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Abstract. History matching is a model (pre-)calibration method that has been applied to6
computer models from a wide range of scientific disciplines. In this work we apply history matching7
to an individual based epidemiological model of HIV that has 96 input and 50 output parameters,8
a model of much larger scale than others that have been calibrated before, using this or similar9
methods. Apart from demonstrating that history matching can analyse models of this complexity, a10
central contribution of this work is that the history match is carried out using linear regression, an11
elementary and easier to implement statistical tool compared to the Gaussian process based emulators12
that have previously being used. Furthermore, we address a practical difficulty of history matching,13
namely, the sampling of tiny, non-implausible spaces, by introducing a sampling algorithm adjusted14
to the specific needs of this method. The effectiveness and simplicity of the history matching method15
presented here shows that it is a useful tool for the calibration of computationally expensive, high16
dimensional individual based models.17
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1. Introduction. Approximately 1.5 million people died from AIDS-related ill-20

nesses in 2013, with sub-Saharan Africa accounting for 74% of deaths [24]. In the21

same year, 2.1 million people were newly infected with HIV. Although both HIV inci-22

dence and mortality have fallen in recent years, more intensive treatment and control23

strategies are needed to accelerate the decline. Antiretroviral therapy (ART) is known24

to suppress the virus and stop the progression of the disease, and it can also prevent25

onward transmission. This therapy is available in various sub-Saharan countries and26

is typically administered when the CD4 count of a patient falls below a threshold.27

There is however an ongoing discussion about removing this threshold, and the effect28

such a policy would have on the general population.29

Modelling offers one way of studying the effect of different interventions. An indi-30

vidual based model (simulator) has been developed at the London School of Hygiene31

and Tropical Medicine which can simulate HIV transmission and the effects of ART,32

and predict the effect of different interventions over a horizon of 10-15 years. The33

simulator has a number of input parameters, the values of which are uncertain, and34

this uncertainty should be included in any predictions we wish to make. The availabil-35

ity of historical data (observations) allows us to learn about the values of the input36
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2 I. ANDRIANAKIS ET AL.

parameters, by calibrating the simulator to the observations. By calibrating we mean37

finding a subset of input parameter values for which the simulator’s outputs closely38

match historical observations on demography, HIV prevalence, mortality etc.39

Calibrating such a simulator is challenging mainly due to the large number of40

input (96) and output (50) parameters. Having to simultaneously match a large41

number of outputs means that there are many constraints that need to be satisfied,42

and this can result in a very small region of the input space where the simulator43

matches the observations. In high dimensional input spaces, the search for a small44

part that will generate output matches can require a prohibitively large number of45

simulator runs. A further complication in our case is that the simulator is stochastic,46

therefore repeated evaluations are required for the same input values to estimate the47

mean values of the outputs.48

A large number of methodologies for calibrating simulators are available, which49

vary from simple least squares techniques, MCMC based methodologies [7, 19], parti-50

cle filters [3], and Approximate Bayesian Computation (ABC) [23, 17] amongst others.51

For various reasons these methodologies are extremely difficult to apply in our case.52

Data augmentation approaches would require reconstruction of the likelihood function53

and integration over a very large hidden state space, whilst simulation-based methods54

would require a very large number of simulator runs. The latter have only really been55

applied to relatively small scale simulators (in terms of the number of inputs and56

outputs; usually around 5-10 in each case).57

The problem of calibrating a simulator could also be thought of as an optimisation58

problem: finding simulator inputs to minimise the difference between the simulator59

outputs and some observed target values. The optimisation of an expensive simulator60

with a univariate output is considered in [10], and an extension for the multivariate61

case is given in [12]. Again, we think these approaches would be difficult to apply in62

our case, given the high dimensional input and output, and it is not obvious how one63

would account for simulator input uncertainty, if the aim was simply to find a ‘best’64

value.65

History matching [6] is a (pre-)calibration method that has been applied with66

success to slow simulators with typically larger numbers of inputs/outputs than the67

simulators used in the methods mentioned above. History matching tries to identify68

those parts of the simulator’s input space where, if evaluated, the simulator is likely69

to match the observations. This goal is achieved via identifying regions of the input70

space where a match is unlikely to be found (these regions are known as implausible)71

and discarding them in iterations known as waves. History matching can deal with72

simulators that are slow to evaluate by employing statistical models of the simulator73

(known as emulators), whose key characteristic is the trivial evaluation time.74

History matching was first applied in the field of oil simulator modelling [6],75

and has since found applications in areas as diverse as galaxy formation [26, 28],76

environmental models [9], systems biology [25, 29], ocean modelling [32] and epidemi-77

ology [2]. The dimensionality (i.e. number of inputs (P) and outputs (R)) of the78

simulators analysed in those works was considerably smaller. For example, [26, 28]79

(P = 17, R = 11), [9] (P = 17, R = 13), [25] (P = 8, R = 15), [32] (P = 26, R = 4), [2]80

(P = 22, R = 18). An exception is [6] who study an oil reservoir model with P = 4081

and R = 77. However, [6] use the technique of active inputs to perform a substantial82

dimensional reduction of the simulator, showing that it is accurately described by a83

series of outputs possessing only 3 input dimensions each. However, many high di-84

mensional simulators, such as the HIV model we are concerned with here, possess a far85

more intricate input-output structure, for which such a large dimensional reduction86
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is not possible.87

In this work we apply history matching to a stochastic agent based simulator with88

more input and output parameters than any other simulator that has been calibrated89

before with this or with other methods that we know of. A key contribution of90

this work is that we calibrate the simulator using elementary statistical tools and91

methodologies, that should be known to all statisticians and most modellers with92

basic statistical training.93

The emulators used in history matching are typically built using Gaussian pro-94

cesses (GPs) [2]. In our experience, we have often found this to be an obstacle in95

applying the method, as not everyone is familiar with this elegant but non-trivial96

statistical model. The emulators we use in this work are based on linear regression97

models, that are much easier to code, fit, and interpret. History matching typically98

requires repeated fitting of emulators, either multivariate or a large number of uni-99

variate ones at each wave. Because its emphasis is on excluding the implausible input100

space iteratively, it does not depend on the availability of very precise emulators to101

achieve this; the same result can sometimes be achieved with less precise emulators102

and a few additional iterations. Therefore, linear regression models are likely to be103

sufficient, especially in the first waves of a history match. While we do not argue104

against the use of more complex statistical models for building emulators, we demon-105

strate that even a simple and well known tool, such as linear regression, can be used106

to make considerable progress in calibrating complex and computationally demanding107

simulators. Furthermore, the history matching framework facilitates the use of vari-108

ous statistical models at different stages of the process. Therefore, linear regression109

can be used in the initial waves and more complex regression tools, such as GPs, can110

be introduced later on, if some outputs are hard to emulate, or greater accuracy is111

required.112

Another contribution of this work is the proposal of an algorithm that can uni-113

formly sample the non-implausible space. After several waves of history matching,114

the remaining non-implausible space can be a tiny proportion of the original (i.e. at115

wave 0). In general, there is no analytical description of this space and the only way116

to describe it is via sampling. However, this can be challenging, since this space has117

as many dimensions as the simulator’s inputs, has an unknown, (perhaps multimodal)118

shape and can be several orders of magnitude smaller than the original input space.119

The algorithm we propose is based on the slice sampler, is straightforward to imple-120

ment, and takes advantage of the specific needs of history matching to increase its121

efficiency. Another sampling algorithm that addresses the same problem has been pro-122

posed in [33], although that algorithm is intricate and significantly more challenging123

to implement.124

History matching can give valuable insight into the simulator’s structure and125

the structure of the constraints imposed by the data. For example, by studying the126

correlation patterns of the fitted inputs and outputs one can understand or verify127

how the simulator’s internal processes interact, information that could be useful in128

developing the simulator further or in deriving model discrepancy terms. In the129

case of the simulator studied here, we also learn about epidemiological processes,130

the interaction between epidemiologically meaningful parameters and their plausible131

values, which can then be compared to those found in the literature. Finally, history132

matching can provide large numbers of calibrated input values, which can be used to133

run the simulator into the future, allowing predictions to incorporate the uncertainty134

about the simulator’s input values. In our case, calibrated input values are fed into135

several other research projects, one of which is [14], a complex decision analysis on136
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predicting the costs and effects of different ways of scaling-up access to HIV treatment137

in Uganda.138

This paper is structured as follows: Section 2 describes the individual based simu-139

lator. Section 3 gives an overview of history matching and details the methodological140

additions of this paper: the use of linear regression models as emulators and the141

sampling algorithm. Section 4 shows the fit of the outputs to the observations, the142

reduction of the non-implausible space, and presents key conclusions on the simula-143

tor’s behaviour that were drawn from history matching. It also discusses the benefits144

of linear regression based emulators and the effectiveness of the proposed sampling145

scheme. Section 5 concludes this work.146

2. Simulator and problem description. The simulator we developed was an147

individual-based model, written in NetLogo [31]. It simulates births, deaths, and148

population growth between 1950-2030, the formation and dissolution of sexual part-149

nerships, HIV transmission, disease progression and mortality, the HIV/ART care150

pathway, the effects of ART on HIV mortality and transmission, and the development151

and transmission of drug resistance. Key pathways into and through care are explic-152

itly simulated, to allow the effects of different ways of scaling up ART coverage to be153

accurately captured. In the simulator, people can be tested for HIV through routine,154

intervention, or antenatal HIV testing programs, or after experiencing HIV-related155

morbidity. Upon testing positive, a proportion of people are successfully linked to156

care. Once linked to care, a proportion of people who are eligible start ART, and157

the remainder receive pre-ART care. People can move from pre-ART care to ART158

once they are identified as eligible following a CD4 test, or due to severe morbidity.159

People can drop out of care at any stage. People who drop out of pre-ART care can160

re-enter through the same pathways used by people to enter initially. People who161

drop out of ART, restart ART at a rate determined by input parameters. Changes in162

ART eligibility criteria over time in Uganda are also simulated. In total, 50 simulator163

outputs and acceptable ranges were selected to enable the model, once calibrated, to164

accurately reflect key features of HIV epidemiology and care in Uganda. These consist165

of:166

• Four demographic outputs, which captured key aspects of non-HIV mortality167

and population growth in Uganda.168

• Nine sexual behaviour outputs, which captured patterns of sexual behaviour169

in the country.170

• Five HIV prevalence outputs, to ensure that the model reflects trends in male171

and female HIV prevalence in Uganda over time.172

• The median survival with HIV before the introduction of ART.173

• Eight HIV testing outputs, reflecting trends in rates of HIV testing in HIV174

positive and negative men and women over time.175

• Four pre-ART care coverage and twelve ART coverage outputs, to capture176

the scale-up of HIV care in Uganda in 2003-2014.177

• Five ART retention outputs, to capture ART drop out and restart rates.178

• Three second line ART outputs, to capture the proportion of people on second179

line ART.180

The simulator was designed and parameterised to represent the population of181

Uganda as a whole. To improve simulator run times, however, only 1/2000th of the182

population of Uganda was simulated in each model run. As a result, we were only183

interested in modelling the mean output of the simulator, while the variance was184

deemed to have no real-world meaning in this case.185
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Once calibrated, the model can be used to simulate different ART scale-up strate-186

gies, and to estimate their effects on HIV incidence, mortality, morbidity, and drug187

resistance, and on ART programme and other healthcare costs. A full list of the188

simulator’s inputs and outputs is given in the supplementary material. A detailed189

description of the simulator can be found in [14].190

3. Methods.191

3.1. History matching. History matching assumes the existence of a physical192

process y which is observed through observations z and a computer model (simulator)193

that models y. The goal of history matching is to identify the regions of input space194

corresponding to acceptable matches, and this is performed by ruling out the implau-195

sible regions iteratively in waves. A brief description of history matching is given in196

the following and a more detailed exposition can be found in [26, 2].197

3.1.1. Linking the emulator to observations. Let198

(1) z = y + φ,199

where z is an observation of the physical process y which is done with some measure-200

ment error φ. Also let201

(2) y = g(x∗) + δ,202

where g(x∗) is the simulator’s output when this is evaluated at input x∗. The term203

δ is the model error term, which represents the discrepancy between the simulator’s204

output when this is evaluated at its ‘best’ input x∗ and the physical process y. This205

discrepancy often arises because either some parts of the physical process are not206

completely understood and is not possible to include them in the simulator or they207

have been deliberately left out e.g. for mathematical or computational tractability.208

For more on model discrepancy the reader may consult [11, 8, 5].209

Evaluating g(x) can be time consuming and exploration of the simulator’s input210

space can require a very large number of evaluations. For this reason, a surrogate211

statistical model (emulator) is built for the simulator, which a) can predict g(x) for212

any x of interest very quickly and b) can quantify the uncertainty of its predictions.213

We will return to emulation in section 3.2, but for the moment let us just say that214

the emulator’s predictions are linked to g(x) via215

(3) g(x) = E∗[g(x)] + ζ(x),216

where E∗[g(x)] is the emulator’s prediction for g(x) and ζ(x) is the estimation error,217

whose statistical characteristics can vary with x.218

Combining equations 1, 2 and 3 we can write219

(4) z = E∗[g(x∗)] + ζ(x∗) + δ + φ.220

The above equation refers to a single output simulator and accordingly to a scalar221

observation. In case the simulator has R outputs and there are R observations z222

available, there will be R instances of equation 4, where each quantity will be indexed223

by the output index r.224

3.1.2. The implausibility measure. History matching works by rejecting the225

input space which is found to be implausible. This characterisation is done using the226

implausibility measure which is based on equation 4. For the r-th output we can write227

This manuscript is for review purposes only.



6 I. ANDRIANAKIS ET AL.

the variance of the error terms in equation 4 as Vo,r = Var[φr], Vm,r = Var[δr] and228

Vc,r = Var[ζr(x)]. We can then formulate a natural metric for the distance between229

the observation zr and the emulator’s prediction at x as230

(5) Ir(x) =
|zr − E∗[gr(x)]|

(Vo,r + Vm,r + Vc,r)1/2
.231

This is the basic form of the implausibility measure for one output, which is essentially232

the distance between zr and E∗[gr(x)], standardised by all the uncertainties that might233

be present in the system: the uncertainty due to observation error Vo,r, model error234

Vm,r and the code uncertainty Vc,r, which arises because we cannot evaluate the235

simulator (code) for every x and we substitute it with the emulator.236

Simple distributional assumptions on the form of the various error terms, namely237

a zero mean and a unimodal distribution, allow us to use the powerful and underused238

Pukelsheim’s rule [21] to derive cut-off values for the implausibility. That is, to come239

up with thresholds such that if Ir(x) exceeds them we can be fairly confident that the240

simulator’s output g(x) will not be close to the observations z for this particular value241

of x. Pukelsheim’s 3 sigma rule states that any unimodal continuous distribution242

contains 95% of its probability mass within 3 standard deviations from its mean,243

regardless of its skewness or higher moments. Therefore, for Ir(x) > 3 it will be244

highly unlikely that the simulator’s rth output will match the respective observation245

for that particular x.246

A simple extension of the single output implausibility (Eq. 5) to multiple outputs247

can be found by maximising across all outputs, i.e.248

I(x) = max
r
Ir(x).249

The implausibility measure has several other extensions, some of which can incor-250

porate correlation structures between outputs. For more information, the interested251

reader is referred to the detailed discussion in [26].252

3.1.3. Procedure. History matching iteratively discards parts of the input space253

which are calculated as implausible and therefore highly unlikely to contain matches254

between the simulator’s outputs and the observations. In wave η, the search for ac-255

ceptable matches is limited to the previous wave’s non-implausible space (Xη−1) and256

as a result the non-implausible space shrinks with each iteration (i.e. Xη ⊂ Xη−1).257

An outline of the procedure is given in the following:258

1. Define the initial P -dimensional non-implausible space Xη=0.259

2. Select N training points from the current non-implausible space Xη, using a260

space filling design or some other method that aims to cover Xη.261

3. Evaluate the simulator at each of the N points. If the model is stochastic, run262

the simulator K times at each of the N points. Denoting by ĝ(x) the averaged263

simulator output evaluated at x, form the training data D = {xn, ĝn(x)}Nn=1.264

4. Build and validate an emulator for as many of the simulator’s R outputs as265

is possible. Denote the set of emulated outputs as Rη+1. The emulators of266

wave η + 1 are defined only over Xη, and should be more accurate than the267

emulators of the previous wave, as Xη is smaller than Xη−1.268

5. Evaluate the implausibility measure I(x) over all r ∈ Rη+1 for a large number269

of x ∈ Xη such that Xη is represented with sufficient accuracy. Xη+1 is defined270

as the set of x ∈ Xη for which I(x) is less than a chosen threshold. Xη+1271

should be smaller than Xη.272
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6. Unless one of the following conditions is true, increase wave counter η by 1273

and repeat steps 2-5.274

(a) The emulator’s uncertainty Vc is smaller than the other uncertainties275

(e.g. Vo or Vm), therefore more waves would most likely lead to little276

further reduction of Xη.277

(b) All Xη is implausible (i.e. all Xη+1 is empty).278

(c) A sufficient number of points x that match the observation data have279

been collected for the purposes of subsequent analyses.280

Some comments on the above procedure: in step 2, a reasonable method for281

choosing the N points at which the simulator is to be evaluated is a uniform design282

with some space filling properties. Were we to know the particular type of regression283

that we would fit, perhaps alternative designs could be more appropriate. But in284

the absence of such information, a uniform, space filling design is a good all purpose285

choice that is informative about the whole space. A standard choice for creating286

such a design is via a maximin Latin hyper-cube [16] and can be used when possible.287

This design however, is challenging to create in high dimensional spaces of arbitrary288

shapes, as Xη is likely to be. A simple but effective alternative is the following: start289

with a large number of points distributed uniformly in Xη, e.g. as provided by the290

slice sampler of section 3.3. Choose the first point at random and choose the second291

as the one that is the furthest apart from the first, in the sense of the Euclidean292

distance. For each of the remaining points, calculate the distance to the closest of293

the two first points (minimum distance) and choose as third the one with the largest294

minimum distance to the first two (i.e. maximum minimum distance - maximin).295

Similarly, choose as fourth the point with a maximin distance to the first 3 and so296

on until N points are collected. This is a simple procedure that returns points that297

are sufficiently well-spread and cover the entire input space, assuming that enough298

samples from Xη are available.299

Condition (6a) implies that decreases in the Vc term (code uncertainty), which300

should come with additional waves and improved emulators, are unlikely to contribute301

in shrinking Xη further, as the denominator of the implausibility Ir(x), will be domi-302

nated by Vo and Vm. If condition (6a) occurs, most of the simulator runs should fall303

within the observations and history matching can be stopped. At this point, sampling304

the non-implausible space Xη should provide as many input parameters that match305

the observations as required by the application.306

Condition (6b) is an indication that the simulator cannot match the observations,307

unless the errors Vo, Vm are revised and perhaps increased. Flagging a simulator’s308

possible inability to match a particular calibration data set is a strong point of history309

matching, which is contrasted to more traditional Bayesian calibration approaches310

that will return an input parameter posterior distribution regardless of the quality of311

the match.312

Regarding step 3, outputs that are hard to emulate in the initial waves, perhaps313

due to the large variation of the inputs, can become easier to handle in later waves,314

when the inputs are confined in more interesting input space parts, where the simu-315

lator’s response can be smoother. Additionally, inputs that have a strong effect on316

outputs in the initial waves, can become less important in later waves when their range317

has been reduced, and other, previously unnoticed inputs, can start having a greater318

impact on the simulator’s behaviour, allowing more detailed emulator construction.319

Finally, the non-implausible space can be reduced by several orders of magnitude320

at each iteration, as will be demonstrated in the results section. As a result, even321

a very dense initial design can end up having all its points outside the region of322
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interest within a very small number of waves. Therefore, the strategy of evaluating323

the simulator at each wave for a relatively smaller number of times, allows us to focus324

the computational effort in input space areas that are more likely to produce a match325

to the data.326

3.1.4. Convergence. History matching continues until one of the three condi-327

tions mentioned in the above procedure are satisfied. That is, the history matching328

waves proceed until the emulator uncertainty is smaller than the other uncertainties329

in the implausibility measure, or until all Xη has been characterised as implausible,330

or until enough matches to the observation data have been found for the purposes of331

the application.332

A natural question that can arise at this point is whether history matching will333

successfully identify all input space regions that match the observation data and334

whether some areas might be missed. Technically, it is possible to miss some areas of335

the input space that result in a match, i.e. incorrectly identify them as implausible, if336

the emulators do not represent accurately the uncertainty about the simulator’s be-337

haviour. Additionally, the implausibility can be seen as a statistical test that predicts338

whether a particular input x will match the outputs to the calibration data. Even339

conservative (i.e. large) cut-off values imply that there is a small but nevertheless340

non-zero probability that a good input is left out.341

We can guard against the first condition by ensuring that the emulators are val-342

idated. That is, that the simulator’s outputs fall within the uncertainty intervals343

provided by the emulator. The second condition can be guarded against by choosing344

suitably high implausibility cut-offs, especially in the initial waves, where the uncer-345

tainty about the simulator’s behaviour is large. Finally, the smooth behaviour that346

a biological system simulator should possess offers additional confidence that input347

regions of interest have not been left out.348

3.2. Linear regression emulators. As mentioned in the introduction, history349

matching typically relies on emulators to ease the computational burden of having350

to evaluate a potentially slow simulator a large number of times. Gaussian processes351

(GPs) have been used extensively to build emulators, as they are a flexible statistical352

model with extensive presence in recent literature. In this work however, we are353

using linear regression as the model of choice for building emulators. Even though354

linear regression models tend to be less flexible compared to GPs, they do offer some355

advantages for history matching. First, they are generally easier to fit than GPs,356

which is of assistance in the presence of a large number of simulator outputs, each of357

which requires its own emulator. Second, in complex high dimensional simulators it is358

common that each output is not influenced by every input of the simulator, but there359

tends to be a subset of inputs that affects more the behaviour of a particular output.360

These inputs are generally referred to as active inputs. Active inputs are not always361

known a priori, and different sets of inputs might affect the same output at different362

waves, as the input space shrinks due to history matching. Linear regression models363

offer a simple and established way of choosing the active inputs for each output at364

each wave. Although similar results could be achieved using GPs and Automatic365

Relevance Determination (ARD) [34], doing so with linear regression models can be366

more straightforward. Finally, linear models are considerably easier to implement.367

The fundamental equation for linear regression is368

(6) g(x) =

q∑
i=1

hi(x)βi + ε,369
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where hi(x) are functions of the inputs x, βi are their respective coefficients, and ε is370

residual, uncorrelated noise. The functions hi(·) can take any form (linear, quadratic,371

interaction term between components of x, or other non-linear transformation). The372

term ‘linear’ in the description ‘linear regression model’ therefore refers to the lin-373

ear relationship between the arbitrary functions hi(x) and the coefficients βi. De-374

termining the exact form of the hi(x) functions is essentially fitting the (statisti-375

cal) model and the strategy we follow here is presented in section 3.2.1. Denoting376

h(x) = [h1(x), . . . , hq(x)] and β = [β1, . . . , βq]
T, where [·]T is vector transpose, we377

can write equation 6 as378

(7) g(x) = h(x)β + ε.379

At each wave the simulator is evaluated K times at N points, thus producing the380

training data D = {xn, ĝ(xn)}Nn=1, which we also denote for brevity as D = (X,Y ).381

If H is an N × q matrix whose rows are the vectors h(x1), . . . , h(xN ), the maximum382

likelihood estimate (m.l.e.) of β is given by the well known equation383

β̂ = (HTH)−1HTY.384

Similarly, the model’s prediction at an untested x is simply given by385

E∗[x] = h(x)β̂.386

Finally, the m.l.e. of the uncertainty about a prediction at a new input x is given by387

σ̂2 = (Y TY − Y TH(HTH)−1HTY )/N.388

The σ̂2 term represents the code uncertainty of section 3.1.1. As a more subtle point389

here we could mention that σ̂2 also includes also the uncertainty that arises from390

estimating g(x) from the averages ĝ(x), which in a GP emulator would have been391

modelled by the nugget term [1].392

3.2.1. Fitting strategy. The main tool we use in determining the exact func-393

tionals for the h(x) terms is based on the Bayesian Information Criterion (BIC) [22],394

which in this case is given by395

BIC = N [ln(2πσ̂2) + 1] + (q + 1) ln(N).396

According to this, when presented with two alternative sets of functions {hi(x)}q1i=1397

and {h′i(x)}q2i=1 the one that results in a lower score for the BIC is to be preferred.398

Using this as our main fitting tool we develop the following strategy:399

Zero order : Always include a constant term to account for the overall mean of400

the data. The current regression matrix is set to h(x) = 1.401

First order : Form the regression matrix h′(x) = [h(x), xp] for each of the P402

inputs in the model and compare the resulting BIC to that of the model that only403

includes h(x). The input p that results in the largest drop in the BIC is added in the404

emulator’s active input set and the matrix [h(x), xp] becomes the current regression405

matrix i.e. h(x) ← [h(x), xp]. The procedure is repeated for the rest of the inputs,406

and stops when no additional input decreases the BIC further. The inputs included407

in the emulator in this way form its active input set, which is often much smaller than408

the full input set of the simulator.409
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Higher orders: Here by higher order terms we mean functions hi(x) that include410

either powers of xp greater than 1 or products of xp and their higher order terms. We411

refer to a term as having n-th order when the sum of the powers of the terms involved412

equals n. A second order term for example, can contain interactions xixj or squares413

such as x2i . We follow two strategies for the higher order terms.414

Exhaustive: If the number of all possible combinations of n-order terms is not415

prohibitively large, these terms are included one by one in the current regression416

matrix and the one that results in the biggest drop in the BIC is added. The procedure417

is followed for all the remaining terms.418

Incremental : Suppose that we have a number of n − 1 order terms and we are419

trying to investigate whether any n order terms would help improve the model. We420

create an n-th order term by multiplying one n − 1 order term with a first order421

term that is already included in the model (i.e. active input). We test if adding422

this new term in the model reduces the BIC and include it in the current regression423

matrix if it does or discard it if it does not. We repeat the same procedure for all the424

remaining combinations of n− 1 and first order terms. This procedure allows finding425

high order terms which can improve the model without having to test all possible426

high order combinations of powers of x, which very soon become so numerous that427

their evaluation is prohibitive and can lead to serious overfitting concerns.428

Pruning : Before looking into increasing the order of the terms that are included429

in the model, we check whether some currently included terms could be removed.430

We do this by removing one term at a time from the current model. If this removal431

decreases the BIC, the respective term is removed from the current regression matrix.432

This reduction can help build a more parsimonious model.433

Validation: The testing and addition of a large number of polynomial terms, can434

lead to a model that is overfitted. We guard against this with a leave one out vali-435

dation. Once the final form of the regression matrix has been decided, one training436

data point is left out and the regression coefficients are calculated using the remain-437

ing ones. The prediction errors are then calculated and divided by σ̂2. The result438

is compared to a normal distribution. If the errors do not deviate significantly from439

a normal distribution the emulator is declared valid. If not, we remove the highest440

order terms that are currently included in the model and repeat this until the emu-441

lator validates. If the emulator cannot validate despite this model simplification, this442

particular output is not considered in the current wave. This is an important strength443

of history matching, as outputs that are more difficult to emulate can be left until444

later waves, when they may be much easier to deal with.445

3.3. Sampling algorithm. After a number of history matching waves, the non-446

implausible space is typically a very tiny portion of the initial non-implausible space447

X0 and it can be several orders of magnitude smaller than the minimum enclosing448

hyperrectangle. We define the latter as the smallest hyperrectangle that encloses all449

known non-implausible samples. The minimum enclosing hyperrectangle coincides450

with X0 at wave 0 and cannot increase from one wave to the next. The shape of451

the enclosed non-implausible space is generally unknown and can only be described452

by the collection of x’s which satisfy the implausibility conditions for all emulators453

across all waves. For simplicity we define an indicator function I(x), which takes the454

value 1 if x is non-implausible for all emulators across all waves and 0 otherwise.455

For history matching to advance, it is necessary to have a large enough number456

of samples for which I(x) = 1, such that they cover as much of the non-implausible457

region as possible. Furthermore, we would like these samples to be uniformly dis-458
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tributed over the non-implausible region, as we have no reason to favour some of459

its parts over others and for design reasons mentioned in the comments of section460

3.1.3. In the following we describe a method for drawing uniform samples from such461

spaces in an efficient manner, and is based on an adaptation of the slice sampler to462

the specific requirements of history matching. We stress that the exact shape of the463

non-implausible space cannot be described analytically and can only be known via464

sampling.465

The one dimensional slice sampler [13] works as follows: suppose we have a sample466

xi from a distribution p(x) and we want to draw another sample from the same467

distribution. p(xi) is evaluated and a sample u is uniformly drawn from the interval468

[0, p(xi)]. Left and right sampling limits xl and xr are proposed and are incrementally469

expanded until p(xl) < u and p(xr) < u are satisfied. This is the ‘stepping out’ part470

of the algorithm. In the ‘shrinking’ part of the algorithm, a sample xi+1 is uniformly471

drawn between xl and xr. If p(xi+1) > u then xi+1 is accepted as the next sample. If472

not, xl is set to xi+1 if xi+1 < xi or xr = xi+1 if xi+1 > xi and the process is repeated473

until p(xi+1) > u.474

History matching permits two simplifications to the algorithm sketched above.475

The region of interest for each sample is known and is defined by the limits of the min-476

imum enclosing hyperrectangle. This makes the ‘stepping out’ part of the algorithm477

redundant, as we can always set xl and xr for each dimension (i.e. simulator input)478

to those limits. The second simplification comes from the fact that we want to give479

uniform weights to any point {x : I(x) = 1}. We can therefore set p(x) = const. This480

drops the need for calculating the uniform number u and the condition p(xi+1) > u481

becomes simply I(x) = 1. That is, if the proposed sample is non-implausible it is482

accepted and it is rejected otherwise.483

The case described above refers to one input. Higher dimensions can be accom-484

modated by updating each dimension sequentially. The new sample xi+1 is accepted485

when all dimensions have been updated. The algorithm is outlined in the following486

s0 Assume the existence of one x such that I(x) = 1 and a minimum enclosing487

hyperrectangle with upper and lower limits for each dimension p denoted as488

xp,max and xp,min respectively. xp is the p-th element of x.489

s1 let x′ = x490

s2 for p = 1 : P491

s3 set xl = xp,min, xr = xp,max492

s4 do493

s5 set x′p ∼ Unif[xl, xr]494

s6 if I(x′) = 0495

s7 if x′p < xp, xl = x′p else xr = x′p496

s8 while I(x′) = 0497

s9 x′ is the new non-implausible sample. Store, set x = x′ and go to s2 for drawing498

another sample.499

Evaluation of the membership function I(x′) typically requires calculating the500

implausibility I(x′) using all the emulators of the current and all previous waves:501

sample x′ is non-implausible at wave η if it is non-implausible for that and all the502

waves that precede it. Although it may seem paradoxical that an emulator declaring x503

as non-implausible can be ‘over-ruled’ by another one that says it is not, two examples504

can demonstrate that this can actually happen: a wave 1 emulator will typically have505

larger code uncertainty compared to a wave η emulator as the first is trained over506

the entire input space X0 and the latter over the smaller Xη−1. As a result, a point507

within Xη−1 is more likely to be rejected by the wave η emulator which is more certain508
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about its predictions. At the same time, a point that is outside Xη−1 was rejected by509

definition by the wave 1 or a subsequent wave emulator (it would otherwise belong in510

Xη−1). This point might still be considered as non-implausible by a wave η emulator,511

as this emulator was trained only over the Xη−1 region and its estimates outside this512

are either very uncertain or not reliable. Therefore, determining whether x′ is non-513

implausible normally requires the evaluation of all the emulators that have been built514

so far.515

In our case, this represents a worst case scenario, and fewer evaluations are re-516

quired in practice. In the previous section, we mentioned that an emulator does not517

include all inputs, but only those considered active for that particular output at that518

particular wave. When the slice sampler proposes a move across the p-th dimension,519

evaluation of I(x′) requires invoking only the emulators that include p in their active520

input list. The remaining emulators need not be used as their results remain un-521

changed. Therefore, large computational savings can be achieved if, for every input,522

a list of all emulators that include input p in their active input list is made, and only523

these are evaluated when the slice sampler proposes a move across the p-th dimension.524

Additional savings in computation time can arise if the emulators are ranked525

according to the space they reject. That is, given a set of non-implausible samples526

from the previous wave, we can rank all the emulators of the current wave according527

to the proportion of samples they reject from higher to lower. When the membership528

function I(x) needs to be evaluated, the emulator with the highest rejection rate529

is invoked first. This can lead to substantially fewer emulator evaluations, as the530

ones invoked first have a greater probability of rejecting a sample and once a sample531

is deemed implausible by any single emulator, there is no need to evaluate it any532

further. Finally, invoking the emulators of different waves in reverse order (i.e. last533

wave first), can also help speed up the evaluation of I(x), as the later wave emulators534

should be more precise over the current non-implausible region.535

The proposed method with the computational shortcuts described above is quite536

efficient, requires no tuning (e.g. in contrast to the proposal kernel of the Metropo-537

lis Hastings) and can successfully sample very small spaces. It is nevertheless, an538

MCMC method, and it can still be affected by poor mixing, especially when inputs539

are highly correlated. The quality of the mixing therefore needs to be evaluated after540

the sampling is completed and the chains should be thinned if the mixing is found to541

be poor.542

Additionally, the slice sampler can capture some disconnected regions, but not543

all. As the inputs are updated on a one-by-one basis, the disconnected regions would544

need to have overlapping projections in all but one input dimensions for a jump to545

be possible. Starting the algorithm from a large number of non-implausible samples546

reduces the probability that a disconnected region is not sampled.547

In a typical application of history matching, we have a few thousand non-implausible548

samples at each wave. In this case, a large number of parallel chains can be run, each549

one initialised from a non-implausible sample. The availability of a multi-core ma-550

chine or a multi-node high performance computing cluster can significantly speed up551

the sampling process. The easy parallelisation of this method increases further its552

efficiency and improves the handling of input space features such as disconnected553

regions.554

4. Results. The epidemiological simulator we study has 96 inputs and 50 out-555

puts. A full list of the inputs, along with the initial non-implausible ranges is given556

in the supplementary material, as well as a full list of the simulator outputs with the557
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observation data and their ranges. The range for the latter is assumed to represent558

±2(Vm + Vo)
1/2, that is, 4 standard deviations calculated from the sum of the obser-559

vation and the model error. 3000 training points were chosen for the first four waves560

to help explore the simulator’s behaviour, but these were reduced to 1000 from wave 5561

onwards, as the resulting emulators were still successful in rejecting input space. The562

simulator was run for K = 30 times at each design point to allow the estimation of its563

mean output value. The goal of history matching was to find input parameter values564

that would lead to mean outputs (as opposed to individual runs) that fell within the565

observation ranges. A total of 13 waves were carried out.566

4.1. Output matching. Figure 1 shows 10 simulator outputs which come from567

two different time series: the proportion of HIV positive people on ART and the pro-568

portion of people starting ART with low CD4 counts (< 250 cells/µl). The observation569

ranges are shown using black bars and the simulator’s output at four different waves570

(1, 4, 8 and 14) are shown using darkening shades of blue. The figure demonstrates571

that as the input space shrinks, the simulator’s output converges to the observations.572

Figure 2 shows histograms of simulator outputs for 5 different output pairs across573

waves 1, 8 and 14. The observation ranges are shown with black rectangles. The574

figure shows again the convergence of the simulator outputs towards the observations575

as waves progress. It is interesting to note that in the first wave (1st column of576

Figure 2), outputs 17, 18, 45 and 51 are completely off target. In the final wave, the577

majority of the simulator’s outputs are within the targets, with output 26 only being578

slightly off. Incidentally, this was the output with the poorest matching among all579

50. Histograms of all simulator outputs at wave 14 with their observation ranges are580

given in the supplementary material.581

Apart from convergence to the observations, Figure 2 also reveals correlations582

between the outputs, which are interesting especially in wave 14 (rightmost column).583

The top right panel shows that there is a strong positive correlation (r=0.84) between584

the proportion of HIV negative women and the proportion of HIV positive women who585

have ever been tested in 2011. This reflects two factors. The first is the way that HIV586

testing rates were controlled in the simulator. One input parameter controlled the587

absolute rate of testing in HIV negative women. Another controlled the rate of testing588

in HIV positive women, relative to the rate in HIV negative women. This introduced589

a correlation between the two outputs. The second factor is that HIV negative women590

could become HIV positive through transmission of the virus. Women who were tested591

for HIV when they were still uninfected would remain ‘ever tested’ after becoming592

HIV positive. This introduced a further correlation between the two outputs.593

In Uganda, the numbers of women starting ART each year are higher than the594

numbers of men starting. This is due both to the higher prevalence of HIV in women,595

and due to the fact that they are more likely to be diagnosed (e.g. through an-596

tenatal HIV testing). From 2013, a change in policy meant that all HIV positive597

pregnant women became eligible for treatment, regardless of how far their disease598

had progressed. This increased the numbers of women starting ART. We therefore599

calibrate the simulator to the proportion of people newly starting ART in 2010 who600

were women (output 25) and the increase in the proportion of new starts who were601

women between 2010 and 2014 (output 26). There was a clear negative correlation602

between the two outputs as shown in Figure 2, (r = 0.55). This is because if both603

outputs had high values, a very high proportion of people starting ART in 2014 would604

be women. To achieve this, very few men would be able to start ART in 2013, and the605

large increase in ART coverage between 2011 and 2013 could not be achieved. The606
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proportion of people newly starting ART in 2010 who were women (output 25) was607

also weakly positively correlated with the HIV prevalence in women in 2011 (output608

18) (see Figure 2, r=0.21), and weakly negatively correlated with the HIV prevalence609

in men in 2011 (output 17, see Figure 2, r=-0.21). This reflects the fact that, all else610

being equal, the proportion of people starting ART who are women will be higher611

when HIV prevalence in women is high relative to the prevalence in men.612

Finally, there is a positive correlation between ART coverage in 2013 (output 31)613

and the proportion of people who remain on ART 12 months after first starting it614

(output 51) (see Figure 2, r=0.22). This is because ART coverage will fall as people615

stop taking it. The correlation is only weak however, as the number of people newly616

starting ART has a larger effect on overall coverage than the rate at which people617

drop out. It can therefore be seen that the results of history matching can give useful618

insight into the model’s structure.619

Figures 1, 2 and the histograms on the online material offer evidence that the620

final simulator runs match the observations. We can quantify this evidence using the621

simulator run implausibility [26, 2], which quantifies how close an actual simulator622

run is to the observations. For the r-th output we define this measure as623

(8) IR,r(x) =
|zr − ĝr(x)|

(Vo,r + Vm,r + ŝ2(x)/K)1/2
,624

where, ĝ(x) is an estimate of the simulator’s mean and ŝ2(x) an estimate of its variance625

evaluated at x and calculated using actual simulator runs. The rest of the terms were626

defined in section 3.1. Equation 8 is similar to the implausibility measure defined in627

section 3.1.2. The difference is that this term does not involve any emulators and is628

a metric that quantifies how close the mean of the rth simulator’s output is to the629

observations for a particular x. Also, equation 8 is not part of the history matching630

algorithm, but it is just a convenient way of evaluating the closeness of the simulator’s631

outputs to the observation data.632

The simulator was evaluated 30 times at 22000 different non-implausible inputs at633

wave 14. The measure in equation 8 was evaluated for each of the 50 simulator outputs634

and each of the 22000 runs. Figure 3 shows the percentage of those runs that had635

IR,r(x) < 2. This can be interpreted as runs that would fall within the observation636

ranges roughly 95% of the time if the distribution of the individual simulator runs637

(repetitions) for a fixed x followed a normal distribution. The results show that for638

half of the outputs, more than 95% of the 22000 runs had IR,r(x) < 2. This percentage639

was higher than 80% for 44 out of the 50 outputs. For 6 outputs the scores were as640

follows: 14: 49%, 15: 43%, 16: 43%, 17: 54%, 18: 59% and 26: 69%. This means641

that although history matching indicated that all these outputs would fall within or642

just outside the observation ranges, this was true only between 40-60% of the time for643

five outputs and around 70% for the sixth. These outputs were hard to emulate using644

linear models, in the sense that the prediction uncertainty Vc would not drop beyond645

a certain magnitude, which was comparable to that of the other two error terms Vm646

and Vo. The difficulty in emulating these particular outputs is not surprising, as the647

majority of these outputs represented male and female HIV prevalences at different648

time points, which are outputs that depend on a large number of inputs and their649

interactions. Output 26 was highly stochastic (i.e. the samples of individual simulator650

runs had a large variance), which implies that more simulator evaluations per design651

point would be needed to increase the accuracy in the estimation of the means, and652

the subsequent emulation.653
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Not being able to emulate an output is not fatal for history matching. It simply654

means that fewer simulator runs will be close to the observations than the emulators655

predicted. If the emulators have been set up and validated correctly, an inaccurate656

emulator should still not miss the good runs if its uncertainty properly covers the657

training and validation data. In other words, an emulator that is very uncertain will658

be unable to rule out regions of input space that actually contain bad matches, but659

should not incorrectly rule out regions containing matches that are acceptable.660

4.2. Input space shrinkage. In this section we examine the shrinking of the in-661

put space during the course of waves and present the main epidemiological conclusions662

that were extracted. The minimum enclosing hyperrectangle at wave 13 was 10−33663

times smaller than the initial non implausible space X0. A very small number, which664

however arises from the large number of inputs and the multiple constraints imposed665

by the simulator’s outputs. Even within this hyperrectangle however, a tiny propor-666

tion of points was non-implausible. The calculated volume of the non-implausible667

space was ≈ 10−45 times smaller than X0. That is only 1 point in 1012 (one in a tril-668

lion) is non-implausible if selected at random between the narrowest limits suggested669

by the last wave’s non-implausible samples. The ratio of the volumes of the final non-670

implausible space and X0 are shown in Table 1. Note that the non-implausible region671

at wave 13 is substantially smaller than those found in previous history matching672

applications in the literature.673

The range of 5 out of 96 inputs was reduced to less than 1% of the original,674

while for around 25 it decreased to less than 50%. For approximately 50 inputs, the675

range remained similar to the original. These inputs either do not substantially af-676

fect the history matched outputs of the simulator, or there are combinations of these677

inputs with others that are implausible but cannot be visualised in the 1 dimensional678

projection of the non-implausible space that these histograms represent. The supple-679

mentary material includes histograms of the non-implausible samples at wave 13 for680

all 96 inputs, which demonstrate the overall input space reduction.681

We now focus our attention on a small set of inputs, track their shrinkage through682

the waves and draw some conclusions based on their correlation patterns. The lower683

triangle of the lattice in Figure 4 shows scatter plots of non-implausible samples for684

pairs of inputs across 4 waves. The light blue colour is the initial non-implausible685

region and waves 1,4,8 and 13 are shown in darkening shades of blue. The baseline686

transmission [55] range is reduced to a third as early as wave 2 and by wave 5 it is687

down to 10% of the original range. Similar conclusions can be drawn about the other688

inputs. The upper triangle of the lattice shows 2 dimensional histograms of wave 13689

non-implausible points as a function of pairs of inputs. The colour scale represents690

the log10 probability of finding a non-implausible sample if we fix the values of the691

inputs that lie across the axes to a particular value, and choose the rest of the inputs692

randomly. For example, the red region in the panel that corresponds to inputs 75693

and 55 means that fixing these inputs to those values and varying the others freely,694

gives us a 10−43 probability of finding a non-implausible sample. The grey area of695

these plots indicates that for those values of the respective inputs, no samples that696

match the simulator’s output to the observations were found. All the axes in Figure697

4, correspond to the initial range of the inputs, as is shown in the supplementary698

material.699

Figure 5 is a zoomed-in version of some of the histograms shown in Figure 4 to700

allow for a more detailed analysis of the correlation patterns. The left panel of Figure701

5 shows a histogram of non-implausible samples for the baseline HIV transmission702
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probability (Input 55) and the rate at which men in one of the two sexual behaviour703

risk groups form new partnerships during a particular time period (Input 75). The704

overall range of input 55 is constrained to between 0.0005 and 0.0027, despite the705

broad initial plausible range of 0-1. This final range is consistent with empirical data706

from Uganda, which estimated the per-sex-act transmission probability to be 0.0011707

(95% CI 0.00080-0.0015) [30]. The plausible range for the contact rate (input 75) in708

the final wave was constrained to be between 0 and 0.3, a large reduction from its709

original plausible range of 0-1. There is a clear negative correlation between the two710

inputs (r = −0.36), demonstrating that fits are unlikely to be found when the rate711

at which new partnerships form (and therefore the amount of sex occurring in the712

model) and the per-sex-act transmission probability are both high or both low.713

The middle panel of Figure 5 shows the final wave distribution of the baseline714

transmission probability (Input 55) against the relative increase in transmission prob-715

ability for people with low CD4 counts (advanced infection) (Input 58). Unlike the716

baseline transmission probability, the overall range of the latter input parameter did717

not change during calibration, indicating that model fits can be found throughout the718

initial plausible range. The figure shows that there is a negative correlation between719

the two input parameters. This occurred as, all else being equal, increasing the value720

of one parameter and simultaneously decreasing the value of the other will result in721

similar overall levels of HIV transmission in the model.722

Finally, the right panel of the same figure shows the final wave distribution of the723

proportion of (low risk) men who were able to be in more than one partnership at724

the same time (Input 70), against the associated concurrency input parameter (Input725

66). The purpose of the concurrency parameter was to influence how likely it was that726

these men who could form additional partnerships would actually do so. The graph727

shows that model fits were unlikely to be found when both the proportion of men728

who could form additional partnerships was low, and when it was not very likely that729

men who could form additional partnerships would do so. This is because the model730

was calibrated to sexual behaviour data from Uganda that indicates that around 9%731

of men aged 15-49 have more than 1 ongoing partnership at any point in time [15].732

4.3. The case for linear models. Gaussian processes have been extensively733

used for building computer model emulators in the context of history matching and734

beyond. Gaussian processes are very flexible statistical models, but at the same735

time more complex and less universal and understood than the ubiquitous linear736

regression, that we employ in this work. We make here the case that linear models737

can be useful in history matching and they can go a long way into calibrating high738

dimensional simulators. Their simplicity and widespread usage can also have some739

advantages over GPs. Moreover there is no binary decision that has to be made (i.e.740

use linear regression or GPs) as both statistical models can be used in the same history741

match. For example, linear regression can be used at the initial waves, if it is found742

to efficiently reject large portions of the input space, and GP based emulators can be743

introduced at later stages if linear regression fails to provide emulators of sufficient744

accuracy to reduce space further.745

As an example, we show results from two emulators built for output 15 at wave746

7 using 1000 training points. The first is a linear regression emulator containing 33747

terms up to third order. The second is a GP based emulator, with a 3rd order polyno-748

mial mean function and the Matérn correlation function. The GP correlation function749

parameters (correlation lengths) were estimated from the data by maximising their750

likelihood. The GP’s mean function parameters (regression coefficients) were inte-751
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grated out. For more details on this type of GP emulators, the reader can consult752

[2]. Estimating the correlation lengths on the GP emulator took a little more than an753

hour while building the linear regression model required a few seconds. The compu-754

tational load in the estimation of the correlation lengths was due to the optimisation755

algorithm that looked for a mode in a 96-dimensional likelihood function (i.e. one756

dimension per simulator input). Moreover, it is possible that the optimisation al-757

gorithm found a suboptimal mode as the likelihood is almost certainly multimodal.758

Finding a good mode among several would increase the computational load as a more759

detailed exploration of the likelihood surface would be required.760

Both the linear regression and the GP based emulators were then used to predict761

the simulator’s output for the wave 8 runs. Histograms of the standardised errors762

(i.e. the difference of the simulator’s output with the emulator’s prediction, divided763

by the emulator’s standard deviation for the prediction, [4]) are given in Figure 6.764

The standardised errors take values mostly in the region [−2, 2], an indication that765

both emulators are valid. The GP based emulator however, resulted in larger code un-766

certainty (the Vc,r term in Equation 5) when evaluated at the wave 8 non-implausible767

samples. As a result, the calculated implausibility was smaller and it rejected 7% of768

the wave 8 non-implausible samples compared to 15% for the linear regression based769

emulator. We should also note here that calculating the implausibility for ≈ 20000770

wave 8 non-implausible samples took a few milliseconds for the linear regression em-771

ulator and around 15 seconds for the GP based emulator. This is because the GP772

based emulator needs to create a N ×Np correlation matrix, where N = 1000 are the773

training and Np = 20000 were the testing points.774

As a second example, we used GPs to model the residual between the linear775

model’s predictions and the simulator’s outputs in wave 13. That is, equation 6 is776

now changed to777

g(x) =

q∑
i=1

hi(x)βi + η(x)778

where η(x) is a zero mean Gaussian process, instead of the uncorrelated noise error779

term ε of equation 6. The rationale here is that some correlation must still exist in780

the linear regression model’s residual ε and capturing this with a GP should reduce781

the overall uncertainty. Indeed, modelling the residual with a GP resulted in a 22%782

further shrinkage of the non-implausible space compared to using the linear regression783

models alone. This example shows that the two models can be combined within history784

matching to increase the rejection rate at the expense of the additional computational785

cost of training a GP.786

Gaussian processes are clearly more flexible models and will outperform linear787

regression in low dimensional regression problems. In high dimensions however, it788

is very difficult to have a sufficient number of training points such that the GP can789

accurately describe the simulator’s response surface. As a result, the performance790

gap between the GPs and the less flexible linear regression becomes smaller. This791

theoretical argument can support to some extend the usefulness of linear regression792

based emulators in history matching of large models. Furthermore, from our experi-793

ence, a major stumbling block in the adoption of history matching by practitioners794

has been the requirement to understand and implement a GP-based regression model.795

Demonstrating that history matching can be carried out using a much simpler and796

better understood model such as linear regression can increase its adoption as a useful797

tool to analyse and calibrate complex models.798
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4.4. The sampling algorithm. In this section we evaluate the performance799

of the sampling algorithm and compare it with a simple Metropolis-Hastings (MH)800

sampling scheme. The MH algorithm uses a transition kernel that is a zero-mean801

multivariate normal with a covariance matrix estimated from a 1000 non-implausible802

samples of the current wave, scaled to result in an acceptance rate of approximately803

25%. The target distribution was uniform defined over all non-implausible space. Per804

sample, the slice sampler requires roughly P = 96 times more emulator evaluations805

because the inputs are updated sequentially. To allow for a fair comparison the806

Markov chains in the MH algorithm are run longer, such that the emulator evaluations807

between the two algorithms are roughly equal. The results are evaluated using the808

effective sample size (ESS) for each chain and input, which was calculated with the809

effectiveSize function from the R package CODA [20]. This function provides810

an estimate of the number of samples that can be considered uncorrelated from a811

Markov chain. Both algorithms were compared at waves 4, 7, 11 and 13 using 1000812

non-implausible samples as starting points, i.e. 1000 chains were run for each case.813

The ESS scores were averaged across the 1000 chains for each input.814

Figure 7 shows the averaged ESS for the MH and the slice sampling algorithms815

for waves 4, 7, 11 and 13. The effective sample sizes are sorted in increasing order to816

facilitate the comparison. The figure demonstrates that, in general, the slice sampler817

results in samples that are less correlated for the same amount of computational effort,818

often by a very large margin. The only exceptions are inputs 55, 58 and 1 in wave819

13 and input 55 in wave 11. The lowest ESS score in wave 13 for the slice sampler820

was 5 and for the Metropolis-Hastings was 15. For wave 11, the worst components in821

both cases had an ESS of around 10. The low ESS scores of the slice sampler were822

most likely due to the fact that these particular inputs were very correlated and the823

correlation information, which was provided to the MH algorithm, was not available824

to the slice sampler. Providing the slice sampler with this information or using an825

extension such as [18], could help improve mixing. For the inputs that were affected826

the most, we have tried to mitigate the low ESS scores by drawing large numbers of827

samples and visually verifying that the sampled inputs spanned the entire range of828

non-implausible samples. Overall, the proposed sampling algorithm gave reasonably829

good results with the additional benefit of requiring no tuning or manual intervention,830

while being trivial to implement once the implausibility function is coded up.831

5. Conclusion. History matching is a (pre-)calibration method capable of find-832

ing parts of a simulator’s input space that are likely to match the observations. We833

have applied this method to a simulator that is larger than any other that history834

matching has been applied to before. This scaling up was facilitated by the use of835

linear regression models as emulators and a sampling algorithm that was capable of836

sampling high dimensional and very small non-implausible spaces.837

The calibrated simulator was an HIV stochastic individual based model with 96838

inputs and 50 outputs. The simulator’s input space was reduced by a factor of 10−45839

after 13 waves of history matching. In the final wave, the majority of outputs had a840

more than a 90% chance of falling within the observation ranges when the simulator841

was run at inputs suggested by history matching. Despite the high success for each842

individual output, getting a simulator run that would match all the observations was843

relatively rare (around 5 in a 1000). However, considering the size of the problem and844

the number of outputs, this was still an acceptance proportion that was considered845

useful for the epidemiologists using the simulator. The simulator could be evaluated846

approximately 20000 times per day on an high performance computing cluster, and847
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despite the low overall acceptance rate it was possible to obtain a few hundred runs848

that simultaneously matched all the observations in reasonable time.849

These runs are fed into a number of other research projects, such as [14], that make850

predictions about the trajectory of HIV in the next 10-15 years, taking into account the851

uncertainty that is introduced by the simulator’s unknown input parameter values.852

In the past, when making predictions using simulators of this scale, a single input853

parameter set that would fit the historical data was used, typically found by hand854

using prior knowledge from the model developer. This approach did not explicitly855

acknowledge the fact that the simulator’s input parameters are uncertain quantities -856

an uncertainty that was left out of any predictions. The methodology presented here857

comes to address this point. History matching provided us with a few hundred input858

parameter values, from different parts of the input space, that matched the calibration859

data, which were then used to run the simulator up to 2030 under 27 different ART860

scale-up interventions. It therefore offered a method of quantifying the effect of the861

uncertainty about the input parameter values, on the predicted outcome of the ART862

interventions.863

Apart from the large numbers of input values that fit the observations, history864

matching also provided insights into the simulator’s structure. The active input se-865

lection methodology revealed the inputs that influenced an output the most, and866

reductions in the non-implausible space showed which inputs were affected by the867

constraints imposed by the observations. Both of these features are very useful in868

analysing simulators of this scale. The correlation patterns that emerged between in-869

puts and between outputs highlighted the existence of various structures and processes870

in the simulator. This information can be used to understand the internal workings of871

a simulator, or indeed, verify that everything works as intended, knowledge that could872

lead to the discovery of simulator coding errors, suggest ways in which the simulator873

can be improved, or even help derive appropriate model discrepancy terms in case the874

simulator is not capable of matching the observations.875

Methodologically, a key feature of this work was the use of linear regression models876

for building emulators, instead of the GPs that were typically being used in previous877

history matching applications. Even though linear regression models are less flexible878

than GPs, they are generally easier to fit, interpret and implement. Despite their879

simplicity, they did cover a lot of ground towards calibrating a very complex simulator.880

This was also facilitated by the history matching philosophy, which does not require881

an emulator to describe the simulator everywhere in great precision: as long as the882

simulator runs fall within the uncertainty bounds of the emulator (i.e. the code883

uncertainty Vc is correctly specified), history matching can proceed. See [27] for884

further discussions on the topic.885

Using a more advanced statistical model for building an emulator can generally886

reduce the code uncertainty. It is possible however, especially in the first waves of887

a history match, that the simulator’s outputs g(x) are so far from the observations888

z, such that a moderate reduction in the code uncertainty Vc (Equation 5) will not889

have an appreciable effect in reducing the input space further. In later waves, when890

E∗[g(x)] and z converge, the effort of building a more sophisticated emulator with891

smaller Vc could pay dividends. We tried this at the last wave of our history match892

and indeed the GP based emulator resulted in a further shrinkage of the input space.893

Hence, we do not try to argue against the use of GPs in building emulators for history894

matching, but note that linear regression models offer an alternative that is faster and895

more straightforward to implement.896

The availability of a large number of non-implausible samples is critical in the897
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application of history matching. Sampling the non-implausible space can be challeng-898

ing as this is high dimensional and can be quite small. A simple MCMC algorithm899

that tackles this problem was proposed in this work, that was simple to implement,900

requiring virtually no tuning and was successful in drawing uniform samples from901

very small non-implausible spaces. The correlation between some inputs meant that902

the mixing was slightly poor for a small number of inputs, something that could be903

addressed using block updating.904

In conclusion, the effectiveness and simplicity of the history matching method905

presented here shows that it is a useful tool for the calibration of computationally906

expensive, high dimensional individual based models.907
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Wave 1 1.8 · 10−05 Wave 8 5.2 · 10−30

Wave 2 2.6 · 10−08 Wave 9 4.5 · 10−33

Wave 3 1.6 · 10−09 Wave 10 1.2 · 10−35

Wave 4 1.7 · 10−10 Wave 11 2.9 · 10−37

Wave 5 5.2 · 10−14 Wave 12 2.9 · 10−41

Wave 6 7.7 · 10−20 Wave 13 2.4 · 10−45

Wave 7 1.1 · 10−24

Table 1
Ratio of the non-implausible space volume at each wave compared to the initial non-implausible

space X0. This table also expresses the probability of finding a non-implausible sample at wave n if
we randomly draw samples from X0.
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Fig. 1. 10 simulator outputs from two different time series at waves 1, 4, 8 and 14. The
observations ranges for the 10 outputs are shown using the black bars. The simulator’s output at
the 4 different waves is shown using darkening shades of blue.
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Fig. 2. Histograms of simulator outputs for 5 different output pairs across waves 1, 8 and 14.
The calibration targets are shown with black rectangles. Note the different scale in some panels of
the rightmost column.
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Fig. 3. Percentage of 20000 wave 14 simulator runs with a simulator run implausibility that is
less than 2, which can roughly be interpreted as the simulator’s output estimated mean falling within
the observation interval.
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Fig. 4. Summary of the input space shrinking across waves: The lower triangle of the above
lattice shows pair plots of non-implausible samples for 5 different inputs at waves 1, 4, 8 and 13, in
darkening shades of blue. The upper triangle shows an estimate of the log10 probability of finding
a non-implausible sample after fixing the respective input pairs to a particular value. The gray area
indicates that it is virtually impossible to obtain a match for these values of the input pairs. The
diagonal shows 1-D histograms of the wave 13 non-implausible samples for the respective inputs. All
axes range between the initial minimum and maximum value of each input.
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Fig. 6. Standardised errors for the GP and linear regression based emulators for predictions
of the wave 8 simulator runs. Most errors lie within the [-2,2] interval. The GP emulator’s errors
have a slight negative bias, and the linear regression emulator errors are slightly skewed towards
positive values.
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Fig. 7. Averaged effective sample sizes for the slice sampler (blue) and the Metropolis-Hastings
(red) algorithms at 4 different waves. The effective sample sizes were averaged across 1000 different
chains. The slice sampler chains contained 1000 samples each and the Metropolis Hastings contained
the number of samples required to match the computational effort of the slice sampler in terms of
emulator evaluations. Each point in the 4 panels above corresponds to one of the 96 inputs, with their
indices sorted to facilitate comparison. The slice sampler resulted in chains with less correlation, as
indicated by the higher effective sample size, while in some cases the chains were nearly uncorrelated
(effective sample size of ∼ 1000 in a 1000 sample chain). In the case of highly correlated inputs in
later waves, the performance of the two algorithms was similar, although the Metropolis-Hastings
algorithm was aware of the correlation structure but the slice sampler was not.
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