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Abstract

Blockages are a major problem for Water and Sewerage Companies (WaSCs),

impacting on customers and the environment through flooding and pollution inci-

dents. Proactive maintenance aims to reduce this impact by identifying issues and

clearing them before there is any impact. Given the large size of the networks,

accurate predictions of blockage likelihood are required for this maintenance to

be cost-effective. Data mining has the potential to provide these predictions by

finding patterns in large datasets. This work presents the novel application of

these techniques to the datasets on incidents and assets covering the whole re-

gion of a WaSC. The work also contributes an investigation of an input feature

formed from a sewer’s blockage history and application to real-world data of the

techniques decision trees and ensembles methods.

Initially, decision trees were used to produce models at a sewer and area

level. General models for the network and for the different causes of blockages

were developed. The models are of reasonable accuracy, give a blockage likeli-

hood output and understanding of the important variables relating to blockages.

The sewer level models had improved area under the ROC curve (AUC) and gave

greater spatial resolution than the area level models. Therefore these were de-

veloped using both ensemble techniques and experiments which evaluated the

effect of an input feature based on a sewer’s blockage history. The historical in-

put feature improved performance, particularly for those sewers most likely to be

proactively maintained. Finally, the best performing models were validated using

a further dataset of incidents and survey results. The model outputs combined

with the historical blockage rate showed good performance for both blockages

and flooding incidents on the unseen dataset.

Overall, decision trees gave accurate models on this real-world data and in-

formed which factors influence blockages. Good accuracy was achieved using

models including the sewer characteristics, property information and blockage
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history. These outputs, validated using the further dataset of incidents, demon-

strate the performance of these data mining techniques on real-world data.
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Chapter 1

Introduction

This thesis describes the investigation of blockages on the wastewater network

and the development of models to predict their likelihood using data mining. The

following sections give a background to the problem, the aims and objectives of

the work, the publications and contributions from the thesis, and a description of

the organisation of the thesis.

1.1 Background

Blockages on the wastewater network occur as a result of the build-up of material

which restricts flow. This presents a major cause of flooding and pollution inci-

dents [1] and a large impact on Water and Sewerage Companies (WaSCs). The

impacts relate to:

• Direct impact on customers and the environment

• Cost

• Customer service

Flooding and pollution incidents impact on customers and the environment, flood-

ing properties and polluting watercourses. Blockages, along with collapses, are

one of the causes of these incidents [1]. WaSCs are also measured on service-

ability. When blockages occur the level of service is no longer being provided by

that part of the network, affecting this serviceability measure. While individual

blockages are relatively cheap to clear, the high frequency of blockages mean
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the overall cost is significant. The Service Incentive Mechanism (SIM) [2] score

is based on levels of customer service and is also impacted by blockages [3].

Customers contacting the company regarding blockages and their clearance will

adversely affect the SIM score of each company. The problem has been com-

pounded by the Private Sewer Transfer (PST) sewers which have recently been

adopted by WaSCs in the UK [4]. WaSCs are now responsible for previously

private sewers which, for example, are shared sewers from multiple properties.

This has caused a large increase in the size of the network. The sewers adopted

are those of small diameter close to people’s homes, which are believed to rep-

resent the highest likelihood of blockages. Given these effects, WaSCs want to

understand the likelihood of blockages and the factors influencing this likelihood.

There are a range of causes of blockages, with different mechanisms and

different explanatory factors likely to affect their occurrence. Blockages are gen-

erally classified into two groups [5]:

• Acute

• Chronic

Acute blockages occur as a result of items like nappies, wipes or rags suddenly

blocking the sewer. Chronic blockages occur as result of the gradual build-up of

material. For example, silt or fat, oil and grease (FOG) accumulate and reduce

the capacity of the sewer until it is insufficient to transport the flow through the

sewer. The response of WaSCs has included:

• Public Information

• Proactive Maintenance

Blockages such as those caused by nappies, wipes and rags, and FOG are influ-

enced by behaviour. Public information strategies engage with customers directly

following an incident or use campaigns to target specific geographical areas. This

aims to change behaviour, reducing the likelihood of this material entering the

sewer. Proactive maintenance aims to find blockages as they are building up and
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clear them before there is any impact. Given the size of wastewater networks it

would be infeasible to proactively survey the whole network. There is a need to

identify a small set of sewers which are highly likely to block and target those for

maintenance. Hence the need to predict the likelihood of blockage as accurately

as possible.

The situation on wastewater networks is therefore a very large network of

assets, with a large history of blockages. Data mining techniques allow patterns

to be found in data, for example in the occurrence of blockages. This predicts

the likelihood of a blockage to prioritise maintenance. This work aims to use real-

world data from DCWW to predict the likelihood of a blockage and apply this to

the prioritisation of proactive maintenance. The use of this real-world data allows

validation and evaluation of these data mining techniques.

The approach taken has been to develop models of blockage likelihood using

DCWW’s real-world data. Models at both a sewer and area level have been

developed using decision trees. The models at a sewer level were also developed

using ensemble techniques and the investigation of the use of a historical input

feature. The final output from the models has been validated using existing survey

results and further incident data.

1.2 Research Questions, Aims and Objectives

The work described here was completed as part of a Knowledge Transfer Part-

nership between Dŵr Cymru Welsh Water (DCWW) and the University of Exeter.

The aim of the work was to apply data mining techniques to calculate a measure

of the likelihood of blockages. This likelihood could then be used to prioritise

proactive maintenance and reduce the number of blockages occurring.

Research Questions

• How well do existing data mining techniques perform on the prediction of

the likelihood of blockages using real-world data from a wastewater network
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• Which data mining techniques perform well on the prediction of the likeli-

hood of blockages on the wastewater network

• Which are the most important factors for describing the likelihood of block-

ages on the wastewater network

Aims

• To develop new, data mining models for predicting the likelihood of block-

ages

Objectives

• Accurately predict the likelihood of blockages, ideally for a set of high likeli-

hood sewers

• Understand the important explanatory factors describing the likelihood of

blockages

• Validate the performance of data mining techniques on real-world data

1.3 Publications arising from this thesis

The following publications have arisen as a result of this thesis:

• Bailey J, Keedwell E, Djordjevic S, Kapelan Z, Burton C, Harris E. Predictive

risk modelling of real-world wastewater network incidents, Computing and

Control in the Water Industry, Leicester, UK, 2nd – 4th September 2015.

Procedia Engineering. Volume 119, 2015, Pages 1288 – 1298.

• Bailey J, Harris E, Keedwell E, Djordjevic S, Kapelan Z. Developing deci-

sion tree models to create a predictive blockage likelihood model for real-

world wastewater networks, International Conference on Hydroinformatics,

Incheon, South Korea, 21st – 26th August 2016. Procedia Engineering.

Volume 154, 2016, Pages 1209 – 1216.
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1.4 Contributions

The main contributions from this thesis are:

• The application of data mining techniques to the datasets on incidents and

assets covering the whole region of a UK Water and Sewerage Company.

• The validation of data mining techniques on real-world data.

• The investigation of an input feature formed from a sewer’s blockage history

and its effect on model performance.

• Further information on the important explanatory factors describing block-

ages.

1.5 Organisation of the thesis

The remaining chapters of this thesis are organised as follows:

• Chapter 2 contains a review of the literature covering the techniques used

to predict the likelihood of blockage, as well as which variables have been

investigated and which have been found to be significant.

• Chapter 3 - describes the preparation of data prior to modelling and the

development of sewer and area based models.

• Chapter 4 - describes the development of the sewer level models using

ensemble techniques and the evaluation of the inclusion of a historical input

feature.

• Chapter 5 - gives a summary of the data used and models developed in

each stage, the conclusions from this thesis and recommendations for future

work.
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Chapter 2

Literature review

2.1 Introduction

This review covers the modelling of blockage incidents on the wastewater network

of WaSCs. The aim is to investigate both previous work in modelling blockages

and the selected explanatory factors used in the models. Existing modelling work

includes statistical analyses and a number of different modelling techniques, both

of which are reviewed. The review of explanatory variables aims to inform the

choice of variables to include in the models to be built, as well as understanding

which variables have already been found to be important.

The review is organised to initially cover the analysis and modelling under-

taken, before reviewing which variables have been investigated and which found

to be important, and finally giving examples of the benefits of ensemble tech-

niques as a method.

2.2 Modelling of Blockages

In the literature, the modelling of blockages is relatively limited. This review

considers studies which have used Bayesian modelling, factorial based models,

case-based reasoning and Evolutionary Polynomial Regression (EPR) to predict

the number of blockages suffered by sewers, or groups of sewers.
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2.2.1 Evolutionary Polynomial Regression

Evolutionary Polynomial Regression (EPR) [6] is a hybrid regression analysis and

genetic algorithm technique which aims to produce models that include the im-

portant factors. The genetic algorithm seeks to optimise the variables which are

included in the models. The regression analysis then determines the coefficients

and exponents of each of the factors. This provides information on the impor-

tant variables for modelling and provides an output which predicts the number of

blockages.

EPR was applied to two catchments of two different UK WaSCs [1]. EPR was

used with five years of incident data to develop models for each of the catchments,

predicting the number of blockages at an area level. For each catchment, a model

was developed and tested, before being validated on the other catchment. The

models performed well in predicting the number of blockages in their own catch-

ments, with coefficients of determination (CoD) of 0.90 and 0.78. However, when

the best performing model was used to predict for the other catchment, the CoD

dropped to 0.63. As the authors state, this change is most likely due to differences

in data recording practices between the two companies. While the technique pro-

duces accurate models on the initial data, there is no validation of performance

on data from subsequent years.

Savic [7] used data from two UK sewer systems to develop models for block-

ages using EPR. The dataset represented areas of network, with five years of in-

cident data. The approach derived equations which included the most important

variables, with coefficients of determination of 0.86 and 0.76 for the two systems.

Savic et al. [8] also applied the technique to a dataset of sewer level information,

with 10 years of incident data. The coefficient of determination for the developed

model was 0.825, showing good predictive performance. Ugarelli et al. [9] ap-

plied EPR to a dataset from Oslo. The work separated the sewers into cohorts,

completing a statistical analysis on the data before developing models for each

of the cohorts. The coefficient of determination for these models ranged from

around 0.9 to 1, with the exclusion of a cohort which showed a low presence in
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the dataset.

These studies demonstrate the benefits of EPR and the accuracy of the mod-

els built using it. The technique allows parsimonious models to be built, selecting

only the important factors. The most important factors can also be understood

from inspection of the derived relationships. However, there is little evidence of

how well the technique works on unseen data. There is large variability in the

location of blockages and so models must predict well on unseen data, for ex-

ample from further years of incident data. None of the studies reviewed used a

validation dataset which would have demonstrated performance on unseen data.

2.2.2 Bayesian Modelling

Fenner et al. [10] used Bayesian modelling to develop sewer level models to

extend area level models. At an area level, hotspots of blockage were found and

predictions of the number of blockages made using statistical analysis. For the

hotspots, sewer level models were then developed. Bayesian modelling was used

with the characteristics of the sewers and the historical incidents. This allowed

the area level output to be adjusted into a sewer level output.

The area level approach may be of use in identifying hotspots of blockages.

By highlighting areas, it may be easier for WaSCs to initially evaluate risk in the

network. An area output may also allow consideration of different options for inter-

vention, for example a public information campaign. The probability of failure for

each combination of sewer characteristics allows the importance of each of the

factors to be understood. The sewer level output then provides the blockage like-

lihood which can be used to prioritise proactive maintenance at a more detailed

level.

The work by Fenner et al. provides both an area and a sewer level output.

However, the Bayesian models are based on only a few factors. Given the large

variation in the occurrence of blockages, ideally as many factors as possible could

be included. This would allow more relationships to be derived, which may help

explain more of the variation. However, in some methods, such as decision trees,
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the inclusion of more variables can interfere with the derivation of relationships.

Here the benefits of techniques such as EPR, which allow more variables to be

included but select the most important, are demonstrated. Again there is no

evidence of how well the outputs perform on subsequent years of data.

2.2.3 Case Based Reasoning

Fenner et al. [11] applied a case-based reasoning approach to the modelling of

maintenance interventions. This approach develops a set of fully defined cases,

including blockage history, maintenance regime and sewer characteristics. New

sewers can then be matched to the most similar case, using this case to define the

maintenance strategy. For the defined set of cases, each is characterised using

the physical attributes of the sewer and the maintenance history, giving indices

for condition, performance and management. For new sewers, methods are used

to find the most similar sewer within the developed cases. The management

strategy of the match is then applied to the new sewer. Expert knowledge can also

be incorporated into the approach. A weighting can be given to each attribute that

changes the importance of each attribute when a matching case is found. The

approach was applied to a case study using data from 20 drainage zones from

a water company’s region. The cases and indices were developed for this case

study area. A set of twenty validation sewers was used to test the performance in

finding similar sewers from the cases and the performance in selecting the correct

maintenance strategy for that sewer.

Case-based reasoning has advantages in that it gives WaSCs an understand-

ing of the basis for decisions. By reviewing the defined set of cases and the

weighting applied to the similarity calculation, it is possible to understand how the

method works to add new cases. This will build WaSCs’ confidence in the ap-

proach. A maintenance strategy can also easily be applied to a newly built sewer

without the need for historical data to build models from. However, the approach

does not provide any output of the likelihood of a blockage or the number of

blockages. The approach also does not use any analysis to define which factors
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are important in influencing sewer similarity. This could lead to the sub-optimal

matching of sewers to each other.

2.2.4 Factorial Modelling

A factorial model was developed as part of the CARE-S project [5] and used to

develop models of blockage risk. Ugarelli et al. [12] applied the same technique

to a dataset analysed with EPR.

For each sewer a total risk factor is defined based on the characteristics of

the sewers. Using a statistical analysis a set of important variables was selected.

For each variable, different categories within this variable were defined. For ex-

ample, for the variable sewer function, categories of combined flow, stormwater

and sewage were defined. By dividing the blockage frequency for sewers of that

category by the overall average blockage frequency, a risk factor is developed for

that category. This risk factor shows the importance of the different variables and

categories within them. For any given sewer, the total risk factor can be found by

multiplying the individual risk factors together. This is combined with the average

blockage rate to give a number of blockages per year. The approach is further

refined by minimising the correlation between variables. Variables showing a high

correlation will result in a greater weight being given to that risk factor. By select-

ing variables which show little correlation, an unbiased total risk factor can be

found.

The approach was applied in the development of the CARE-S network re-

habilitation decision support system. The approach allows the important factors

for understanding the likelihood of blockage to be understood from the statistical

analysis and the resulting factors. The output is a blockage likelihood which can

be used in prioritising proactive maintenance. Ugarelli et al. [12] used the tech-

nique to evaluate which variables were selected as important factors for predicting

the likelihood of blockage, comparing this to those selected using EPR. However,

there was no analysis included of how well the approach worked to predict the

number of blockages.
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2.3 Statistical Analysis

There have also been a number of statistical analyses of blockages by Arthur et

al. [13], [14]. These studies have investigated the use of an inferred sewer age

and CCTV survey data [13], and the detailed consideration of all incidents within

a small catchment to produce a statistical analysis [14].

Arthur et al. [13] used historic maps of Edinburgh to date developments in the

growth of the city. These were used as a surrogate for sewer age when investi-

gating the effect of age on the number of complaints suffered. Sewer condition

grades were also used to understand how this varied with sewer age and affected

the number of complaints. Their approach was to find the number of complaints

per kilometre for each of the categories in sewer age and condition grade. The

analysis showed that complaints per kilometre increased with increasing age and

increasing condition grade. This demonstrated the benefit of inferring sewer age

and the effect of condition grade and age on the likelihood of complaints. How-

ever, significance testing would have benefited the conclusions drawn. A scatter

graph is plotted to show the average number of complaints for each development

period and sewer age. The points on the graph could instead have represented

individual sewers or network areas. This would allow an evaluation of the vari-

ation in the number of complaints for each category and allowed a trend to be

drawn based on all of these points.

Arthur et al. also used a dataset of around 30km of sewer from a catchment in

south-east England [14]. A small catchment was considered and every incident

within that catchment was analysed to produce a statistical analysis of the effect

of each of the factors and their statistical significance. The consideration of each

incident with a hydraulic model of the catchment allowed inclusion of variables

such as modelled surcharge state, lack of capacity and whether flows meet self-

cleansing criteria. These factors are more difficult to analyse on a large scale due

to the lack of up-to-date models for all catchments, potentially large computation
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times and sometimes manual interpretation of the results. The inclusion of statisti-

cal significance gives greater robustness to the findings. This work demonstrates

the importance of some of the additional factors considered, such as those from

the hydraulic model.

2.4 Review of Explanatory Factors

The work covered in sections 2.2 and 2.3 investigated a number of different vari-

ables for predicting the likelihood of blockage. The following section reviews the

factors which have been investigated and which were found to be important for

predicting blockages. The section refers to the papers shown in table 1.

Table 1 shows the work covered in the previous sections, which factors were

included within their analysis and which they found to most strongly predict block-

age likelihood. A number of different groups of variables have been investigated,

including sewer characteristics and the attributes of the surrounding network. The

following sections review the appearance and significance of each of the groups

of variables investigated.
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Table 1: Table showing the papers reviewed and the explanatory factors which they included. A ’Y’ indicates the factor was included and
found to be significant, a ’N’ indicates the factor was included but not found to be significant, while blank squares indicate the factor was not
included. The table only includes factors which appeared in two or more of the papers reviewed.
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Fenner et al. [10] Y Y Y Y Y Y Y N
Hall et al. [1] Y N N N Y Y N N N N N
Savic [7] Y N Y N N N N N Y N N
Savic et al. [8] N N Y Y Y N N N
Berardi et al. [15] N N N N N N N N N N N N N N N N N
Ugarelli et al. [9] Y Y N N N Y N
Fenner et al. [11] N N N N N N N N N N N
Ugarelli et al. [12] Y Y N N N Y N N N N
Savic et al. [16] Y Y N N Y Y N
Arthur et al. [13]
Arthur et al. [14] Y N Y N N Y
Hafskjold et al. [5] N Y N Y N N Y Y
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2.4.1 Sewer Characteristics

The sewer characteristics group shows the greatest number of attributes investi-

gated. As there is a very high likelihood of this data being held in WaSCs asset

databases, this is widely investigated.

Of the attributes appearing most often, diameter and sewer function appear

to be important variables. However, the importance of sewer function depends

on whether surface water sewers are included. There is little difference between

combined and foul sewers, but there are significant differences between those

and surface water sewers. Gradient is regarded as an important variable, with

physical implications on the flow through the sewer. However, it was widely found

not to be significant. Sewer length also appears quite commonly and does show

significance in a number of studies. Condition grade shows significance in two

studies from the six which included it. Depth is investigated in a number of stud-

ies, possibly because of its influence on collapses, but it seems to be less impor-

tant for blockages, only being significant in one study.

2.4.2 Age

Both sewer age and era of construction have been investigated. Sewer age is

included in a number of studies and found to be important in a number of those.

Era of construction was not found to be significant in the studies which included

it.

2.4.3 Historical Incidents

The use of blockage history as an input feature to models is limited. However,

Fenner et al. [10] evaluated a number of features for predicting likelihood of block-

age at an area level and found blockage history to be the best predictor of future

blockages.
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2.4.4 Properties

Property density was investigated in two studies but neither found it to be a sig-

nificant factor.

2.4.5 Surrounding Material

Soil conditions were investigated in a number of studies but only found to be

significant in one. The soil conditions may be of more significance for the physical

condition of the sewer, for example for predicting collapses.

2.4.6 Surface Use and Network

A number of attributes in relation to the network have been investigated, including:

sewer velocity and proximity to hydraulic control. Surcharging sewers were not

linked to an increased blockage risk in any studies which considered this. How-

ever, sewer velocity was found to be important in two of the four studies which

included this.

2.4.7 Other

A few studies looked at the impact of maintenance interventions, with one finding

it to be significant. Other studies aimed to use this data but had problems in

processing the data.

2.5 Ensemble Techniques

Ensemble techniques have been widely used in other modelling applications.

They function by producing many different models and combining the results from

each into a single output. The predictions given by each individual model are max-

imised, while minimising the correlation between them. This optimises the overall

predictions given by the ensemble [17]. This section presents examples of the

application of ensemble techniques to complex domains, outside of wastewater
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networks. Of the reviewed literature, none used ensemble techniques for the pre-

diction of blockages but they present many benefits in their modelling capability

[17].

Cutler et al. [18] applied the ensemble technique Random Forests [19] to

ecological data and compared the performance with other techniques, such as

classification trees alone. The ecological data used was highly dimensional, non-

linear and had complex interactions between variables, including many missing

values. This therefore provides an interesting case to compare to the data from

the wastewater network. Cutler et al. found that Random Forests matched or

outperformed the other techniques used. It was more accurate and more stable

to perturbations in the data. This example provides further evidence as to the

benefit of ensemble techniques on complex datasets and their performance in

comparison to classification trees alone.

Diaz-Uriarte et al. [20] applied Random Forests to the selection of genes in

gene expression studies. Here the aim is to find the smallest possible set of

genes which give the required predictive performance. The data used has lots of

noise and a large number of variables compared to the number of observations.

The importance of each variable from this selection must be identified. Random

Forests was compared to methods such as k-nearest neighbour and support vec-

tor machines. The results showed Random Forests gave a very small set of genes

with the same level of prediction as the other techniques. This demonstrates the

potential of ensemble techniques for the evaluation of variable importance.

This section has reviewed two examples of ensemble techniques and their

potential benefits. The examples showed how the techniques can perform well

on complex data and be useful in the evaluation of variable importance.

2.6 Conclusion

A number of studies have used or developed different techniques for predicting

blockage likelihood or the number of blockages. However, given the variability

in blockage likelihood, it would be of interest to see validation of the models’
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performance on additional datasets.

Of the variables investigated none show a clear trend of always being signif-

icant but a number are shown to be significant in some cases. Multiple studies

show sewer function, diameter, length, gradient, age and velocity to be signifi-

cant, therefore these are found to be the most important explanatory factors in

blockage prediction.

Ensemble techniques as applied in other domains were also reviewed and

found to offer improvements in the outputs produced by data mining models.
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Chapter 3

Blockage Likelihood Prediction Models using

Decision Trees

In this chapter, the developed models of blockage likelihood are presented. The

development of sewer level models is described initially, before area level models

are developed and evaluated.

3.1 Data Preparation

The following section gives an overview of the datasets which were sourced and

investigated for the project, along with an evaluation of the data quality, and

overview of the data cleaning and infill required.

To source a list of datasets for use, the corporate systems of DCWW were

interrogated, along with datasets which had been used for previous modelling

work. The datasets sourced are shown in Table 2.

3.1.1 Dataset of Sewers

The sewer dataset, sourced from DCWW’s Geographical Information System

(GIS), was used as the basis for the assets to be analysed. This dataset in-

cludes fields such as the sewer diameter, sewer length and sewer material which

are believed to be of potential for understanding the likelihood of blockage. Each

field was evaluated for the amount of missing data and the distribution of data

within the categories. Any fields which showed large proportions of missing data
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Table 2: Datasets sourced for modelling

Dataset Source Basis

Asset and Geographical

Sewers DCWW’s GIS Asset

Chambers DCWW’s GIS Asset

Sub-Catchments DCWW’s GIS Sub-Catchment

Property locations DCWW’s GIS Individual property

ACORN DCWW Postcode

Property age and type DCWW Postcode

Food producer locations DCWW Individual property

Maintenance DCWW Individual job

Incidents

Blockages DCWW Regulatory return Incident

or records mainly within one category were excluded from the analysis.

Table 12 gives the results of the proportion of missing and invalid records for

each field in the sewer dataset. Also shown in Appendix A are the distributions

of each of the variables within this dataset. A number of fields are dominated by

one category. These include ’lining design type’ and ’type of protection’ where, of

the values, nearly all are completed as ’none’, and ’joint type’ where nearly all of

the values are ’Spigot Socket Mortar’. ’Ground loading’, ’ground type’ and ’water

table’ all show very poor levels of completeness. Given these issues, these fields

will be excluded from the analysis. The internal and external condition grades

would offer explanatory capability but are poorly populated. This information is

based on site survey and the coverage across the whole network is low. Also,

the older the results, the less likely they are to represent the current condition of

the sewers, limiting the confidence in the data. The condition of the sewers could

also be highly influenced by local conditions, making it harder to infill this missing

data using other characteristics of the sewers. It was therefore decided not to

include this field. For sewer gradient, given its implications on flow through the

sewer, this variable was infilled. Using the other variables in the sewer dataset,
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multiple logarithmic regression was used to infill the missing values of the gradi-

ent. The variables used for this were: the categories of sewer ownership, sewer

type, sewer function, sewer material, sewer shape and backdrop flag, along with

the diameter and length of the sewer. A field denoting the sewer gradient, as well

as the source of the gradient were derived.

A number of erroneous values were also found within the datasets. These

include the defaulting of sewer construction year to 01/01/1900. Any erroneous

values were removed from the datasets in the preparation stage. For the sewer

construction year this meant around 35% of the around 700 000 sewers did not

have this information. Data verification was also completed by specifying the

expected values or range of variables, checking that the values were within these

and removing any outside.

3.1.2 Dataset of Blockages

The incident dataset is based on DCWW’s regulatory return data for blockages.

Eight years of historical data processed and audited in a consistent manner were

available. The accuracy of less recent historical data was believed to be affected

by inconsistent processing so was not sourced for modelling.

The main fields of interest were the asset to which the incident was assigned

and the property information. The asset information allows the predictor variables

to be derived for each sewer. The property information is of use for the infilling

of the asset information. Figure 1a shows the proportion of incidents which are

linked to an asset (True) and the proportions which have no asset information

listed (False). Of those with asset information, the incidents are further broken

down by whether that asset information matches a sewer in the sewer records.

This is denoted by ’Linked to Sewer’ and ’no link to a sewer found’ respectively.

The final category shown is for incidents which are listed against a sewer but

where the sub-catchment of the property does not match the sub-catchment of

the sewer to which it is assigned. This suggests an erroneous assignment and
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so these assignments were removed from the records. This then gives the pro-

portion of incidents which are linked to a sewer and the proportion which are not

(shown by Linked or Unlinked in the figure). Figure 1a shows that 64% of inci-

dents are linked to a sewer in the sourced incident dataset, with 50% linked a

sewer in the sourced sewer dataset. The graph also show that once erroneous

assignments and missing records have been included, 50% of incidents are not

linked to a sewer.

The missing sewer assignment was infilled using a spatial assignment. The

location of the property and the assets were used to find the nearest sewer to

the property and assign the incident to this asset. The set of sewers used for

assignment was limited by excluding those in which it is highly unlikely a blockage

would occur, e.g. surface water sewers and rising mains. In addition, the subset of

sewers used was limited to those of 225mm diameter or less, which was defined

as the set of sewers on which blockages are likely to have occurred. In addition

to this, a limit of 25m was placed on the maximum possible distance between the

incident and the asset to limit erroneous matching.

Figure 1b shows the proportion of incidents which can be linked to an asset,

when the original and spatial assignments are included. The figure shows those

incidents linked to an asset using the original asset information and those linked

by spatial infilling using the property information. The final section shows those

incidents which have no asset or property information in the records and so can-

not be linked to an asset. Figure 1b shows that the proportion of incidents which

can be linked to an asset is around 97%. The chart also shows that around half

of blockages can be linked to a sewer using the original assignment, with another

47.5% that can be linked spatially using the property information. This leaves

2.9% for which no sewer or property information is listed and so no assignment

can be made.

The dataset of incidents linked to assets was used to set a flag field repre-

senting whether each sewer had suffered a blockage within the years of historical

data available. A blockage rate was also calculated using the number of incidents

33



36%

50%

2%

12% FALSE	Unlinked	- no	 link	
to	a	sewer	found

TRUE	Linked	to	Sewer

TRUE	Unlinked	- sewer	
listed	in	incorrect	sub-
catchment

TRUE	Unlinked	- no	link	
to	a	sewer	found

(a) Pie chart showing the proportion of incidents which have and have not been assigned
to an asset, showing True or False for whether a link to an asset was found and linked or
unlinked for whether the sewer assigned was found in the dataset.

49.6%47.5%

2.9%

Linked	- by	original	assignment

Linked	- infilled	using	property	 information

Unlinked	- no	asset	or	property	 information

(b) Pie chart showing the proportion of incidents which can and cannot be assigned to
assets. The graph shows those which can be linked using either the asset or property
information and those which cannot be linked.

Figure 1: Graphs showing the proportion of incidents which are assigned and
could be assigned to assets.
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per sewer, normalising the value by the length of the sewer and the number of

years of data available. The maximum number of years for the public and PST

networks were eight and one respectively. However, if the sewer was found to

have been built after the start of this data, then the number of years used was the

age of the sewer.

3.1.3 Additional Datasets

The following datasets were sourced from DCWW’s corporate systems and in-

cluded as input features to the models.

Dataset - ACORN Classification ACORN classification [21] is a geo-demographic

dataset giving a consumer classification based on ”demographic data, social fac-

tors, population and consumer behaviour” [22], which is held at a postcode level

for the whole of the UK. The dataset gives three classifications: category, group

and type. The category and group classifications were used. There are a large

number of types, which will limit any understanding gained from its use.

Dataset - Property Age and Type A dataset of property ages and types for the

whole of Wales is held by DCWW. This dataset contains, at a postcode level, flags

for whether properties within certain age bands, property types and properties

containing basements are present. This dataset was used to set the flag fields of

whether basements are present, the types of property and for deriving the earliest

property age. The earliest property age has been used as a surrogate for sewer

age because sewer construction date is poorly completed.

Dataset - Planned and Proactive Maintenance The planned and proactive

maintenance data was sourced from DCWW’s SAP system. These datasets list

the regular planned maintenance, which is completed on sewers and CSOs, and

proactive maintenance undertaken following an incident to mitigate risks of a fu-

ture incident. Issues were found with this data in linking the work done to particu-

lar assets and so this dataset was not included in the final dataset for modelling.
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3.1.4 Additional Datasets - Derived

The following datasets were sourced from DCWW’s corporate systems and used

to derive input features to the models.

Dataset - Property Locations The Ordnance Survey Address Point Reference

(OSAPR) for properties are held within the GIS systems of DCWW, containing a

reference and location for all of the properties in Wales. The dataset was used to

derive datasets of the property density and the number of property connections

to each sewer. The property density was derived by dividing the area into 100m

grids and calculating the number of properties within each grid. For the property

connections, the method used to assign blockages to the nearest sewer was used

with the properties. The number of property connections to each sewer can then

be found. Normalisations of this field were investigated for explanatory capabil-

ity. These normalisations were sewer length and length multiplied by diameter

squared. Each of the different normalisations, and the original field, were evalu-

ated by producing decision trees. It was found that the number of properties per

sewer metre provided the best explanatory capability and so this was used. This

was believed to make logical sense, with each connection representing a poten-

tial site for rags to become caught or protuberances to interrupt the flow through

the sewer and increase the likelihood of blockage. The density of these along the

length would be related to blockage likelihood in this way.

Dataset - Food Producers A list of food producer locations, linked to an OS-

APR reference, were used to derive a number of variables. The number of food

establishments within each postcode and 5 digit postcode were derived, along

with the number of property connections per sewer. This number of connections

was derived in the same way as the property connections, with normalisations

again investigated. The normalisation by the length and diameter squared was

found to give the best performance. This was again believed to make logical

sense. The number of food producers represents a load on the sewers which
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would need to be handled by the capacity of the sewer. This capacity will be

represented by the length and cross sectional area of the sewer.

Dataset - Sewer Velocity A dataset of sewer velocity was derived to give a

measure of the self-cleansing ability of the sewer. The Manning velocity formula

under the full pipe assumption was used to derive a sewer velocity. The material

of the sewer was used to find the roughness coefficient of the sewer, with the data

on gradient and diameter used in the calculation.

Dataset - Upstream Values The network surrounding each sewer is believed to

influence the likelihood of blockage. For example, repeated lengths of low sewer

velocity may contribute to an increased likelihood of blockage. Two fields were

derived, using the upstream sewer velocity and upstream properties per sewer

metre. If multiple sewers were found upstream then the average value for the

variable was used.

Dataset - Diameter Changes A dataset of diameter changes was derived to

investigate the effect of downstream constrictions in flow affecting the likelihood of

blockage. The chamber references for the start and end of the sewers were used

to find the downstream sewer and its diameter. A nominal field was derived, giving

the categories of: smaller diameter downstream, larger diameter downstream,

same diameter downstream, no sewers found downstream or multiple sewers

downstream found.

Dataset - Chambers and Fittings The datasets for the chambers and fittings

were sourced from DCWW’s GIS system and used to derive the type of connec-

tion to the sewer downstream. This allowed investigation of the effect of manholes

in the network.
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3.2 Methodology

3.2.1 Statistical Analysis

Using the prepared data, statistical analysis evaluated the explanatory capabil-

ity of each variable. The blockage rate, normalised by the length of sewer and

number of years of data, was used.

For continuous fields, the Pearson correlation coefficient was calculated be-

tween each variable and the blockage rate. A T-test was conducted to evaluate

the statistical significance of the relationship. For the categorical variables, the

average blockage rate was compared for sewers inside and outside of each cat-

egory. For example, the rate for combined sewers was compared to the rate for

all sewers which are not combined. A T-test was performed to evaluate statistical

significance, with 5% used to define significance. Any categories which showed

a low presence in the dataset were combined into a joint category to reduce the

number of categories evaluated.

3.2.2 Data Mining - Sewer Level

The prepared dataset used in the statistical analysis was used to build models

predicting the likelihood of blockage. The first stage of modelling used decision

trees to build sewer level models.

Decision trees [23] separate the input dataset into groups which in this case

show different occurrences of blockages. This forms the nodes within the deci-

sion tree. Each separation is based on a single variable and a defined point of

separation in that variable. A measure is used to find the best variable for sep-

aration and the best point within this to form the separation. Different measures

are used for different decision tree algorithms. In Figure 2 this measure is shown

as Improvement, with the value of the improvement score shown for each split in

the tree. In Figure 2 the first split in the tree is made by the variable ’Properties

per sewer metre’. A value of 0.01 is used to separate the records into the two

nodes shown in the second layer of the tree. Sewers with a value for ’Properties
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Figure 2: An example decision tree

per sewer metre’ greater than 0.01 form one branch of the tree, and those equal

to or below form another branch. This variable and value combination were found

by the algorithm to give the best improvement score and so were used to form the

split. The tree continues to split forming new nodes until a stopping criterion is

met. These stopping criteria relate to a minimum change in the measure used for

splitting or minimum number of records in the node. When splitting has stopped

a decision tree is formed with terminal nodes at the end of each branch. Each

inputted record belongs to one of these terminal nodes. The prediction of the out-

put feature is taken from the terminal node. The variables and splits within those

variables which form the branches leading to this terminal node are the variables

influencing that record’s prediction. In Figure 2, for the node labelled Node 16,

the likelihood score is formed by the 81% to 19% split between 0 and 1 for the

blockage flag, for the records in that node. The variables influencing that score

are Properties per sewer metre (greater than 0.01) and sewer length (greater than

44.655). The algorithm selects the best variable for splitting at each point and so

the variables appearing in the tree are the important variables. The variables at
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the top of the decision tree are therefore the most important. In Figure 2, the best

variable and point within the variable for separating the input records was made

by properties per sewer metre and the value 0.01. Properties per sewer metre

was the best performing variable for separating the records which makes it the

most important variables for describing the likelihood of blockage in the dataset

used.

As the size of the decision tree becomes larger, overfitting can occur. This is

when the model predicts very well on the training dataset but is too specific to

that dataset. This means performance on the testing dataset is poor and is likely

to be poor on other unseen datasets. Some algorithms therefore include pruning,

which is an established method for preventing overfitting [23] and was found to

reduce overfitting. Pruning removes nodes from the tree after a stopping crite-

rion has been met by finding and removing the node which causes the smallest

increase in error. Pruning continues until a maximum increase in error has been

met. Predictions given by the decision tree can be adjusted using balancing and

misclassification costs. Balancing alters the input dataset to give a dataset with an

equal number of positive and negative cases. This is achieved by taking a sample

from the class showing a majority or by repeatedly sampling the class showing a

minority. Misclassification costs give a weighting to misclassified records. So a

positive record predicted to be negative can be given a greater weight than the

vice versa. This adjusts the predictions made by the decision tree.

Decision trees were chosen because they allow a visual understanding of the

important explanatory factors as well as producing a blockage likelihood score.

The relative importance of the factors can be understood from their appearance

in the decision trees and their position in the tree. More important variables will

appear closer to the top of the tree than less important ones. Both Classification

and Regression (CART) and C5.0 decision trees were used, produced using the

software SPSS Modeler [24].

The outputs from the models are evaluated using a Receiver Operator Char-

acteristic (ROC) curve and the area underneath (AUC).
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Figure 3: Example Receiver Operator Characteristic Curve (ROC)

A ROC curve plots the sensitivity (or true positive rate) against one minus the

specificity (or false positive rate). The y-axis represents prediction performance

for the positive records in a binary decision while the x-axis represents nega-

tive records. The y-axis represents the proportion of correctly classified positive

records, the x-axis the proportion of incorrectly classified negative records. The

point (0, 0) means all records are classified as negative, the point (1, 1) all records

as positive. A curve describing perfect classification would pass through the point

(0, 1). This point means all positive and negative records are correctly classified.

A curve passing through (0, 0), (0, 1) and (1, 1) would have an area underneath

(AUC) of 1. A curve along the 45◦ line represents random assignment of records

to positive and negative and has an AUC of 0.5. The AUC therefore gives a mea-

sure of the classification with the greater the AUC (closer to 1), the better the

predictions of the models.

The output feature being predicted was the blockage flag, indicating whether

each sewer had suffered a blockage in the period of incident data available. 0

represents no historical blockage, while 1 represents a sewer which has suffered

historical blockages. The input features were made up of the other variables in
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the prepared dataset, with no joining of categories as was used in the statistical

analysis.

Both balancing of the datasets and misclassification costs were investigated

to adjust the model predictions. Oversampling of the minority class was used to

balance the dataset. The training and testing partitions were formed by random

assignment of each sewer in the proportion 70:30. Each model was evaluated

using a Receiver Operator Characteristic (ROC) curve and the area underneath

the curve (AUC).

Models were produced for the different subsets of the network and for the

different causes of blockages. The public and Private Sewer Transfer (PST) parts

of the network have different levels of available historical data. This means that

the relative proportion of sewers which have blocked is different. To account for

this, separate models were built for these parts of the network. The sewer function

(surface water, foul, combined) was also used to separate the network. Some

sewers, such as surface water sewers, are highly unlikely to suffer a blockage so

were excluded from modelling. Foul and combined sewers may show different

influencing factors because of the presence of surface water in the combined

sewers. Separate models were therefore also produced for these subsets of the

network.

Investigations into the different causes of blockage were also made. Given

the different mechanisms of blockage formation, there are likely to be different

explanatory factors which are important. The different classifications used by

DCWW were therefore grouped into those that showed similar mechanisms. For

these models, the blockage flag was then formed by whether each sewer had

suffered that type of blockage.

3.2.3 Data Mining - Area Level

Models were also produced at an area level, again using the same prepared

dataset of incidents and assets. The possible geographical areas for modelling

were evaluated and the best selected for use. The input and output features were
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then aggregated to this area and a single model produced for all sewers.

Selection of Area

The selection of area was based on the ideal of groups with similar total lengths

of sewer and areas which matched those issued by WaSCs for proactive mainte-

nance. The areas evaluated were postcode, 100m by 100m grids and combina-

tions of the two.

The geographical groups selected gave a distribution (Figure 4) which showed

a relatively narrow distribution of sewer lengths and counts, while also reducing

the number of groups which only contained one sewer. The groups used postcode

to generate the initial groups. Larger postcode areas were then broken down into

smaller groups using the intersection of postcode and 100m by 100m grids. This

results in a large proportion of groups with only one sewer. Groups with only a

single sewer were reassigned to neighbouring groups. If a downstream sewer is

present assignment was made to this group, otherwise the upstream sewer. If

neither up or downstream sewers were present, the sewer remained in a group

of its own.

Derivation of Aggregated Variables

Input Features Different methods were used for continuous and categorical

variables. For categorical variables, a new variable was created for each cate-

gory. For each category within each categorical variable, the total sewer length

was found. For example, for sewer function the length of combined sewer and

length of foul sewer was found for each area. For continuous variables, the first

aggregation used a length weighted average for each area. The second method

discretised the variable and treated them as categorical variables. If a break in

the definition of the range of data is present, then this was used for discretising. If

none of these were present, then quartile values were used to give evenly sized

groups.
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(a) Distribution of sewer count

(b) Distribution of sewer length

Figure 4: Distributions of sewer count and length for aggregated areas derived us-
ing postcode, breaking larger postcodes down using 100m grids and re-assigning
groups with a single sewer to up or downstream sewers.
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Food Producer and Property Connections For the food producer and prop-

erty variables, the majority of sewers had a value of so the bands used were 0

and greater than zero.

Diameter For diameter, sewers of 225mm or smaller are regarded as small

bore sewers. The majority of sewers are less 225mm so a further threshold of

150mm was used to derive three groups.

Sewer Velocity For sewer velocity, 1 m/s has been used as a definition of

self-cleansing velocity so this defined one group. The majority of sewers are

above this threshold, so the sewers were further split using 2m/s as a threshold.

Gradient and Property Density For gradient and property density, no par-

ticular cut-offs could be defined, so the quartile values were used to define bands.

Output Feature To derive the output feature, the difference in historical data

between public and PST had to be accounted for. A relative proportion of blocked

sewers was derived. For each group, for public and PST, the proportion of assets

which had blocked was found. These values were divided by the average propor-

tion of blocked sewers for all areas, calculated separately for public and PST. The

length weighted average of these two relative proportions was then found. This

gives a continuous measure, where one represents an average relative propor-

tion of blocked sewers and zero a group showing no blocked sewers. The models

were produced to still predict a blockage flag. Different thresholds in the rela-

tive proportion were used to derive blockage flags. These were then predicted.

Models were produced using thresholds of 0, 1, 2, 4, 6 and 8.
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3.3 Results and Discussion

3.3.1 Statistical Analysis

Figures 5 and 6 show the results of the statistical analysis completed to under-

stand the explanatory capability of the variables sourced and derived. The cor-

relation analysis gives each of the variables, also showing whether the result

was found to be statistically significant. For the difference in average analysis,

only the statistically significant variables with above average blockage rates are

shown. The variables are ordered from left to right by the absolute difference in

the blockage rates.

Correlation Analysis

The top predictor shown in Figure 5 is that of property density. An increased

property density is likely to be linked to a higher number of properties connected

to the sewer. This could lead to a greater potential for a large volume of material,

from the properties connected, to enter the sewer and quickly form a blockage.

The greater the number of properties, the greater the potential for this spike in

material. A greater number of properties will also give a generally higher load on

the sewer and potentially more material which can form a blockage. The property

connections into the sewer also represent potential sites for flow disruption which

could cause material to settle out from the flow, which could also increase the

likelihood of a blockage.

The highest negative predictor found is sewer diameter, showing that smaller

diameters result in a higher rate of blockage. Material from residential properties

enters the network, initially into small diameter sewers. A sudden spike in material

entering the sewer or flushing of rags or debris has the potential to quickly form

an acute blockage, preventing further flow through the network.

Construction date also shows as a negative predictor, showing that older sew-

ers show a higher rate of blockage. Older sewers have the potential to be built
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Figure 5: Graph for public sewers showing the Pearson linear correlation coeffi-
cient between the factors being investigated and the rate of blockage in blockages
per km per year.

Figure 6: Graph for public sewers showing the effect of the categorical variables
investigated. For each category within each variable, the average blockage rate
(per km per year) is plotted for sewers in that category with the average blockage
rate for sewers which are not in that category. The graph only shows differences
which are statistically significant at a 5% significance, with the variables ordered
from left to right by the absolute difference in blockage rate.
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to different design standards and could be more likely to block than modern sew-

ers. Older sewers also have a greater potential for defects to be present over the

time they have been installed, which can result in material becoming caught in

the sewer and the build-up over time to a full blockage.

Sewer length shows a weak correlation to blockage rate, meaning that shorter

sewer lengths show a higher likelihood of blockage per length of sewer. This

could be linked to a number of factors. Short lengths of sewers mean that there

are manholes, junctions or chambers in the network, breaking sections up into

a greater number of smaller sewers. Within DCWW, interceptors are believed to

influence blockages, with work competed previously to alter the network around

them and allow easier clearance of blockages formed in them. With interceptors

installed in chambers the risk of blockage from interceptors may be helping in-

crease the risk of blockage on short lengths of sewer. The potential for blockages

in manholes was also highlighted, with the potential obstructions in the manholes

helping form blockages. Arthur et al. [14] also found blockages forming near to

sewer junctions, where disruptions to the flow are present.

Difference in Average

The categorical field analysis, Figure 6, highlights a number of variables, includ-

ing: sewer diameter, sewer length and other fields: ACORN category, backdrop

flag, property ages, material type, sewer function and sewer shape. Property age

was highlighted by the presence of the pre-1900 and 1900-1939 categories from

the earliest property age variable. The property age is linked to the age of sew-

ers with the earliest property age often being used as a surrogate for the age of

sewer. As discussed from the correlation analysis the age of the sewer is linked

to the likelihood of blockage.

ACORN Category 4 and a number of ACORN groups were highlighted as

having high incident rates. The ACORN Category highlighted was 4 and, of the

groups highlighted, two of the three category 4 groups are present, along with

one from category 3. Further investigation was conducted to evaluate the effect of
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Table 3: Variation of property density across ACORN categories.

Table 4: Variation of property density across ACORN groups.

these and the effect of property density which was found to be a strong predictor

in the correlation analysis and would be expected to vary with the ACORN Cat-

egory. Tables 3 and 4 give the average property density for each of the ACORN

categories and types. This shows that Category 4 has a property density of 29.4

properties per 100m square, compared to the overall average of 21.8. While this

is not the highest property density, this value is above average, which could sug-

gest that the effect of ACORN Category is linked to the property density. This

will be further informed by the decision tree modelling, which will evaluate the

explanatory potential of each of the input features.

For sewer function, there are three possible functions: foul, combined and
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surface water, which represent most of the sewer dataset. Foul and combined

sewers are both shown as high predictors, but because the other category is sur-

face water, where blockages would not be expected, the rate of blockage for foul

and combined sewers would be expected to be higher than the overall average

rate of blockage. However, the higher rate for combined sewers does provide fur-

ther information. The combined network will be affected by the rainfall patterns,

with periods of dry weather causing the build-up of material which is then found

when the first rainfall occurs and the material which has built-up constricts the

flow through the sewer.

Backdrop flag being defined as ’No’ is shown as a high predictor, with the

possible values being Missing, ’Yes’ or ’No’. Backdrops are used in areas of steep

gradients where the backdrop is used to drop the sewer deeper, by including a

step in the sewer. Backdrops are believed to be linked to blockages because

they represent a potential obstruction in the sewer. It would not therefore be

expected that the confirmed lack of presence of a backdrop would be linked to

higher blockage rates. Again, the apparent explanatory capability of this variable

may be due to the link to other variables, which can be further understood by the

modelling using decision trees.

Table 5: Table comparing the average sewer length, diameter and construction
date for sewers which are (1) and are not (0) of material type 1 (vitreous clay)

Material types of vitreous clay (Material type 1 - VC) were highlighted in the
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analysis and their characteristics were investigated (Table 5). Sewers in this cat-

egory are older, shorter and smaller in diameter, which may influence the higher

rate of blockage.

Another field to highlight is gradient, which was expected to be linked to block-

ages but does not appear in this analysis. A shallower gradient will mean a greater

difficulty in moving material through a sewer and potentially a higher rate of block-

age. It is possible that the low level of completeness of the gradient field means

it is more difficult to find a significant relationship, so that gradient was not high-

lighted in the analysis.

For PST sewers, the linear correlation coefficients shown in Figure 7 show

weaker correlations between blockage rate and the fields investigated. Construc-

tion date is the exception to this, showing a similar result to that for public block-

ages, again indicating the older the sewer, the higher the rate of blockage. The

correlations may be weaker because of the similarity of characteristics reducing

the spread of values and the possibility of finding a trend in the values. PST

sewers are the smaller diameter sewers, close to properties and therefore have

similar characteristics. For sewer diameter, for example, PST sewers are on aver-

age smaller and show less variation in their values. PST sewers have an average

diameter of 125mm, standard deviation of 66mm, while public sewers have an

average of 249mm, standard deviation of 264mm.

The categories highlighted in Figure 8 show a mix of results, with a number

repeated from the analysis of public blockages and some additional categories:

Material type -1 (the combined category of low presence categories) and a larger

mix of ACORN categories and groups. Of the repeats, combined sewers and the

presence of a basement appear higher up the list for blockages on PST sewers.

The corresponding categories found include older, shorter and smaller diame-

ter sewers, along with ACORN Category 4 and the presence of basements. For

the ACORN fields, there is a larger mix of categories than was found for public

sewers, with both the ACORN Categories 4 and 5 appearing, along with ACORN
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Figure 7: Graph for PST sewers showing the Pearson linear correlation coefficient
between the variables being investigated and the rate of blockage in blockages
per km per year.
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Figure 8: Graph for PST sewers showing the effect of the categorical variables
investigated. For each category within each variable, the average blockage rate
(per km per year) is plotted for sewers in that category with the average blockage
rate for sewers which are not in that category. The graph only shows differences
which are statistically significant at a 5% significance, with the variables ordered
from left to right by the absolute difference in blockage rate.
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groups from categories 2, 4 and 5. All three of these show higher property den-

sities than the other ACORN categories, with Group F also showing a higher

property density, as shown in tables 3 and 4. This may mean that it is the higher

property density which contributes to the increased risk, although the correla-

tion analysis did not show a strong relationship between blockages and property

density, so this may be less applicable for PST incidents.

Material type -1 is significant for PST sewers (Figure 8) where it was not for

public sewers. Again links to other fields were investigated but no significant

differences were found in comparison to the dataset as a whole. It is difficult to

make further conclusions for reasons behind the increased blockage rate, given

the large number of material types which make up this combined set.

3.3.2 Data Mining - Sewer Level

All Blockages

Table 6 gives the results of the decision tree modelling for the sewer level mod-

els developed. Overall, the results show reasonable performance in predicting

blockages, with the AUCs ranging from 0.65 to 0.72. The following paragraphs

review the decision trees of each subset of the network for their performance and

variables highlighted.

Table 6: Results of the single decision tree model on the four subsets of the
overall sewer network.

Model Accuracy AUC
Public - combined 65% 0.69
Public - foul 64% 0.65
PST - combined 62% 0.66
PST - foul 65% 0.72
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 9: Results obtained from the models for the public, combined subset of the network.
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Public Combined Sewers This model (Figure 9) shows a reasonable level of

prediction and useful relationships for understanding the blockage likelihood.

The ROC curve (Figure 9b) shows an AUC of 0.69 on the testing dataset, with

a fairly even shape to the curve. This AUC is around the average performance

for these models. The application of the work is to the prioritisation of proactive

maintenance. Given the size of the network, only a very small proportion of the

network can be surveyed each year. This means the ideal shape of the ROC

curve would give the best performance for the highest likelihood sewers, those

which would be prioritised for maintenance. The evenness of the shape of this

curve means no particular benefits are seen for the highest likelihood sewers.

The variables at the top of the decision tree (Figure 9a) include properties

per sewer metre, sewer velocity and sewer length. These variables make logical

sense for representing blockage likelihood. Increasing properties per sewer metre

represents an increased load of material on the sewer or increased disruptions to

the flow from the sewer connections, both increasing the likelihood of blockage.

Sewer velocity represents a self-cleansing ability, linked to the build up of material

to form a blockage. Greater sewer length represents an increased length of sewer

on which a blockage could have occurred and increased likelihood of blockage.

The decision tree also shows sewer velocity rather than gradient providing the

greatest explanatory capability.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 10: Results obtained from the models for the public, foul subset of the network.
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Public Foul Sewers Figure 10 shows results from the model of public, foul

sewers. The model again shows reasonable performance and some useful rela-

tionships from the decision tree.

The AUC is 0.65, which is similar to the other single models. Although this

model is the worst performing of the four. The ROC curve shows an even shape

with little overfitting to the training dataset. As for public, combined sewers this

gives no improvement for the highest likelihood sewers.

The important variables in the decision tree are properties per sewer metre

and sewer length, with sewer velocity and property density also appearing in the

decision tree. The relationships here are slightly less useful because of the in-

creased frequency of sewer length. While this explains the likelihood of blockage

- a longer length meaning more sewer on which a blockage could happen, it is

less useful for prioritising proactive maintenance. If the sewers maintained were

based on the sewer length, then greater weighting would simply be given to the

longer lengths of sewer. This wouldn’t account for the cumulative risk posed by

multiple shorter lengths of sewer. The relationships here, with sewer length more

frequent, are therefore less useful in the application of this work.

PST Combined Sewers The model of combined PST sewers (Figure 11) shows

similar performance to those of the other models. However, the ROC curve does

show some overfitting to the training dataset. The variables in the decision tree

also show less potential for use in prioritising proactive maintenance.

The ROC curve shows a reasonable area underneath, but an uneven shape.

The first part of the curve shows the same gradient. This means that there is no

difference in the likelihood scores given for the sewers in this part. This gives poor

performance for the highest likelihood sewers. The second part of the curve then

shows overfitting to the training dataset. The unevenness to the curve means this

model shows poorer performance than those of the public network.

The decision tree shows the variables at the top of the tree are sewer ma-

terial, sewer length and catchment area. While sewer material could influence

the likelihood of blockages, the split in the decision tree simply shows a number
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 11: Results obtained from the models for the PST, combined subset of the
network.

of material types which have no history of blockage. Given the small number of

sewers in this split, this relationship is less useful. Sewer length can be under-

stood to affect the likelihood of blockage but, as explained for public, foul sewers,

(page 57) is less useful for this application. The final variable is the catchment

area. The sewers in the catchments connect and flow out through a common

point, e.g. to a treatment works or pumping station. There wouldn’t seem to be

a physical explanation which would cause the size of the catchment to influence

the blockage likelihood on every sewer in the catchment.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 12: Results obtained from the models for the PST, foul subset of the net-
work.
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PST Foul Sewers The model of foul, PST sewers (Figure 12) seems to show

reasonable overall performance. However, the variables in the decision tree are

less useful for prioritising proactive maintenance.

The ROC curve shows an AUC of 0.72, which is similar to the other models.

The curve shows a steeper initial part to the curve, giving better performance for

the highest likelihood sewers. However, the curve also shows overfitting for the

lower likelihood sewers.

The variables at the top of the decision tree are earliest property age and

sewer length. The earliest property age is used as a surrogate for sewer age.

Older sewers could be linked to a higher likelihood of blockage because of the

greater likelihood of defects, or from different design and build standards. De-

fects in the sewer will act as sites for the flow to be disrupted and increase the

likelihood of material settling out or becoming trapped, aiding in blockage forma-

tion. Sewer length then forms the remaining splits in the top part of the decision

tree. As explained for public, foul sewers (page 57) this variable is less useful for

prioritising proactive maintenance.

Overall Discussion The models of the public network show better performance

than the models of the PST network. While the overall AUC’s for the models are

similar, the relationships shown in the decision trees are of less use and the ROC

curves show more overfitting.

The models of the public network shows reasonable overall performance, with

no overfitting to the training datasets and even shape to the ROC curves. The

variables formed from the basic sewer characteristics and property information

would seem to give useful relationships and explanatory capability. The deci-

sion trees for the public network demonstrate the benefit of some of the derived

variables (properties per sewer metre and sewer velocity) from their appearance

at the top of the decision trees. Sewer velocity uses the infilled gradient data

and sewer diameter. The greater frequency of sewer velocity when compared

to gradient demonstrates the greater explanatory capability of the combination

of gradient and diameter. This also shows the benefit from the infilled gradient,
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despite the originally high levels of missing data.

The increased difficulty in predicting for the PST sewers may be due to the

more similar nature of these sewers and the reduced amount of historical data

available. The PST sewers are more likely to show similar characteristics, being

the smaller diameter sewers closer to homes. This may mean that variables

highlighted for the public network do not show the same explanatory capability.

For example, the values of properties per sewer metre for the PST network are

more likely to be similar and may therefore not give the range of values required

to show a relationship. For PST there is only one year of historical data compared

to eight for public sewers. This means that there is less information in which to

find patterns of where blockages have occurred.

Sewer Level - Blockages by Cause

The following section gives the results from the models built to predict the different

causes of blockages.

Table 7: Results of the single decision tree models for the different causes of
blockages.

Model Accuracy AUC

Blockages due to silt 65% 0.62

Blockages due to debris 60% 0.68

Blockages due to nappies, wipes and rags 54% 0.65

Blockages due to fat, oil and grease (FOG) 65% 0.66

Blockages due to other causes 63% 0.67

Blockages due to Silt Figure 41 shows the model for blockages due to silt.

The overall performance is poorer than the overall models of section 3.3.2, with a

poorer AUC and greater overfitting to the training dataset.

The ROC curve shows an AUC of 0.62 and a fairly even shape for the training

dataset. However, there is significant overfitting, which shows greater difficulty

in predicting the likelihood of these blockages. Using only blockages due to a
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particular cause limits the size of the incident dataset from which to build models.

There is also believed to be inconsistency in the classification of the cause of

blockages across DCWW’s region. This inconsistency will limit the explanatory

capability of the model.

The model for silt shows sewer length, properties per sewer metre and sewer

age near the top of the tree. Each of these make logical sense for influencing

the likelihood of blockage. Longer lengths of sewer present greater opportunity

for silt to settle out along the length, without any additional flows helping transport

material. The date of installation will represent the risk of defects interrupting flow,

or variation in design and build standards affecting silt deposition. Properties per

sewer metre will represent a load on the sewer and the potential for connections

being present which interrupt flow. While the relationships make logical sense,

the overfitting of the model limits how applicable these relationships will be.

Blockages due to Nappies/Wipes/Rags The model for nappies, wipes and

rags (Figure 42) shows reasonable overall performance. There are some useful

relationships in the decision tree and no overfitting to the training dataset.

The ROC shows an even shape, with no overfitting to the training dataset and

an AUC of 0.65. In addition to the problems of a smaller size of dataset and

inconsistency in cause classification, this type of blockage will be acute. Nappies,

wipes and rags are likely to suddenly block a sewer without any slow build-up of

material. This could lead to a large random element to the likelihood of these

blockages and make predicting their likelihood more difficult.

Properties per sewer metre and sewer velocity form the first splits in the tree.

Nappies, wipes and rags are likely to enter the sewer from properties, so more

property connections will increase the likelihood of these blockages. Greater

sewer velocity will increase the likelihood of material being transported through

the sewer. This will reduce the likelihood of nappies, wipes and rags becoming

trapped in the sewer. These relationships make logical sense and could be useful

for understanding the likelihood of these blockages.
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Blockages due to Fat, Oil and Grease (FOG) The model for blockages due

to FOG (Figure 43) shows reasonable performance, with limited overfitting and

some logical relationships.

The AUC is 0.66, which is similar to the models for all blockages. However,

there is a small amount of overfitting to the training dataset.

The decision tree shows sewer length, properties per sewer metre and sewer

velocity as the most important explanatory variables. Sewer length will represent

the likelihood of FOG settling out, as it passes along the length of the sewer.

Properties per sewer metre will represent a potential load of FOG and the dis-

ruptions caused by sewer connections. Sewer velocity represents a transport

capacity and the likelihood of the flow carrying the FOG through the sewer. The

food producers per sewer metre area is also present in the decision tree. This will

again, particularly for FOG, represent a potential load on the sewer. Its presence

indicates its use in understanding blockage likelihood for FOG.

Blockages due to Debris The model for blockages due to debris (Figure 44)

shows reasonable overall performance, with little overfitting. However, the rela-

tionships in the decision tree are of less use.

The AUC is 0.68, which is similar to that of the overall models for blockages.

The ROC curve also shows an even shape, with little overfitting to the training

dataset.

The decision tree shows fewer useful relationships. The variables appearing

are properties per sewer metre, sewer length and the catchment. Properties per

sewer metre is useful for prioritising proactive maintenance and has logical rea-

sons for influencing blockage likelihood. Sewer length, as discussed previously, is

of less use for prioritising proactive maintenance. The appearance of catchment

name would appear to suggest the inconsistencies in cause classification. For

sewers of greater than 0.01 properties per sewer metre, the likelihood of debris

blockages varies with the catchment. Given the large size of each catchment, it

would seem unlikely that the likelihood of debris blockages would vary between

each. This relationship is therefore likely to be due to inconsistent methods for
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classification. Based on these points, the relationships in the decision tree are of

less use.

Blockages due to ’Other Causes’ The model for ’other causes’ (Figure 45)

shows reasonable performance, with no overfitting. The relationships would ap-

pear to be of less use.

The ROC shows no overfitting to the training dataset and an AUC of 0.67.

Given the nature of this category, it is more difficult to interpret the relationships

in the decision tree. The variables at the top of the tree are properties per sewer

metre and sewer length. Properties per sewer metre would seem to reflect the

efficacy of this variable shown in the overall models of blockages. Sewer length

is of use for predicting blockage likelihood here, but is of less use for prioritising

proactive maintenance.

3.3.3 Data Mining - Area Level

The following section gives the results for the area level models. The input fea-

tures were formed from aggregating the sewer level inputs used for the models in

the previous section (3.3.2).

Initial Modelling

The performance of the aggregated model produced is shown in Figure 13 and

is similar to that of the sewer level models. The AUC is 0.67, which compares to

the AUCs of between 0.65 and 0.72 for the sewer level models. The aggregation

was expected to improve performance, but this is not shown in this model. The

variables present within the decision trees are also similar to those of the sewer

level models.

The variables shown at the top of the decision tree are those of properties per

sewer metre greater than zero, sewer diameter between 225mm and 125mm and

sewer material type 1 (vitreous clay). These variables are similar to those seen

in the sewer level models, where properties per sewer metre and sewer diameter

were both common, although sewer material was less common.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 13: Results obtained from the area level models, using a threshold in the
relative blockage proportion of 1.

65



The ROC curve shows a flat initial part to the curve and poor performance on

the highest likelihood areas. With the lack of overall increase in AUC this shows

that there is no performance improvement from this model.

Differing Thresholds

Table 8: Table showing the results of the area level models, using different thresh-
olds in the relative blockage proportion

Threshold AUC
0 0.68
1 0.67
4 0.65
6 0.65
8 0.69

Table 8 shows the results obtained when the threshold used to define the

blockage flag was varied. The results are all within a similar range as the sewer

level models, with AUCs ranging between 0.65 and 0.69 for these models com-

pared to 0.65 to 0.72 for the sewer level models. The best results were achieved

at the highest (8) and lowest (0) thresholds. At the threshold of 8, the proportion

of areas flagged as 1 is only around 3%, while for threshold 0 it is around 25%.

The variables shown in the decision trees are again similar to those in the sewer

level models. Important variables included properties per sewer metre, sewer

velocity and sewer length.

The ROC curves for these models are shown in the Appendices (section D).

The curves show a fairly even shape, although a generally flat initial part to the

curve, again indicating poorer performance for the higher likelihood areas. The

results for threshold 8 (Figure 50) are slightly different. The model shows greater

overfitting to the training dataset, but also a steeper initial section to the curve,

indicating better performance on the higher likelihood areas.

Discussion

The grouped approach was expected to improve performance, but this was not

realised. By grouping the sewers, any noise in the data from the assignment of
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blockages to a sewer and in the sewer characteristics should be smoothed out

in the groups. For example, there is a stochastic element that material travelling

down a sewer may cause a blockage in any of the sewers. On which sewer the

blockage occurs may be largely random, rather than represented by any char-

acteristics of the sewer. This noise in the blockage rate on each sewer will be

smoothed out in the aggregation, potentially better representing the variation in

blockage rate. The effect of any inaccuracies in the assignment of incidents to

assets may also be reduced by all of the sewers in the area being represented

within the same group.

The grouping of sewers used was based on geographical areas. However,

this may not represent the best grouping for modelling. Sewers which aren’t in

directly connected parts of the network could be in the same postcode and there-

fore grouped. This may limit some of the expected benefit from reducing noise.

The groups may also not represent sewers which show similar characteristics or

similar historical blockage rates. The variation in the grouped variables is difficult

to represent when represented by a single value in the dataset. This may also

affect the value derived from this approach.

3.4 Chapter Summary

In this chapter models at a sewer and area level, and for different causes of

blockages have been developed. Data was taken from the corporate systems

of DCWW, assessed for quality, prepared and analysed before being used to

develop the models. The data included sewer characteristics such as length, di-

ameter and material, property locations, property types and ages, and derived

variables such as sewer velocity. At a sewer level, decision trees were used with

this data to predict a blockage flag, indicating whether a sewer had blocked dur-

ing the period of historical data available. Models of the different blockage causes

were produced to predict a blockage flag indicating whether a sewer had blocked

by that cause. The sewer level data was then aggregated to an area level and

models produced. Postcode was used to form the geographical groups modelled,
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with larger postcodes broken up and smaller postcodes combined. The sewer

and area level models are of reasonable accuracy, providing a likelihood of block-

age output and informing the importance of explanatory factors. The models of

the different causes of blockages gave some useful relationships but inconsis-

tency in the datasets limited predictive performance. Given the greater resolution

of the sewer level models, these are the best performing from this part of the work.

In the next chapter these models will be developed with the aim of improving their

performance. The two methods investigated in the next chapter will be ensemble

techniques and the derivation of an input feature from a sewer’s blockage history.
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Chapter 4

Blockage Likelihood Prediction Models using

Ensembles of Decision Trees and Historical Input

Features

In Chapter 3 models were developed at a sewer and area level. Given that WaSCs

desire information at the greatest resolution and there was little difference in the

performance of the sewer and area level models, it was decided to use the sewer

level models for further development. In this chapter two approaches are applied

to improve performance. The first uses ensembles, producing multiple models

and combining the outputs from each. The second investigates the inclusion of

an input feature based on the blockage history of each sewer.

4.1 Methodology

The two extensions to the work described are the building of ensemble of de-

cision trees and the addition of the historical input feature to the models. The

methodology used in each case is described below.

4.1.1 Ensembles

Ensemble techniques [17] generate many models, combining the outputs from

each into a single model. This was found to be more accurate than the individual

models. Dietterich [17] describes how ensembles can improve performance of

models, the main reasons being statistical, computational and representational.
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For example, in the computational reason, it can be difficult for some algorithms

to find the best model. The methods of developing the model can mean the out-

put becomes limited to a local optimum. Producing many models, from different

parameters, and combining the result can give a better model than any of the in-

dividual models. Cutler et al. [18] applied an ensemble method, Random Forests,

to ecology data. Random Forests showed slightly or substantially better perfor-

mance than decision trees or alternative linear methods in the cases investigated.

To give the best performance, the performance of the individual models must be

maximised while the correlation between them is minimised [17]. There are many

ways to generate the ensembles, which include:

• Manipulating training data

• Manipulating the input features

• Manipulating the output features

• Adding randomness

The approach taken here produced the individual models from a selection of the

input features. Different methods of selecting and combining the variables were

investigated, as well as methods of combining the model outputs.

Derivation and selection of variables

To produce the variables, either random input [19] or random combination [19]

methods were used. For the random input, a random selection from the full set

of input features were taken and used to produce the individual models. For the

random combination, a random selection was taken and combined to produce

additional features then used to produce the models. To process categorical vari-

ables, a category was chosen at random and a binary flag derived for whether

each record was a member of that category. Categorical variables were made

more likely to be chosen by a factor of the number of categories. To process

continuous variables, the average and standard deviation for the variable in the

training dataset were used to derive z-scores for each variable. The variables
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were combined by summation, with a weighting applied to each, the coefficient

being randomly chosen from the range -1 to 1.

Number of variables used

For each type of query (random input and random combination), a different num-

bers of variables used for selection and combination were investigated. For ran-

dom input, this gave the number of variables selected. For random combination,

this gave a number of variables selected and then a number of output variables

produced from this selection.

Combining Model Outputs

From the individual decision trees produced, the outputs were combined in differ-

ent methods. The first of these, voting, averaged the 0 or 1 classification output

from each of the individual models. The second, average raw propensity, aver-

aged the raw propensity scores from each model to produce the overall model

score.

Models Produced

To evaluate the approach ensemble models were produced for the public, com-

bined subset of the network as this showed the best combination of performance

and useful relationships from the sewer level models. The models allowed as-

sessment of the overall improvement in performance and the effect of each of the

different methods used.

4.1.2 Historical Input Feature

The aim was to investigate the addition of an input feature based on historical

incidents. The effect of the number of years of data and use of an input feature

was evaluated. Eight years of historical data had been prepared for the modelling

and these were used to derive the input and output features in the models. The

following sections outline how the input and output features were derived and the
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Table 9: Years of historical data used in each model in investigating increasing
years of available historical data

Model Number Years of Data
1 04/2006 – 04/2014
2 04/2007 – 04/2014
3 04/2008 – 04/2014
4 04/2009 – 04/2014
5 04/2010 – 04/2014

three experiments undertaken.

Deriving Input and Output Features

The output feature to be predicted was the blockage flag, as was used in the

previous stages of modelling. Previously, this flag defined whether the sewer had

blocked at any point in the years of incident data available. At this stage different

selections of years were made and these used to define whether the sewer had

blocked in this time period. This leaves some of the incident data to form an

input feature, again formed from different selections of years. The input features

derived were a blockage flag, whether the sewer had blocked, and a blockage

rate, defined as the number of blockages per year, per km of sewer length.

Increasing Years of Input Data

This part of the investigation used differing amounts of input data to build the

models. The aim was to understand potential future changes in performance,

when increasing amounts of data are available.

For the models, the output feature was formed from an increasing number of

years of data, as shown in Table 9. To form the training and testing partitions, a

random selection of sewers were taken from the full set of sewers. The models

were produced for the public, combined subset of sewers.

Varying Input and Aggregated Output

Here we investigated how the size of the input and output features affect perfor-

mance. The full eight years of data were used to form inputs and outputs using
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Table 10: Table showing the models produced to investigate varying the size of
the input and output features

Model Years of Historical Incident Data
Number As Input As Output For Testing
1 1 — 4 5 — 7 8

04/2006 — 04/2010 04/2010 — 04/2013 04/2013 — 04/2014
2 1 — 5 6 — 7 8

04/2006 — 04/2011 04/2011 — 04/2013 04/2013 — 04/2014
3 1 — 6 7 8

04/2006 — 04/2012 04/2012 — 04/2013 04/2013 — 04/2014

varying amounts of historical data. The models produced are shown in table 10

The models in Table 10 show an increasing number of years used for the input

feature and reducing number for the output feature. All of the models are tested

on the same year of data. For these models the training and testing datasets both

contained all of the sewers. The models were trained using ’As Output’ and then

tested using ’For Testing’. The models were produced for the public, combined

and public, foul subsets of the network.

Windowing

Table 11: Table showing the models produced for the windowing investigation

Model Years of Years of Historical Incident Data
Number Data (N) As Input As Output For Testing

1 2 5 — 6 7 8
04/2010 — 04/2012 04/2012 — 04/2013 04/2013 — 04/2014

2 2 — 5 — 7 8
— 04/2010 — 04/2013 04/2013 — 04/2014

3 4 3 — 6 7 8
04/2008 — 04/2012 04/2012 — 04/2013 04/2013 — 04/2014

4 4 — 3 — 7 8
— 04/2008 — 04/2013 04/2013 — 04/2014

5 6 1 — 6 7 8
04/2006 — 04/2012 04/2012 — 04/2013 04/2013 — 04/2014

6 6 — 1 — 7 8
— 04/2006 — 04/2013 04/2013 — 04/2014

The windowing approach investigates different amounts of available data and

the effect of the historical input feature. The approach uses the differing amounts
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of incident data and, for each, compares using the data to form the output feature,

and to form both an input and an output feature.

The models to be produced are shown in Table 11. For each set of avail-

able data two models are produced: with a historical input feature and without a

historical input feature. The other inputs to the models remain the same in each.

When a historical input feature is included:

• As Input: Additional input features of a blockage rate and blockage flag are

derived from N years of historical incident data

• As Output: The model is trained by predicting the blockage flag formed for

the year of incident data N+1

• For Testing: The model is tested on the blockage flag formed for the year

N+2.

Without an input feature:

• As Input: There are no additional input features derived from historical inci-

dent data

• As Output: The model is trained by predicting the blockage flag formed from

N+1 years of incident data

• For Testing: The model is tested on the blockage flag formed for the year

N+2

For these models the training and testing datasets both contained all of the

sewers. The models are trained using ’As Output’ and then tested using ’For

Testing’. The year of incident data forming the output for testing remains constant

in each of the models. The models are produced for the public, combined and

public, foul subsets of the network.

4.1.3 Validation

The aim was to evaluate the potential benefits of the models and validate the ap-

proach. Two validation datasets, not originally used, were sourced: the blockages
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which occurred in the reporting year 2014-5 and results from on-site surveys.

Gain curves are used to estimate how the model’s likelihood score output could

prevent blockages, as a function of the length of sewer surveyed. An estimation of

the cost savings for 2014-5 was also made, based on figures provided by DCWW.

Three likelihood scores were used to evaluate and compare performance:

• the output from the decision trees

• the historical blockage rate (per year per km of sewer length)

• a combination of the two scores (adjusted likelihood score)

For the decision tree output, the best performing models were used. For the

public sewers this was the models including the historical input feature. For the

PST sewers there was insufficient data to derive the historical input feature so the

best performing models were from the initial stage of modelling. The historical

blockage rate is based on the full eight years of available blockage data (2006

- 2014) and was normalised per year, per km of sewer length. The adjusted

likelihood score was derived to combine these two outputs. The scores give a

greater weighting to sewers which have suffered a blockage. For sewers which

showed a history of blockage, the historical blockage rate was the score, while

for sewers which showed no history, the output from the models was used. The

historical blockage rate was added to one in the score, so that all of these sewers

were given a higher weighting than those which had not suffered a blockage.

Data - Survey Results

The survey results evaluated the model performance using issues which had

been found on on-site surveys. The dataset is based on a geographical area

in which all of the sewers were surveyed, with records kept of problems found on

any sewers. The survey results were used to compare the model output and the

historical blockage rate and evaluate overall model performance. For evaluation,

an ROC curve was produced using each likelihood score. The positive events
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were defined as sewers which had suffered an operational issue which required

response, such as jetting or rodding of the sewer.

Data - Incidents 2014-5

The incidents from 2014-5 have been used in the production of gain curves and

in estimating cost savings for the year 2014-5. The incidents included within this

are blockages, flooding and pollution, based on DCWW’s regulatory return data.

For flooding, there is a further classification for incidents being due to hydraulic

overload or due to other causes (such as blockages or collapses). Only flooding

incidents due to other causes have been included in these estimations.

The incidents were used to estimate the prevention of blockages for the range

of sewer length maintained. There is no data on the effectiveness of proactive

maintenance and how long they prevent or reduce the likelihood of blockages

for. It has therefore been assumed that sewers defined as being surveyed have

been prevented from suffering blockages for the year. Included in this, is that

if a sewer suffers multiple blockages in a year then all of those blockages will

have been prevented. This gives a proportion of sewers on which blockages have

been prevented, from which the proportion of blockages prevented can be found.

These assumptions will give an over-optimistic estimate of the benefit of proactive

maintenance, but without the data on proactive maintenance effectiveness it is not

possible to develop this further.

Due to the poor level of assignment of incidents to assets, the incidents in-

cluded and proportions quoted are based on using those incidents which have

been assigned to an asset. For the cost savings, the calculation of the number of

incidents prevented is based on calculating a proportion of incidents which have

been assigned and scaling this up to the proportion of all incidents.

Gain Curves

The gain curve plots the proportion of incidents prevented against the proportion

of the length of sewers. The incidents from 2014-5 were used to plot curves
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for each type of incident, to compare the three likelihood scores and the overall

performance of the models.

Incident Prevention Estimation

Results for incident prevention are based on figures provided by DCWW related

to the current levels of sewer surveying and the calculations used to derive the

gain curves. Using these, it is possible to estimate the proportion of each incident

type which would have been prevented, based on this level of surveying.

4.2 Results and discussion

4.2.1 Ensembles

RI RI RI RC RI RI RI RI RI RC RC
2 3 5 3, 2 2 3 5 5 8 3, 2 3, 8
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Avg. 
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1 2 3 4 5 6 7 8 9 10 11
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Figure 14: Overall results of the modelling using ensembles. The figure shows
the parameters used to produce each model and the AUC for training and testing.

Figure 14 shows the performance of the models produced using the different

settings of the variables listed above.

Overall there is no significant improvement in performance over the best single

decision tree, which had an AUC of 0.69. A few models show slightly improved

performance, but also overfitting to the training dataset. Those showing less over-

fitting also show poorer performance overall. For example, models one and three
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(a) ROC curve of the best performing ensemble model

(b) ROC curve for the best performing single decision tree model

Figure 15: ROC curves comparing the best performing ensemble and single de-
cision trees
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show testing AUCs of 0.71 but overfitting. Model 11 shows little overfitting, but

poorer performance compared to the previous best performing model. Figure 15

shows the ROC curve for model 1 (15a), the best performing ensemble model,

with the ROC curve for the best performing single decision tree (15b). Both show

similar, even shapes with little performance improvement for the highest likelihood

sewers.

The following paragraphs evaluate the effect of the different model building

parameters.

Number of Inputs

Models one to three and five to nine show a comparison between models pro-

duced using the same parameters, but with the number of inputs changed. These

show only a small variation in overall performance and little effect of the number

of inputs. The results do seem to show an increase in overfitting as the number

of inputs is increased, as would be expected. In the ensemble the aim is to max-

imise the performance of the single models, while limiting the correlation between

them, to maximise overall performance [19]. The number of inputs will affect the

overall performance and correlation between models. However, here there does

not seem to be an optimal point, giving the balance between these two effects.

Query Type

The query type, random input or random combination, does not appear to signif-

icantly change performance. Models 2 and 4 and 6, 10 and 11 were produced

using the same inputs, except that 4, 10 and 11 used the random combination

method. Comparing the two sets of results shows little change in the AUC for the

testing dataset.

The random combination method was designed to increase number of input

features where a low number exist [19]. This aims to increase the strength of the

models, while preventing correlation between. There is a relatively large number

of input features available to the models. This may mean that the effect of the

random combination method is limited.
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Model Combination Method

The ensembles produced using the average raw propensity (ARP) show gener-

ally better performance than those using voting. However, these models also

show greater overfitting to the training dataset. Models 1 to 3 and 5 to 8 allow

comparison between models produced using the same parameters. In voting,

the same weight is given to the outputs of each model, where the ARP models

are weighted by their performance. This may mean that by giving greater weight

to the better performing models, the ARP models show better performance. For

each individual model there is no pruning applied. The better performing mod-

els may show larger decision trees and greater overfitting to the training dataset.

This would mean the ARP models show greater overfitting when compared to the

voting models.

4.2.2 Historical Input Feature

The results from the three parts of the investigation are shown in the sections

below, with the overall discussion of the results given following the results.

Results - Increasing Years of Input Data

Figure 16 shows the results of the models built with increasing amounts of his-

torical data. The results show very similar performance for each model, with only

0.005 separating the best and worst test performances. This shows that increas-

ing the amount of historical data does not necessarily improve performance. In-

vestigating the ROC curves also shows very similar trends for each of the models,

with no variation in shape across the decision trees.

Results - Varying Input and Aggregated Output

Figure 17 shows the results from the models produced. Overall, the AUC shows

little change as the historical data is varied between forming the input or the out-

put feature. Compared to the best performing models in Chapter 3 there is an

increase in performance. For public, combined sewers the AUC increased from
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Figure 16: Results of the models built using increasing amounts of historical data
in terms of the AUC

0.69 to 0.75 and for public, foul sewers the AUC increased from 0.66 to 0.69. Fig-

ure 18 shows the ROC curves for model 1 and model 3 for the public, combined

network. Both ROC curves show an initial steep part to the curve, showing better

performance for the highest likelihood sewers. The ROC curve for the public, foul

network shows a similar shape.

Results - Windowing

Figure 19 shows the overall results for the public, combined and public, foul parts

of the network. The results show little change in model performance as the num-

ber of years of incident data is increased. Figure 19b for public, foul sewers

shows slightly better training and testing performance for those models including

an input feature. While Figure 19a for public, combined sewers shows slightly

better performance for the training dataset but not the testing. Figure 20 shows

the ROC curves from four of the models, showing models built using two and six

years of data, for those with and without the historical input feature. Comparing

the models with a historical input feature (Figures 20a and 20c) to those without

(Figures 20b and 20d) shows a steeper initial part to the curve. This indicates

better performance for the highest likelihood sewers and matches with the results
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(a) Results for the subset of sewers on the public, combined network

(b) Results for the subset of sewers on the public, foul network

Figure 17: Overall results of the models built in terms of AUC

shown in the investigation varying the input and aggregated output. The ROC

curves for the public, foul network match these, with a steeper initial part to the

curve, without the slightly improved overall performance. The effect of the number

of years of incident data, for those including a historical input feature, can also be

seen from the ROC curves by comparing the models built using two years of data

(Figure 20a) to those built using six years of data (Figure 20c). The ROC curves

show varying length and gradient to the initial part to the curve. The model built

with two years of data shows a steeper but shorter section when compared to the

model built using six years.

The decision trees (Figure 51) themselves can be investigated to understand
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(a) From model 1, produced using 04/2006
to 04/2010 to form an input

(b) From model 3, produced using 04/2006
to 04/2012 to form an input

Figure 18: ROC curves from two of the models for public, combined sewer

how important the input feature is. The historical input feature forms the first

split in the decision tree for each model including it. This represents the most

important variable for explaining the likelihood of blockage. The variable used is

also the blockage flag rather than the blockage rate.

Discussion

The inclusion of a historical input feature shows improvements over models with-

out this feature. For some models this includes overall improvements in AUC,

while all show performance improvements for the highest likelihood sewers. This

could suggest either that: there are features of these sewers not represented in

the other variables, or that the occurrence of blockages influences the likelihood

of another blockage. Repeated blockage locations could be due to the particular

load on the sewer, for example from customer behaviour, or characteristics of the

sewer, for example defects which are present. Blockages due to nappies, wipes

and rags would be expected to occur on smaller diameter sewers as a result of

customer behaviour. If the behaviour is repeated, then the likelihood of another

blockage will remain and increase the likelihood of a repeated blockage location.

Fat, oil and grease (FOG) or silt blockages, where behaviour disposing of FOG

or infiltration of silt, will mean a blockage remains likely to occur. Sewers could

also have construction defects or damage which make them more likely to suffer
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(a) Results for the subset of sewers on the public, combined network

(b) Results for the subset of sewers on the public, foul network

Figure 19: Overall results of the models built in terms of AUC

from blockages. Sewer condition is measured using CCTV surveying and could

be used to explain blockage likelihood. However, there is a small proportion of

the network which has been surveyed and condition changes over time limit the

period for which the survey is relevant. This means the data was not included

in the models developed, but could be part of the explanatory capability offered

by the historical input feature. WaSCs make interventions to prevent blockages

and are likely to target repeated location or hotspots. These interventions aim to

reduce the likelihood of blockage in that location and potentially reduce the effi-

cacy of the historical input feature. The likelihood of repeated locations could be
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(a) ROC for model 1 built using two years
of data, including an input feature

(b) ROC for model 2 built using two years
of data, without an input feature

(c) ROC for model 5 built using six years of
data, including an input feature

(d) ROC for model 6 built using six years of
data, without an input feature

Figure 20: ROC curves from four of the models built on the public, combined part
of the network
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investigated to understand whether and how blockages affect the likelihood of a

repeated location and for how long this effect exists. Attempts to derive an es-

timated condition could also be made. Using existing condition surveys and the

characteristics of the sewers, an infilled condition grade could be developed and

tested for efficacy.

Increasing the amount of available data does not seem to improve perfor-

mance significantly, whether a historical input feature is present or not. There are

different explanations for this for those models with and without the input feature.

Without the historical input feature, more years of incident data gives more

data in which to find patterns of blockage occurrence. It was therefore expected

that more years of incident data would improve performance. The lack of im-

provement could be due to changes in the data limiting the relationship between

the most recent incidents and those more historical. Changes in reporting or

operational practices over the period could both affect the data. The lack of im-

provement could also be from the use of the blockage flag rather than the rate

altering the effect of the additional incidents. For the blockage flag, more block-

ages on the same sewer won’t affect the value of the output feature. Whereas

the blockage rate will be affected by further, or lack of further, incidents and could

mean performance improvements when more years of data are used.

With a historical input feature, the benefit from further data will also depend

on the likelihood of repeated blockage locations and for how long the effect lasts.

The benefit of models with a historical input feature over those without would sug-

gest the likelihood of repeated blockage locations. The length of the effect was

interrogated using the initial part to the ROC curves. All of the decision trees

with a historical input feature have their first split as this feature. For the Win-

dowing experiment all of the models are also trained and tested on the same

datasets. The only change is the amount of data forming the input feature, al-

lowing a comparison of the effect that this has. As more years of incident data

are used, there will be more incidents and a greater proportion of sewers which

have blocked in this period. This will increase the length of the initial part to the

86



curve. The height of this initial part to the curve will indicate the proportion of

blockages occurring on sewers which have previously had blockages (in the time

period of the input feature). If the historical incident data provided the same ex-

planatory capability, then the gradient would be expected to stay the same. The

proportion of repeated blockages would remain the same, even as the proportion

of sewers suffering incidents increases. The values of these proportions have

been calculated for comparison. As the number of years is increased from 2 to 4

to 6, the proportion of sewers suffering incidents increases from 2.5% to 4.2% to

6.1%. However, the proportion of these sewers suffering more than one blockage

decreases from 14% to 12% to 11%. This shows that the sewers suffering block-

ages more recently have a higher proportion of repeated locations. This indicates

that the more recent incidents better explain the likelihood of blockage than those

less recent. The better performance of the more recent data could be due to a

greater likelihood of the effect remaining. If the likelihood of a repeated block-

age is because of customer behaviour or sewer defects then the more recent the

incident, the more likely it is that this effect remains.

It may also be possible to derive further input features using differing amounts

of historical incident data, which would add further explanatory capability. This

could, for example, use all available historical data but weight more recent data

more highly.

4.2.3 Validation

Survey Results

Figure 21 shows the ROC curves from the survey results, showing the output

from the decision trees and the historical blockage rate. The results show simi-

lar and generally poor performance for both methods. Although both show best

performance for the highest likelihood sewers.

The AUC for the decision tree output is 0.52, compared to 0.5 for the historical

blockage rate. At the highest likelihood end of the curve, there is some deviation

from 45◦. Beyond this, the historical blockage rate is slightly worse than random
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(a) Full ROC
(b) ROC curve for the initial part of the curve

Figure 21: ROC curve constructed using the survey results and comparing the
output from the models to the historical blockage rate.

and the decision tree output slightly better than random. The dataset used to

derive the results contains a survey of only 109 sewers, giving a small dataset

for evaluating performance. The poorer performance may also result from the

definition of a blockage found. From the survey data, issues which required an

operational response were defined as blockages. This defines the build up of

material as being the issue, rather than structural damage to the sewer. These

operational responses will include blockages which would have caused issues

and been recorded for regulatory return and partial blockages which wouldn’t

have caused an issue and been cleared without any intervention. This will mean

the definition will vary between the incident used to build the models and calculate

the historical blockage rate and the incidents to which they are being tested.

Incidents 2014-5

Figure 22 shows the gain curves produced for each incident type using the three

likelihood scores derived (described in section 4.1.3). The results show good

performance for blockages and flooding, with poorer performance for pollution

incidents. In general, the adjusted likelihood score shows the best performance
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(a) Gain curve for blockages (b) Gain curve for flooding incidents

(c) Gain curve for pollution incidents

Figure 22: Gain curves showing the performance of each of the derived likelihood
scores on the three types of incidents occurring.

from the three. The adjusted likelihood score is made up of the combination of

the historical blockage rate and the outputs from the decision trees.

For blockages and flooding, the likelihood scores show good performance for

the prevention of incidents. The graphs show a steep initial part to the curve with

the curves maintaining divergence from the 45◦ for the remainder of the curve.

The steep initial part shows good performance for the highest likelihood sew-

ers, those most likely to be surveyed by WaSCs. For pollutions, the curve again

shows a steep initial part, suggesting good prevention for the highest blockage
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likelihood sewers. For the remainder of the curve the model outputs show poor

performance. The historical blockage rate provides no further explanatory infor-

mation due to the majority of pollutions occurring on sewers with no history of

blockage. The random selection of sewers to form the remainder of the curve in

the blockage rate output outperforms the other two outputs. While blockages are

more likely to occur on smaller diameter sewers near customers’ homes, pollu-

tion incidents are more likely to occur on sewers away from homes and closer to

watercourses. Flooding incidents are also likely to occur near customers’ homes,

which may help explain this better performance.

Comparing the scores used, the adjusted likelihood score is the best perform-

ing. For blockages, the initial part of the curve shows better performance for

the historical blockage rate, while the later part shows better performance for the

output from the models. The adjusted likelihood score gives the performance

benefits of each, matching the historical rate initially and then out-performing the

model outputs. For flooding, all outputs show similar performance in the initial

part of the curve. In the later part, the decision tree model shows the best perfor-

mance, followed by the adjusted likelihood score and historical blockage rate. For

pollutions, the initial part of the curve shows all three outputs with similar perfor-

mance. For the later part none of the outputs perform very well. The remainder

of the historical blockage rate is based on the random selection of sewers. The

other two measures show performance plateauing and then performing worse

than random. Using blockage and flooding incident performance, which would

be best predicted from blockage likelihood models, the adjusted likelihood score

gives the best performance. The score matches the historical blockage rate in the

early part of the curves and then shows performance around that of the model

outputs for the remainder of the curve. This result also demonstrates the efficacy

of the blockage history in predicting blockages, especially for the highest likeli-

hood sewers. It also suggests potential for deriving further explanatory capability

from the historical blockage rate.
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Incident Prevention Estimation

The current levels of surveying for DCWW are around 30km per year, around

0.1% of the network. Using the gain curves this would give blockage prevention

of around 3%. Given the very small proportion of the network being surveyed,

this represents very good performance from the models.

4.3 Chapter Summary

This chapter investigated the use of ensemble techniques and the derivation of

a historical input feature. The aim was to improve the performance of the sewer

level models from Chapter 3. For the ensemble models, individual models were

produced by taking a selection of input features. Different methods of selecting

the input features, combining the models’ outputs and different numbers of input

features were investigated. For the historical input feature, the effect of an input

feature and the number of years of historical data were investigated. The out-

puts from the models were then validated using a further dataset of incidents and

survey results. This allowed comparison of the model outputs and the historical

blockage rate for the different types of incidents, and validation of the model’s abil-

ity to prevent blockages. The ensemble techniques showed little improvement in

performance. Most models showed no improvement while those that did showed

greater overfitting to the training dataset. More years of incident data were not

found to influence model performance but the inclusion of a historical input fea-

ture showed an improvement in performance, especially for the highest likelihood

sewers. The validation showed that a combination of the historical blockage rate

with the output from the decision trees gave the best predictive performance, per-

forming well for blockage and flooding incidents. The next chapter gives an overall

summary and the conclusions from this thesis, and makes recommendations for

future work.

91



Chapter 5

Summary and Conclusions

5.1 Summary

5.1.1 Decision trees - Sewer Level

Decision trees were used to produce models of the likelihood of blockage at a

sewer level. Data on sewers formed the inputs to the models while data on

blockages formed the output being predicted. The inputs to the models included:

sewer characteristics such as diameter, material and length, property locations,

the types and ages of properties and derived variables such as sewer velocity.

The models predicted a blockage flag indicating whether a sewer had blocked

in the period of historical data available. Models for different subsets of the net-

work and for the different causes of blockages were built using Classification and

Regression (CART) and C5.0 decision trees. A number of relatively accurate

blockage prediction models were produced. These demonstrate the efficacy of

using decision trees for finding patterns in large datasets, providing further under-

standing of the most useful explanatory factors and allowing the prioritisation of

proactive maintenance. Some of the basic sewer characteristics such as length,

diameter, gradient, combined with property data, provide good explanatory ca-

pability in these models. The appearance of sewer velocity in the decision trees

also demonstrates the benefits from infilling the gradient and combining this with

diameter. The models of the different blockage causes are affected by the in-

consistency in the data. The models are inconsistent with some showing poor
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performance or overfitting to the training dataset. However, some models do per-

form better and derive useful relationships for predicting that cause of blockage.

This suggests that if a more consistent dataset were available, it may be possible

to produce good models of the different causes of blockages. This would help

inform the factors influencing these different mechanisms.

5.1.2 Decision trees - Area Level

Models were developed at an area level from the aggregation of the sewer level

data. Different geographical areas were investigated for their similarity to areas

of proactive maintenance and consistency of sewer length. Postcode formed

the initial groups, with larger postcodes broken up and smaller ones combined.

The input variables to the sewer level models were aggregated to an area level.

The blockage flag, initially predicted, formed a relative blockage proportion for

each group. CART trees were produced for different thresholds in this continuous

measure. The results showed limited benefit from the geographical aggregation,

with similar performance achieved by the sewer level models. Given the greater

spatial resolution of the sewer level and similar performance, these models are

less beneficial.

5.1.3 Decision trees - Ensembles

Ensemble techniques produce a number of individual models, the outputs from

which are combined into a single output. By maximising the performance of the

individual models and minimising the correlation between them, the best per-

forming models are produced. To evaluate the benefit from these techniques in

this application, sewer level models for the public, combined subset of the net-

work were developed. CART trees predicted the blockage flag, with each tree

produced using a selection of the available input variables. Different methods

of selecting the input variables, combining the outputs and the number of inputs

were investigated. The results showed limited benefit from the ensembles. Most

models were poorer than those of the original sewer level models. Of those which
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were better most showed greater overfitting to the training dataset.

5.1.4 Decision trees - Historical Input Feature

A historical input feature based on a sewer’s history of blockage was investigated.

Different experiments evaluated the benefit of a historical input feature and the

effect of the number of years of incident data. CART decision trees were used to

produce models for the public part of the network. The historical input feature was

used in addition to the variables used in the sewer level models, with a blockage

flag predicted. For models with the input feature, there was improved performance

overall and particularly for the sewers with the highest likelihood of blockage. The

number of years of available data had little influence on performance. The more

recent blockage history gave greater explanatory capability than the less recent

history.

5.1.5 Validation

Performance was validated using an existing dataset of survey results and further

datasets of incidents. The outputs from the best decision tree models, a historical

blockage rate and combination of the two were compared. Gain curves were pro-

duced for blockage, flooding and pollution incidents comparing the three outputs.

The outputs did not perform well on the survey results, the outputs deviating little

from random. However, the outputs did perform well for predicting incidents, par-

ticularly blockage and flooding. The combination of the historical blockage rate

and model output predicted these incidents best.

5.2 Conclusions

The following are the conclusions from this thesis:

• Decision trees gave relatively accurate models on this real-world data and

informed which factors influence blockages.
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• Validation using existing survey results and further datasets of incidents

demonstrated the potential of the models to prevent blockages.

• Models including basic sewer characteristics, property information and sewer

blockage history showed good accuracy, particularly for the highest likeli-

hood sewers.

• A sewer’s blockage history is a strong predictor of future blockage likelihood.

This is particularly beneficial for identifying the sewers most likely to block.

The use of blockage history has not been widely investigated within the

literature.

• A sewer’s more recent blockage history better predicts the likelihood of

blockage.

• Sewer velocity influences the likelihood of blockage more than gradient

alone. This is based on gradient data which has been heavily infilled. How-

ever, the influence of sewer velocity also shows the benefit of this infilling.

• Models of the different causes of blockages can be developed but a consis-

tent dataset must be available for sufficient accuracy to be achieved.

• An area level approach could be useful for identifying blockage hotspots and

areas for WaSCs to prioritise but the aggregation to an area level does not

automatically improve predictions.

• Ensembles have been widely used to improve model performance but no

benefit was found in their application in this thesis.

5.3 Future Work Recommendations

The following are the recommendations for future work:

Further investigation of aggregation methods The aggregation could be: al-

ternative geographical areas or a system of grouping joined parts of the network
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together. A different geographical area may better group sewers. Grouping based

on network connections would ensure that sewers in the same aggregated group

are connected. Groups could also be separated at major changes in sewer char-

acteristics to give groups with more consistent characteristics.

Further investigation of historical input features The investigations conducted

showed the explanatory capability of blockage history and the greater capability of

the more recent history. However, it may be possible to derive further explanatory

capability from the inclusion of all of the blockage history, separated into periods

of more and less recent history.

Inclusion of sewer condition grades Sewer condition grades give informa-

tions which is believed to highly influence the likelihood of blockages. The possi-

bility of its inclusion is worth further investigation. This could be the evaluation of

explanatory capability on a smaller area with good coverage of this information.

Alternatively, a method of estimating the condition grade could be developed, or

taken from existing studies.

Investigation of different blockage causes Models of the different causes of

blockages would give greater understanding to the factors influencing these spe-

cific mechanisms. A more consistent dataset could be sourced and used to in-

vestigate this. These models could also be combined into an ensemble model

predicting the overall likelihood of blockage. This would give an overall likelihood

and a breakdown of likelihood by cause.

Inclusion of further dynamic factors There are likely to be temporal factors

which influence the likelihood of blockage. These could be rainfall, seasonality or

previous occurrence of blockages. These factors may influence different sewers

to different extents. This may improve the prediction of blockage likelihood and

could be used to predict at a more detailed temporal resolution, for example for a

given month.
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Prediction of blockage rate The models developed in this thesis all predict

a blockage flag based on whether a sewer has blocked. However, predicting a

blockage rate would further inform the magnitude of the likelihood.

Application to another water company This thesis describes a process which

could be applied to the datasets of another water company. The main datasets

used are those of the sewer characteristics, property ages, property locations and

incidents, which could be sourced for other areas of the country. The datasets

could be prepared and missing data infilled for important variables creating a

dataset for modelling blockages or incidents like flooding and pollution. A histori-

cal input feature would be recommended, derived in the manner described here.

Decision trees have been shown to perform well in this application: accurately

predicting a likelihood of blockage and informing the important factors related to

blockages. The validation approach should then help demonstrate the perfor-

mance of the models in predicting future blockages and the benefits provided

from this.
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Appendix A

Distribution of Input Variables
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Figure 23: Distribution of input variable for: sewer ownership

Figure 24: Distribution of input variable for: Urban Rural Flag

Figure 25: Distribution of input variable for: Property Basement Flag
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Figure 26: Distribution of input variable for: CCTV Flag

Figure 27: Distribution of input variable for: Sewer Shape

Figure 28: Distribution of input variable for: Backdrop Flag
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Figure 29: Distribution of input variable for: Sewer Criticality

Figure 30: Distribution of input variable for: Sewer Function

Figure 31: Distribution of input variable for: Sewer Type
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Figure 32: Distribution of input variable for: Pipe Material

Figure 33: Distribution of input variable for: sewer diameter

Figure 34: Distribution of input variable for: sewer length

106



Figure 35: Distribution of input variable for: Gradient

Figure 36: Distribution of input variable for: Property Density

Figure 37: Distribution of input variable for: Food Producers
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Figure 38: Distribution of input variable for: Construction Decade

Figure 39: Distribution of input variable for: Catchment Area

Figure 40: Distribution of input variable for: Catchment Property Count
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Appendix B

Sewer Dataset - Data Quality Analysis
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Table 12: Table showing the fields present within the sewer dataset, giving the information about the field and the categories present within
it and a measure of the amount of missing and invalid data.
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Appendix C

Sewer Level Models - Blockages by Cause -

Decision Trees and ROC curves
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 41: Results obtained from the models for blockages due to silt.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 42: Results obtained from the models for blockages due to nappies, wipes
and rags.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 43: Results obtained from the models for blockages due to fat, oil and
grease (FOG).
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 44: Results obtained from the models for blockages due to debris.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 45: Results obtained from the models for blockages due to ’other causes’.
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Appendix D

Area Level Models - Decision Trees and ROC curves
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 46: Results obtained from the area level models, using a threshold in the
relative blockage proportion of 1.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 47: Results obtained from the area level models, using a threshold in the
relative blockage proportion of 0.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 48: Results obtained from the area level models, using a threshold in the
relative blockage proportion of 4.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 49: Results obtained from the area level models, using a threshold in the
relative blockage proportion of 6.
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(a) Decision Tree, showing the top four layers of the tree.

(b) ROC curve

Figure 50: Results obtained from the area level models, using a threshold in the
relative blockage proportion of 8.
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Appendix E

Historical Input Feature - Decision Trees
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(a) Decision tree for model 1, built using two years of data, including an input feature

Figure 51: Decision trees produced using a historical input feature.
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