, treating each dataset
as a separate objective. For nystagmus, we used the
shape and period of each waveform as our objectives.
We developed novel multi-objective fitness functions for
each optimisation problem, and used NSGA-II to find
Pareto optimal solutions in each case. Synthetic datasets
generated from the model were used to help tune the
NSGA-II parameters. The optimal solutions obtained in
this fashion enabled us to quantify which experimen-
tal behaviours could be replicated by the model, thereby
identifying possible modifications to increase the model’s
predictive capacity.
The second aim of the study was to accelerate NSGA-II

by parallelising its most computationally intensive com-
ponent – the numerical integration of the oculomotor
model – and executing the algorithm on a CPU-GPU
combination. We show that for the optimisation of
the oculomotor model (and any similar computational
biology model), this approach can yield an order of mag-
nitude decrease in computation time. Furthermore, we
conclude that the selection of other NSGA-II processes for



Avramidis and Akman BMC Systems Biology  (2017) 11:40 Page 5 of 23

parallelisation in order to further improve performance
will be dependent on the population size used.

Methods
The oculomotor model
The nonlinear dynamics model of the saccadic system
proposed by Broomhead et al. [22] comprises the six
coupled ordinary differential equations (ODEs) below:

dg
dt = v, (2)

dv
dt =−

( 1
T1

− 1
T2

)
v − 1

T1T2
g + 1

T1T2
n

+
( 1
T1

+ 1
T2

)
(r − l), (3)

dn
dt = − 1

TN
n+ (r − l), (4)

dr
dt = 1

ϵ

(
−r − γ rl2 + F(m)

)
, (5)

dl
dt = 1

ϵ

(
−l − γ lr2 + F(−m)

)
, (6)

dm
dt = −(r − l). (7)

The model was constructed on the basis of neurophysi-
ological studies showing that the neural signal controlling
saccades is generated by excitatory burst neurons (EBNs)
in the brainstem [61]. This velocity-coded control sig-
nal (the pulse) is converted into a position-coded signal
(the step) by the neural integrator. The pulse and step
are then relayed to the extraocular muscles (the muscle
plant), whichmove the eye to the desired position. Eqs. (2)
and (3) model this muscle plant as a second order, over-
damped linear system with time constants T1=0.15s and
T2=0.012s [15, 62]; g and v represent the horizontal eye
position (gaze angle) and eye velocity, respectively. Eq. (4)
models the neural integrator signal n; this is characterised
by the long time constant TN=25s, which is necessary to
hold the eye steady at the target position following the
saccade [62].
Equations (5) and (6) model the activities of the EBNs,

which can be split into right (r) and left (l) populations,
depending on the direction of motion that elicits max-
imal firing. The two neural populations suppress each
other’s activity and this mutual inhibition is modelled by
the terms γ rl2 and γ lr2 in Eqs. (5) and (6), respectively,
with the parameter γ quantifying the inhibition strength.
The saccadic velocity signal (the pulse) is the difference
between the activities of the two EBN populations, r − l.
For both populations, the EBN firing rate is a saturating
nonlinear function of the motor error m, where m is the

difference between the required and current eye positions.
In the model, this function has the form:

F(m) =

⎧
⎪⎨

⎪⎩

α′
(
1 − e−m/β ′) if m ≥ 0;

− α
βmem/β if m < 0,

(8)

which was derived from direct fits to experimental data
(single-cell recordings from alert primates) [61].
The parameters α′ and β ′ in (8) quantify the neurons’

response to error signals generated bymotion in the direc-
tion of maximal firing (the on-response). α and β quantify
the response to motion in the opposite direction (the off-
response); the off-response causes a slowing of the eye
towards the end of the saccade to prevent overshoot of
the target and is referred to as the braking signal [61].
The parameter ϵ determines the speed at which the EBNs
respond to the error signal, with smaller ϵ values yielding
faster responses. Finally, (7) is the equation for the motor
error. This was derived by assuming that m = &g − s,
where &g = T − g is the eye displacement necessary to
attain the target position T, and s is an estimate of eye
displacement generated by a resettable integrator – sepa-
rate to the NI – which also integrates the saccadic velocity
command r − l [22].
In [22], Broomhead et al. empirically selected the values

of the parameters α′, β ′ and γ to match the saccadic
main sequence and then examined the effect of varying
α (off-response magnitude), β (off-response range) and
ϵ (burst neuron response time). This manual parameter
search revealed that the model is capable of generating
accurate and inaccurate saccades, as well as several
infantile nystagmus oscillations (see Additional file 1:
Figure S3).

Data
We used two types of data for the model optimisation:
experimental and synthetic. The experimental data was
taken from previous studies, and comprised a collection
of nystagmus oscillations recorded during viewing at rest,
together with mean saccadic velocity profiles recorded for
different saccade amplitudes. The synthetic data was gen-
erated de novo from the saccadic model itself. Prior to
optimising the model to experimental data, we performed
fits to synthetic timeseries to assess: (i) how effective
the multi-objective fitness functions were in reproducing
experimental eye movement characteristics; and (ii) how
the convergence and accuracy of the optimisation proce-
dure varied with the NSGA-II parameters, thereby facili-
tating the final selection of these parameters. In particular,
we checked that NSGA-II was consistently and reliably
converging to the model parameters used to generate each
synthetic dataset.
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Nystagmus oscillations. The experimental nystagmus
database from which the data used in this study was taken
consisted of horizontal eye movement recordings from 48
nystagmus patients enrolled on a drug trial [63]. From this
database, data from 20 idiopathic subjects was chosen.
The remaining 28 subjects in the drug trial had additional
medical conditions and hence their data was rejected. The
idiopath group consisted of 13 males and 7 females, with
a mean age of 40.05 ± 8.29. The eye movement record-
ings we used were those obtained before any drugs were
administered to the participants. Binocular eye move-
ments were recorded with the head stabilised by a chin
rest. The sampling rate of the recordings was 250 Hz, with
a resolution of 0.005 degrees. Typically, subjects had irreg-
ular waveforms with 4-6 cycles per second. An example
of one of the nystagmus time series from the database is
shown in Fig. 1.
The model parameters used to produce the synthetic

IN waveforms are given in Additional file 1: Table S1;
the waveforms themselves are shown in Additional file 1:
Figure S4. These particular oscillations were chosen as fit-
ting targets because they represent a broad distribution of
amplitudes and periods.
Saccadic velocity profiles. Experimental saccade data

was taken from the study of Collewijn et al. [64]. The
model was fitted to the mean velocity profiles reported in
[64] for horizontal saccades of 5, 10 and 20 degrees (see
Fig. 2). These particular saccade amplitudes were chosen
because they are in the range of most frequently generated
saccades [65, 66].
Synthetic saccadic velocity profiles were generated by

the model using the parameter values listed in Additional
file 1: Table S2; the velocity profiles themselves are shown
in Additional file 1: Figure S5.

The optimisation protocol
The goal of the optimisation protocol we developed was
to find values of the six parameters {α,β , ϵ, γ ,α′,β ′} of
the oculomotor model (2)-(7) that enabled it to reproduce

the experimental eye movement recordings of interest.
In the case of saccades, the model was fitted directly
to experimental saccadic velocity profiles for each sac-
cade amplitude. For nystagmus data, the model fitting
involved finding simulated waveforms with the same
amplitude, period and shape as the experimental data.
For both optimisation problems, we employed theMOGA
NSGA-II [57], using the implementation of the algorithm
included in the MATLAB Global Optimisation Toolbox
[67]. A key reason for our choice of optimiser was that
NSGA-II has been successfully applied to optimisation
problems with complex objective spaces [58–60]. Akman
et al. [18] showed that the oculomotor model (2)-(7) has
a rich bifurcation structure, incorporating Hopf, homo-
clinic, saddlenode, pitchfork and gluing bifurcations [68].
These bifurcations can create sharp changes in waveform
type under small parameter variations, significantly com-
promising the ability of a standard optimiser to efficiently
explore the parameter space.

Formulating the fitness functions and selecting the
NSGA-II parameters
In order to fit the model to the synthetic and experimental
datasets, a fitness function for each data type (nystag-
mus oscillations and saccades) had to be formulated that
measured the goodness-of-fit. When using a GA as an
optimiser, different candidate fitness functions should be
tested in order to assess the extent to which they are able
to successfully quantify the target data characteristics [69].
The formulation of the fitness functions was a trial-and-
error method. Each time we created a new fitness function
(or modified an existing one), we tested it on the syn-
thetic and experimental datasets to assess the effect of the
change on the fitness function landscape and the quality
of solutions obtained. For the nystagmus data, we ini-
tially used the squared difference between simulated and
target waveforms. However, we found that a bi-objective
fitness function based on oscillation period and shape
gave better results. This observation is consistent with

Fig. 1 Segment of an experimentally recorded nystagmus time series. The vertical axis represents the horizontal gaze angle in degrees (°), with
positive values denoting rightward eye positions. Time is in seconds (s)
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Fig. 2 Experimentally recorded horizontal saccadic velocity profiles.
Velocity profiles are shown for saccades of amplitude 5, 10 and 20
degrees. Velocity is in degrees per second (°/s); time is in milliseconds
(ms). Data extracted from Fig. 2 of [64]

studies showing that multi-objective optimisers are less
likely than uni-objective optimisers to become trapped
in local minima [70, 71]. For the saccade data, we ini-
tially chose a multi-objective fitness function based on
the saccadic main sequence. However, we found that this
gave poor fits to the experimental data. We therefore
formulated a multi-objective fitness function based on the
squared difference between the experimental and simu-
lated velocity profiles for different saccade amplitudes.
The final versions of the fitness functions we used are
described in greater detail in the “Fitness function for
nystagmus waveforms” and “Fitness function for saccadic
velocity profiles” sections below.
Asmentioned previously, NSGA-II has parameters of its

own (e.g. population size, mutation rate/type, crossover
type, selection type) that affect the performance of the
optimiser, as assessed by key benchmark measures such
as the fitness value of the best solution and execution
time. However, there are no general rules governing which
choice of NSGA-II parameters is best for a given prob-
lem and so different combinations of these should also be
tested [72]. Typically, given the stochastic nature of the
GA, the goal is to find combinations of the GA param-
eters that allow it to converge stably to minima of the
optimisation problem over multiple GA runs [36].
To quantify the accuracy and convergence properties of

the optimal solutions found by NSGA-II, we used a hyper-
volume indicator. This was defined in terms of the volume
H

(
F̂ , yR

)
in objective space formed between the esti-

mated Pareto front F̂ and a fixed reference point yR that
was chosen to be dominated by all the points in F̂ [73].
To calculate an accurate approximation to this area we
used the MATLAB function convhull.m. We compared
this quantity to the volume H (0, yR) of the hypercuboid
formed between yR, the origin 0 of the objective space and

the points obtained by projecting yR onto each objective
axis separately. The ratio H

(
F̂ , yR

)
/H (0, yR) of these

two quantities provided a means for assessing whether
the Pareto front estimates for a specific choice of fitness
function and NSGA-II parameters were converging with
generation number. Due to the stochastic nature of the
optimiser, for each such choice, we calculated the mean
and variance of this ratio over 16 independent optimisa-
tion runs, fixing the reference point yR to be one dom-
inated by all non-dominated sets produced collectively
over the individual runs. In addition, to provide a measure
that was more convenient for the visualisation of results,
we subtracted the ratio from 1. The resulting measure
HI = 1 − H

(
F̂ , yR

)
/H (0, yR) was taken as the over-

all goodness-of-fit, with a value of 0 indicating a Pareto
front comprised solely of the origin: i.e. a solution that
perfectly fits all objectives simultaneously. The accuracy
and convergence of the results were further evaluated by
assessing how the minimum Euclidean distance dF̂ =
min

{
||y||2 : y ∈ F̂

}
between the estimated Pareto front

and the origin of objective space varied with population
size (a minimum distance close to 0 indicates a good fit).
Each individual in the NSGA-II population encodes

in floating point values a particular combination of the
model parameters {α,β , ϵ, γ ,α′,β ′}. For each candidate
fitness function and NSGA-II parameter combination,
the initial population was uniformly distributed in the
following parameter space:
1 ≤ α≤ 1000; 0.1 ≤ β ≤ 60; 0.00001 ≤ ϵ ≤ 0.1;
0 ≤ γ ≤ 12; 50 ≤ α′≤ 1000; 0.1 ≤ β ′≤ 60. (9)

The bounds on α,β ,α′ and β ′ were chosen based on
the experimental findings of Van Gisbergen et al. [61],
whereas the bounds on ϵ were based on the previous
bifurcation analysis of the model [18]. The bounds on
γ were derived from multiple preliminary NSGA-II runs
which showed that the corresponding γ range returned
solutions yielding biologically feasible waveforms (i.e.
waveforms with shapes, periods and amplitudes consis-
tent with experimental measurements). For each individ-
ual, the initial conditions of the model were set to

g(0) = v(0) = n(0) = r(0) = l(0) = 0; m(0) = &g,
(10)

simulating a saccade of amplitude&g initiated from rest in
the primary position (0 degrees – looking directly ahead).
For nystagmus fitting, &g was set to 1.5, simulating a
rightward saccade of 1.5 degrees, while for saccade fitting,
&g was set to each of the different saccade amplitudes (5,
10 and 20 degrees) in turn.
The NSGA-II parameters that we varied to explore opti-

misation performance were as follows: the population size
(values tested were 500, 1000, 2000, 4000 and 8000); the
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crossover function (intermediate or heuristic) and the
distance measure type (phenotype or genotype). We did
not vary all the NSGA-II parameters as this would have
increased the computation time considerably, making the
process impractical. Accordingly, in order to keep the run-
ning time short, the number of generations was fixed at
100 for saccade and synthetic nystagmus fits and at 200 for
experimental nystagmus fits. The selection type was set to
binary tournament (this selects each parent by randomly
drawing two individuals from the population and then
chooses the one with the highest fitness for crossover),
and the mutation type was set to adaptive feasible (this
mutates individuals towards regions in parameter space
which – based on previous generations – are more likely
to give better fitness).
It was expected that the population size would be a key

determinant of NSGA-II accuracy and convergence, since
if the population size is too small, the algorithm is unable
to converge to the Pareto front, whilst increasing the
population size requires greater computational resources
[74]. Hence, when choosing the population size, a balance
needs to be found between accuracy/convergence and the
resulting computational load (the significant increase in
computation time with population size can be seen for
synthetic nystagmus data in Additional file 1: Table S3).
Final population sizes were chosen to provide a reason-
able trade-off between accuracy/convergence and running
time. In the case of the crossover method, we found that
heuristic crossover returned good results for consider-
ably smaller population sizes compared with intermediate
crossover. Of the remaining NSGA-II parameters, best
results were obtained with the phenotype-based distance
measure.

Fitness function for nystagmus waveforms
For nystagmus waveforms, the multi-objective fitness
function evaluated each individual to extract two objec-
tives: (i) the difference in shape between the target and the
scaled-to-target-period simulated waveforms; and (ii) the
difference in period between the waveforms. An ampli-
tude comparison was not included, as exploratory NSGA-
II runs on both synthetic and experimental waveforms
indicated that it was redundant: the shape comparison
was sufficient for the optimiser to yield solutions with the
correct amplitude. The input to the fitness function was a
single period of the target waveform and a single period of
the simulated time series.
Extracting a single period of a simulated waveform.

The procedure for extracting a single period of a simu-
lated oscillation – either for use as a target waveform or
for fitting – was as follows. First, the model was integrated
for 6 s. This time interval was chosen because exploratory
runs of the method showed that it enabled one period of
the waveform to be reliably extracted across a broad range

of parameter values. The initial 2.4 s of the time series was
then discarded as transient dynamics preceding the onset
of oscillations. Next, the remaining portion of the time
series was normalised to lie in the interval [0,1] and the
local minima of the oscillation were identified. A single
period of the waveform was then obtained by extracting
all the points with value below 0.2 and between the last
two local minima in the time series. If no such points were
found, then the input was classified as non-oscillatory and
the process terminated, with the individual assigned an
arbitrarily high value (1060) for each objective.
Extracting a single period of an experimental nystagmus

recording. For experimentally recorded waveforms, the
extraction of a single period was much more challeng-
ing due to the nondeterministic nature of real nystagmus
oscillations, in which each successive cycle has a slightly
different period, amplitude and shape (see Fig. 1). This
raises the question of which cycle(s) should be chosen for
the fitting procedure. To address this, we used a variant
of the nonlinear time series analysis method developed by
So et al. [75, 76]. Starting from a scalar sequence of sys-
tem measurements, this allows one to find either unstable
periodic orbits (UPOs) generated by a deterministic sys-
tem, or stable periodic orbits which have been destabilised
by a noise process [75–79]. The method is based on the
assumption that there is a significant deterministic com-
ponent to the experimental system of interest, and so the
extracted periodic orbits can be used to characterise the
system’s dynamics by providing single oscillation cycles
that are representative of the observed nonperiodic wave-
forms [23, 77]. This method has been previously applied
successfully to nystagmus recordings [78, 79]. Here, we
used the version of the method developed by Theodorou
et al. [79], which we describe below.
The first stage of the method involves identifying the

intervals {τ1, τ2, . . . , τN } between individual nystagmus
cycles by thresholding the velocity time series. The veloc-
ity threshold was chosen to correspond roughly to the
middle of the fast phase of each nystagmus waveform.
Next, we applied themethod of delays [80, 81] to the inter-
val data. In the method of delays, a sliding window of d
samples is moved through the data, generating a sequence
of d-dimensional vectors. Given the interval time series
{τ1, τ2, . . . , τN }, the delay vectors {w1,w2, . . . ,wN−d+1} are
defined as wk =

(
τk , τk+1, . . . , τk+d−1

)T . The evolution
of the delay vectors is governed by a nonlinear map F,
via wk+1 = F(wk), which – under certain genericity con-
ditions – is related to the corresponding map governing
the evolution of inter-cycle intervals in the underlying
experimental system by a smooth, invertible change of
coordinates [80, 81]. This means that fixed points of F,
which are points in the delay space w∗ for which F(w∗) =
w∗, correspond to periodic cycles in the ambient system.
For such points, τ1 = τ2 = · · · = τN = τ∗; fixed points
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therefore lie on the long diagonal of the delay space (the
set of d-dimensional vectors with equal entries). Candi-
date fixed points can therefore be identified by looking for
delay vectors that lie close to this diagonal.
Themethod of So et al. [75, 76] facilitates this identifica-

tion step by applying a data transformation G to the delay
vectors that concentrates them onto the fixed points. This
data transformation is given by:

G(wn) = (I − DF(wn))−1 (wn+1 − DF(wn)wn). (11)

In Eq. (11), I is the d × d identity matrix and DF(wn)
is the d × d Jacobian matrix of F evaluated at wn, which
is estimated from the delay vectors using finite differ-
ences [79]. The transformed data lying within a small
cross-sectional tube along the delay space diagonal is then
projected onto the diagonal itself. Fixed points are identi-
fied as sharp peaks in the histogram obtained by binning
the 1-dimensional projected data [76].
To extract UPOs from the nystagmus recordings using

this method, we chose the embedding dimension d to be
2, the diameter of the cross-sectional tube to be 0.5 units
and the histogram bin size to be 0.025 s [78]. Candidate
period orbits were then identified as those with inter-
cycle intervals τk lying within 0.0125 s of the histogram
peak τ∗. From this collection of periodic waveforms, we
choose the cycle with the smallest difference between its
first and last points. Because it was more convenient to
use waveform targets that start at the beginning of the fast
phase, we concatenated three copies of the waveform and
chose the section between two successive fast phases as
the final cycle to be fitted. An example of the application
of this procedure to an experimental nystagmus waveform
is shown in Additional file 1: Figure S6.
Calculating the shape and period difference. In order

to calculate the shape difference, the extracted waveform
was scaled to the target waveform in time so that they had
the same period. Subsequently, cubic interpolation was
applied to the scaled waveform to give it the same time
mesh as the target. The difference in shape dS was then
calculated as the sum-of-squares

dS =

√√√√ 1
N

N∑

i=1
(Si − Ti)2, (12)

where Si and Ti denote the values of the scaled and target
waveforms, respectively, at time ti, where ti+1 − ti is the
(fixed) data sampling interval.
The period difference dp was calculated as:

dP = |τE − τT | , (13)

where τE is the period of the extracted, unscaled waveform
and τT is the period of the target waveform.

Fitness function for saccadic velocity profiles
For saccades, the input to the fitness function was the
experimental velocity profiles for amplitudes of 5, 10
and 20 degrees and the corresponding simulated profiles
generated by the model. The fitness function therefore
comprised three objectives {d1, d2, d3}, defined as the
sum-of-squares difference between the simulated and
target data for each saccade amplitude:

dj =

√√√√ 1
N

N∑

i=1

(
Sij − Tij

)2. (14)

Here, Sij and Tij denote the values of the simulated and
target profiles, respectively, at time ti, where ti+1− ti is the
(fixed) data sampling interval and j indexes the amplitude.
To extract the simulated velocity profile that was com-
pared to the target one, we set the simulated velocity
profile’s end point to that of the target profile, thereby
ensuring that both had the same length.

Selection of the best individual
When NSGA-II terminates, it returns a set of points that
approximates the Pareto front. For nystagmus fitting, to
obtain a single best-fit parameter set from this front, we
selected the individual with the smallest difference in
period to the target waveform, as this consistently pro-
vided a very good shape fit as well. We also explored the
effect of selecting the individual yielding the lowest value
on each objective separately (i.e. we chose the solutions
from the Pareto set giving the best fits to saccades of 5, 10
and 20 degrees).

Acceleration of the optimisation method using GPUs
In order to reduce computation time, we utilised the
parallel capabilities of GPUs using a parallel imple-
mentation based on the master-slave model [36, 82].
In this implementation, for each instance of NSGA-II,
the most computationally intensive task is distributed
to multiple processors (the computing units of the
GPU), while a master processor (the CPU) is used
to control the parallelisation and run the remaining
tasks.
In designing our optimisation protocol, we used the

MATLAB profiler – whichmeasures the execution time of
each MATLAB function – to compare the time required
to integrate the model to that required to perform the
NSGA-II operations and evaluate the fitness function.
Additional file 1: Figure S7 shows the mean execution
time of each task, calculated from 8 independent NSGA-
II instances run for 5 generations each with different
population sizes. It can be seen that for all popula-
tion sizes tested, the model integration was the most
computationally intensive task. Hence, for our applica-
tion, we chose to implement this process only on the
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GPU, with the genetic operations and fitness evaluation
being performed by the CPU. Moreover, we employed
the independent runs parallel model [36], in which mul-
tiple master-slave NSGA-IIs are executed independently
on the CPU-GPU combination, with no communication
between them.
Running multiple NSGA-II instances in parallel. To

implement the parallelisation outlined above, we used the
program organisation shown schematically in Fig. 3. The
general idea behind the method is as follows: an NSGA-
II manager program (written in MATLAB), which runs
on the CPU, creates the individual NSGA-II MATLAB
instances that run on the CPU in parallel. Each of these
NSGA-II instances sends the parameter combinations
(individuals) comprising its population to the GPU server
program (another MATLAB instance), which writes these
combinations to an input file. This file is read by the GPU
executable (described in Additional file 1), which calcu-
lates the oculomotor model solutions. The results of the
GPU executable are written to a binary file that is split
by the GPU server program into multiple binary files
containing the solutions corresponding to each NSGA-II
instance. Finally, the NSGA-II instances read the binary
files, evaluate the fitness of each individual in the popula-
tion and then apply genetic operations to create the new
population.
Running multiple instances of NSGA-II caused two

main problems, due to the very large files that were
generated. In particular, writing to (and reading from) the
hard disk takes a considerable amount of time compared
to writing to the RAM, thereby creating a speed bottle-
neck. To address this, we used a RAM drive – a block of

the system RAM that the software uses as a disk drive –
which proved to be considerably faster.
Hardware used. We tested our executable on four

GPUs and one CPU. TheGPUmodels were the AMDFire-
PROW8100, the AMDRadeonHD 7970 GHz Edition, the
NVIDIA Tesla K20m and the NVIDIA Tesla K40c. The
CPUmodel was the Intel Core i7-4790K CPU. The reason
we chose these particular GPUs is that they provide high
double-precision compute capabilities which are required
for the integration of stiff ODE systems. We chose to
compare the performance of the above GPUs to the Intel
Core i7-4790K, as it is one of the high-end CPU models
currently available.

Results
Fits to synthetic nystagmus waveforms
Additional file 1: Figures S8-S11 show how the hypervol-
ume indicator and minimum Pareto front distance vary
with generation number when optimising the oculomotor
model to each synthetic nystagmus waveform in turn. The
results suggest that for each waveform, the Pareto front
estimate is close to convergence by 100 generations for
a population size of 4000. Indeed, increasing the popula-
tion size further did not produce better results that would
justify the extra computational resources required.
The boxplots in Additional file 1: Figures S12 and

S13 show the optimised parameter values obtained for
each population size, comparing them with the target
parameter values used to generate the synthetic wave-
forms in each case. It can be seen that the optimised
values for parameters α,β , ϵ and γ are fairly close to
the target values for population sizes ≥4000, consis-

Fig. 3 Flow diagram showing the method for running multiple NSGA-II instances in parallel. {(NSGA-II)1, (NSGA-II)2,..., (NSGA-II)n} are individual
MATLAB NSGA-II instances created by the NSGA-II Manager. The GPU server is the interface between the NSGA-II instances and the GPU executable
that performs the integration of the oculomotor model for each parameter set sent by the GA instances. Arrows indicate communication between
different components using files: orange arrows indicate that the file is saved on the RAM disk, whereas blue arrows indicate that it is saved to the
hard disk



Avramidis and Akman BMC Systems Biology  (2017) 11:40 Page 11 of 23

tent with the hypervolume results. However, in the case
of the parameters α′ and β ′, there is no significant
improvement in accuracy with increasing population size.
Despite this, for a population size of 4000, the opti-
mised waveforms are almost identical to the synthetic
ones, confirming that the optimal NSGA-II parame-
ters chosen in this case are sufficient to obtain a very
good fit (see Additional file 1: Figure S14). For this
population size, the optimised parameters are listed in
Additional file 1: Table S1 and the corresponding coef-
ficients of variation are plotted in Additional file 1:
Figure S15.
These results confirm that applying NSGA-II to the

shape-period nystagmus fitness function provides correct
results when the parameter values of themodel are already
known.

Fits to experimental nystagmus waveforms
Four experimental time series from the nystagmus
database were used for model fitting (see Fig. 4). These
particular time series were selected as their morpholo-
gies resembled those generated by the model (i.e. jerk,
jerk with extended foveation and asymmetric pseudo-
cycloid). As discussed in Additional file 1, best results
were obtained when the sampling frequency was 2500Hz.
We therefore upsampled the extracted UPOs from 250Hz
to 2500Hz by applying spline interpolation. Moreover,
before being used as fitting targets, the extracted UPOs
were normalised so that they started from the fast phase
of the oscillation, with the fast phase in the rightward
direction (see Additional file 1: Figure S16).
Figure 5 shows how the hypervolume indicator andmin-

imum Pareto front distance vary with generation number
when fitting the model to one of the experimental asym-
metric pseudo-cycloid waveforms (waveform A – the cor-
responding plots for the other experimental waveforms
are shown in Additional file 1: Figures S17-S19). The
results suggest that – consistent with the results obtained
for synthetic nystagmus targets – the Pareto front esti-
mate has converged by 100 generations for a population
size of 4000, with larger population sizes (8000 or more)
yielding comparable results.
Figure 6 shows a representative Pareto front estimate

returned by NSGA-II for waveform A (the estimated
fronts for waveforms B-D are very similar). The trade-off
between the shape and period objectives is very clear from
the plot: improved fits to the waveform period can only
be obtained though poorer fits to the waveform shape and
vice versa (cf. Figure 11 and Additional file 1: Figure S20).
The evolution of the model parameters as the front is tra-
versed can be see in Fig. 7. Interestingly, each parameter
varies monotonically as the difference in period between
the simulated and experimental waveform increases
(or equivalently as the difference in shape decreases):

Fig. 4 Segments of the experimental nystagmus time series used for
model fitting. From top to bottom, the nystagmus waveform types
are: asymmetric pseudo-cycloid (a); jerk with extended foveation (b);
jerk (c); and asymmetric pseudo-cycloid (d). The extracted UPOs used
for evaluating fitness are shown in red. On each plot, the vertical axis
represents the horizontal gaze angle in degrees (°), with positive
values denoting rightward eye positions. Time is in seconds (s). In the
bottom plot (d), the vertical lines correspond to blinks

on-response magnitude (α′), off-response magnitude (α)
and neural response time (ϵ) all decrease whilst on-
response range (β ′), off-response range (β) and mutual
inhibition strength (γ ) all increase. The trade-off between
period and shape fitting is thus directly reflected by a
trade-off between the parameters controlling the shape
of the saccadic neural response function: larger on- and
off-response amplitudes combined with smaller on- and
off-response ranges yield better fits to waveform period
whilst smaller on- and off-response amplitudes combined
with larger on- and off-response ranges yield better fits to
waveform shape.
For all waveforms, the corresponding optimised param-

eter values are shown in Figs. 8 and 9 for different pop-
ulation sizes. These confirm that good convergence is
obtained for population sizes of 4000 and greater. Table 1
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Fig. 5 Convergence metrics of NSGA-II when fitting the model to experimental nystagmus waveform a of Fig. 4. aMean value of the hypervolume
indicatorHI as a function of generation number n. b Standard deviation (SD) ofHI as a function of n. cMean value of the smallest Euclidean
distance dF̂ between the Pareto front estimate and objective space origin as a function of n. d SD of dF̂ as a function of n. Convergence metrics
were calculated from 16 runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000. The equivalent plots for waveforms
b, c and d can be seen in Additional file 1: Figure S17, Additional file 1: Figure S18 and Additional file 1: Figure S19, respectively

lists the mean optimised parameter values for this popula-
tion size; the coefficients of variation are plotted in Fig. 10.
Optimised parameter values for individual NSGA-II runs
are listed in Additional file 1: Tables S4-S7.
Figure 10 shows that for waveforms A and D, the ϵ

parameter has a much higher coefficient of variation than
for waveforms B and C, suggesting that this particular
waveform type (asymmetric pseudo-cycloid) is relatively
insensitive to the value of ϵ. The coefficients of variation

for the other parameters mirror those observed for syn-
thetic nystagmus waveforms (cf. Figure 10 and Additional
file 1: Figure S15). In particular, our results indicate that
the fitness function is most sensitive to the parameters α

and β that control the saccadic off-response (the saccadic
braking signal).
Finally, Fig. 11 compares the optimised and target wave-

forms. It can be seen that for target waveforms A, B and D,
the optimised waveforms give a very good fit. In the case

Fig. 6 Example estimated Pareto front obtained by optimising the model to experimental nystagmus waveform A of Fig. 4. The red circle indicates
the solution with the minimum period difference (equal to zero in this case) from the experimental oscillation, selected as the best individual; the
corresponding fit to the experimental waveform can be seen in Fig. 11a. The red crossmarks the solution with the minimum shape difference; the
corresponding fit is shown in the left plot of Additional file 1: Figure S20A
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Fig. 7 Variation in model parameters across the Pareto front shown in Fig. 6. As period difference dP is increased, the front is traversed from right to
left (i.e. from the bottom right corner of the shape-period plane indicated by the red circle to the top left corner indicated by the red cross)

of waveform C, a poorer fit was obtained, as the model
was unable to reproduce the very rapid fast phase. For this
waveform, we increased the upper constraint of parameter
γ to 150 because the optimised values obtained using an
initial value of 12 hit this bound, suggesting that the opti-
mal value might lay outside the initial range used. With
this larger upper bound, the optimised γ parameter had a
mean value of 139. However, this did not improve the fit.
In addition, we observed that for all four waveforms fitted,
the optimised values for parameter α′ were concentrated
fairly close to the upper constraint value of 1000 (see Fig. 9
and Table 1). This upper bound had been set directly on
the basis of experimental measurements from primates,
which implied an α′ value around 800 [61]. We therefore
performed exploratory runs with higher upper bounds for
α′, but did not obtain better fits to the waveform (results
not shown).

Fits to synthetic saccadic velocity profiles
Additional file 1: Figures S21-S24 show the convergence
metrics (hypervolume indicator and minimum Pareto
front distance) for fits of the model to synthetic saccadic
velocity profiles. The boxplots in Additional file 1: Figures
S25 and S26 plot the optimised parameter values for dif-
ferent population sizes (the plots for a population size of
500 are not shown as they provided inaccurate results).
Taken together, these results indicate that for a popula-
tion size of 8000, NSGA-II provides such good conver-
gence that all the optimised parameter values are almost

identical to the target values in each case (see Additional
file 1: Table S2). The simulated velocity profiles generated
using the optimised parameters are not shown as they
were indistinguishable from the target ones.
As with nystagmus fitting, the accurate determination

of the parameter values used to generate the synthetic
data validated both the fitness function and the choice of
optimisation algorithm.

Fits to experimental saccadic velocity profiles
For experimentally recorded saccadic velocity profiles,
the convergence metrics show that – consistent with the
synthetic profile fits – a population size of 8000 gave
good convergence of the optimiser (see Fig. 12). Figure 13
shows an estimated Pareto front returned by NSGA-II.
Projections of the three-dimensional front onto the dif-
ferent pairwise objective combinations are also plotted.
As was observed for nystagmus fitting, there is a clear
trade-off between objectives: improved fits to the veloc-
ity profile for a given saccade amplitude can only be
achieved by degrading the quality of fit for one of the
other amplitudes. However, it should be noted that the
trade-off between fits to saccades of amplitude 10 and
20 degrees – the (10,20) trade-off – is not as pro-
nounced as the (5,10) and (5,20) trade-offs, except in
the neighbourhood of the origin (see Additional file 1:
Figure S27). Indeed, away from this neighbourhood, the
10 degree and 20 degree objective functions appear to be
cooperative.
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Fig. 8 Optimised parameter values for experimental nystagmus waveforms as a function of population size. The first line of plots shows the
optimised values of α,β and ϵ for waveform a, whereas those for b, c and d are shown by the second, third and fourth lines of plots, respectively.
The horizontal line in each boxplot denotes the median parameter value. The edges of each box are the 25th and 75th percentiles. The whiskers
extend to the interquartile range

Interestingly, we found that the method used for choos-
ing the final solution from the estimated Pareto front
had a strong influence on the optimised parameter val-
ues obtained, with parameters ϵ, α′ and β ′ exhibiting the
greatest variation across selection methods (see Fig. 14
and Table 2).
Figure 15 compares the optimised saccadic velocity pro-

files obtained using the different selection methods to the
target experimental data, while Table 3 shows the cor-
responding fitness values for each objective. It can be
seen that no single selection method (and hence no single
parameter set) gave good fits to the velocity profiles for all
saccade amplitudes simultaneously. In particular, while –
as expected – methods II, III and IV produced good fits
for their corresponding amplitudes, method I gave a poor
fit to the largest amplitude saccade.

Speedup obtained using the multiple NSGA-II parallel
method
To evaluate the speedup obtained on each of the computer
hardware systems tested, we calculated the execution time
of the parallel ODE solver (described in Additional file 1)
as a function of the number of model integrations for each
system in turn. Here, we define a single model integration
(or orbit) to be the numerical integration of the oculomo-
tormodel over a fixed, simulated time interval (6 s) for one
parameter combination.
Figure 16a compares the execution time of the parallel

ODE solver program when using the CPU compared to
when using each of the four GPU cards. The correspond-
ing CPU:GPU execution time ratio in each case is shown
in Fig. 16b. It can be seen that all the GPU cards provided
a significant speedup compared to the Intel Core i7-4790K
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Fig. 9 Optimised parameter values for experimental nystagmus waveforms as a function of population size. The first line of plots shows the
optimised values of γ ,α′ and β ′ for waveform a, whereas those for b, c and d are shown by the second, third and fourth lines of plots, respectively.
The horizontal line in each boxplot denotes the median parameter value. The edges of each box are the 25th and 75th percentiles. The whiskers
extend to the interquartile range

CPU. The best performance was obtained using the AMD
FirePRO W8100, which gave a speedup of around 20 at
32000 parallel model integrations.
We note that these results should not be considered

as conclusive performance comparisons for these partic-
ular models, because our implementation of the parallel
ODE solver is not yet fully optimised to run on GPUs.

However, the results do suggest that the AMD GPUs
we tested provide better performance compared to the
NVIDIA GPUs for our particular task, and that convert-
ing serial C code to GPU parallel code (OpenCL) can
provide considerable speedups on AMD hardware. Based
on preliminary tests, one possible explanation for the
differences in execution time we report here could be

Table 1 Optimised parameter values for experimental nystagmus waveforms

Waveform α β ϵ γ α′ β ′

A 74.0154 (0.02749) 1.3737 (0.05456) 0.0005 (0.7818) 3.9844 (0.30960) 913.0124 (0.2073) 17.6571 (0.2453)

B 82.2252 (0.04142) 1.2288 (0.03597) 0.0034 (0.2964) 3.1117 (0.17453) 929.9803 (0.2173) 14.8863 (0.2319)

C 60.2509 (0.04193) 0.3984 (0.02822) 0.00139 (0.1673) 139.0255 (0.17309) 815.4321 (0.2814) 5.8468 (0.3215)

D 58.6926 (0.02891) 1.1389 (0.05745) 0.0005 (0.6204) 2.3143 (0.50081) 919.9590 (0.2019) 18.4011 (0.2129)

Mean parameter values and coefficients of variation (shown in brackets) were calculated from 16 NSGA-II runs with a population size of 4000
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Fig. 10 Optimising the model to experimental nystagmus waveforms: coefficients of variation of the parameters. Coefficients of variation were
calculated from 16 NSGA-II runs with a population size of 4000 in each case (cf. Table 1)

that the AMD cards are not affected by thread diver-
gence as much as the NVIDIA cards. It should be noted,
though, that even the GPU which performed worst in
our test (the NVIDIA Tesla K20m) gave a speedup of
more than 5.
For all the GPUs we tested, the maximum speedup

observed saturated when the number of model orbits
exceeded 32000 (see Fig. 16b). Hence, to assess how to

best exploit this speedup using our multiple NSGA-II
parallel method, we examined the effect of reducing the
number of NSGA-II instances nI , whilst increasing the
population size N of each instance so as to keep the
total number of simulations nP = nIN fixed at 32000.
The different nI values used were 64, 16, 8 and 4, cor-
responding to the population sizes 500, 2000, 4000 and
8000, respectively. For each choice of nI , we compared

Fig. 11 Fits of the model to experimental nystagmus waveforms. The target waveforms are plotted in red; the optimised waveforms obtained from
16 independent runs of NSGA-II with a population size of 4000 are plotted in black. In each plot, the vertical axis represents the horizontal gaze
angle in degrees (°), with positive values denoting rightward eye positions. Time is in seconds (s). The nystagmus waveform types are: (a)
asymmetric pseudo-cycloid; (b) jerk with extended foveation; (c) jerk; (d) asymmetric pseudo-cycloid
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Fig. 12 Convergence metrics of NSGA-II for fits to the experimental saccadic velocity profiles of Fig. 2. aMean value of the hypervolume indicator
HI as a function of generation number n. b Standard deviation (SD) ofHI as a function of n. cMean value of the smallest Euclidean distance dF̂
between the Pareto front estimate and objective space origin as a function of n. d SD of dF̂ as a function of n. Convergence metrics were calculated
from 16 runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000

the execution times obtained by running the NSGA-
II instances in parallel on the GPU to those obtained
by running them serially. Figure 17 shows that whilst a
significant parallel:serial speedup is obtained for all nI
values, the speedup decreases as the number of parallel

instances decreases (or equivalently as the population size
increases). This was as anticipated, because larger pop-
ulation sizes use more of the GPU capabilities when a
single NSGA-II instance is run. It should also be noted
that the population size and number of parallel instances

Fig. 13 Estimated Pareto front obtained by optimising the model to the experimental saccadic velocity profiles of Fig. 2 with a population size of
8000. In each plot, the red cross, red circle, red asterisk and red x indicate the solutions yielding the minimum Euclidean distance to the axes origin, the
best fit to a 5 degree saccade, the best fit to a 10 degree saccade and the best fit to a 20 degree saccade, respectively. Close-ups of each of these
plots around the origin are shown in Additional file 1: Figure S27
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Fig. 14 Optimised parameter values for experimental saccadic velocity profiles versus the method used for selecting the final solution. Method I
selects the solution that minimises the Euclidean distance between the Pareto front population and the objective space origin; method II selects the
best fit to a 5 deg saccade (objective 1); method III selects the best fit to a 10 deg saccade (objective 2); method IV selects the best fit to a 20 deg
saccade (objective 3). The top plots (from left to right) show parameters α,β and ϵ , respectively; the bottom plots (from left to right) show parameters
γ ,α′ and β ′ , respectively. The horizontal line in each boxplot denotes the median parameter value. The edges of each box are the 25th and 75th
percentiles. The whiskers extend to the interquartile range. All values shown were calculated from 16 NSGA runs with a population size of 8000

that can be used are constrained by the specifications of
the GPU card and the system’s RAM. Our test system had
32 GB of RAM, of which 6 GB was apportioned to the
RAM disk.
The significant acceleration in the optimisation process

that resulted from parallelising the model integrations
on a GPU can be seen in Table 4, which compares
parallel and serial NSGA-II execution times for fits of
the model to experimental nystagmus oscillations. In
particular, it should be noted that fitting all 4 wave-
forms using 16 NSGA-II runs with a population of 4000
took approximately 34 hours using a combination of the
FirePROW8100 GPU and i7-4790K CPU, compared with

577 hours using the i7-4790K CPU alone, a speedup
of over 16.

Discussion
The aetiology of infantile nystagmus is not yet well
understood and a number of computational models
have been proposed to gain deeper insights into the
disorder. The use of parameter optimisation methods
greatly facilitates the development of such models by
enabling them to be systematically tested and anal-
ysed, thereby providing specific directions on how a
given model can be modified to fit a broader range of
experimental data.

Table 2 Optimised parameter values for experimental saccadic velocity profiles

Selection method α β ϵ γ α′ β ′

I 16.4500 (0.6088) 36.1980 (0.4769) 0.0074 (0.0094) 0.000034 (0.4659) 537.6500 (0.0112) 3.3400 (0.0232)

II 264.4100 (0.8873) 7.6514 (1.1634) 0.0038 (0.0255) 0.087352 (0.5497) 249.2100 (0.0052) 0.3900 (0.0942)

III 163.3700 (0.9756) 37.0826 (0.3589) 0.0049 (0.0846) 0.012519 (1.0388) 409.5300 (0.0316) 1.3200 (0.1752)

IV 42.3500 (0.8777) 39.2892 (0.3936) 0.0057 (0.0077) 0.000744 (0.2041) 468.5600 (0.0020) 2.9400 (0.0079)

Results are shown for each method used to select the final solution. Method I selects the solution that minimises the Euclidean
distance between the Pareto front population and the objective space origin; method II selects the best fit to a 5 deg saccade
(objective 1); method III selects the best fit to a 10 deg saccade (objective 2); method IV selects the best fit to a 20 deg saccade
(objective 3). Mean parameter values and coefficients of variation (shown in brackets) were calculated from 16 NSGA-II
runs with a population size of 8000. Optimised parameter values for individual NSGA-II runs are listed in Additional file 1: Tables S8-S11
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Fig. 15 Fits of the oculomotor model to experimental saccadic velocity profiles. Each plot shows the optimised profiles obtained for saccade
amplitudes of 5, 10 and 20 degs. using different methods for selecting the final solution. The target saccadic velocity profiles are plotted in red; the
optimised saccadic velocity profiles obtained from 16 independent NSGA-II runs with a population size of 8000 are plotted in black. On each plot,
the vertical axis represents the horizontal eye velocity in degrees per second (°/s), with positive values denoting rightward eye velocities. Time is in
seconds (s). a Optimal fits obtained using selection method I (selects the solution that minimises the Euclidean distance of the Pareto front from the
origin of objective space). b Optimal fits obtained using method II (best fit to a 5 deg. saccade). c Optimal fits obtained using method III (best fit to a
10 deg. saccade). d Optimal fits obtained using method IV (best fit to a 20 deg. saccade)

Here, we have presented the results of using a well-
established multi-objective genetic algorithm, NSGA-II,
to fit the oculomotor model of Broomhead et al. [22] to
experimental infantile nystagmus and saccadic time series
data (nystagmus oscillations and normal saccades, respec-
tively). We carefully tuned the parameters of the genetic
algorithm, particularly population size, by performing test
runs on synthetic datasets chosen to qualitatively match
characteristic properties of their experimental counter-
parts. The synthetic datasets also assisted us in the
selection of appropriate fitness functions to measure the
goodness-of-fit of the model to the target time series. The
final fitness functions used were based on matching shape

and period for nystagmus oscillations and velocity profiles
for saccades. For fits to nystagmus data, unstable peri-
odic orbit analysis proved to be a highly effective method
for extracting single oscillation cycles, being robust with
respect to both intra-subject and inter-subject waveform
variability.
To make the optimisation process computationally

tractable, we executed the GA on a hybrid CPU-GPU
architecture. Our hybrid method used parallel runs of
independent instances of the NSGA-II optimiser, where
the most computationally expensive task – the integration
of the oculomotor model – was performed by the com-
pute units of a GPU, under the control of a CPUwhich also

Table 3 Optimising the model to experimental saccadic velocity profiles: fitness values on individual objectives

Selection method 5◦ 10◦ 20◦

I 16.6687 (0.0229) 16.5143 (0.0190) 13.9354 (0.0125)

II 3.1672 (0.0285) 94.7590 (0.0072) 138.2400 (0.0044)

III 40.7405 (0.1000) 8.7522 (0.0557) 36.6450 (0.1692)

IV 19.1386 (0.0202) 17.3887 (0.0106) 13.1121 (0.0013)

Results are shown for each method used to select the final solution. Method I selects the solution that minimises the Euclidean
distance between the Pareto front and the objective space origin; method II selects the best fit to a 5 deg saccade (objective 1);
method III selects the best fit to a 10 deg saccade (objective 2); and method IV selects the best fit to a 20 deg saccade
(objective 3). Mean fitness values and coefficients of variation (shown in brackets) were calculated from 16 runs of NSGA-II
for a population size of 8000. Fitness values were normalised by the number of points in each velocity profile
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Fig. 16 CPU/GPU execution times and speedup. a CPU and GPU execution time in seconds (s) vs the number of model integrations. b CPU:GPU
execution time ratio (speedup) vs the number of model integrations. The numerical solver used was the implicit mid-point method (time step
&t = 5 × 10−6 s) and the simulated model time was 6 s. The model parameters were uniformly distributed in the following ranges:
α ∈ [1, 1000] ;β ∈ [0.001, 10] ; ϵ ∈ [0.00001, 0.1] ; γ ∈ [0.00001, 12] ;α′ ∈ [1, 1000] ;β ′ ∈ [0.001, 60]. For each integration, the initial motor errorm was
set to 2 degrees; all other variables were initially set to 0. In each plot, the dotted line denotes 32000 integrations

implemented the genetic operations and fitness evalua-
tion. This parallel master-slave method enabled multiple
NSGA-II instances to be run on a single GPU, leading
to an order of magnitude speedup, depending on the
NSGA-II population size and the particular GPU card
used (Figs. 16-17 and Table 4). Our method provided us
with comparable acceleration to an HPC cluster, yield-
ing a maximum speedup of ≈20 (using the AMD Firepro
W8100) compared to a high-end CPU (the Intel Core
i7-4790K).

Fig. 17 Speedup obtained with the parallel NSGA-II method versus
the number of parallel instances using the AMD Firepro W8100 GPU.
Speedup is defined as the ratio of parallel execution time to serial
execution time for the same number of NSGA-II instances. The
indexed numbers indicate the population size for each NSGA-II
instance. In each case, the sum of the populations of all NSGA-IIs running
in parallel is 32000; this is in the range of parallel integrations that
provides the maximum speedup, compared to the CPU (see Fig. 16)

We note that although we obtained very good results
with NSGA-II – being able to successfully fit the
model to different experimental targets – there are
other multi-objective methods that may provide com-
parable results. For example, the ε-constraint method
could be used, although this would require the con-
straint value of each objective to be explored in order
to generate the Pareto front for each experimental tar-
get [40]. By comparison, each single run of NSGA-
II yields an approximation to the full Pareto front. A
hybrid method combining NSGA-II and a local opti-
miser (e.g. simulated annealing) could also be applied.
Furthermore, more sophisticated methods (such as
CRS-tuning [83]) could be used to select the param-
eters of NSGA-II, besides brute force. A comparison
of the accuracy of the fits obtained using different
optimisers – and the number of function evaluations

Table 4 Comparison of serial and parallel NGSA-II execution
times

Population Serial-CPU (1 core) Parallel-CPU (4 cores) Parallel-GPU

500 281.2 70.4 3.9

1000 450.8 113.1 6.5

2000 1077.7 270.3 15.8

4000 2299.3 577.3 34.4

8000 6780.3 1709.2 110.2

Each column shows the time required in hours to optimise the model 16 times to
all 4 experimental nystagmus waveforms,
as population size is increased. NSGA-II was run for 100 generations in each case.
Serial-CPU: results obtained using only
1 core of the i7-4790K CPU. Parallel-CPU: results obtained using all 4 cores of the
i7-4790K CPU. Parallel-GPU: results
obtained using the FirePRO W8100 GPU, with all 4 cores of the i7-4790K CPU
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required in each case – would be an interesting
follow-up study.
The results of applying our optimisation method to

experimental data quantified some of the strengths and
weaknesses of the oculomotor model in simulating nor-
mal and abnormal eye movements, whilst also providing
possible insights into the underlying physiology. In the
case of nystagmus fitting, the model could accurately
replicate a number of oscillation types (e.g. jerk, asym-
metric pseudo-cycloid and pseudo-cycloid – Fig. 11).
However, some oscillations (e.g. jerk with a very rapid
fast phase – Fig. 11c) and some characteristics of spe-
cific oscillations (such as the transition between the fast
phase and slow phase in Fig. 11b) could not be exactly
reproduced. Furthermore, the optimised parameter distri-
butions indicated that the fits to data are most sensitive
to the model parameters α and β (Fig. 10 and Additional
file: Figure S15), which control the magnitude and oper-
ational range of the saccadic braking signal (the saccadic
off-response), respectively. This finding is consistent with
the hypothesis of van Gisbergen et al. [61], Broomhead
et al. [22] and Akman et al. [18] that the dynamics of
the braking signal is the cause of the oculomotor instabil-
ity that precedes the onset of endogenous oscillations. In
addition, the consistently high optimised values of the α′

parameter (Fig. 9 and Table 1), which controls the mag-
nitude of the saccadic on-response, may indicate that the
burst neurons have a higher average maximal firing rate in
human subjects than in primates.
In the case of saccadic data, although the velocity pro-

files for each saccade amplitude could be individually
fitted with different parameter sets, no single parame-
ter set was able to fit all the profiles simultaneously,
despite our use of a multi-objective optimiser (Fig. 15 and
Table 3). One possible explanation for this deficiency of
the model may relate to the way in which the mutual
inhibition between the right and left burst neuron pop-
ulations is currently represented. Figure 14 and Table 2
show that the optimised value of the parameter γ con-
trolling the strength of this mutual inhibition decreases
rapidly to near-zero as the saccade amplitude is increased
from 5 degrees. It follows that for the Broomhead model,
5 degree saccades may belong to a different fitting class
than larger saccades, as is further implied by the relatively
weak trade-off between fits to saccades of amplitude 10
and 20 degrees (Fig. 13). This could suggest, for example,
modifying themodel to incorporate gaze angle-dependent
mutual inhibition.
The predictive capacity of the model could be further

improved by modifying the neural integrator equation in
line with the experimental findings of Khojasteh et al. [84],
who have shown that in horizontal eye movements there
is a large variability in the neural integrator time con-
stant and the location of the null zone. Initially, future

versions of the model could include the neural integra-
tor time constant as a parameter. Subsequently, a better
equation describing the experimental data in more detail
could be developed that also simulated the variability in
null zone position between individuals.

Conclusions
In this study, we have presented a GPU-accelerated
method for fitting the saccadic model of Broomhead
et al. [22] to experimental infantile nystagmus and sac-
cadic data sets. We anticipate that our optimisation
method will enable us to examine how the parameters
of oculomotor models evolve over the duration of a nys-
tagmus time series recording. During a single experimen-
tal recording, the nystagmus waveform characteristics
can change due, for example, to variations in attention
level and gaze angle [5]. Optimising the model to suc-
cessive segments of such recordings would trace out a
path in the model’s parameter space, directly relating the
observed transitions between different oscillation types
to the model’s bifurcation structure. Furthermore, the
association of nystagmat groups with specific regions of
parameter space could potentially help identify the mech-
anisms underlying the onset of oscillations in each group.
More generally we believe that the methodology we

used to develop the fitness functions and to tune the
NSGA-II parameters could be used to optimise any simi-
lar biological model to data, thereby allowing its predictive
capacity to be comprehensively explored. Indeed, we are
currently using our techniques to accelerate the optimi-
sation of spiking models of the cardiac action potential
and biochemical models of oscillatory gene expression. In
terms of attaining broader applicability of our methods,
the parallel ODE solver suite could be further expanded
to include additional numerical methods, capable of inte-
grating different classes of ODE model (e.g. variable step
and multi-step methods – this would also accelerate the
integration of the saccadic model considered here and its
future iterations). In addition, a better interface between
the parallel ODE solvers and MATLAB could be obtained
by using a .mex file. This would enable the GPU to be
called directly without running an external executable file
and would also allow users to run the solvers without
requiring a RAM disk to save their results.
Finally, future applications of our optimisation protocol

will require the researcher to compare the model
execution time to that of the other optimisation processes
and decide whether additional parallelisation is necessary.
In our case, for example, the execution time of the
NSGA-II operations increases considerably for population
sizes greater than 10000 (see Additional file: Figure S7).
This is as expected because NSGA-II is of O(MN2)
computational complexity, where M is the number of
objectives and N is the population size [57]. The profiler
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output shows that the MATLAB function which causes
this increase is nonDominatedRank.m, which ranks the
individuals in the population. If there was a requirement
for further reduction inNSGA-II execution time, an accel-
erated version of the ranking function that runs on a GPU
could be developed.

Additional file

Additional file 1: Contains Supplementary Figures S1-S27 and
Supplementary Tables S1-S11. (PDF 5998 kb)
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The GPU executable

Programs that are executed on a GPU have to be written using a specific programming framework.
The two most widely used frameworks are the NVIDIA Compute Unified Device Architecture
(CUDA) [1] and the Open Computing Language (OpenCL) [2]. The CUDA framework is a propri-
etary architecture specifically designed to be run only on NVIDIA GPUs. By contrast, OpenCL
which is managed by the Khronos Group [3], is an open framework which can be used to program
almost any parallel architecture, such as multicore CPUs, GPUs, coprocessors (e.g. the Intel Xeon
Phi) or a network of connected GPUs and/or CPUs. To ensure better hardware compatibility of
our code, we therefore developed our executable in the OpenCL framework.

OpenCL includes a C99 based language for writing functions (kernels), which are executed on
OpenCL devices (e.g. CPUs or GPUs) and an application programming interface (API). The API is
used to define and control the OpenCL devices and execute the kernels on them. A simple OpenCL
program involves the steps of finding the computing device, compiling the code that will be run
on the device, copying the data to the device, performing the computation and copying back the
results of the computation.

Our OpenCL program includes a kernel with functions that numerically solve the saccadic
model for di↵erent parameter combinations. Moreover, our program includes code written in C++,
which, using the OpenCL API, performs the actions necessary to run the kernel on the GPU. The
numerical method that we used in the kernel was the implicit mid-point rule [4], with a time step
�t “ 5 ˆ 10´6 (as the saccadic model is a sti↵ system, a small time step is required for accurate
integration). To assess whether the ODE solver and the selected time step gave accurate results, we
compared the model solutions generated using our method with those obtained using the MATLAB
sti↵ ODE solver ode15s, with relative and absolute tolerances both set to 10´8.

The logical flow of the GPU executable program is as follows. First, the program reads the input
binary file which contains the parameter combinations comprising the NSGA-II population and the
initial conditions. Subsequently, these parameter values and initial conditions are transferred to
the GPU’s RAM. Next, the OpenCL kernel is called to integrate the model for 80 time steps. In
parallel with the integration (the current kernel call), the results of the previous integration (the
previous kernel call) are written to a binary file. Once the model has been integrated over the
required timespan for all parameter combinations, the program quits.

We found that the sampling frequency of the results (i.e. the number of points in the time series
used for calculating fitness) played an important role in the GPU computation time when fitting
the model to nystagmus waveforms. This was due to the bottleneck caused by the transfer to and
from the GPU memory, and the time required to write the data to the binary file. Higher sampling
frequencies substantially increased the time required for model integration and solution analysis
(fitness evaluation) and also the size of the binary file produced. For example, using a sampling
frequency of 2500 Hz, 20000 di↵erent parameter sets with a simulation time of 6 s each produced
a 2.23 GB file, with an overall computation time of 35.44 s. Increasing the sampling frequency to
5000 Hz increased the file size to 4.46 GB and the overall computation time to 45.56 s.
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However, it was not possible to overcome this problem by arbitrarily reducing the sampling
rate, since by considering fits to synthetic nystagmus waveforms (see Figure S4), we found that a
low sampling frequency did not allow accurate period and amplitude measures to be obtained. In
order to choose the lowest sampling frequency capable of resolving this speed/accuracy trade-o↵,
we generated very highly sampled versions of the synthetic waveforms in Figure S4 by integrating
the model for each corresponding parameter set with �t set to 5ˆ10´6 s (i.e. a sampling frequency
of 5 ˆ 106 Hz). We then subsampled each time series at 250, 500, 1000, 1250, 2500 and 5000 Hz to
obtain a set of candidate waveforms. Next, we calculated the sum-of-square errors for amplitude and
period between the highly sampled and candidate waveforms. On the basis of these results, the final
sampling frequency was chosen to be 2500 Hz, as using a higher frequency caused no significant
reduction in error. Returning results at this frequency enabled us to minimise the e↵ect of the
GPU call bottleneck, the amount of memory used and the computation time required to analyse
the results, without significantly degrading the accuracy of the period and amplitude calculations.

Supplementary Figures

Figure S1: Schematic illustration of a unidirectional jerk infantile nystagmus waveform
with its key characteristics highlighted. B.L.O.: baseline oscillation. The red rectangles
indicate foveation windows. Time is given in seconds (s). Horizontal gaze angle is in degrees (˝).
Figure adapted from [5].

Figure S2: Qualitative characteristics of di↵erent infantile nystagmus waveform types.
The dashed line represents the fixation point. SEM: slow eye movement. Figure adapted from [6].
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Figure S3: Range of eye movements simulated by the oculomotor model of Broomhead
et al. Time series were generated using di↵erent parameter choices for ↵, � and ✏, with initial
conditions set to gp0q “ np0q “ rp0q “ lp0q “ 0 and mp0q “ �g, simulating a saccade of �g degrees
executed from rest at the primary position (0 degrees). The values of �, ↵1 and �1 were fixed at 0.05,
600 and 9, respectively. (A) Normometric saccade: ↵=20, �=3, ✏=0.001, �g=10. (B) Dynamic
overshoot: ↵ = 20, � = 3, ✏ = 0.015, �g= 10. (C) Hypometric saccade: ↵ = 206, � = 3, ✏ = 0.001,
�g = 0.5. (D) Small-amplitude nystagmus: ↵ = 207.656, � = 3, ✏ = 0.006, �g = 0.5. (E) Jerk IN:
↵ = 240, � = 3, ✏ = 0.004, �g = -10. (F) Jerk with extended foveation: ↵ = 240, � = 3, ✏ = 0.0048,
�g = -10. (G) Bidirectional jerk IN: ↵ = 240, � = 3, ✏ = 0.006, �g = -10. (H) Pendular IN: ↵
= 240, � = 3, ✏ = 0.06, �g = -10. In each plot, the vertical axis represents horizontal gaze angle
in degrees (˝), with positive (negative) values representing rightward (leftward) gaze, respectively.
Time is in seconds (s). The dashed lines represent the target position.
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Figure S4: Synthetic infantile nystagmus waveforms. The model parameter values used to
generate each oscillation are shown in Table S1. The initial conditions were set to gp0q “ np0q “
rp0q “ lp0q “ 0 and mp0q “ 2 in each case. The simulated waveform types are: asymmetric pseudo-
cycloid (A); pseudo-cycloid (B); jerk (C); and bidirectional jerk (D). On each plot, the vertical
axis represents the horizontal gaze angle in degrees (˝), with positive values denoting rightward eye
positions. Time is in seconds (s).

Figure S5: Synthetic saccadic velocity profiles. Velocity profiles were simulated using the
model parameter values listed in Table S2 for amplitudes of 5, 10 and 20 degrees. For each amplitude
�g, the initial conditions were set to gp0q “ np0q “ rp0q “ lp0q “ 0 and mp0q “ �g. The black
circles indicate the initiation and termination of each saccade, calculated by applying a velocity
threshold of 2 deg/s. On each plot, the vertical axis represents the horizontal eye velocity in deg/s
(˝/s), with positive values denoting rightward motion. Time is in seconds (s).
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Figure S6: Key stages of the unstable periodic orbit (UPO) extraction method. (A)
Experimental time series of a right-beating jerk nystagmus. Red points (velocity threshold of 70
deg/s) delineate the di↵erent inter-cycle intervals ⌧k. (B) Histogram of the transformed interval
data, showing a clear peak at ⌧˚ “ 0.28s. (C) Candidate periodic orbits extracted from the time
series by thresholding |⌧k ´ ⌧˚|. The UPO selected for further processing is shown in red. (D) Part
of the experimental recording shown in A. The extracted UPO is shown in red. (E) 3 concatenated
copies of the extracted UPO. The final UPO used for parameter optimisation, which starts at the
beginning of the fast phase, is shown in red. Gaze angle is in degrees (˝); time is in seconds (s).

Figure S7: Mean execution time of three key computational tasks in an optimisation
run as a function of population size. Execution time was computed for the following tasks: (i)
model integration (GPU executable); (ii) fitness function evaluation; and (iii) NSGA-II operations.
Mean values were taken from 8 optimisation runs for 5 generations each. The variation in execution
times for each run with the same population size is negligible and is therefore not shown.
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Figure S8: Convergence metrics of NSGA-II when fitting the model to synthetic nys-
tagmus waveform A of Fig. S4. (A) Mean value of the hypervolume indicator HI as a function
of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean value of
the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space origin
as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated from 16
runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.

Figure S9: Convergence metrics of NSGA-II when fitting the model to synthetic nys-
tagmus waveform B of Fig. S4. (A) Mean value of the hypervolume indicator HI as a function
of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean value of
the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space origin
as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated from 16
runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.
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Figure S10: Convergence metrics of NSGA-II when fitting the model to synthetic nys-
tagmus waveform C of Fig. S4. (A) Mean value of the hypervolume indicator HI as a function
of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean value of
the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space origin
as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated from 16
runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.

Figure S11: Convergence metrics of NSGA-II when fitting the model to synthetic nys-
tagmus waveform D of Fig. S4. (A) Mean value of the hypervolume indicator HI as a function
of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean value of
the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space origin
as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated from 16
runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.

7



Figure S12: Optimised parameter values for synthetic nystagmus waveforms as a func-
tion of population size. The first line of plots shows the optimised values of ↵, � and ✏ for
waveform A, whereas those for B, C and D are shown by the second, third and fourth lines of
plots, respectively. In each plot, the dotted line represents the parameter value used to generate
the target waveform. The horizontal line in each boxplot denotes the median of the optimised
parameter values. The edges of each box are the 25th and 75th percentiles. The whiskers extend
to the interquartile range.
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Figure S13: Optimised parameter values for synthetic nystagmus waveforms as a func-
tion of population size. The first line of plots shows the optimised values of �, ↵1 and �1 for
waveform A, whereas those for B, C and D are shown by the second, third and fourth lines of
plots, respectively. In each plot, the dotted line represents the parameter value used to generate
the target waveform. The horizontal line in each boxplot denotes the median of the optimised
parameter values. The edges of each box are the 25th and 75th percentiles. The whiskers extend
to the interquartile range.
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Figure S14: Fits of the model to synthetic nystagmus waveforms. The target waveforms
are plotted in red (cf. Fig. S4). The optimal fits obtained from 16 independent runs of NSGA-II
with a population size of 4000 are plotted in black. In each plot, the vertical axis represents the
horizontal gaze angle in degrees (˝), with positive values denoting rightward eye positions. Time
is in seconds (s). The simulated nystagmus waveform types are: asymmetric pseudo-cycloid (A);
pseudo-cycloid (B); jerk (C); bidirectional jerk (D).

Figure S15: Optimising the model to synthetic nystagmus waveforms: coe�cients of
variation of the parameters. Coe�cients of variation were calculated from 16 NSGA-II runs
with a population size of 4000 each.
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Figure S16: Unstable periodic orbits (UPOs) extracted from the experimental time
series shown in Fig. 4. Each UPO was translated in time and linearly scaled so that it began at
the start of the nystagmus fast phase, with the fast phase in the rightward direction. The oculomotor
model was fitted to these normalised waveforms. On each plot, the vertical axis represents the
horizontal gaze angle in degrees (˝), with positive values denoting rightward eye positions. Time
is in seconds (s). The nystagmus waveform types are: asymmetric pseudo-cycloid (A); jerk with
extended foveation (B); jerk (C); and asymmetric pseudo-cycloid (D).

Figure S17: Convergence metrics of NSGA-II when fitting the model to experimental
nystagmus waveform B of Fig. 4. (A) Mean value of the hypervolume indicator HI as a
function of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean
value of the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space
origin as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated
from 16 runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.
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Figure S18: Convergence metrics of NSGA-II when fitting the model to experimental
nystagmus waveform C of Fig. 4. (A) Mean value of the hypervolume indicator HI as a
function of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean
value of the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space
origin as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated
from 16 runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.

Figure S19: Convergence metrics of NSGA-II when fitting the model to experimental
nystagmus waveform D of Fig. 4. (A) Mean value of the hypervolume indicator HI as a
function of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean
value of the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space
origin as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated
from 16 runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.
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Figure S20: Fits of the model to experimental nystagmus waveforms. The target wave-
forms are plotted in red. Left panel: the optimised waveforms obtained from 16 independent runs
of NSGA-II with a population size of 4000 (black lines). For each optimisation run, the final best-fit
parameter set was selected as that yielding the minimum shape di↵erence from the experimental
oscillation. Right panel: the optimised waveforms scaled in time to match the period of the cor-
responding target waveform. In all plots, the vertical axis represents the horizontal gaze angle in
degrees (˝), with positive values denoting rightward eye positions. Time is in seconds (s).
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Figure S21: Convergence metrics of NSGA-II when fitting the model to synthetic sac-
cadic velocity profile A of Fig. S5. (A) Mean value of the hypervolume indicator HI as a
function of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean
value of the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space
origin as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated
from 16 runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.

Figure S22: Convergence metrics of NSGA-II when fitting the model to synthetic sac-
cadic velocity profile B of Fig. S5. (A) Mean value of the hypervolume indicator HI as a
function of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean
value of the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space
origin as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated
from 16 runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.
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Figure S23: Convergence metrics of NSGA-II when fitting the model to synthetic sac-
cadic velocity profile C of Fig. S5. (A) Mean value of the hypervolume indicator HI as a
function of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean
value of the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space
origin as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated
from 16 runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.

Figure S24: Convergence metrics of NSGA-II when fitting the model to synthetic sac-
cadic velocity profile D of Fig. S5. (A) Mean value of the hypervolume indicator HI as a
function of generation number n. (B) Standard deviation (SD) of HI as a function of n. (C) Mean
value of the smallest Euclidean distance dF̂ between the Pareto front estimate and objective space
origin as a function of n. (D) SD of dF̂ as a function of n. Convergence metrics were calculated
from 16 runs of NSGA-II each for the following population sizes: 500, 1000, 2000, 4000 and 8000.
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Figure S25: Optimised parameter values for synthetic saccadic velocity profiles versus
population size. The first line of plots shows the optimised values of ↵, � and ✏ for velocity
profile A of Fig. S5, whereas those for B, C and D are shown by the second, third and fourth
lines of plots, respectively. In each plot, the dotted line represents the parameter value used to
generate the target profile. The horizontal line in each boxplot denotes the median of the optimised
parameter values. The edges of each box are the 25th and 75th percentiles. The whiskers extend
to the outermost data points not considered as outliers.
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Figure S26: Optimised parameter values for synthetic saccadic velocity profiles versus
population size. The first line of plots shows the optimised values of �, ↵1 and �1 for velocity
profile A of Fig. S5, whereas those for B, C and D are shown by the second, third and fourth lines
of plots, respectively. In each plot, the dotted line represents the parameter value used to generate
the target profile. The black horizontal line in each boxplot denotes the median of the optimised
parameter values. The edges of each box are the 25th and 75th percentiles. The whiskers extend
to the outermost data points not considered as outliers.
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Figure S27: Magnified views of the Pareto front shown in Fig. 13 about the origin of
objective space. In each plot, the red cross (+), red star (˚) and red x (ˆ) indicate the solutions
yielding the minimum Euclidean distance to the axes origin, the best fit to a 10 degree saccade and
the best fit to a 20 degree saccade, respectively.
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Supplementary Tables

↵ � ✏ � ↵1 �1

Target M O M O M O M O M O M O

A 270 270.0600 (0.0029) 3.5 3.5034 (0.0070) 0.0035 0.0036 (0.0703) 0.06 0.0597 (0.0201) 600 630.5900 (0.0846) 10 10.6700 (0.1134)
B 210 210.4200 (0.0046) 1.5 1.4612 (0.0144) 0.0020 0.0015 (0.3360) 0.03 0.0358 (0.0922) 380 340.8200 (0.4961) 6 5.0800 (0.6514)
C 110 109.1300 (0.0157) 1.5 1.3136 (0.0625) 0.0035 0.0042 (0.0970) 0.05 0.0650 (0.1753) 600 623.0900 (0.3914) 9 8.8200 (0.4111)
D 110 109.8000 (0.0025) 1.5 1.4781 (0.0047) 0.0065 0.0064 (0.0034) 0.07 0.0836 (0.0215) 550 723.3200 (0.1260) 9 11.9800 (0.1326)

Table S1: Model parameter values (M) used to generate the synthetic nystagmus waveforms shown in Fig. S4, together with the parameter
values obtained by optimising the model to the waveforms (O). Mean optimised parameter values and coe�cients of variation (shown in brackets) were
calculated from 16 NSGA-II runs with a population size of 4000.

↵ � ✏ � ↵1 �1

Target M O M O M O M O M O M O

A 650 643.7700 (0.0892) 15 15.3410 (0.2240) 0.0035 0.0035 (0.0025) 0.05 0.0530 (0.2078) 380 380.0200 (0.0003) 1.5 1.5000 (0.0008)
B 10 11.5900 (0.3279) 0.5 0.5844 (0.3366) 0.0065 0.0065 (2.9000e-5) 0.5 0.5031 (0.0173) 480 479.9900 (1.1226e-5) 9 8.9900 (1.4284e-5)
C 100 96.4400 (0.0791) 50 47.7500 (0.0929) 0.0090 0.0090 (2.9652e-6) 4 3.9780 (0.0069) 380 379.9900 (7.4419e-6) 9 8.9900 (3.1372e-6)
D 15 14.9900 (2.1836e-5) 5 4.9900 (6.1320e-6) 0.0050 0.0050 (5.1906e-6) 5 5 (6.4711e-6) 600 600 (4.8757e-6) 10 10 (1.7334e-5)

Table S2: Model parameter values (M) used to generate the synthetic saccadic velocity profiles shown in Fig. S5, together with the parameter
values obtained by optimising the model to the profiles (O). Mean optimised parameter values and coe�cients of variation (shown in brackets) were
calculated from 16 NSGA-II runs with a population size of 8000.

Population size Computation time (h)

500 4.04
1000 6.74
2000 14.54
4000 29.07
8000 58.22

Table S3: Time required to run NSGA-II 16 times for the four synthetic nystagmus waveforms shown in Fig. S4 as a function of population
size. The computation times shown here were obtained using the multiple parallel runs method. The CPU used was the Intel i7-4790K and the GPU used was
the AMD Firepro W8100.
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↵ � ✏ � ↵1 �1

73.8860 1.3798 0.000422 3.9058 941.9604 18.2249
74.0231 1.3574 0.000420 4.3308 959.7598 18.1994
74.1901 1.3626 0.000387 4.3381 936.7846 17.7744
74.0151 1.3949 0.000914 3.2675 976.9992 19.6056
74.3313 1.3609 0.000858 3.7233 752.4665 14.5887
73.4383 1.4080 0.000327 3.5781 986.3955 19.5748
73.1678 1.3670 0.000369 4.1287 693.3085 13.4952
74.2034 1.4041 0.001035 3.0163 932.5658 18.8773
73.9068 1.3890 0.000822 3.3548 983.6076 19.5408
73.8722 1.3604 0.000210 4.7199 878.9018 16.6145
74.0002 1.3630 0.000245 4.4958 871.5667 16.4806
74.4777 1.3433 0.000320 4.7195 938.8144 17.3741
74.4609 1.3621 0.000621 3.9958 965.4139 18.4023
73.6851 1.3846 0.000303 4.0965 905.3063 17.5976
74.6357 1.3626 0.000378 4.5059 984.3670 18.5614
73.9528 1.3787 0.000697 3.5725 899.9799 17.6012

Table S4: Optimised parameter values for experimental nys-
tagmus waveform A. The parameter values were generated from 16
NSGA-II runs with a population size of 4000.

↵ � ✏ � ↵1 �1

81.4470 1.2587 0.003587 2.6216 946.6078 15.7112
82.9527 1.1921 0.003561 3.7606 921.8840 14.2736
82.3008 1.2258 0.003570 3.0617 901.0864 14.4253
81.9359 1.2455 0.003619 2.7211 928.2800 15.1769
80.3064 1.2444 0.002190 3.7432 960.2521 15.3978
81.7844 1.2508 0.003273 2.8519 987.0697 16.0224
82.4753 1.2332 0.003513 2.9892 984.6942 15.7731
81.8098 1.2367 0.003029 3.2038 971.0881 15.4672
82.3850 1.1939 0.004027 3.0283 662.3819 10.6367
82.6411 1.2254 0.003366 3.1833 961.3344 15.1860
81.8225 1.2454 0.003443 2.8889 950.9924 15.4640
80.9086 1.2430 0.003157 3.1219 988.4403 16.0739
82.8045 1.2179 0.003388 3.3524 995.3751 15.6161
84.2661 1.1924 0.003573 3.2569 762.1264 11.6122
82.8931 1.2432 0.003954 2.6408 962.7046 15.8182
82.8692 1.2122 0.003382 3.3613 995.3670 15.5252

Table S5: Optimised parameter values for experimental nys-
tagmus waveform B. The parameter values were generated from 16
NSGA-II runs with a population size of 4000.

↵ � ✏ � ↵1 �1

63.8105 0.3796 0.001603 149.3738 513.0984 3.3434
58.7743 0.3982 0.001108 130.5800 843.9449 5.9600
59.5450 0.4076 0.001589 104.4812 771.5557 5.7317
61.8556 0.4067 0.001119 145.6253 934.5026 6.4123
60.3481 0.3987 0.001333 146.5753 749.3091 5.2715
60.0300 0.3930 0.001559 146.0221 946.6963 6.7319
56.4527 0.3997 0.001378 139.7951 999.4586 7.6674
60.3975 0.4059 0.001623 146.1372 965.0309 7.1929
58.0912 0.4032 0.001262 140.1972 971.2520 7.1726
58.3580 0.3928 0.001519 132.9635 738.6576 5.3861
59.2070 0.4108 0.001166 146.9515 968.8204 7.1303
65.6467 0.3808 0.001436 135.1793 323.1411 2.0052
60.2424 0.4018 0.001477 145.1551 743.2897 5.3772
61.6694 0.3977 0.001362 135.5100 943.4591 6.4358
58.9473 0.4041 0.001627 131.8488 757.3143 5.7652
60.6373 0.3935 0.001213 148.0121 877.3826 5.9659

Table S6: Optimised parameter values for experimental nys-
tagmus waveform C. The parameter values were generated from 16
NSGA-II runs with a population size of 4000.

↵ � ✏ � ↵1 �1

59.1972 1.1058 0.000607 2.5306 970.0289 18.6077
58.1421 1.1364 0.000551 2.2883 991.9926 19.9460
57.7539 1.1768 0.000226 2.1399 930.6437 19.4500
57.1412 1.1863 0.000311 2.0269 961.1829 20.5195
58.9697 1.1387 0.000581 2.1330 899.8404 17.8734
57.7300 1.1500 0.000417 2.1764 720.9010 14.7580
58.9381 1.2071 0.000650 1.5444 940.3915 19.9185
58.2983 1.1283 0.000468 2.3509 958.6452 19.0491
58.2391 1.1803 0.000779 1.7230 924.6075 19.4091
57.8602 1.1942 0.000965 1.5643 949.3527 20.4036
60.7869 0.9883 0.000234 4.7916 907.0333 14.9787
58.4281 1.1596 0.000403 2.1045 909.8404 18.5493
57.6040 1.1671 0.000733 2.0505 975.9734 20.4760
60.4556 1.1088 0.000553 2.3623 958.9046 18.0338
60.5561 1.0795 0.000630 2.6750 760.5867 13.8953
58.9817 1.1149 0.000283 2.5673 959.4191 18.5497

Table S7: Optimised parameter values for experimental nys-
tagmus waveform D. The parameter values were generated from 16
NSGA-II runs with a population size of 4000.
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↵ � ✏ � ↵1 �1

5.2979 18.1755 0.007484 3.5454ˆ10´5 536.3145 3.3027
17.1781 54.9156 0.007377 4.5276ˆ10´5 539.8244 3.3820
31.5053 21.5546 0.007419 1.0772ˆ10´5 543.4726 3.3798
6.4617 30.2693 0.007482 4.2245ˆ10´5 539.3890 3.3385
25.2468 46.8037 0.007535 3.6671ˆ10´5 541.0604 3.3839
22.8235 54.2920 0.007432 2.0201ˆ10´5 536.8340 3.3265
7.2052 35.6141 0.007323 7.3297ˆ10´5 525.5349 3.2087
33.2020 57.2672 0.007356 1.6723ˆ10´5 534.6402 3.3163
24.6312 46.3618 0.007409 2.7822ˆ10´5 546.5006 3.4964
9.9587 3.6352 0.007317 2.5811ˆ10´5 528.8543 3.2369
4.6892 49.8071 0.007371 2.3472ˆ10´5 537.8095 3.3573
25.8110 33.8400 0.007350 4.3886ˆ10´5 534.7941 3.2588
4.5098 38.8240 0.007488 1.7915ˆ10´5 543.1064 3.4270
17.6225 56.5199 0.007445 4.3512ˆ10´5 536.9375 3.3293
7.4677 20.2686 0.007518 5.2804ˆ10´5 546.8587 3.4265
19.7280 11.0263 0.007359 3.0950ˆ10´5 530.4772 3.2473

Table S8: Optimised parameter values for experimental saccades
with selection method A. The parameter values were generated from
16 NSGA-II runs with a population size of 8000.

↵ � ✏ � ↵1 �1

107.8408 0.6870 0.003887 0.0106 251.2221 0.4583
41.0974 0.6087 0.003822 0.0846 249.0326 0.3955

553.2830 16.8743 0.003707 0.1074 248.2133 0.3650
139.7792 4.0468 0.003822 0.0888 249.3472 0.3774
281.3422 9.0625 0.003835 0.0875 249.2597 0.3785
79.4163 2.2230 0.003823 0.0988 248.9210 0.3755

111.8899 2.1975 0.003901 0.0440 250.8227 0.4135
555.1691 12.8995 0.003646 0.0710 247.5061 0.3617
71.9387 0.4238 0.003822 0.0262 248.7433 0.4101

331.8248 13.2771 0.003789 0.1360 248.5950 0.3728
104.6945 0.1150 0.004025 0.0616 251.9270 0.4961
72.8745 1.6161 0.003827 0.0720 248.9827 0.3887
20.6609 0.3466 0.003923 0.1861 250.5856 0.3986

737.2948 32.5337 0.003728 0.1792 247.2789 0.3554
480.5098 13.7527 0.003751 0.0845 248.5587 0.3805
540.9923 11.7577 0.003675 0.0593 248.3142 0.3715

Table S9: Optimised parameter values for experimental saccades
with selection method B. The parameter values were generated from
16 NSGA-II runs with a population size of 8000.

↵ � ✏ � ↵1 �1

117.4972 16.8053 0.004472 0.019742 396.6031 1.0778
62.0893 38.4591 0.005657 0.000956 432.1898 1.6798
43.3139 52.6766 0.004981 0.004977 410.4475 1.3443

625.6596 47.1506 0.004595 0.009403 399.1188 1.1028
270.3753 50.0047 0.005243 0.002635 422.2609 1.5114
20.9223 23.0898 0.004602 0.018887 399.6315 1.1164

346.6928 44.2214 0.004873 0.007016 408.5792 1.2680
100.7620 38.0061 0.005480 0.001103 431.4354 1.7658
27.6615 13.6133 0.005283 0.002652 421.2316 1.5262

168.7763 22.1677 0.004296 0.039950 393.3885 1.0756
188.8032 48.9628 0.005307 0.002097 423.2731 1.6164
281.0069 29.0410 0.004841 0.005568 404.9369 1.2435
52.1547 57.0190 0.004372 0.031414 392.6982 1.0516
55.8875 45.7220 0.004493 0.036287 402.8819 1.3013
49.8047 34.3625 0.004713 0.012601 402.6626 1.1754

202.5608 32.0198 0.005001 0.005011 411.1283 1.2969

Table S10: Optimised parameter values for experimental sac-
cades with selection method C. The parameter values were gener-
ated from 16 NSGA-II runs with a population size of 8000.

↵ � ✏ � ↵1 �1

74.2874 20.9476 0.005597 0.000739 466.8249 2.8925
63.6664 58.2268 0.005672 0.000776 468.8691 2.9175
6.4792 49.0435 0.005728 0.000542 468.9678 2.9665
12.7385 37.7213 0.005640 0.001045 467.8222 2.9300
50.0420 47.2101 0.005667 0.000797 468.5883 2.9632
22.7009 32.2828 0.005653 0.000575 467.6818 2.9474
8.6139 31.2337 0.005739 0.000844 469.6473 2.9531
37.4401 42.0355 0.005691 0.000549 468.7901 2.9655
1.1778 6.1920 0.005687 0.000632 468.5299 2.9479
86.3693 44.7407 0.005626 0.000750 467.9718 2.9251
21.2250 47.9045 0.005681 0.000894 468.6346 2.9330
6.9513 32.3392 0.005660 0.000773 468.1029 2.9334
15.4132 15.7937 0.005748 0.000674 469.5543 2.9361
74.4638 44.9056 0.005742 0.000995 470.8274 2.9909
64.9811 58.8444 0.005647 0.000745 467.4807 2.9264

131.1230 59.2050 0.005666 0.000571 468.6921 2.9494

Table S11: Optimised parameter values for experimental sac-
cades with selection method D. The parameter values were gener-
ated from 16 NSGA-II runs with a population size of 8000.
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