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ABSTRACT

Graphene and layered two-dimensional (2D) materials have set a new paradigm in

modern solid-state physics and technology. In particular their exceptional optical and

electronic properties have shown great promise for novel applications in light detec-

tion. However, several challenges remain to fully exploit such properties in commercial

devices. Such challenges include the limited linear dynamic range (LDR) of graphene-

based photodetectors (PDs), the efficient extraction of photoexcited charges and ulti-

mately the environmental stability of such atomically-thin materials.

In order to overcome the aforementioned limits, novel approaches to tune the prop-

erties of graphene and semiconducting HfS2 are explored in this work, using chemical

functionalisation and laser-irradiation. Intercalation of graphene with FeCl3 is shown

to lead to a highly tunable material, with unprecedented stability in ambient condi-

tions. This material is used to define photo-active junctions with an unprecedented

LDR via laser-irradiation. Intercalation with FeCl3 is also used to demonstrate the

first all-graphene position-sensitive photodetector (PSD) promising for novel sensing

applications. Finally, laser-irradiation is employed, to perform controlled oxidation

of ultra-thin HfS2, which leads to induced strain in the material and a consequent

spatially-varying bandgap. Such structure is used to demonstrate, for the first time,

efficient extraction of photogenerated carriers trough the so-called “charge-funnel” ef-

fect, paving the way to the development of ultra-thin straintronic devices.
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1
INTRODUCTION

In 1959, in his famous lecture entitled There’s plenty of room at the bottom, Richard P.

Feynman envisaged that the ability to create structures at the atomic and molecular

scale, to manipulate and to control their arrangement, would have been the ultimate

way to access novel physical properties of materials and to store information1. Since

then, the field of nanotechnology thrived and, nowadays, graphene2 and layered two-

dimensional (2D) materials3 are setting a new paradigm in nano-scale science and

technology.

The interaction of light with matter is one of the most important topics in modern

solid-state physics: the development of the theory of optical properties of materials had

a striking effect on applications and devices. Modern technology, from light bulbs to

mobile phones, strongly relies on the combination of optical and electrical properties of

materials. Presently, optoelectronic applications are largely based on inorganic semi-

conductors such as Si, GaAs, AlGaAs, GaP and InP. Each of these materials is used

in different devices such as solar cells, photodetectors (PDs), light emitting devices

(LEDs), lasers and optical modulators. Some of these devices need to work in a very

broad frequency range, others need to be sensible only to a very narrow band: therefore

the properties of the materials need to be tailored in accordance to the application.

This tailoring has currently reached a limit due to technological and physical limits,

such as miniaturization, power consumption and speed4.

Such limits started to fall with the advent of graphene, thanks to the realisation of

new and exciting applications in optoelectronics5, plasmonics6, telecommunications7,

solar energy harvesting8 and sensing9. Graphene also pushed forward the field of

wearable and flexible electronics and of the so-called “internet of things”10. All these

1
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discoveries rely on the extraordinary properties of this material such as broadband ab-

sorption and field effect tunability11. However, the lack of a bandgap and the intrinsic

low absorption of graphene still present challenges for its use in practical applications.

To this end, chemical functionalisation12, that is the attachment of chemical species

on the surface of graphene, has been proposed as a new route to engineer physical

properties at the nano-scale and to overcome the aforementioned limits. In partic-

ular, intercalation with FeCl3
13 has already shown good performance in a range of

applications14;15 and resilience to ambient conditions16.

Alongside graphene, atomically-thin layered semiconducting transition metal dichalco-

genides (TMDs)17 have shown great versatility and promising applications in electron-

ics and optoelectronics18. TMDs are compounds with chemical formula MX2, where

M is a transition metal from group IV-B, V-B or VI-B, and X is a chalcogen (S, Se

or Te). The crystals have a lattice structure of the form X-M-X, with the chalcogen

atoms disposed in hexagonal planes, where layers are held together by van der Waals

forces17. Such materials have been known for decades in bulk form19, but only in recent

years the isolation of few- and single-layers allowed to fully exploit their unique electri-

cal and optical properties. Such properties include: layer-dependent indirect-to-direct

bandgap transition20, strong optical anisotropy21 and valley dichroism22. However,

several challenges remain for the use of such semiconductors in real applications, such

as the lack of efficient extraction of photogenerated carriers, low quantum yield due to

strong excitonic effects23 and, ultimately, the limit imposed by the principle of detailed

balance in p-n junction devices24.

In this work novel photodetectors based on functionalised graphene and semicon-

ducting HfS2 are reported, addressing the aforementioned limits in order to push the

field forward. After a brief review of the fundamental properties of graphene and TMDs

(chapter 2), such as band structure, optical and electronic properties, the most rele-

vant techniques for the characterisation of these materials are reviewed. These include

Raman and absorption spectroscopy, scanning photocurrent microscopy (SPCM) and

transport measurements and atomic force microscopy (AFM) (chapter 3). During the

investigations reported in this thesis, a system for the characterisation of optoelec-

tronic devices based on graphene and 2D materials was developed and characterised

and its working principles and implementations are detailed in section 3.5. A study

of FeCl3-intercalated graphene is presented in chapter 4, including the most important
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results related to the characterisation of this material using non-destructive techniques.

Intercalated graphene is then used in two types of PDs: a purely photovoltaic (PV)

laser-written photoactive junction (chapter 5) and a position-sensitive detector (PSD)

based on hexagonal single-domains of chemical vapour deposition (CVD)-grown FeCl3-

intercalated graphene (chapter 6). In the former case an unprecedented extended linear

dynamic range (LDR) is reported for the first time in a purely PV graphene-based pho-

todetector (PD). In the latter case, the first application of single-domain graphene for

PSD is demonstrated. In both works, the use of FeCl3-intercalated graphene demon-

strates the great versatility of this functionalisation technique, which goes beyond the

most conventional doping technique of electrostatic gating. Finally, a study of laser-

assisted oxidation in ultra-thin HfS2 is presented (chapter 7). This technique is used to

induce strain in the HfS2 which results in a spatially-varying bandgap. Such structure

leads to the so-called “charge-funnel” effect, which is measured and demonstrated in a

photodetector configuration for the first time, opening a new door to the development

of ultra-thin straintronic devices.



BIBLIOGRAPHY 4

BIBLIOGRAPHY

[1] Richard P. Feynman. There’s plenty of room at the bottom. Engineering and Science, 23(5):22–

36, 1960.

[2] A. K. Geim. Graphene: Status and prospects. Science, 324(5934):1530–1534, 2009.

[3] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S.

Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat

Nano, 7(11):699–712, Nov 2012.

[4] Y. Taur. Cmos design near the limit of scaling. IBM Journal of Research and Development,

46(2.3):213–222, March 2002.

[5] F. H. L. Koppens, T. Mueller, Ph Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini. Pho-

todetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nano,

9(10):780–793, 2014.

[6] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao,

M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and

D. N. Basov. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature,

487(7405):82–85, 2012.

[7] Thomas Mueller, Fengnian Xia, and Phaedon Avouris. Graphene photodetectors for high-speed

optical communications. Nat Photon, 4(5):297–301, 2010.

[8] Chang-Hua Liu, You-Chia Chang, Theodore B. Norris, and Zhaohui Zhong. Graphene photode-

tectors with ultra-broadband and high responsivity at room temperature. Nat Nano, 9(4):273–

278, 2014.

[9] Chang Oh Kim, Sung Kim, Dong Hee Shin, Soo Seok Kang, Jong Min Kim, Chan Wook Jang,

Soong Sin Joo, Jae Sung Lee, Ju Hwan Kim, Suk-Ho Choi, and Euyheon Hwang. High pho-

toresponsivity in an all-graphene p-n vertical junction photodetector. Nature Communications,

5:3249, 2014.

[10] A. I. S. Neves, T. H. Bointon, L. V. Melo, S. Russo, I. de Schrijver, M. F. Craciun, and H. Alves.

Transparent conductive graphene textile fibers. Scientific Reports, 5:9866, 2015.

[11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,

and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306:666, 2004.

[12] M F Craciun, I Khrapach, M D Barnes, and S Russo. Properties and applications of chemically

functionalized graphene. Journal of Physics: Condensed Matter, 25(42):423201, 2013.

[13] Ivan Khrapach, Freddie Withers, Thomas H. Bointon, Dmitry K. Polyushkin, William L. Barnes,

Saverio Russo, and Monica F. Craciun. Novel highly conductive and transparent graphene-based

conductors. Advanced Materials, 24(21):2844–2849, 2012.

[14] Thomas H. Bointon, Gareth F. Jones, Adolfo De Sanctis, Ruth Hill-Pearce, Monica F. Craciun,

and Saverio Russo. Large-area functionalized CVD graphene for work function matched trans-

parent electrodes. Scientific Reports, 5:16464, 2015.

[15] Elias Torres Alonso, George Karkera, Gareth F. Jones, Monica F. Craciun, and Saverio Russo.



5 BIBLIOGRAPHY

Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene elec-

trodes. ACS Applied Materials & Interfaces, 8(26):16541–16545, 2016.

[16] Dominque J. Wehenkel, Thomas H. Bointon, Tim Booth, Peter Böggild, Monica F. Craciun, and
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2
THEORETICAL BACKGROUND

In this chapter the most relevant theoretical concepts for the understanding of the

following chapters are reviewed. The chapter opens with an overview of the crystal

structure of graphene (section 2.1.2), followed by a description of its electronic prop-

erties in section 2.1.3, with particular attention to the band structure and density of

states of mono-layer and few-layer graphene (sections 2.1.4 and 2.1.5). The transport

properties of graphene, in the absence of magnetic fields, are reviewed in section 2.1.6.

As this work focuses on the interaction of light with 2D materials, the optical proper-

ties of graphene are of crucial importance and they are reviewed in section 2.2. Finally,

the chapter closes with an overview of transition metal dichalcogenides (TMDs) with

particular focus to the basic electrical and optical properties of HfS2 (section 2.3).

2.1 GRAPHENE

Graphene is made of a single layer of carbon atoms arranged in an honeycomb crystal

structure which form a planar structure considered to be effectively two-dimensional

(2D). In 2004, Geim and Novoselov isolated graphene on a SiO2 substrate1 and mea-

sured its extraordinary electrical properties for the first time in a transistor configura-

tion.

2.1.1 Brief history

The word “graphene” has been used for the first time2 in 1987 to describe a mono-

atomic (1 atom thick) layer of graphite as one of the constituents of graphite interca-

lation compounds (GICs). Graphite is an abundant material on Earth (in 2013 the

9
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world production of natural graphite was estimated to be 1110000 tons3), known as a

mineral for more than 500 years and employed, since the industrial revolution, in dif-

ferent sectors of industry for multiple applications, such as: refractory coatings, brake

linings and lubricants and many more4.

The word “graphene” has been also used in the description of carbon nanotubes

(CNTs) and of thin films of graphite which have been growth epitaxially upon different

substrates since 19705. Although “epitaxial graphite” is made of a 1 atom thick hexag-

onal crystal lattice of sp2-hybridized carbon atoms, the strong interaction between the

substrate and the layer hides the peculiar properties of graphene.

The forces between carbon atoms in graphite are highly anisotropic, in fact those

between adjacent basal planes are about two orders of magnitude smaller than those

between neighbouring atoms in the same plane. This property allows facile cleavage of

graphite from its [001] faces6;7, which suggested that a single layer of graphite could

be mechanically “exfoliated” from a bulk crystal. Attempts began in 1990, but it

was not possible to find films thinner than 50-100 layers until 2004, when Geim and

Novoselov from the Manchester University succeeded in isolating one mono-atomic layer

of graphite1 on top of a silicon dioxide SiO2 substrate. The two researchers succeeded

in doing so by employing the so-called “micro-mechanical cleavage” technique or, as

better known, “tape method”. The choice of SiO2 as substrate was crucial to allow

both the optical identification of monolayer graphene (MLG) and the measurement of

its electrical properties, as it will be shown later in this chapter.

Theoretical studies on graphene started in 1947 by Philip R. Wallace8 in order to

understand its electrical properties. After the first isolation, research in graphene, and

2D layered materials in general, has seen relentless growth9;10.

2.1.2 Crystal structure of graphite and graphene

Carbon is the fourth most abundant element in the solar system11. Its chemical prop-

erties make it the most common element in composites and at the base of any known

living form. It is present in different allotropic forms in the condensed state: the better

known are diamond, amorphous carbon and graphite. Graphite has a layered structure

of single planes of carbons arranged in an honeycomb crystal lattice.
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Figure 2.1: The sp2 hybridization of carbon. a, Schematic representation of the

atomic orbitals and associated electrons filling (green arrows) in the ground state and in

the sp2 hybrid orbitals. b, Spatial schematic representation of the in-plane sp2 (blue) and

out-of-plane 2pz (red) orbitals.

2.1.2.1 The carbon atom

Carbon is the sixth element in the periodic table and has two stable isotopes: 12C

and 13C with natural abundances of 98.9% and 1.1% respectively12. Carbon has six

electrons arranged in the atomic orbitals 1s2, 2s2 and 2p2. Since the difference in

energy between the 2s and 2p orbitals is much lower than their bond energy, their

wave functions can combine in a process called hybridization, forming the three hybrid

orbitals sp, sp2 and sp3.

The sp hybridization occurs when carbon is bound to two other atoms (two double

bonds or one single plus one triple bond). This results in a linear arrangement of atoms

with an angle of 180° between the bonds. This hybridization is not common in solid

crystals.

When carbon is bonded to four other atoms, the hybridization is sp3 and the ar-

rangement is tetrahedral with an angle of 109°27′ between the bonds. This gives rise

to the tetrahedral structure of diamond, where each atom forms four σ bonds with the

neighbours.

A carbon atom bound to three atoms (two single bonds, one double bond) is sp2

hybridized and forms a flat trigonal arrangement with 120° angles between the bonds.
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Figure 2.2: Graphene’s crystal lattice. a, Crystal lattice in real space. Carbon atoms

are arranged at the vertices of regular hexagons forming a honeycomb crystal lattice which

can be decomposed into two triangular Bravais sub-lattices, A (blue) and B (red). a = 1.42 Å

is the C-C distance and a0 = 2.46 Å is the length of the primitive vectors a1 and a2. The unit

cell is highlighted in green. b, Reciprocal lattice in k-space, shaded green area represents the

FBZ with the high symmetry points Γ, M, K, K’ and reciprocal unit vectors b1 and b2.

In this case the orbital 2pz does not combine with the others, as shown in figure 2.1. The

other orbitals forms σ bonds in the hexagonal structure of graphite. The 2pz orbitals

of neighbouring atoms form π bonds, which allow a strong electron delocalisation.

2.1.2.2 The crystal lattice

In graphene, the carbon atoms are arranged at the vertices of regular hexagons, as

shown in figure 2.2a, in the so-called “honeycomb crystal structure”. The Bravais

lattice is trigonal and the unit cell is a rhombus containing two atoms (A and B)

defined by the primitive vectors

a1 =
a

2

(
3,
√

3
)

and a2 =
a

2

(
3,−
√

3
)
, (2.1)

where a = 1.42 Å is the inter-atomic distance and a0 =
√

3a = 2.46 Å is the lattice

constant. The reciprocal lattice is also trigonal and described by the primitive vectors

b1 =
2π

3a

(
1,
√

3
)

and b2 =
2π

3a

(
1,−
√

3
)
, (2.2)
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Figure 2.3: Stacking order of graphite. a, Hexagonal, or AB-stacked, graphite: atoms

A of a plane are aligned with the atoms B of the nearest planes, while those B are aligned

with the centres of the hexagons of the nearest planes. Interlayer spacing is c0/2 = 3.35 Å b,

Rhombohedral, or ABC-stacked, graphite which can be considered as an extended stacking

fault in hexagonal graphite. Outline of the unit cells in green.

and the first Brillouin zone (FBZ) is hexagonal, as shown in figure figure 2.2b. Very

important high symmetry points in the graphene FBZ are K and K’, whose positions

are given by:

K =

(
2π

3a
,

2π

3
√

3a

)
and K′ =

(
2π

3a
,− 2π

3
√

3a

)
, (2.3)

as it will be discussed later, these points are associated with the peculiar properties of

graphene arising from its band structure. Amongst the six vertices of the FBZ only

two are not equivalent, the others are connected to one of them by a reciprocal lattice

vector G = mb1 + nb2, where m and n are integers.

Stacked planes of graphene form graphite which, in its natural form, contains a

large percentage (> 60%) of hexagonal, or Bernal -stacked, layers, where the second

layer of carbons is rotated by 60° with respect to the first one and then repeated. In

this way, the sublattices A of the two layers lie on top of each other, while the B ones

are aligned with the centres of the hexagons of the nearest planes, see figure 2.3a.

The distance between the planes is c0/2 = 3.35 Å. Up to 40% of natural graphite is

rhombohedral13, which has an ABCABC stacking sequence of the layers, as shown in
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figure 2.3b. This allotrope of graphite is thermodynamically unstable: it is produced by

shear deformation of hexagonal graphite and transforms progressively to the hexagonal

modification on heating above 1600 K. Other types of graphite include turbostratic

graphite14, where the single stacked planes are rotated by a certain angle with respect

to each other and artificially-made pyrolytic graphite, where some covalent bonding

between the planes is present due to the production process. The stacking order affects

the electronic properties of bulk graphite15 as well as the interlayer potential16, which

ultimately determines the ability to exfoliate single layers of graphene.

2.1.3 Band structure

The tight-binding model, proposed by Bloch in 192917, is an approach to the calcu-

lation of electronic band structure using an approximate set of wavefunctions which

are constructed as superposition of wavefunctions for isolated atoms located at each

atomic site. The method is closely related to the linear combination of atomic orbitals

(LCAO) method used in chemistry. Due to the translational symmetry of the crystal,

these wavefunctions must satisfy Bloch theorem18: they must reflect the translational

symmetry of the crystal. As a base to build the eigenfunction of the Hamiltonian it is

possible to take the set of functions:

Φ(v)
m (r;k) =

1√
N

∑
t

eik·rnvχ(v)
m (r − rtv), (2.4)

where N is the number of primitive cells in the crystal, χ
(v)
m (r− rtv) is the normalized

m-type atomic orbital wavefunction (for an isolated atom) centred on the atom v in

the cell t, pointed by the vector rtv. The Hamiltonian of the crystal can be written as:

H =
p2

2m
+
∑
t,v

V (a)(r − rtv), (2.5)

where V (a)(r − rtv) is the atomic potential centred at rtv. Solving the consistent

time-independent Schrödinger equation is equivalent to solving the secular equation:

det|Hmv,m′v′(k)− En(k)Smv,m′v′(k)| = 0, (2.6)
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Figure 2.4: Energy dispersion of graphene π bands. a, 3D plot of the energy dispersion

of graphene π bands in the FBZ calculated using equations (2.11) and (2.12) with t = −2.8

eV, s = 0.1 eV and εp = 0 eV. b, Particular of the Dirac cone at the K point.

where En(k) is the nth energy band in the point k, Hmv,m′v′(k) the matrix elements of

the Hamiltonian and Smv,m′v′(k) the elements of the superposition matrix, described

by:

Hmv,m′v′(k) = 〈Φ(v)
m (r;k)|Ĥ|Φ(v′)

m′ (r;k)〉,

Smv,m′v′(k) = 〈Φ(v)
m (r;k)|Φ(v′)

m′ (r;k)〉.
(2.7)

In graphene, in the low-energy bands, the index m corresponds to the 2pz orbital

of carbon8, while the index v stands for the two atomic sites A and B. The matrix

elements, in the first neighbours approximation, are given by:

HAA = HBB = εp,

HAB(k) = H∗BA(k) = t

[
eikxa + 2e−ikxa/2 cos

(√
3

2
kya

)]
≡ tf(k),

SAA = SBB = 1,

SAB(k) = S∗BA(k) = s

[
eikxa + 2e−ikxa/2 cos

(√
3

2
kya

)]
≡ sf(k),

(2.8)
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which can be re-written in matrix form as:

H(k) =

(
εp t f(k)

t f ∗(k) εp

)
, S (k) =

(
1 s f(k)

s f ∗(k) 1

)
, (2.9)

where the parameters εp, t (hopping) and s (overlap) are described as:

εp = 〈χpz(r − rA)| Ĥ |χpz(r − rA)〉 ,

t = 〈χpz(r − rA)| Ĥ |χpz(r − rB)〉 ,

s = 〈χpz(r − rA) | χpz(r − rB)〉 .

(2.10)

These parameters can be obtained from ab-initio calculations or from experimental

data. Usually εp = 0 eV in order to centre the bands on the K points. Typical values19

for t are between −2.5 and −3 eV, while s has values lower than 0.1 eV.

Solving equation (2.6) gives the two energy bands:

E±(k) =
εp ± t |f(k)|
1∓ s |f(k)|

, (2.11)

where E−(k) and E+(k) correspond to the so-called π and π∗ bands, respectively. The

value of |f(k)| is given by:

|f(k)| =

√√√√3 + 2 cos
(√

3kya
)

+ 4 cos

(
3

2
kxa

)
cos

(√
3

2
kya

)
. (2.12)

The energy dispersion for the two π bands, calculated using equations (2.11) and (2.12),

is shown in figure 2.4. These are degenerate in the K and K’ points. Since there are

two π electrons per unit cell (one belongs to the 2pz orbital of the A atom, the other

to the B atom), the valence band is full while the conduction band is empty and the

Fermi level lies in the degenerate point of the π and π∗ bands. This makes graphene a

semimetal, or a semiconductor with zero bandgap.

A further simplification is obtained by imposing the overlap parameter s = 0 in

order to study the bands in the neighbourhood of the K and K’ points. In this way the

bands are symmetric with respect to the Dirac points and their dispersion is given by:
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E±(k) = εp ± t |f(k)| . (2.13)

It is possible to expand the Hamiltonian H(k) = H(k + K(K ′)) in equation (2.9)

to the first order in kx and ky (where the momentum vector k is measured from the K

or K’ point) and obtain that f(k) ≈
√

3a(λkx − iky)/2~, where λ = ±1 in the vicinity

of K and K’ respectively. Therefore, the Hamiltonian can be rewritten as:

H(k) = ~vF

(
0 λkx − iky

λkx + iky 0

)
= ~vF(λσxkx + σyky), (2.14)

where we let εk = 0 and vF = 3 |t| a/(2~) ≈ 106m/s is the Fermi velocity, σi, i = x, y

are two Pauli matrices. The corresponding eigenvalues are given by:

E± = ±~vFk. (2.15)

Therefore, for small excitations above the Fermi level, the energy changes linearly with

momentum and it is determined only by one parameter, the Fermi velocity vF . This

linearity is highlighted in figures 2.4 and 2.5.

The eigenfunctions of the Hamiltonian in equation (2.14) are:

Φ
(K)
e,h (k) =

1√
2

(
exp(−iφk/2)

±exp(iφk/2)

)
, Φ

(K′)
e,h (k) =

1√
2

(
exp(iφk/2)

±exp(−iφk/2)

)
, (2.16)

where φk = tan−1(kx/ky) is the polar angle of the vector k. The Hamiltonian in

equation (2.14) is, therefore, a Dirac Hamiltonian for massless particles in which the

role of the speed of light c is replaced by vF ' c/300. This explains why we refer to K

and K’ as Dirac points, where the electrons act as massless Dirac fermions for which the

spin degrees of freedom are replaced by the degrees of freedom due to the sublattice,

known as pseudospin. In fact, the wavefunctions in equation (2.16) show how a rotation

of φk = 2π around the K point leads to a π phase change in the wavefunction, typically

known as Berry phase20. This phase is equivalent to the phase acquired by one electron

during an adiabatic rotation of 2π in a magnetic field, therefore the name pseudospin.
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Figure 2.5: Band structure and DOS of graphene. a, π-band diagram of graphene

calculated using equations (2.11) and (2.12) with t = −2.8 eV, s = 0.1 eV and εp = 0 eV.

EF = 0 eV, occupied (empty) states are in blue (red). b, DOS of graphene as a function of

E/t, calculated using equation (2.22). The divergences at E = ±t are Van Hove singularities.

Dashed line marks the linear region for small energy excitations around the K points.

2.1.4 DOS and Fermi Level

The Fermi wavevector kF for the conical bands described by equation (2.15), is linked

to the carrier density n and can be computed as:

n = gsgv

∫
E(k)=const

dk

(2π)2
=
gsgv
4π

k2F ⇒ kF =

√
4πn

gsgv
, (2.17)

where the factors gs and gv are the spin and valley degeneracy respectively (gv = 2 in

graphene, due to the not equivalent points K and K’). The Fermi level EF is therefore

related to n by:

EF = ~vFkF = ~vF
√
πn. (2.18)

In 2D systems the electronic density of states (DOS) is given by18:
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D(E) =
gsgv

(2π)2

∫
E(k)=const

dlE∣∣dE
dk

∣∣ , (2.19)

where the integral is computed on the line of k-space at constant energy. A simple

expression for the electronic DOS can be derived considering only small energies (E →
0). In this case the main contribution to the DOS comes from the points in the vicinity

of K and K’ (k→K). Therefore, using equation (2.15) the DOS results:

D(|E|) −−−→
k→K

2|E|
π~2v2F

. (2.20)

Therefore, D(E) scales linearly with E for E → 0. The DOS at E = EF can be

computed from equations (2.18) and (2.20):

D(EF ) =
2
√
n√

π~vF
, (2.21)

which shows that intrinsic (undoped) graphene has zero density of carriers. The appli-

cation of a gate voltage allows to shift EF inducing a tunable carrier density1 and will

be discussed in section 2.1.6.

A complete expression for the electronic DOS in MLG, in the nearest neighbour

approximation, can be found following the derivation by Hobson et al.21, as reported

by Katsnelson22:

D(|E|) =
2|E|
π2t


1√

χ(|E|/t)
F
(

4|E|/t
χ(|E|/t)

)
, 0 < |E|/t < 1

1√
4|E|/t

F
(
χ(|E|/t)
4|E|/t

)
, 1 < |E|/t < 3

, (2.22)

where F (ψ|k2) is the complete elliptic integral of the first kind:

F (ψ|k2) =

∫ π/2

0

dψ√
1− k2 sin2ψ

, (2.23)

and χ(x) is given by:

χ(x) = (1 + x)2 − (x2 − 1)
2

4
. (2.24)

Equation 2.22 is plotted in figure 2.5b, where the linear behaviour of D(E) for small
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excitations around the K points, described by equation (2.20), is highlighted and shown

to hold well for values of E/t < 0.5. The two infinite peaks at E = ±t have a

logarithmic asymptotic behaviour21:

D(|E|) ' 1

2π2
log

(
1

1− |E|/t

)
, |E| → t. (2.25)

These logarithmic divergences, associated with the saddle points at the M point in the

band structure (figure 2.5a), correspond to Van Hove singularities and are responsi-

ble for the optical properties of graphene at high energies, as it will be discussed in

section 2.2.

2.1.5 Bilayer and multilayer graphene

A stack of 2, 3 and > 3 layers are commonly referred to as bilayer graphene (BLG),

trilayer graphene (TLG) and few-layer graphene (FLG), respectively.

The electronic properties of BLG are particularly interesting and can be derived

using the same formalism used for MLG23;22 (see section 2.1.3). Figure 2.6a shows the

crystal structure of BLG in the Bernal stacking, as discussed in section 2.1.2.2. It is

possible to identify four main hopping processes, described by the hopping parameters

γi, i = 0, 1, 3, 4: γ0 = t represents the in-plane nearest-neighbour hopping, as in MLG;

γ1 is the interlayer hopping between two A sites; γ3 and γ4 represent the interlayer

hopping between two B sites and between one A and one B site, respectively. From

data on graphite24, γ0 = −2.8 eV and γ1 = 0.4 eV. For simplicity, the on-site energy

of the electrons residing on the A and B atoms can be fixed to be the same and

equal to zero. Within the interlayer nearest-neighbour hopping approximation22 the

Hamiltonian for BLG can be written as:

H(k) =


0 γ0 f(k) γ1 0

γ0 f
∗(k) 0 0 0

γ1 0 0 γ0 f
∗(k)

0 0 γ0 f(k) 0

 , (2.26)

where f(k) is given in equation (2.8) and the basis states are ordered as: {1A, 1B, 2A, 2B},
where the number indicates the layer and the letter the sublattice. Equation (2.26)

can be diagonalized giving the four eigenvalues:
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Figure 2.6: Band structure of bilayer graphene. a, Bernal (AB) stacked BLG.

γi, i = 0, 1, 3, 4 represent the different hopping parameters in the tight-binding model. b,

π-bands diagram of BLG calculated using equation (2.27) with parameters γ0 = −2.8 eV,

γ1 = 0.381 eV without (V = 0) and with (V = 0.28 eV) a voltage applied perpendicular to

the graphene layers. Occupied (empty) states are in blue (red).

Ei(k) = ±1

2
γ1 ±

√
1

4
γ21 + γ0|f(k)|2, (2.27)

where the two ± signs are independent. The spectrum in equation (2.27) is shown in

figure 2.6b. The first feature to be noticed is that two of the four bands touch in the K

and K’ points. Expanding equation (2.27) for p→ 0 (p = k −K(′)), in analogy with

equation (2.14), the low-energy dispersion is:

E1,2 = −γ1
2

(√
4λ2γ20p

2

γ21
+ 1± 1

)
≈ ±~p2

m∗
, (2.28)

where the effective mass is m∗ = |γ1|/(2v2F ) ≈ 0.054me and me is the rest mass of the

electron23. Therefore, BLG is a gapless semiconductor, as MLG, with a parabolic band

dispersion in the vicinity of the K (K’) point, which results in massive carriers with

effective mass m∗. The two other bands, at K (K’), are separated by a gap 2|γ1| and

play an important role in the optical properties and light scattering processes.

The application of a potential V across the planes of carbon atoms removes the

on-site energy symmetry between the A and B sublattices. In this case, the diagonal
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terms of the tight binding Hamiltonian cannot all be set to zero and an energy gap

opens in the energy dispersion of BLG25. More specifically, the Hamiltonian 2.26 takes

the form:

H(k) =


V/2 γ0 f(k) γ1 0

γ0 f
∗(k) V/2 0 0

γ1 0 −V/2 γ0 f
∗(k)

0 0 γ0 f(k) −V/2

 . (2.29)

Diagonalizing equation (2.29) gives the following eigenvalues:

Ei(k) = ±

√
γ20 |f(k)|2 +

γ21
2

+
V 2

4
±
√
γ41
4

+ (γ21 + V 2) γ20 |f(k)|2. (2.30)

The spectrum given by equation (2.30) is shown in figure 2.6b for a value of V = 0.28

eV in the vicinity of the K point, where the bands have a “Mexican hat” dispersion.

The first direct observation of a bandgap opening in bilayer graphene was reported by

Ohta et al.26 using angle-resolved photoelectron spectroscopy (ARPES).

The DOS of BLG can be easily computed for E → 0 from equation (2.19) and

equation (2.28):

D(|E|) −−−→
k→K

2m∗

π~2
, (2.31)

that is, the DOS is constant at small energies.

In the general case of multilayer graphene (n ≥ 2), an equation has been derived

by Wallace8 for an infinite sequence of carbon layers in the ABAB (Bernal) stacking

order. In this case, considering only γ0 and γ1 as the relevant hopping parameters, the

energy spectrum is given by8;22:

E(k, θ) = γ1cos(θ)±
√
γ20 |f(k)|2 + γ21cos2(θ). (2.32)

Here θ = 2kzc, where kz is the z-component of the wave vector and c is the interlayer

distance. In order to consider only N layers of graphene (N < ∞), the boundary

condition for which E(θ) = E(−θ) has to be applied, therefore equation (2.32) still

applies but with θ being a discrete number22:
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θn = (πn)/(N + 1), n = 1, 2, ..., N. (2.33)

Formally, equations (2.32) and (2.33), can be used to find the band diagram for an

arbitrary number of graphene layers in Bernal stacking. ForN = 2 (BLG), for example,

cos(θ) = ±1/2 and, therefore, equation (2.27) is recovered. For N = 3 (TLG) there

are six solutions to equation (2.32), with cos(θ) = 0,±1/
√

2:

E(k) =

±γ0|f(k)|,

±
√
2
2
γ1 ±

√
γ21
2

+ γ20 |f(k)|2,
(2.34)

where both conical (i.e. with a linear dispersion at k → K(′)) and parabolic bands

touching at K and K’ are found.

2.1.6 Transport properties: ambipolar effect and mobility

Owing to its gapless nature, graphene shows a strong ambipolar behaviour. The charge

carrier type (e.g. electron, e−, or hole, h+) and concentration can be changed with the

application of a gate voltage (Vg)
1. A typical field effect transistor (FET) device is

schematically depicted in figure 2.7a where a graphene layer is deposited on top of a

heavily doped (p or n) Si substrate capped with a layer of SiO2, which acts as dielectric

gate insulator. The application of a voltage Vg > 0 (figure 2.7a, top) to the Si gate

induces positive charges at the interface with the oxide; to maintain charge neutrality,

negative charges are induced at the other interface, that is, excess electrons will be

present in the graphene layer, injected from the contacts. Conversely, the application

of a voltage Vg < 0 (figure 2.7a, bottom) induces positive charges in the graphene layer,

leaving it depleted of electrons. It is possible to relate the gate voltage to the induced

charge concentration by1:

ni =
ε0εVg
q d

= αVg, i = e, h (2.35)

where ε0 and ε are the vacuum and gate oxide permittivities, respectively; d is the

thickness of the gate oxide and q is the electron charge. The subscript i is e for

electrons and h for holes. For a typical device fabricated on 280 nm SiO2 the value

α = 7.698·1010 cm−2 V−1. For values of Vg ≈ 100V it is possible to reach concentrations
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Figure 2.7: Ambipolar effect in graphene FET. a, Schematic of a graphene FET on

Si/SiO2 substrate. A positive, Vg > 0, gate bias induces excess electrons in the graphene

channel (top), while a negative, Vg < 0, one induces holes (bottom). b, Resistivity, ρsd, as

a function of Vg for a typical graphene FET (inset). The CNP is at Vg = VCNP = 10 V,

indicating hole-doping of the graphene layer with a charge concentration nh ≈ 8 · 1011 cm−2

(see main text). The illustrations represent the filling of the π bands in the vicinity of the K

point at different Vg. c, Conductivity, σsd, as a function of Vg for the same device in b. The

hole mobility, µh, can be extrapolated from a linear fit (solid line).

of the order of n ∼ 1013 cm−2.

Thanks to equation (2.18), therefore, the application of a gate voltage allows the

shifting of the Fermi level of graphene between the valence and conduction bands.

The absence of a bandgap makes this transition smooth, as shown in figure 2.7b. In

a pristine, undoped, graphene sample the Fermi level lies at the charge neutrality

point (CNP), where the two π bands touch and there are no states available, see

equation (2.21); at this point the resistivity ρsd has a maximum. In general, however,

contamination due to exposure to ambient conditions and fabrication processes induce a

certain level of doping, due to charge-transfer between the contaminants and the surface

of graphene1;9;27. In this case the CNP appears at Vg 6= 0, as shown in figure 2.7b,

where VCNP = 10 V. A positive, VCNP > 0, indicates p-doping of graphene, that is, at

Vg = 0 there is an excess concentration of holes nh. Conversely, a negative, VCNP < 0,

indicates n-doping.

The conductivity of graphene, at high enough charge concentrations, follows the
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standard equation given by the Drude model1;28:

σi =
1

ρi
= ni q µi, i = e, h, (2.36)

where µi is the mobility of the charge carriers. Combining equations (2.35) and (2.36),

a linear dependence of the conductivity with applied gate voltage is found:

σi = α q µi Vg, i = e, h. (2.37)

This linear dependence is shown in figure 2.7c, where the linear fit of the experimental

points gives a value of the mobility µh = 1800 cm2V−1s−1.

The electronic quality of graphene is remarkable: electrons and holes can cover

sub-micron distances without being scattered, even at room temperature1. In fact, the

carrier mobility can reach values29 as high as 250000 cm2V−1s−1 and ballistic transport

can be observed in µm-scale samples30. The mobility in graphene does not depend on

the temperature in the range 10 − 100 K, suggesting that the dominant mechanism

of scattering is due to defects31;32. At room temperature most samples obtained by

mechanical cleavage and deposited on top of a substrate show mobilities of the order

of µh = 2000 cm2V−1s−1. By improving the sample preparation through current an-

nealing33, values higher than 25000 cm2V−1s−1 are reached. Furthermore, the mobility

remains high even at high carrier concentrations and it is weakly influenced by chemical

doping34. For supported devices, the most common substrate material for graphene is

SiO2 which is known to limit the performance of such devices and obscures interesting

physics. This is thought to be caused by the roughness of the SiO2 substrates, which

induce corrugations in the graphene, as well as charge traps in the SiO2 which results

in inhomogeneous doping. In order to improve further the mobility it is necessary to

shield or remove completely the substrate. In fact, for suspended graphene samples

measured values of µ are as high as 250000 cm2V−1s−1 29;32. Recently, the growth of

high-quality hexagonal boron nitride (hBN) crystals35 allowed a major improvement in

the electronic quality of supported devices36. Encapsulation of graphene between two

layers of hBN allowed full insulation of graphene from the environment and screening

from the substrate, resulting in mobilities as high as 350000 cm2V−1s−1, even higher

that suspended devices37.
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2.2 OPTICAL PROPERTIES OF GRAPHENE

2.2.1 Absorption and transmittance

Graphene’s unique electronic properties produce an unexpected high opacity for an

atomic single layer. MLG, in fact has an absorption of ∼ 2.3% across the whole

spectrum, from far-infrared (FIR) to ultra-violet (UV) wavelengths38. This value is

a universal constant, related to the fine-structure constant α ≈ 1/137 only39. An

electromagnetic (EM) wave incident at normal angle on a free-standing MLG, with

electric field E(ω), where ω is the angular frequency, has an incident energy flux given

by:

Wi =
c

4π
|E(ω)|2 , (2.38)

where c is the speed of light in vacuum. Due to momentum conservation, the electronic

transition, excited by the incident photon, can be depicted as in figure 2.8a, where the

initial |i〉 and final |f〉 states have the same momentum. Therefore, the absorbed energy

flux is given by:

Wa = η~ω, (2.39)

where η is the quantum efficiency of the process, which can be derived using the Fermi’s

golden rule (FGR):

η =
2π

~
|M |2D(~ω/2), (2.40)

where D(~ω/2) = ω/π~v2f is the density of states of graphene at E = ~ω/2 and |M |2 =

|〈f |Hint |i〉|2 is the matrix element of the interaction Hamiltonian. The Hamiltonian

(2.14), in the presence of an EM field, can be re-written as:

H = ~vf σ̂ · k = vf σ̂ ·
(
k− q

c
A
)

= H0 +Hint, (2.41)

where the standard vector potential substitution ~k → ~k + qA/c is used, with A =

icE/ω vector potential. Therefore, the matrix element can be computed as:

|M |2 =
∣∣∣〈f | vf σ̂ · q

iω
E |i〉

∣∣∣2 =
1

8

v2fq
2

ω2
|E|2, (2.42)
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Figure 2.8: Optical transmittance of graphene. a, Schematic of a low-energy optical

excitation in graphene: an e−h pair is created by an incident photon of energy E = ~ω > 2EF,

where EF 6= 0 is the Fermi level. b, Measured optical transmittance of MLG graphene. Red

line marks the value T = 1 − πα ≈ 97.7%. c, Gate-tunable optical absorption: a photon

of energy E = ~ω < 2EF is not able to excite an optical transition due to Pauli blocking,

therefore making graphene transparent to photon energies < 2EF.

where the states |i〉 and |f〉 are given by equation (2.16) and both the spin and valley

degeneracy are considered. Using equation (2.39) and equation (2.40), thus, Wa =

q2|E|2/4~ and, therefore, the absorption of MLG is:

A =
Wa

Wi

=
πq2

~c
= πα ≈ 2.3%, (2.43)

where α = q2/~c ≈ 1/137 is the fine structure constant. Given that the reflectivity of

MLG is39 R� 1 the transmittance of MLG can be approximated as:

T = 1− A = 1− πα ≈ 97.7%. (2.44)

In figure 2.8b, the measured transmittance of MLG across the visible spectrum is

shown, with a value of ∼ 97.7% ± 0.5%. A similar derivation can be carried out for

BLG39, which gives A = 2πα, highlighting the fact that the absorption of graphene is

related to the gapless nature of the bands and the 2D nature of the carriers. Nair et

al.39 have shown that the absorption of graphene scales as A = nπα, where 1 ≤ n ≤ 5

is the number of graphene layers.
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It is also possible to calculate the optical transmittance of graphene by calculating

the conductance at frequency ω at EF = 0, as done in ref. 40:

G1(ω) =
πq2

ω
|v(ω)|2D(ω)

[
f

(
−~ω

2

)
− f

(
~ω
2

)]
, (2.45)

where G1 is the real part of the conductance, v(ω) is the velocity matrix element

between the initial and final state, D(ω) is the joint density of states and f(E) =

[exp(E/T ) + 1]−1 is the Fermi-Dirac distribution at temperature T . From equa-

tion (2.20) it can be seen that for small excitations D(ω) ∝ ~3ω/v2F and |v(ω)| ∝ vF ,

giving G1(ω) ∝ q2/~ at T = 0. Therefore, the optical transmittance is:

T (ω) =

(
1 +

2πG1(ω)

c

)−2
=
(

1 +
πα

2

)−2
≈ 1− πα, (2.46)

and it is independent on the frequency ω.

So far the situation of undoped, pristine graphene has been presented. Doping

induces changes in the optical properties of graphene, resulting in a gate-tunable optical

absorption38. As discussed in section 2.1.6, it is possible to modulate the concentration

of the charge carriers is graphene by applying a gate voltage. As a consequence, the

Fermi level EF is shifted according to equation (2.18). Therefore, as incorporated in

equation (2.45), transitions with energy ~ω < 2EF are suppressed (see figure 2.8c), this

results in a transparency window at energies < 2EF, while it does not affect energies

> 2EF, as shown experimentally in ref. 38.

2.2.2 Optical contrast

The high absorption per layer of graphene allows the identification of a single-layer of

this material when it is deposited on a suitable substrate. This is due to the contrast

that is created between the bare substrate and the portion covered by the graphene.

The standard substrate used to fabricate graphene-based devices is highly-doped Si

capped with a layer of thermally-grown SiO2, typically ∼ 300 nm thick (see also

section 2.1.6). This was, in fact, the first substrate on which MLG was identified1.

Figure 2.9a,b shows optical micrographs of flakes of MLG, BLG and TLG on such

substrate: it is remarkable that a single atomic layer has a contrast of ∼ 5% under

white light illumination. A simple model can be derived to explain the observed fea-
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Figure 2.9: Optical contrast of graphene. a, Optical micrographs and contrast mea-

surements of MLG (top), BLG and TLG (bottom) flakes on Si/SiO2 (290 nm), under white

light illumination. b, Optical contrast of MLG on Si/SiO2 substrate as a function of inci-

dent wavelength and oxide thickness, calculated using equation (2.48). c, Optical contrast

of different layers of graphene on Si/SiO2 under white light illumination and with a green

band-pass filter. Straight lines mark a slope of (5.0 ± 0.1)% and (8.0 ± 0.2)% per layer,

respectively.

tures41, starting by considering a stacked sequence of Si/SiO2/G/Air. The bottom Si

is treated as semi-infinite (in the vertical direction) with complex refractive index42

n3(λ), which is function of the incident wavelength λ. The SiO2 layer has thickness

d2 and refractive index43 n2(λ). The thickness of the graphene layer is d1 = 0.34 nm,

which corresponds to the extension of the π orbitals out of the plane44. The refractive

index of graphene can be chosen as n1 ≈ 2.6−1.3i, which is the same as graphite (since

the optical response of graphite, for normal incidence, is dominated by the in-plane

EM response) and it is independent of λ. Finally, n0 = 1 for air. In the described

geometry the Fresnel coefficients can be used to derive the intensity of the reflected

light by the stacked sequence45:

IRn1
(λ) =

∣∣∣∣r1ei(φ1+φ2) + r2e
−i(φ1−φ2) + r3e

−i(φ1+φ2) + r1r2r3e
i(φ1−φ2)

ei(φ1+φ2) + r1r2e−i(φ1−φ2) + r1r3e−i(φ1+φ2) + r2r3ei(φ1−φ2)

∣∣∣∣2 , (2.47)

where ri = (ni−1 − ni)/(ni−1 + ni), i = 1, 2, 3, are the relative refractive indices and

φi = 2πnidi/λ, i = 1, 2, are the phase shifts after each reflection. The contrast C is
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defined as the relative reflected intensity in the presence (n1 6= 1) and absence (n1 = 1)

of graphene:

C(λ) =
IRn1=1(λ)− IRn1

(λ)

IRn1=1(λ)
. (2.48)

The results from equation (2.48) are shown in figure 2.9b, as a function of SiO2 thickness

d2 and wavelength. It is notable the ability to enhance the contrast of MLG up to

∼ 15% with the appropriate choice of substrate and illumination wavelength, although

the windows of high contrast are narrow and a few nm of difference in the SiO2 thickness

can make graphene completely invisible. In figure 2.9c the optical contrast measured

a function of the layers number of graphene on 285 nm SiO2 is reported, under white

light illumination and using a green (∼ 550 nm) band-pass filter. A perfect linear

relationship (up to 5 layers) can be seen, with slopes (5.0 ± 0.1)% and (8.0 ± 0.2)%

per layer, respectively; as expected the green filter enhances the contrast. The layer

thickness was confirmed with atomic force microscopy (AFM) and Raman spectroscopy

(these techniques will be discussed in chapter 3). It is possible, therefore, to “count”

the number of layers in FLG simply measuring the optical contrast, this is , in fact,

the technique used in the rest of this work.

2.3 TRANSITION METAL DICHALCOGENIDES AND HFS2

As complementary metal-oxide semiconductor (CMOS) technology is fast approach-

ing its ultimate limit in the ability to scale down electronic devices46;47, a new class

of atomically-thin materials is emerging as a promising alternative. Two-dimensional

(2D) layered materials48;49 have been known for more than 40 years, but the recent suc-

cessful isolation of single layers allowed the full exploitation of their broad spectrum of

physical properties. Amongst these newly re-discovered 2D materials, semiconducting

transition-metal dichalcogenides (TMDs) have shown great versatility in optoelectronic

applications, spanning from solar energy harvesting50 to sensing51 and light-emission52,

thanks to their unique properties, such as: layer-dependent indirect-to-direct bandgap

transition53, strong optical anisotropy54 and valley dichroism55.

In this section the basic properties of TMDs are reviewed, starting from their crystal

structure and polytypes (section 2.3.1) to the description of their main electronic and
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Figure 2.10: Crystal structure of TMDs. a, Trigonal prismatic (D3h) symmetry in

H-MX2 TMDs. Inset: FBZ of D3h TMDs with high symmetry points. b, Octahedral (Oh),

or trigonal anti-prismatic (D3d) group of Oh, in T -MX2 TMDs.

optical properties (section 2.3.2). Finally, the chapter closes with a description of the

main properties of HfS2, which is the transition metal dichalcogenide (TMD) used in

this work (chapter 7) to realise novel optoelectronic devices.

2.3.1 Crystal structure and phases

TMDs are compounds with chemical formula MX2, where M is a transition metal from

group IV-B, V-B or VI-B, and X is a chalcogen (S, Se or Te)49. They crystallize in

a graphite-like structure, with each layer 6 − 7 Å thick, of the form X-M-X, with the

chalcogen atoms disposed in hexagonal planes. The layers are held together by van

der Waals forces which result in a strong anisotropy and the ability, as in graphite, to

exfoliate TMDs in thin layers simply by micro-mechanical cleavage.

The crystalline phase of TMDs depends on the coordination of the metal atoms,

which can be either trigonal prismatic (D3h) or octahedral (Oh, sometimes referred to

as trigonal anti-prismatic D3d), as illustrated in figure 2.10. Depending on the kind of

atoms involved, one of the two coordination is thermodynamically more stable than the

other. The coordination dictates the polymorph of the specific TMD that is naturally

found. The most common polymorphs are 1T (trigonal), 2H (hexagonal) and 3R

(rhombohedral), where the digit indicates the number of X–M–X units in the unit cell.
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Table 2.1: Properties of selected TMDs. Electronic properties of different TMDs and

associated polymorphs.

Metal Chalcogen Type (Phase) Bandgap (eV) References
Mo S2

Semiconductor (2H)
Metal (1T)

1.8 (1L)/1.2 (Bulk) 48;56

Se2 Semiconductor (2H)
Metal (1T)

1.5 (1L)/1.1 (Bulk) 48;58

Te2 Semiconductor (2H)
Metal (1T)

1.1 (1L)/1.0 (Bulk) 48;58

W S2
Semiconductor (2H)
Metal (1T)

1.51 (1L) 57;59

Se2 Semiconductor (2H)
Semimetal (1T)

1.22 (1L) 57;59

Te2 Semiconductor (2H)
Semimetal (1T)

0.7 (1L) 60

Re S2 Semiconductor (1T) 1.43 (1L)/1.35 (Bulk) 61
Hf S2

Semiconductor (2H)
Semiconductor (1T)

2.93 (1L)
2.96 (1L)

62;59

Se2 Semiconductor (2H)
Semiconductor (1T)

2.49 (1L)
2.95 (1L)

59

Te2 Semiconductor (2H)
Metal (1T)

1.62 (1L) 59

Depending on its phase, that is its polymorph, a TMD can have very different electronic

properties, such as for MoS2 and WSe2 which have a semiconducting behaviour in the

2H phase and a metallic one in the 1T phase56;57.

The FBZ of a monolayer TMD in the trigonal prismatic structure, is hexagonal, as

in graphene, with high symmetry points K and K’ which show a peculiar behaviour,

as in graphene (see figure 2.10a, inset). For instance, in the bulk form most TMDs

are indirect semiconductors, with an indirect gap between the Q and Γ points, while

in the monolayer limit it is found that they become direct gap semiconductors, with

the gap located at the K (K’) points. This effect is related to the increase in quantum

confinement in the out-of-plane direction (given by the layered nature), which causes

an increase in the indirect gap, without affecting the direct gap at K (K’)53.
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2.3.2 Electronic and optical properties

Table 2.1 summarizes the main electronic properties of selected TMDs. With more

than 40 materials, layered TMDs offer the best platform for a large class of applica-

tions63;64. The bandgap of semiconducting TMDs spans from mid-infrared (MIR) to

UV wavelengths and careful combinations of several stacked layers65, can be used to

create novel optoelectronic devices.

The optical absorption of most TMDs is dominated by the direct transitions at K

(K’), in the near-infrared (NIR) and visible regions of the EM spectrum. The absorp-

tion is characterized by strong excitonic effects in monolayer TMDs, which appear as

sharp peaks in the absorption spectrum near the band edge, also at room tempera-

ture53. Theoretical66;67 and experimental68;69;70 results shown that the exciton binding

energy in some TMDs is as high as 0.5 − 1.0 eV, indicating an exciton Bohr radius

(that is, the distance of the electron-hole pair) exceeding 1 nm. Indeed, these strong

excitonic effects have been used to enhance the emission of an LED, by fabricating a

stacked structure based on WSe2
52.

Excitonic effects could be at the base of the observed single-photon emission in

point-emitters in WSe2, where local strain or structural defects are introduced71;72;73;74.

These emitters show very narrow lines (< 0.1 meV, in contrast with excitonic lines

which are ∼ 10 meV) and single-photon character.

2.3.2.1 Band structure calculation

As for graphene, knowledge of the band structure allows the computation of the elec-

tronic and optical properties of TMDs. In section 2.1.3 the tight binding method for

the calculation of the band structure of crystals was presented and applied to graphene.

In general, this procedure can be repeated for TMDs, although the amount of calcula-

tions to be performed makes it a formidable task75;76. The approach usually followed

is to perform numerical simulations of the band structure based on density-functional

theory (DFT)18. In chapter 7, data obtained using this method are presented. The

description of such approach is beyond the scope of this work, and the DFT calcula-

tions were performed by Dr. Steven Hepplestone in the University of Exeter using the

density functional by Perdew, Burkeand and Ernzerhof (PBE)77, as implemented in

the QUANTM ESPRESSO package78.
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3
EXPERIMENTAL METHODS AND

CHARACTERISATION

NOTE: The ideas and data presented in this chapter have been the subject of the

following publication: Adolfo De Sanctis, Gareth F. Jones, Nicola J. Townsend, Mon-

ica F. Craciun and Saverio Russo. An integrated and multi-purpose microscope for the

characterization of atomically thin optoelectronic devices. Review of Scientific Instru-

ments 88, 055102 (2017).

Though theoretical studies of graphene and other 2D materials appeared more than

30 years ago, it was only in 2004 that the first graphene transistor was demonstrated

experimentally. This is because it is difficult to identify, isolate and characterise a

one-atom thick material. In section 2.2.2 it was shown how the optical contrast of

monolayer graphene (MLG) can be enhanced. Atomic force microscopy (AFM) can be

used to measure the thickness of a single layer of graphene and other 2D materials,

however the main characterisation techniques used to study such materials are based

on light-matter interaction, with Raman spectroscopy being the most used.

In this chapter the fundamentals of the characterization techniques used through-

out this work are presented. The Raman effect is discussed in section 3.1, together

with the Raman spectrum of graphene (section 3.2), highlighting its importance in

the study of this novel material. Other spectroscopic techniques include photolumines-

cence (PL) and absorption, which are presented in sections 3.1.3 and 3.3 respectively.

Both these techniques give important information on the properties of transition metal

dichalcogenides (TMDs). Optoelectronic devices, such as photodetectors, are studied

39
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in section 3.4, with focus on scanning photocurrent microscopy (SPCM) as the main

characterization technique used in this work. Finally, the experimental apparatus used

to perform these measurements is described in detail in section 3.5, this instrument was

purposefully built during this work and represents a novel system explicitly dedicated

to the characterization of optoelectronic devices based on graphene and 2D materials.

3.1 RAMAN SPECTROSCOPY

Raman spectroscopy is a technique based on Raman effect, discovered by Sir Chan-

drasekhra Venkata Raman, who first observed it in liquids1;2 in 1928. This effect in-

volves the scattering of a photon by an excitation in the examined material3. A photon

impinging on a specimen will excite the transition of an electron from the highest oc-

cupied molecular orbital (HOMO), or valence band in crystalline solids, into an empty

state, which could be a virtual state within the bandgap or a real state above the lowest

unoccupied molecular orbital (LUMO) or conduction band. The excited electron-hole

pair then undergoes inelastic scattering with an elemental vibration (phonon) of the

material with energy ~Ωk, where k designates a particular vibrational band. Therefore

the scattered light will have a frequency shift given by ∆ω = ωi±Ωk, where ~ωi is the

excitation energy and the minus (plus) sign corresponds to the absorption (Stokes) or

emission (anti-Stokes) of a phonon, respectively. In the case in which the final excited

state is a real state, the effect is referred to as resonant Raman scattering (RRS).

3.1.1 Classical theory of Raman scattering

A classical approach to Raman scattering can explain the relationship between Raman

effect and the dynamical properties of the system. This can also be used to explain

qualitatively, and partially quantitatively, the Raman effect due to the vibrational

modes of a molecule. In order to describe how rotational modes affect the inelastic

scattering of light, specific discrete rotational frequencies have to be ascribed to a

molecule. This can be done in the framework of a quantum theory, which will be

briefly treated in section 3.1.2.

In solid crystals, where the rotational modes are absent, the theory of vibrations

of a spatially fixed molecule can be easily applied (as they can be regarded as macro-

molecules infinitely extended). Therefore, a molecule in which the atoms, or ions, are
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free to vibrate, but the rotational and translational degrees of freedom are frozen, can

be used as a starting point. Such molecule, placed in an electric field E will be sub-

ject to an induced dipole, even in the absence a permanent one and the relationship

between electric field and induced dipole moment µ̂ (to the first order) is given by:

µ̂ = α̂E, (3.1)

where α̂ is the polarizability tensor in the chosen reference system, represented by an

ellipsoid. If the Cartesian axes coincide with the principal axes of the ellipsoid, α̂ is

represented by a diagonal matrix:

µi = αiiEi, i = x, y, z. (3.2)

The vibrational modes of the atoms can be represented in terms of the normal modes of

the system, which are related to the coordinates of the atoms, therefore the components

of α̂ can be expanded in series:

αij = (αij)0 +
∑
k

(
∂αij
∂Qk

)
0

Qk +
1

2

∑
k,l

(
∂2αij
∂Qk∂Ql

)
0

QkQl + . . . , (3.3)

where the index 0 indicates that the derivatives are computed in the equilibrium con-

figuration. Here, the vibration frequencies ωk, ωl, ... are associated to the normal

coordinates Qk, Ql, and the incident radiation frequency is ω0. Considering the first

order terms in Q (harmonic approximation):

α̂k = α̂0 + α̂
′

kQk, (3.4)

where the components of α̂
′

k are given by:

(
α′ij
)
k

=

(
∂αij
∂Qk

)
0

. (3.5)

In this approximation Qk = Qk0 cos (ωkt+ δk), where δk is a phase shift. Since the

electric field of the electromagnetic (EM) radiation can be written as E = E0 cos (ω0t),

the induced dipole is given by:
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Figure 3.1: Raman scattering. a, Normal and resonant Raman processes in a simple

diatomic molecule. The line thickness is proportional to the signal strength of the different

transitions. R is the Rayleigh scattering and S and aS are the Stokes and anti-Stokes pro-

cesses, respectively. Virtual states are shown by dashed lines. b, Sample Raman spectrum

of crystalline Si at room temperature showing both Stokes and anti-Stokes bands at ∼ 520

cm−1.

µ̂ = α̂0 · ~E0 cos (ω0t) +
1

2
Qk0α̂

′
k · ~E0 cos {(ω0 + ωk) t+ δk}

+
1

2
Qk0α̂

′
k · ~E0 cos {(ω0 − ωk) t− δk}

(3.6)

Equation (3.6) shows that µ̂ consists of three oscillating terms which represent: (1)

the elastic scattering of radiation with the same phase (Rayleigh scattering), (2) the

inelastic scattering of radiation with an energy higher than the incident (Raman scat-

tering in the anti-Stokes branch) and (3) the inelastic scattering of radiation with an

energy lower than the incident (Stokes branch). It can be seen that, in order to have

Rayleigh scattering α̂0 6= 0, which is always satisfied. For Raman scattering to occur,

the kth vibrational mode at frequency ωk is active only if α̂′k 6= 0, which means that at

least one of its components has to be non-zero ((∂αij/∂Qk)0 6= 0 at least for one i, j).

This condition is not always satisfied and depends on the symmetry of the vibrational

mode.

Figure 3.1a illustrates the Raman scattering in a simple diatomic model. In normal
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Raman the exciting energy ω0 is usually chosen to be far below the first electronic

excited state (E1). Thus, the exciting energy leads to a transition to a virtual state. If

the exciting energy is chosen so that it intercepts the manifold of an electronic excited

state the Raman process is said to be resonant, this situation is referred to as RRS. The

excitation of these transitions produces extremely strong enhancement of the bands, as

observed in graphene4 (this will be discussed in section 3.2). The lineshape of Raman

peaks can be approximated very well using a Lorentzian profile:

I(x) =
2A

π

Γ

4(x− x0)2 + Γ2
, (3.7)

where A is the area under the curve, Γ is the full-width at half-maximum (FWHM),

that is the width of the peak at half its height and x0 is the centre of the peak. The

height of the peak can be expressed as H = (2A)/(πΓ). This lineshape is the result of

the interplay between the finite lifetime of the excited electrons and the dephasing (co-

herence time) induced by the inelastic scattering with the vibrational modes (phonons

in solids). The classical theory predicts the same intensity for Stokes and anti-Stokes

transitions. However, as shown in figure 3.1b for a crystalline Si, the Stokes (S) tran-

sitions are stronger than the anti-Stokes (aS) ones (under normal conditions, i.e. in

thermal equilibrium). To explain such behaviour a quantum mechanical approach is

therefore needed. Since both Stokes and anti-Stokes lines give the same information, it

is customary to record only the Stokes side of the spectrum and label it with positive,

instead of negative, wavenumbers.

3.1.2 Quantum theory of Raman scattering

A full treatment of the quantum theory of the Raman effect falls beyond the scope

of this thesis. Such detail can be found, for example, in the wok of Ferraro et. al.3,

Long5 and Lee6. In this section only the most important results, necessary for the

understanding of the following chapters, are reviewed.

In a quantum mechanical framework, the Raman effect is treated by considering the

transition of one electron from an initial to a final state which involves the interaction

of a single-particle Hamiltonian with the EM field of the incident light. The molecular

vibrations (phonons in crystal solids) play a role in the description of the interaction,

when the scattering cross-section is calculated from the polarizability of the molecule,
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akin to what discussed in the classical treatment. In general, the intensity of the

Raman signal can be written as:

IR ∝
∑
i

∫
ρG
∥∥êS ·Ri · êIT

∥∥2 dΩS, (3.8)

where the integration is carried over the collection angle of the microscope objective

dΩS, ρG is the population of the initial state, êI and êS are the incident and scat-

tered photon vectors respectively, c1 is a material dependent factor, T represents the

transpose of a vector and Ri is the Raman tensor, which basis vectors are the crys-

tallographic axes of the crystal (or molecule). Equation (3.8) is calculated using the

Fermi’s golden rule (FGR) applied to the described system, where the electronic and

vibrational eigenfunctions of the system are separated (Born-Oppenheimer approxi-

mation) and the polarizability tensor becomes an Hermitian operator which depends

only on the nuclear coordinates R, treated as a parameter6. In the scattering pro-

cesses described by this theory, the total energy and momentum of the system must

be conserved, thus, the following must hold:

~ωi = ~ωs ± ~Ω,

~ki = ~ks ± ~q,
(3.9)

where ωi and ki are the incident photon frequency and wavevector respectively, ωs and

ks are the scattered photon frequency and wavevector respectively, Ω is the phonon

frequency with wavevector q, the sign “+” is for the creation of a phonon (Stokes)

while the sign “−” is for the destruction of a phonon (anti-Stokes).

The difference in the intensity of the Stokes and anti-Stokes lines arises from the

dependence of the Raman cross-section on the population of the initial state ρG. In

thermodynamic equilibrium, the upper state will be less populated than the lower state.

Therefore, the rate of transitions from the lower to the upper state (Stokes transitions)

will be higher than in the opposite direction (anti-Stokes transitions). Correspondingly,

Stokes scattering peaks are stronger than anti-Stokes scattering peaks (see figure 3.1b).

Equation (3.8) also shows that by changing the excitation and collection axes (di-

rections) and the polarization of the light (that is êI and êS) it is possible to determine

the crystallographic orientation of the material and identify the different vibrational
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modes7.

The intensity of the Raman scattered light is dependent on the local temperature

T and the ratio between Stokes (IS) and anti-Stokes (IaS) intensities can be used as a

temperature probe8 using the following expression9:

IS
IaS

= F · Cex · exp

(
hωi
kBT

)
, (3.10)

where F is a parameter that depends on the optical constants of the material and Cex

is a coefficient which accounts for the efficiencies of the optics and gratings at different

wavelengths.

3.1.3 Luminescence spectroscopy

The radiative transition of electrons from an excited state to a lower level through

the emission of light is known as luminescence10. Such transitions can be initiated

by the absorption of a photon, known as PL fluorescence and phosphorescence, or by

the application of an electric field through the material, known as electroluminescence

(EL). In both cases, detailed measurement of the spectral intensity of the emitted

light can give insight into the properties of the material and the performance of the

examined device. In a typical PL experiment the excitation source is a laser, with a

wavelength appropriate for exciting resonant electronic transitions. The emitted light

from the material is then dispersed for spectral analysis. Usually a low-pass filter is

used to reject the excitation wavelength. The detailed physical processes involved in PL

are linked to the excitation and decay probabilities in the material10. The frequency-

dependent intensity of a luminescence process can be written, in general, as:

IL(hν) ∝ ‖M‖2 · g(~ω0) · Γe, (3.11)

where ‖M‖2 is the matrix element of the transition, g(~ω0) is the density of states

(DOS) at the excitation energy ~ω0 and Γe represents the occupancy factors for the

transition, which are related to the probability of the upper (lower) levels to be empty

(occupied).
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Figure 3.2: Raman spectrum of graphene. a, Sample spectra of pristine (top) and

defective (bottom) MLG. Insets depict the Raman active modes. Red curve is a multi-

Lorentzian fit to the experimental data (black). b, Raman processes in graphene: vertical

arrows represent electronic transitions, dashed lines represents phonons or defects scattering

events.

3.2 RAMAN SPECTRUM OF GRAPHENE

Raman spectroscopy has become the most powerful tool for the characterisation and

understanding of the behaviour of phonons in graphene4;11 and for the characterisation

of defects12;13, stacking order of layers14 and doping15;16. The knowledge of the phonon

dispersion bands in graphene is very important to understand its Raman spectrum and

the information that can be extracted from its analysis.

The unit cell of graphene contains two atoms, therefore, there are six vibrational

bands of which three are acoustic (A) and three optical (O). Two of them (one A and

one O) represent vibrational modes perpendicular to the graphene plane (o), while the

other four represent modes parallel to it (i). The propagation directions of vibrational

modes are classified as transverse (T) or longitudinal (L) with respect to the directions

which connects two carbon atoms in the unit cell. Hence, along the symmetry directions

of the first Brillouin zone (FBZ) Γ−M and Γ−K, the six vibrational bands are named

as iLO, iTO, ILA, iTA, oTA and oTO (see ref. 4). The Raman active modes are the

iLO and iTO at both the Γ and K points. These phonon branches originate from the
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two fundamental vibrational modes of carbon, as shown in figure 3.2a: the E2g mode,

which is the displacement of two carbon atoms in space, and the A1g mode, which

is given by the breathing of an hexagonal ring. These modes are responsible for the

observed peaks in the Raman spectrum of MLG, as shown in figure 3.2a, for a 514 nm

laser excitation. The two most prominent peaks are the so-called G, at ∼ 1580 cm−1,

and 2D, at ∼ 2670 cm−1. The G peak originates from the E2g mode at Γ, while the

2D peak originates from the A1g mode at K. In figure 3.2a, bottom panel, it is shown

the Raman spectrum of defective graphene, i.e. acquired in the proximity of an edge.

Two new peaks appear: the D peak, at ∼ 1330 cm−1, and the D’, at ∼ 1620 cm−1,

which originates from the A1g mode near Γ and K, respectively, and require a defect to

be active, as shown in figure 3.2b. In the same figure the origin of the other observed

peaks is shown, in particular, the 2D peak is the result of a double (2R) and triple (3R)

resonant process which involves two iTO phonons between the two non-equivalent K

points. All the observed Raman modes in graphene are resonant, since the phonon

wavevectors bring the electrons into real states.

Both the D and 2D peaks show a dispersive behaviour with respect to the excitation

wavelength, where the position of the peaks shifts linearly with the energy of the

incident light as (∂ωD∂Eexc) ∼ 50 cm−1eV−1 for the D band and (∂ω2D/∂Eexc) ∼
100 cm−1eV−1 for the 2D band4;17. This dispersive behaviour is related to the fact that

the process which originates the D and 2D bands is double-resonant (see figure 3.2b).

In this case the wavevectors q of the iTO phonon, responsible for the D and 2D

bands, would preferentially couple to the electronic states with wavevectors k, such

that q ' 2k. Therefore, as the incident photon energy is increased away from EF,

the wavevector k of the excited electronic states will move away from the K point,

therefore also the wavevector q of the iTO phonon will increase, leading to the observed

dispersive behaviour18. The position and FWHM of the G and 2D peaks also depend

on the substrates on which the graphene is deposited19 due to the strong interaction

between the graphene layer(s) and the substrate, which has been proven to strongly

affect both its optical and electrical properties.
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Figure 3.3: Layer-dependent 2D band of graphene. a, Sample spectra of graphene

for different numbers of stacked layers, solid lines represent multi-Lorentzian fits to the exper-

imental data. b, Raman processes in bilayer graphene (BLG) which originate the 2D band.

T1 and T2 represent the active phonon modes.

3.2.1 Layer-dependence of the 2D band

The analysis of the 2D peak shape allows the quick identification of the thickness of

a graphene flake, up to three layers. In figure 3.3a, the significant evolution of shape

and intensity of the 2D peak as a function of the number of layers is shown. MLG

is characterised by a single-Lorentzian 2D peak, whose intensity is higher than the

G peak. In BLG the 2D peak has four Lorentzian components and a characteristic

“square” shape with a small shoulder. In trilayer graphene (TLG) the 2D peak has six

components and shows as well a characteristic square shape. Flakes with more than

three layers are hardly distinguishable from bulk graphite which is characterised by

a 2D peak with two components with intensities in a 1 : 3 ratio between them. The

multi-Lorentzian shape of the 2D peak of BLG can be easily explained by considering

all the double-resonant scattering processes (with different energies) between its four

π bands, as shown in figure 3.3b. A similar analysis gives 15 possible transitions in

TLG but, since the energy of many of these transitions is too close to be resolved,

only 6 can be fitted in the experimental spectrum4. Recently, it has been shown that

the shear mode in few-layer graphene (FLG), that is, the relative motion of atoms
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in adjacent planes responsible for the so-called “C” peak at ∼ 40 cm−1, can be used

as a measurement of the interlayer coupling, and therefore to estimate the number of

layers20 in FLG.

3.3 ABSORPTION SPECTROSCOPY

The absorption coefficient, α(λ), is an important quantity for photoactive materials

which can give important information for their use in optoelectronic devices. In partic-

ular, absorption spectroscopy can be used to determine the bandgap of a semiconductor

and its nature, direct or indirect. In the specific case of 2D materials it has been shown,

for example, that the bandgap of FLG can be tuned with an applied electric field21 and

in TMDs the bandgap energy changes with the number of layers and induced strain22.

TMDs also show a transition of the bandgap from indirect to direct when they are

thinned to single-layers23. This large variety of physical phenomena makes absorption

spectroscopy an important tool for studying novel, atomically-thin materials.

In this section, the theory and the equations that allow the absorption coefficient of

a thin film on a thick substrate to be measured will be reviewed. For clarity of notation

the wavelength dependence of the defined quantities will be omitted, unless necessary

to avoid confusion.

3.3.1 Absorption in thick samples

Light impinging on a slab of material of thickness d, immersed in a transparent medium

of refractive index n0, with intensity I0, is partially reflected at the first surface and

partially transmitted in the material. This is then partially reflected at the second

surface and partially transmitted outside, as shown in figure 3.4a. Considering the

complex refractive index n1 = n + iκ, where n is the real part (commonly known

simply as refractive index) and κ is the so-called extinction coefficient, the reflectivity

can be written as10:

R =
I0
IR

=

∣∣∣∣n1 − n0

n1 − n0

∣∣∣∣2 , (3.12)

where IR is the intensity of the reflected light. In the geometry shown in see figure 3.4a

and assuming that d � lc, where lc is the spatial coherence length of light (no inter-
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ference effects), it is possible to write the intensity of transmitted light after the nth

pass as:

In = I1 (R1R2 exp(−2αd))n , (3.13)

where I1 = I0(1−R1)(1−R2) exp(−αd) is the transmitted light after the first pass, R1

and R2 are the reflectivities of the two surfaces (assumed different), respectively, and α

is the absorption coefficient, defined as the fraction of power absorbed per unit length

into the material, such that the intensity at a distance x in the material is given by the

well-known Beer-Lambert law: I(x) = I0 exp(−αx). Therefore the total transmitted

intensity is given by:

IT =
∞∑
n=1

In =
I0(1−R1)(1−R2) exp(−αd)

1−R1R2 exp(−2αd)
, (3.14)

since the term (R1R2 exp(−2αd)) < 1 in equation (3.13). Therefore the transmittance

T , defined as the ratio of the transmitted power to the incident one, is given by:

T =
IT
I0

=
(1−R1)(1−R2) exp(−αδ)

1−R1R2 exp(−2αδ)
. (3.15)

Solving equation (3.15) for α allows the absorption coefficient to be computed from

the measurement of the transmittance and reflectance of the material:

α = −1

d
ln

(
L+
√
L2 + 4TM

M2

)
, (3.16)

where L = (R1 − 1) (R2 − 1) and M = TR1R2. The absorption coefficient is directly

related to the extinction coefficient by10:

α =
4πκ

λ
, (3.17)

where λ is the free-space wavelength of the incident light.

3.3.2 Absorption in thin films

For a thin film deposited on a thick substrate, as with graphene or TMDs, it is possible

to perform the same derivation as for the thick-film case. Since the measurements



51 CHAPTER 3. EXPERIMENTAL METHODS AND CHARACTERISATION

A
bs

or
pt

io
n 

(α
)

Photon energy (eV)

Eg
ind Eg

dir

α ∝ E1/2

α ∝ E2

d

I0 IR

IT

n0

n1

n0

δ

n0 = 1

n0 = 1
n1 = n+ik

ns d»δks = 0

I0

IT

b ca

Figure 3.4: Absorption in thin films and semiconductors. a, Model of the transmit-

tance through a thick sample with parallel sides considering multiple reflections. b, Trans-

mittance trough a thin film on a thick transparent substrate. c, Schematic of a generic

absorption coefficient (α) measurement in an indirect-gap semiconductor.

presented in this thesis are performed using incoherent light sources, the effects of

interference will be ignored. Such effects will introduce a wavelength-modulation of

the absorption coefficient, similar to the fringes observed in a diffraction experiment,

and a full derivation can be found in the work of Swanepoel24. With reference to

figure 3.4b, assuming a film of thickness δ and complex refractive index n1 deposited

on a thick, transparent, substrate of refractive index ns (ks = 0), it is possible to derive

a similar formula as in equation (3.16):

α = −1

δ
ln

(
P +

√
P 2 + 2QT (1−R2R3)

Q

)
, (3.18)

where:

Q = 2T (R1R2 +R1R3 − 2R1R2R3), (3.19a)

P = (R1 − 1)(R2 − 1)(R3 − 1), (3.19b)

R1 =

∣∣∣∣n0 − n1

n0 + n1

∣∣∣∣2 , R2 =

[
n1 − ns
n1 + ns

]2
, R3 =

[
ns − n0

ns + n0

]2
. (3.19c)

In this case R1 is the reflectance of the air/medium interface, R2 is the reflectance of

the substrate/medium interface and R3 the reflectance of the substrate/air interface.
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As for the previous case, each reflection coefficient Ri can be either measured directly

or computed from the knowledge of n1 and ns.

3.3.3 Absorption edge and bandgap determination

Within the non-interacting single particle theory, absorption is related to the optical

transitions of electrons from occupied to empty states. The absorption coefficient is

zero for photon energies below the bandgap (in absence of mid-gap trap states), it

increases sharply for energies close to the bandgap (band edge) and, in general, stays

relatively constant, with the appearance of peaks related to resonant transitions, as

shown in figure 3.4c. The band edge has a specific shape10;25 (neglecting excitonic

effects):

α ∝ (Eph − Eg ± ~Ω)m (indirect), (3.20a)

α ∝ (Eph − Eg)1/2 (direct), (3.20b)

where Eph is the incident photon energy, Eg is the bandgap energy (direct or indirect),

~Ω is the associated phonon energy and m is equal to 2 for allowed and 3 for forbid-

den indirect transitions. A typical spectral absorbance curve for an indirect bandgap

semiconductor is shown in figure 3.4c, where the two band edges are highlighted. The

presence of excitons, particle-hole pairs bound by coulomb interaction in the proximity

of the band edges of the semiconductor, generally results in the appearance of peaks at

the band edge in the absorption spectra. These peaks will be shifted to lower energies

by the binding energy of the exciton Eex.

3.4 LIGHT DETECTION IN ATOMICALLY-THIN OPTOELECTRONIC DEVICES

Optoelectronic devices work by converting an electric signal into light or vice-versa

and divide into two main categories: light emitting devices (LEDs) and photodetectors

(PDs). This work is primarily focused on the second category.

The basic experiment for the characterisation of a photodetector (PD) consists of

shining light onto the device and recording its electrical response, such as measuring

the current flow through it, the voltage drop across a load resistor or a change in
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Figure 3.5: Photodetectors principles and characterisation. a, Model of a simple

photoconductive device. b, Band diagram of a generic p − n junction device. c, Circuit

diagram of the operation of a photodetector in photovoltage configuration. d, Same as c in

photocurrent configuration. In both cases the bias voltage Vsd can be set to 0 (short-circuit

configuration). e, SPCM mapping configuration using a modulated laser light and lock-in
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resistance26, as shown in figure 3.5c-d. Light can impinge on the whole surface of the

device, known as flood illumination, or it can be delivered with a focused laser onto

a specific area to allow for a spatially resolved photo-response. Both techniques give

insight on the physical nature of the observed photoresponse and on the efficiency of

the device.

In semiconducting TMDs the main photoactive mechanism is the photovoltaic (PV)

(or photoconductive) effect, which is discussed in detail in sections 3.4.1 and 3.4.2. In

graphene, there are several possible mechanisms responsible for the observed photocur-

rent27, however the dominant one has been shown to be the photothermoelectric (PTE)

effect, which is discussed in section 3.4.3.

3.4.1 Photoconductive devices

The most basic PD is a photoconductive device: light with energy ~ω0 > Eg, impinging

on its surface is able to excite an electron in the conduction band, creating an electron-

hole (e−h) pair. This extra charge causes a change in the conductivity of the material.

Considering a slab of material of length L, width W and thickness δ, as shown in



3.4. LIGHT DETECTION IN ATOMICALLY-THIN OPTOELECTRONIC DEVICES 54

figure 3.5a, the total number of e− h pairs created is ηiPoptWL/~ω0, where Popt is the

incident optical power density (or irradiance) and ηi is the internal quantum efficiency

(IQE) (number of e− h pairs created per absorbed photon, per unit area). Therefore,

the average generation rate rg of carriers per unit volume is given by:

rg =
ηiPoptWL

~ω0WLδ
=
ηiPopt
~ω0δ

, (3.21)

The recombination rate of the excess carriers is given by:

rr =
∆n

τc
=

∆p

τc
, (3.22)

where ∆n (∆p) is the excess electron (hole) population and τc is the minority carrier

lifetime26. In equilibrium the two rates must be equal, therefore ∆n = ∆p = rgτc and,

by writing the conductivity as σ = nqµe + pqµh, where µe (µh) is the electron (hole)

mobility, it is possible to write the change in conductivity under illumination as:

∆σ = ∆nqµe + ∆pqµh = rgτcq (µe + µh) . (3.23)

A voltage Vsd, applied between the contacts, produces a photo-induced current (pho-

tocurrent) which is equal to:

Iph =
Wδ

L
∆σVsd =

ηiPopt
~ω0

W

L
τcq (µe + µh)Vsd. (3.24)

The IQE is related to the absorption coefficient α, defined in section 3.3.1, by:

ηe =
(
1−R− e−αδ

)
ηi, (3.25)

where R is the reflectivity of the material and ηe = (Iph/q)/φin is the external quantum

efficiency (EQE), where φin is the incident photon flux. It is important to note that

from equation (3.24), the observed photocurrent has a linear dependence with respect

to the incident optical power: Iph ∝ Pα
opt with α = 1.

Another important quantity used in the characterisation of PDs is the responsivity

R = IphS/Popt, defined as the ratio between the measured photocurrent (photovoltage)

and the incident optical power and measured in units of A/W (V/W). Noise in pho-

todetectors plays an important role in real-life applications, the main figure of merit
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Table 3.1: Summary of parameters used to characterise PDs. Coupling Factors and wave-

length dependence of all quantities are omitted for clarity of notation.

Quantity Symbol Definitiona Units
External Quantum Efficiency ηe, EQE (Iph/q)/φin %
Internal Quantum Efficiency ηi, IQE (Iph/q)/φabs %

Responsivity R IphS/Popt A/W (V/W)

Noise Equivalent Power NEP Sn/R W/
√

Hz

Specific Detectivity D? (S ·∆f)0.5/NEP cm
√

Hz/W

a Iph = Measured photocurrent, φin = Incident photon flux, φabs = Absorbed photon
flux, Popt = φin/S = Incident optical power density, S = Device area, ∆f = Operating
bandwidth, Sn = Noise spectral density;

for the characterisation of noise is the noise-equivalent power (NEP), defined as the

incident power necessary to produce a signal-to-noise ratio of 1 at 1 Hz bandwidth. It

is given by the noise spectral density Sn divided by the responsivity: NEP = Sn/R

and measured in units of W/
√

Hz. The bandwidth ∆f of a PD is defined as the fre-

quency at which its output power drops by 1/2, that is when the photocurrent drops by

∼ 70.7% (known as −3 dB point). These quantities are used to define the main figure

of merit in PDs performance, the specific detectivity D∗ = (S∆f)0.5 /NEP, where S

is the area of the device. D∗ is typically measured in Jones (cm
√

Hz/W)28. Table 3.1

summarizes the main quantities used to characterise PDs.

3.4.2 Junction devices

Junction devices are usually made by two regions with different doping in a semi-

conductor material. Such p − n junctions are responsible for the depletion of mobile

charges in a region characterised by a strong electric filed. An e− h pair generated by

an incident photon will be, therefore, subject to the field and separated, as shown in

figure 3.5b. The separated charges can be detected in two ways: by leaving the device

in open-circuit and measuring the potential across a load resistor, known as PV mode

(figure 3.5c) or by operating it in reverse bias (or short-circuit) and measuring the

current flowing through the junction, known as photoconductive mode (figure 3.5d).

In both cases the photocurrent generated in the device is given by equation (3.24)
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and this is the measured photocurrent when the device is operated in photoconductive

mode. In PV mode the current-voltage characteristic of a p− n junction diode has to

be taken into account29:

I = I0
(
e(qV )/(kBT ) − 1

)
, (3.26)

where I0 is the diode reverse-bias leakage current, V is the voltage drop across the

device, kB is the Boltzmann constant and T the absolute temperature. Therefore the

photocurrent is equal to:

Iph = I0
(
e(qV )/(kBT ) − 1

)
+
V

R
→ e(qV )/(kBT ) ' Iph

I0
, (3.27)

assuming that I0R ' V , whereR is the resistance of the device. Therefore the measured

voltage has a logarithmic dependence of the incident power:

Vph = Vsd =
kBT

q
ln

(
Iph
I0

)
=
kBT

q
ln

(
ηiPopt
~ω0

W

L

Vsd
I0
τcq (µe + µh)

)
. (3.28)

3.4.3 Photothermoelectric (PTE) devices

A junction between two materials with different Seebeck coefficients S1 and S2, in

which the two sides are held at different temperatures, is subject to a voltage, known

as thermoelectric voltage:

VPTE = (S2 − S1)∆T, (3.29)

where ∆T = T2 − T1 is the temperature difference between the two sides. The tem-

perature difference can be induced by light, when the junction is illuminated, in fact,

photogenerated carriers will have a temperature which depends on the microscopic

dynamic of the specific material. The Seebeck coefficient can be expressed using the

Mott relation30;31:

S = −π
2k2BTh
3q

· 1

σ
· ∂σ
∂µ
, (3.30)
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where Th is the temperature of the hot carriers, σ is the conductivity of the material

and µ is the chemical potential. In general, the amount of energy taken by the hot

carriers is given by:

ChTh ∝ Popt, (3.31)

where Ch is the heat capacity and Popt is the incident optical power. Assuming the hot

carriers thermalise at a temperature far above that of the lattice, their specific heat

is Ch ∝ T 2
h and, combining equations (3.29) and (3.30), the generated photocurrent is

IPTE ∝ T 2
h . Therefore the proportionality between the generated photocurrent and the

incident optical power results:

IPTE ∝ (Popt)
2
3 . (3.32)

This is the power exponent commonly measured in graphene photodetectors on Si/SiO2

substrates.

3.4.4 Local illumination and scanning photocurrent microscopy (SPCM)

The study of spatially-resolved properties of semiconducting devices using localized

excitation (injection) started in 1949 with the works of Haynes and Shockley32 and Van

Roosbroeck33, while the use of localized illumination was first reported by Marek34 in

1984. His work represents the birth of SPCM (also known as optical beam-induced

current (OBIC)), a technique which uses a focused laser beam which is scanned across

the device while the electrical response is recorded at each point, producing a two-

dimensional map of its response35, as shown in figure 3.5e. The spatial resolution is

ultimately defined by the laser spot size which can be improved with the use of near-

field techniques, such as scattering scanning near-field optical nanoscopy (s-SNOM)27.

SPCM has been used, for example, to study the dynamics of hot carriers in graphene

PDs36, to demonstrate the role of defects in observed photocurrent signals36 and to

characterise the photoactive regions in TMDs junctions37.

In order to describe how SPCM works, it is necessary to consider the mechanisms

of generation, motion and collection of locally injected carriers. In a semiconductor it

is possible to start from the charge continuity equation:
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1

q

∂ρ

∂t
= G−R− 1

q
∇j, (3.33)

where ρ is the charge density, G and R are the carrier generation and recombination

rates, respectively and j is the current density. It is possible to simplify the problem

by choosing the excitation such that G is a delta function in the point of injection, this

is justified if the average carrier diffusion length is larger than the laser spot-size. The

recombination rate can be written as:

Ri = −∆ni
τi

, i = e, h, (3.34)

where τi is the carrier recombination lifetime and ∆ni = ni − ndarki is the excited

carrier density, with ni total carrier density and ndarki carrier density in the absence of

illumination. In general, the carrier current density is comprised of a drift, a diffusion

and a thermoelectric term (in the presence of a temperature gradient) in the form:

j = qneµeE− qnhµhE + qDe∇ne − qDh∇nh + σS∇T, (3.35)

where µi is the mobility, E is the applied electric field, σ = q(neµe + nhµh) is the con-

ductivity, S is the Seebeck coefficient, T the temperature and Di = (kBTµi)/q is the

diffusion coefficient. If at least one of the contacts is Schottky-type, the photocurrent

is dominated by on type of carrier38 (since the drift and diffusion component of the ma-

jority carriers will cancel each other). It is therefore possible to recast equation (3.33),

outside the illumination region, in terms, for example of holes:

∂nh
∂t

= −∆nh
τh
− 1

q
∇ · jh, (3.36)

where jh = −qnhµhE− qDh∇nh + σS∇T is the hole current density.

3.4.4.1 1D system

From equations (3.35) and (3.36) it is possible to write the general continuity equation

for a 1D system:
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∂nh
∂t

= −∆nh
τh
− nhµh

∂E

∂x
+ qµhE

∂nh
∂x

+Dh
∂2nh
∂x2
−

+ S
∂σh
∂x

∂T

∂x
− σhS

∂2T

∂x2
− σh

∂T

∂x

∂S

∂x
,

(3.37)

where σh = qnhµh is the hole conductivity. The simplest model which allows an

analytical solution is given by considering no temperature gradient and no electric

field applied (i.e. E = 0 and ∇T = 0):

∂nh
∂t

= −∆nh
τh

+Dh
∂2∆nh
∂x2

, (3.38)

where nh can be substituted with ∆nh since ndarkh is spatially uniform. Solving for the

steady state ∂nh/∂t = 0:

Dh
∂2∆nh
∂x2

− ∆nh
τh

= 0→ ∆nh = ∆n0
he

x−x0
Lh , (3.39)

where x0 is the injection (illumination) point, ∆n0
h is the excited hole density at x = x0

and Lh =
√
Dhτh is the hole diffusion length. The current can be calculated considering

the diffusion term, as:

jh = −qDh
∂∆nh
∂x

= −q
√
Dh

τh
∆n0

he
x−x0
Lh . (3.40)

Equation (3.40) shows that the observed photocurrent decays exponentially from the

injection point with a decay constant equal to the carrier diffusion length. Knowl-

edge of the carrier mobility allows the measurement of carrier lifetime using a SPCM

measurement38.

3.4.4.2 2D system

In a 2D system it is possible to recast equation (3.38) using polar coordinates (r, θ)

and assuming that the charge distribution is uniform in θ:

∂2∆nh
∂r2

+
1

r

∂∆nh
∂r

+
∆nh
Lh

= 0, (3.41)
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where r =
√
x2 + y2. Equation (3.41) is in the form of the Emden-Fowler equation,

which solution is given by39:

∆nh (r, θ) =
∆n0

h

2π
K0

(
r

Lh

)
, (3.42)

where K0 is the modified Bessel function of the second kind. The current density can

be therefore computed as:

jh (r, θ) = −qDh
∂∆nh
∂r

= −qDh∆n
0
h

2πLh
K1

(
r

Lh

)
, (3.43)

which, again, results in an exponential decay away from the excitation region with

decay constant given by Lh.

3.5 SPCM AND SPECTROSCOPY EXPERIMENTAL APPARATUS

All the measurements presented so far require specific instrumentation in order to be

performed. Commercially available instruments are traditionally employed, and they

usually require the movement the samples from one instrument to the other, changing

the environment and retrofitting to accommodate the different holders designed for

each specific tool. These passages increase the chances of contamination and breakage

of the samples. In order to solve such issues, I developed an experimental apparatus

especially designed to characterise in one instrument optoelectronic devices based on

graphene and other 2D materials.

Centred around an upright metallurgical microscope, the system allows one to per-

form multiple measurements in one instrument, with no need to remove the device from

its holder, reducing the aforementioned risks. These measurements include: low fre-

quency electrical transport, SPCM, absorption (transmittance and reflectance), micro-

Raman and PL spectroscopy and mapping, with the possibility to analyse and change

the polarization of light. A unique aspect of the developed design is the ability to

concurrently perform both the electrical and optical measurements. The system is

equipped with multiple laser sources, spanning from UV to red light and two white

light sources used for transmission and reflection illumination. The laser light is de-

livered in enclosed paths and an interlock system is used to cut the laser light when

access to individual parts is required, making the system extremely safe. High spatial



61 CHAPTER 3. EXPERIMENTAL METHODS AND CHARACTERISATION

Laser Bank

I/V

Mxy

Mxy

M

λ/2

BE (×3)

DiF

M

DiF

50/50

SpectrometerLED

Sample

XYZ Stage
Cond.

Bulb

PD

Obj.

PCB

BNC
box

PC

Cam

CCD

375 nm

685 nm

561 nm

514 nm

473 nm

360˚

BS

BS

BS

M

Raman/PL White light Laser Beam
Control lineSignal line BUS line

BE (×5)

Microscope

FM

GND

Notch

Pol.

360˚

Electrical measurements
Equipment

Figure 3.6: Experimental setup diagram. Laser light is used for scanning photocurrent

mapping, Raman and PL spectroscopy. Four continuous-wave (CW) diode lasers are fitted

in a laser enclosure while the ultra-violet (UV) laser source is directly attached to the micro-

scope. White light from two different sources can be used for transmittance and reflectance

measurements. An XYZ motorized microscope stage allows precise control of the sample

position. The dash-dotted line represents the electrically screened light-tight enclosure of the

sample stage. Signal lines carry electric/data signals to be measured, control lines carry the

signals to configure the instruments, the lasers and the other sources, BUS line comprises

USB and GPIB. Abbreviations: mirror (M), kinematic mirror (Mxy), half-wavelength plate

(λ/2), beam expander (BE, followed by magnification), drop-in filter (DiF), beam splitter

(BS, dichroic in red), Polariser/Analyser (Pol.), white light (WL), voltage (V) or current

(I) sources/meters, flip mirror (FM), sample holder (PCB), photodetector (PD), condenser

(Cond), microscope objective (Obj), imaging camera (Cam), spectroscopy camera (CCD),

ground line (GND). Created with ComponentLibrary40 symbols.
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resolution in spectroscopy and SPCM measurements is achieved by diffraction-limited

focusing of Gaussian laser beams and a high performance microscope stage. Electrical

connections are secured by a custom-built printed-circuit board (PCB), designed to

reduce electrical noise and allow easy access to the measured devices, without the need

for long working distance microscope objectives.

3.5.1 Instrumentation

In this section the optical, mechanical and electrical part of the system are described,

with particular attention to the solutions adopted in order to make the system multi-

purpose and expandable, as well as safe and easy to use.

3.5.1.1 Optics

Figure 3.6 shows a schematic diagram of the optical and electrical components of the

system whilst a 3D model showing the actual implementation of the components is

shown in figure 3.7. A set of visible wavelength CW laser diodes (Coherent 473LS,

514LX, 561LS and Omicron LuxX 685, with powers ranging from 30 to 50 mW) is

fitted in an enclosure, which facilitates the alignment of each laser and can host up to 6

different wavelengths. Each laser is digitally modulated and the power is adjusted using

an analog signal. Continuous modulation or TTL operation can be achieved by use of a

digitally-controlled signal generator. Careful choice of dichroic mirrors inside the laser

enclosure allows multiple wavelengths to be used at the same time. The laser light is

then delivered with a series of kinematic and fixed mirrors into the illumination path of

the optical microscope (Olympus BX51) after a ×3 beam expansion. A dichroic beam-

splitter (BS) is used to direct the light in the custom built Epi-illumination section of

the microscope. A rotatable (360°) achromatic λ/2 waveplate (ThorLabs AHWP05M-

600) is used to rotate the polarization of the laser light. A custom-built drop-in filter

(DiF) system is used to introduce neutral-density (ND), polariser, notch and band-pass

filters in the optical path of the lasers and the microscope: the same filter holders and

housings are used throughout the system, ensuring full compatibility in each section.

UV laser light (from a Coherent OBIS 375LX) is fed into the microscopy directly from

the Epi-illumination BS cubes after a ×3 beam expansion.

White light for reflection microscopy is provided by a white light emitting device
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(LED) along the optical path of the laser beams, while transmittance illumination is

achieved using the microscope’s built-in lamp and condenser lens. Both the white and

laser light are directed to the objective using either a 50%/50% BS or the appropriate

dichroic band-pass (BP) mirror. The reflected light collected by the objective is directed

to a charge-coupled device (CCD) imaging camera or, by using a flip mirror (FM), to the

entrance slit of the spectrometer. The microscope is fitted with Olympus MPLanFL-N

Semi-Apochromat infinity-corrected lenses with ×5, ×10, ×20 and ×50 magnification.

The spectroscopy section comprises an achromatic lens (ThorLabs AC254-150-A)

with x/y and focus adjustment, a Princeton Instruments Acton SP2500 spectrometer

equipped with three dispersion gratings (1200 g/mm with 500 nm and 750 nm blaze,

and 1800 g/mm with 500 nm blaze) and a Princeton Instruments PIXIS400-eXcelon

back-illuminated, peltier cooled, CCD camera. In this multi-purpose instrument, each

grating is used for different measurements as they differ by number of grooves and

blaze wavelength (which is the wavelength at which the efficiency is at maximum and

the same for both S and P polarizations). In white light spectroscopy applications,

corrections to account for the optics and gratings efficiencies, at different wavelengths,

can be applied using Princeton Instruments “IntelliCal” system.

The microscope stage is a Prior Scientific OptiScan ES111 with ProScan III con-

troller. The minimum step size is 10 nm. Focus control is also achieved trough the

same controller.

The whole system is built on a vibration-isolated 120 × 90 cm2 optical table. The

laser light delivery system is enclosed within ThorLabs stackable tube lens system,

allowing a light-tight connection. The microscope stage, foot and objective turret

is covered with a light-tight enclosure, formed by a metal frame and a conductive

fabric curtain connected to the ground of the electrical circuit to ensure shielding from

electro-magnetic noise (see figure 3.7). The front of the curtain can be lifted to allow

access to the stage and it is fitted with laser interlocks. The light-tight delivery system

and enclosure, together with the magnetic interlocks, make the system a Class 1 laser

product. The same light-tight tubes are used also to deliver light to the spectrometer,

enabling the use of this instrument without the need of a darkened room.

The custom-built Epi-illumination system allows flexible and quick configuration

of the microscope for different measurements. As shown in figure 3.8, the optical path

can be configured for scattering, transmission/reflection spectroscopy and laser light



3.5. SPCM AND SPECTROSCOPY EXPERIMENTAL APPARATUS 64

λ/2

GND

GND

Mxy

BE M

M

LED

Cam

DiF

Spectrometer
CCD

UV
Laser

BS

FM

PCB
Laser Bank

BNC
Stage

MicroscopeBulb
Insulation plate

Cond

360˚
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is shown in transparency and sectioned. Tube lenses are used to cover the light path of the

laser beams, magnetic interlocks are located in the screen enclosure and in the BS cubes.

Labels and abbreviations as in figure 3.6.
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Figure 3.8: Agile optical path configurations. a, Reflectivity and b, Trans-

mittance measurements using white light. c, SPCM mapping with laser light; d, Ra-

man/Fluorescence/PL spectroscopy, including polarization. c and d can be combined and

performed at the same time. UV laser delivery system is omitted. Symbols and abbreviations

as in Figure 3.6.

illumination (as in SPCM) simply by replacing or removing the appropriate filters and

BS. Each BS unit is fitted with magnetic interlocks for safety purposes. Figure 3.8a

shows the configuration for reflectance measurements: light from the white LED travels

freely (no laser BS fitted) after being collimated and reaches the objective though a

50%/50% BS; reflected light is collected by the same objective and partially transmitted

by the BS to a FM which directs it into the spectrometer. A similar arrangement is

used for transmittance spectroscopy, as shown in figure 3.8b. In this case the BS is

replaced with a mirror and the white light from the incandescent bulb is collimated by

the microscope condenser and, after travelling in the sample, collected by the objective

and directed to the spectrometer. The configuration for laser-light illumination and

SPCM is shown in figure 3.8c: in this case a dichroic BS is used to direct the laser light

into the objective and the reflected light is partially transmitted to the imaging camera

for direct assessment and focusing; the LED can be used at the same time for imaging.

Figure 3.8d shows the configuration for Raman and PL spectroscopy: in this case the

scattered light is collected by the objective and directed to the spectrometer via the
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FM. Since the Raman signal is ∼ 106 times smaller than the Rayleigh one, a very

narrow notch filter, centred at the excitation wavelength, is typically used to reject the

unwanted signal. ND and laser-line filters can be used to attenuate the beam power and

clean it from spurious wavelengths. The latter two configurations can be used at the

same time to perform Raman or PL mapping together with SPCM. Polarized Raman

spectroscopy can be performed by interposing a polarizing filter (analyser) between the

notch filter and the spectrometer, while the laser polarization is controlled by the λ/2

waveplate.

A PD is mounted on the stage, see figure 3.6, and used to automatically record

the power of the laser light after a measurement, by programming the stage and the

acquisition software accordingly. The ability to modulate the power of the lasers, both

electrically and by introducing ND filters along the beam path, allows the system to

span a power range (with the ×50 objective) between ∼ 2 nW and ∼ 20 mW in steps

of 0.4 · 10−OD mW, where OD is the optical density.

3.5.1.2 Laser spot size

Knowledge of the shape and size of the laser beams is paramount in the design of

scientific optical systems. In this setup, solid-state diode lasers are used and all the

optical components are chosen in order to minimize deviations from their TEM00 laser

mode, which has a Gaussian intensity distribution:

I(r, rb) =

√
2

π

1

rb
e
− r2

r2
b , (3.44)

where r is the distance from the optical axis and rb is the radius of the beam, measured

at the point at which the beam intensity falls by 50% (FWHM). As the beam is

transmitted through a circular aperture of radius ra, such as the pupil aperture of the

objective lens, the transferred power is:

Pb = 1− e
− 2r2a

r2
b = 1− e−

2
T2 , (3.45)

where T = rb/ra is defined as the Gaussian beam truncation ratio. The focused beam

profile is Gaussian for T < 0.5 and converges to the Airy pattern for T → ∞. The

focused spot size diameter (ds) can be expressed as41;42:
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ds =
Kλ

2NA
, (3.46)

where NA is the numerical aperture of the lens, λ is the wavelength of the laser and

K is the k-factor for truncated Gaussian beams, which is a function of T only. Urey41

computed approximate expressions for K for the two cases T < 0.5 (Gaussian) and

T > 0.4 (Truncated Gaussian):

K(T ) =

0.75
T
, T < 0.5

1.036− 0.058
T

+ 0.156
T 2 , T > 0.4.

(3.47)

In the same work41 an expression to determine the depth of focus, ∆z (i.e. the distance

along the optical axis at which the irradiance drops by 50%), was determined:

∆z = K2λf
2
#, (3.48)

where f# is the ratio between the clear aperture diameter and the focal length of the

lens (also called f -number) and K2 is the focus k-factor, again a function of T only41:

f# =
1

2 tan
(
sin−1

(
NA
n

)) , (3.49)

and

K2(T ) =

0.635
T 2 , T < 0.5

2.05− 0.12
T
− 0.28

T 2 + 0.22
T 3 , T > 0.4.

(3.50)

For the lenses used in this apparatus the computation gives: T = 1.03 for the UV laser

and T = 0.52 for the visible lasers for all the objectives. The results obtained using

equations (3.46) and (3.48) are shown in table 3.2. The calculated values show that

the system is able to focus the laser light well in the diffraction-limit of the objective

lens, allowing a high spatial resolution and that the very narrow depth of focus allows

substrate contributions to be minimized.

3.5.1.3 Electronics

Optoelectronic devices based on graphene and TMDs are usually fabricated from thin

flakes deposited on a Si substrate capped with a SiO2 layer, where electrical contacts
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Table 3.2: Laser spot diameters ds and depth of focus ∆z of the lasers used in the experi-

mental apparatus for different microscope objectives.

×50 ×20 ×10
λ (nm) ds (nm) ∆z (nm) ds (nm) ∆z (nm) ds (µm) ∆z (µm)

375 264 158 469 420 0.7 0.7
473 445 268 792 710 1.1 1.1
514 484 291 861 770 1.3 1.2
561 528 320 940 840 1.4 1.3
685 645 390 1150 1025 1.7 1.6

are defined via lithography and metal evaporation. In order to allow versatile and easy

electrical connections to such devices, a chip carrier has been purposefully designed.

As shown in figure 3.9, the carrier is composed of a PCB board (34 × 29 mm2) with

two standard 11-way pin strips, where 20 of these pins are connected to gold-coated

pads and one to a central 15 × 15 mm2 gold-coated pad (one pin is not connected).

The central pad is used to contact, using silver-based conductive paint, the highly-

doped silicon substrate which provides electrostatic gating. The other pads are used to

connect the device’s own pads to the PCB board using wire bonding. The design of the

chip carrier differs from standard, commercially available, boards since the sample is

not buried in a plastic or ceramic case, it is, instead, above the PCB and the soldering

pads. In this way the objective lens cannot come into contact with parts of the chip

carrier and long-working distance lenses are not required, thus improving the maximum

achievable spatial resolution and minimum laser spot size. The chip carriers can also

be fabricated with a central aperture, as shown in figure 3.9b, to allow the passage of

light for transmission experiments with devices fabricated on transparent substrates.

Thanks to the use of standard single-in-line package (SIP) pins, the chip carrier is

connected to a female socket on a second PCB board which is anchored on the mi-

croscope stage. This board is then connected through a shielded multi-core cable to a

breakout BNC box, which enables connections with different measuring instruments,

such as lock-in amplifiers, voltage/current amplifiers and multimeters, as shown in

figures 3.6 and 3.7. In order to screen the devices from external electric fields, the

light-tight enclosure surrounding the stage is made of conductive fabric and connected
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10 mm 10 mm

a b

Figure 3.9: Custom PCB chip-carrier boards. a, Opaque substrates configuration

where reflected and laser light is used. b, Transparent substrate configuration where trans-

mitted light is used. Yellow areas are gold-coated pads.

to the ground of the circuit, together with the walls of the BNC box. All measur-

ing instruments are decoupled from the rest of the electric instruments via insulating

transformers, while signal and bus lines are kept isolated from the measuring PC via

opto-electronic decouplers (National Instruments GPIB-120B).

Full automation of the system is achieved with a custom-made National Instruments

LabView-based software which is able to communicate to all electronic instruments via

GPIB/USB bus and modulate the lasers via digital-to-analog interface (DAC) (Na-

tional Instruments NI-DAQ) while native software (Princeton Instruments LightField)

is used to control the spectrometer and CCD camera, interfaced with the same LabView

software.

3.5.2 Performance of multi-purpose microscope system

In this section a set of standard measurements are used to characterise the performance

of the system. Such measurements include: SPCM on graphene-based photodetectors,

absorption, Raman and PL spectroscopy of a range of 2D materials and organic semi-

conductors. These measurements prove the high functionality of the proposed design

and demonstrate that the achieved resolution, both spatial and spectroscopic, and the

overall performance, is equivalent to current commercial technologies, with the addi-

tional benefit of having a compact, multi-purpose, fully customizable, instrument with

the potential for installation of additional features such as: vacuum chamber micro-

scope stage with temperature control, multi-wavelength Raman spectroscopy, auto-
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Figure 3.10: Characterization of a graphene-based PD. a, Optical micrograph of the

single-layer graphene device in field effect transistor (FET) configuration (inset) and SPCM

map at λexc = 473 nm; black-dashed box marks the mapped area, red-dashed lines mark the

graphene flake boundary. b, Electrical characterisation of the graphene FET, acquired in

the same setup, showing the conductivity as a function of back-gate voltage. c, Polarization

dependence of the observed photocurrent Iph at the graphene-metal contact (green circle

in panel a), maximum photocurrent is observed for light polarized ⊥ to the metal contact.

φ marks the angle between the vertical (y) axis of the microscope stage (θ = 0°) and the

graphene-metal interface, solid blue line is the expected curve.
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focusing and high-frequency measurements.

3.5.2.1 Optoelectronic devices

The ability of this instrument to perform measurements of optoelectronic devices is

tested using a graphene-based photodetector27;36;43;44. The apparatus is setup as in fig-

ure 3.8c, where the white light (WL) source is used for imaging purposes and switched

off during the measurements. The device is comprised of a single-layer exfoliated

graphene flake, contacted in a two-terminal geometry with Cr/Au contacts, on a Si sub-

strate capped with 295 nm SiO2 gate oxide, as shown in figure 3.10a. The SPCM map

is shown in figure 3.10a and it is acquired acquired with a 473 nm laser at 24 kW/cm2

incident power in steps of 0.5µm, under a source-drain bias VSD = 10 mV and back-

gate voltage VBG = 0 V. The map shows strong photocurrent at the graphene/metal

interface, in agreement with the expected behaviour27;44. The electronic response of

the device is characterised directly on the microscope stage. Figure 3.10b shows the

back-gate sweep (typical of a graphene FET) of the device under the same VSD: from

this it is possible to extrapolate the level of doping (holes in this case) n ' 2.1 · 1012

cm2 and the field-effect hole mobility µh ' 650 cm2V−1s−1 using equations (2.35)

and (2.37). All measurements are performed using a DL Model 1211 current amplifier,

an Ametek 7270 DSP lock-in amplifier and a Keithley 2400 SourceMeter to provide

both the source and gate bias.

The polarization capabilities of the apparatus are demonstrated by measuring the

polarization dependence of the observed photocurrent in the graphene FET. The laser

is focused at the graphene/metal interface and the λ/2 waveplate is used to change

the polarization of the incident light, while recording the photocurrent. In this type of

devices, hot-carriers dynamics in graphene, combined with the direct absorption of the

metal contacts, lead to a polarization-dependent photocurrent44, as will be discussed

in greater detail in chapter 5. In figure 3.10c it is shown a plot of the photocurrent

as a function of polarization angle θ. Here, Iph is maximum when the polarization

is orthogonal (⊥) to the metal contact and minimum when it is parallel (‖) to it, as

expected44. The angle θ is defined as the angle between the polarization of the laser

and the vertical (y) axis of the microscope stage. Since the device sits at an angle

φ ' 57° with respect to y (see figure 3.10a), the polarization dependence should have
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Figure 3.11: Absorption spectroscopy characterisation. a, Unpolarized absorption

coefficient α of a Rubrene crystal, measured perpendicular to the ab facet; b, Absorption

coefficient α of thin (∼ 25 nm) HfS2 and direct-gap determination, Eg = 2.75± 0.01 eV.

a “phase shift” of the same amount, i.e. Iph ∝ sin(2(θ − φ)), as verified in figure 3.10c

(solid blue line).

3.5.2.2 Absorption spectroscopy

In section 3.3 the absorption coefficient of a material was related to its transmittance

and reflectance. To measure these quantities the optical configurations shown in fig-

ure 3.8a-b can be used.

Two examples of absorption coefficient measurements are shown, calculated us-

ing the results of section 3.3. The first example is a thin layer of organic crystalline

semiconductor, Rubrene. The optical and electrical properties of this organic semicon-

ductor have been intensively studied45. Therefore, it offers a good standard test the

performance of the presented multi-purpose microscope system. Figure 3.11b shows

the measured α(λ) of a Rubrene crystal on glass, using unpolarized light, perpendicular

to the a-b facets and parallel to the c facet of the crystal (see ref. 45 for details). The

measured spectrum is in very good agreement with literature, both in the intensity and

position of the peaks. The second example is the absorption coefficient of ultra-thin

HfS2. This is a well known transition metal dichalcogenide (TMD) which was well

characterised in the past as a bulk crystal46 and recently as a thin flake on a substrate.

Figure 3.11c, inset, shows the absorption coefficient of a ∼ 25 nm thick flake of freshly-

exfoliated HfS2. The values agree well with literature46;25. Using equation (3.20b)
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Figure 3.12: Polarized Raman characterisation. a, Raman spectrum of MLG as a

function of incident optical power and power-dependence of the G-peak heigh (inset), solid line

marks a slope of 1, curves shifted for clarity. b, Illustration of polarized Raman spectroscopy

configuration for solid crystals. c, Raman spectra of Si showing the first-order (TO)-phonon

mode at ∼ 520 cm−1 and two-phonon mode at ∼ 900−1000 cm−1. d, Polar plot of the height

of the 1TO mode of Si as a function of ϑ (ϕ = 0) and e, Same plot as a function of ϕ (ϑ = 0).

Solid lines are given by equation (3.53). All spectra are acquired with λexc = 514 nm at 2.1

MW/cm2 incident power and 2 s acquisition time.

the bandgap of the material can be extrapolated by plotting α2 as a function of E.

The intercept of the extrapolated linear part mark the direct bandgap of the material

Eg = 2.75± 0.01 eV, in very good agreement with established values46.

3.5.2.3 Raman spectroscopy

The inelastic light spectroscopy capabilities of the setup are characterised by studying

two well-known materials: Si and graphene. In figure 3.1b the Raman spectrum of

commercial-grade Si was presented. The spectrum was acquired with this setup using a

λexc = 514 nm laser at 1.0 MW/cm2 incident power for 10 s. The first-order transverse-

optical phonon (1TO) mode mode at ∼ 520 cm−1 is shown in both Stokes and anti-
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Stokes regime in a single snapshot. The FWHM (Γ) of the Rayleigh line (0 cm−1)

is only 7 cm−1, and the Lorentzian fit of the Si modes gives Γ = 17 cm−1. Using

equation (3.10) for T = 291 K and F = 0.97 (see ref. 9 for details), the expected

value of IS/IaS = 11.92; the experimental value extrapolated from figure 3.12a is

IS/IaS = 22± 2, giving an experimental correction factor Cex ' 1.84.

As already discussed in section 3.2, the characterisation of graphene and other 2D

materials relies strongly on Raman spectroscopy. The spectra presented in figures 3.2

and 3.3 were acquired with this setup. The ability of the system to resolve the multi-

peak structures of the 2D band of graphene is clearly demonstrated in figure 3.3a.

Furthermore, figure 3.12a shows the same spectrum of single-layer graphene acquired

at different incident powers. The inset shows the height of the G peak as a function

of incident power, adhering to the expected linear relationship. This serves to confirm

that no artefacts are introduced in the spectra by the experimental apparatus. It is

worth noting that it is possible to resolve clearly the G and 2D bands with an incident

power density as low as 50 kW/cm2 with an acquisition time of only 2 s for the whole

spectral range, a performance already better than some commercial instruments.

Polarized Raman spectroscopy is another feature that can be accessed using the con-

figuration shown in figure 3.8d. This technique has recently been applied to the inves-

tigation of graphene47 and TMDs48, where strong polarization dependence is given by

valley anisotropy, highlighting the role of Raman spectroscopy in the study of electron-

phonon coupling. As a benchmark test, the dependence of the Raman modes of Si

upon incident polarization is measured. A diagram of the measurement is shown in

figure 3.12b. Figure 3.12c shows the Raman spectrum of Si with the [100]-surface per-

pendicular to both the incident and the scattered light direction (zxxz and zxyz con-

figurations). The spectra were acquired with λexc = 514 nm at 2.1 MW/cm2 incident

power for 2 s. The 1TO mode at 520 cm−1 and a two-phonon mode at∼ 900−1000 cm−1

are clearly visible. The Raman tensor of the 1TO mode in Si is7:

R =

 0 c 0

c 0 0

0 0 0

 , (3.51)

where c is a constant. The incident and scattered light polarizations, in the geometry

of figure 3.12b, are:
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êI =

 cos(ϑ− ϕ)

sin(ϑ− ϕ)

0

 , êS =

 cos(ϕ)

− sin(ϕ)

0

 . (3.52)

Therefore, owing to equation (3.8), the Raman intensity of this mode is given by:

IR(ϑ, ϕ) = c2 sin2(ϑ− 2ϕ), (3.53)

where ϑ is the polarization angle between the incident and scattered light and ϕ is the

angle between the incident polarization and the [100] axis. As this angle is varied, the

1TO peak is observed to decrease, while the two-phonon mode changes only slightly, as

shown in figure 3.12c. Equation (3.53) is verified in figure 3.12d-e where the intensity

of the 1TO mode is plotted as a function of ϑ and ϕ, respectively. The angle ϕ is

varied by rotating the polarization of the laser with a λ/2 waveplate, while the angle

ϑ is defined by the angle of the analyser (“Pol” in figure 3.12b) with respect to the

waveplate. In this way there is no need to rotate the sample, making it possible to have

electrical connections to the devices. At the same time, this technique can be used to

asses the orientation of the sample, since a measurement of the ϑ dependence will give

a value of ϕ 6= 0 if the [100] axis is not aligned with the incident polarization angle.

3.5.2.4 Luminescence spectroscopy

In this section the ability of the system to measure luminescence phenomena is demon-

strated. Single-layer WS2, a semiconducting TMD with good potential in optoelec-

tronic applications49;50 shows a strong PL spectrum, even at room temperature, as

shown in figure 3.13a. This was acquired using the configuration shown in figure 3.8d,

with λexc = 514 nm, P = 5.1 kW/cm2 and 10 s acquisition time; the power is kept

low to avoid causing damage to the sample. A strong peak is observed, centred at 2.02

eV and the Raman modes can be also observed in the same spectrum and expanded

in figure 3.13b. Fit with Lorentzian curves of the Raman modes gives the following

values: 2LA(M) = 353 cm−1, A1g(Γ) = 420 cm−1, A1g(M) + LA = 585 cm−1 and

4LA(M) = 705 cm−1. Both the PL and Raman spectra are in perfect agreement with

the accepted values found in literature51.
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Figure 3.13: PL spectroscopy characterisation. a, Room temperature Photolumines-

cence of CVD-grown single-layer WS2, λexc = 514 nm, P = 5.1 kW/cm2, 10 s acquisition

time. b, Zoom on the observed Raman modes.

3.5.3 Final remarks and outlook

I have presented the design of a new multi-purpose instrument for the characterization

of optoelectronic devices based on 2D materials, including graphene. The instrument

is capable of performing multiple electrical and optical measurements simultaneously

with a performance at the level of the state-of-the-art commercial equipment. The

ability to perform low-frequency electrical transport measurements, SPCM, Raman,

absorption and PL spectroscopy, combined with full automation, high sensitivity and

low noise, make this instrument ideal to face the challenges imposed by the advent of

atomically-thin materials in optoelectronic devices.

Customization of each section allows multiple routes for future upgrades and ex-

pansion, these could include: a vacuum chamber microscope stage with temperature

control, multi-wavelength Raman spectroscopy, auto-focusing and high-frequency (RF)

measurements. The cost and size is very contained, making it suitable for small labo-

ratories and the safety features introduced make it very easy to operate, with minimal

training required.

All the data, involving optoelectronic measurements, presented in the rest of this

work, except were explicitly stated, were acquired using this setup.
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Figure 3.14: AFM operating principle and modes. a, Schematic illustration of

an AFM setup. A quadrant photodetector (QPD) is used to measure the deviation of the

cantilever due to the interaction between he tip and the sample. b, Common operation modes

used in AFM topography. Red lines highlight the tip movements across the sample surface.

3.6 ATOMIC FORCE MICROSCOPY (AFM)

AFM is a technique which provides three-dimensional surface topography with nano-

metre resolution of a wide range of solid materials, including conductors, insulators

or magnetic materials. AFM has been the first technique employed to establish if the

graphene flakes were actually one atom thick. However, the thickness of a MLG on SiO2

was first measured to be 0.8− 1.2 nm, instead of 0.4 nm as seen from X-ray diffraction

and from AFM on bulk graphite52. The cause of this extra thickness is yet unclear,

since the simple Van der Waals interaction between substrate and graphene cannot

explain it. Even if AFM analysis is too slow to be employed as main identification and

characterization technique for graphene and other 2D materials, the images obtained

with this technique are the best way to inspect the morphological quality of small

flakes.

3.6.1 Experimental setup

The basic principle of AFM operation is illustrate in figure 3.14a: a sharp tip is scanned

on the sample surface, detecting the topography. Typical Si3N4 tips have a curvature
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radius of 10 − 15 nm and opening angle of about 20 °. When the tip is brought very

near to the surface to be analysed, the tip experiences attractive or repulsive forces,

depending on the materials. The cantilever, on which the tip is located, is deflected

accordingly and the tip movements are measured by mean of an optical lever. This

consists of a laser beam focused on the cantilever, which reflection is projected into

a quadrant photodetector (QPD). This kind of photodetector is able to register the

position of a focused light spot by summing the signals from four PDs. While the

sample is scanned, the tip-sample interaction is kept constant by a feedback loop usually

involving a lock-in amplifier and a controlling PC.

AFM can be operated in different modes, that is the way the tip is driven across the

surface and which kind of interaction is probed. The most common used in topography

imaging are: contact mode, non-contact mode and “tapping” (or dynamic) mode. The

first and foremost mode of operation, the contact mode, is very similar to a profiler:

the tip-sample forces are maintained at a constant level and, with piezoelectric motion,

the surface is scanned by the tip. In non-contact mode, the tip is driven at its resonant

frequency ω0 and scanned across the surface without touching it. Using a feedback

loop, the hight is kept constant. This mode belongs to a family of alternate-current

(AC) modes, which refers to the use of an oscillating cantilever. In dynamic mode,

the tip intermittently touches or taps the surface and the natural resonance frequency

of the tip is shifted by the tip-sample force. This shift is proportional to the second

derivative of the corresponding potential. This information is then converted in a

topographical image of the surface. Furthermore, in this mode, the cantilever and the

tip can be regarded as a (nearly) harmonic, damped oscillator, where the phase lag

between tip motion and the driving force is characteristics of the viscoelastic properties

of the surface, as well as adhesive forces due to different functional groups53. As an

example, in reduced graphene oxide, phase images were shown to readily distinguish

between reduced and oxidized flakes54. In AC modes, in order to filter out the thermal

noise, a lock-in amplification is introduced and a more stable detection is allowed.

The forces acting between the tip and the surface are of different nature and depend

on the tip-sample distance. The first interaction is the electrostatic force. It begins at

0.1 − 1 nm and may be either attractive or repulsive depending on the material. At

10−100 nm, surface tension effects result from the presence of condensed water vapour

at the sample surface. The tip is pulled down toward the sample surface with attractive
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force up to 200 pN. Van der Waals forces appear at the Å level above the surface: the

atoms in the tip and sample undergo a weak attraction. Coming even closer, electron

shells from atoms on both tip and sample repulse one another, preventing further

intrusion by one material into the other (Coulomb forces, contact mode). Pressure

exerted beyond this level leads to mechanical distortion and the tip or damage to the

sample. The actual sharpness of a tip influences directly its ability to resolve surface

features. Moreover, certain tip damages (e.g. double-pointed and cracked tips) occur

very often. One obvious surface limitation is caused by deep grooves: the tip is not

long enough, or thin enough, to reach the bottom of a recess. Furthermore, the tip

cannot detect walls of the sample with an angle steeper than itself.

3.6.2 This work

The data shown in this work have been acquired with a Bruker Innova AFM system,

operating in the dynamic mode to avoid damage to the sample while maintaining a

high spatial resolution. The measurements were performed using a highly doped silicon

tip from “Nanosensors” with a nominal resonance frequency of 330 kHz, and a sharp

radius of curvature (< 10 nm).
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[12] L. G. Cançado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O.

Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari. Quantifying defects in graphene via

Raman spectroscopy at different excitation energies. Nano Letters, 11(8):3190–3196, 2011.

[13] Axel Eckmann, Alexandre Felten, Artem Mishchenko, Liam Britnell, Ralph Krupke, Kostya S.

Novoselov, and Cinzia Casiraghi. Probing the nature of defects in graphene by Raman spec-

troscopy. Nano Letters, 12(8):3925–3930, 2012.

[14] Chun Hung Lui, Zhiqiang Li, Zheyuan Chen, Paul V. Klimov, Louis E. Brus, and Tony F. Heinz.

Imaging stacking order in few-layer graphene. Nano Letters, 11(1):164–169, 2011.

[15] C. Casiraghi. Doping dependence of the Raman peaks intensity of graphene close to the Dirac

point. Phys. Rev. B, 80:233407, Dec 2009.

[16] Chi-Fan Chen, Cheol-Hwan Park, Bryan W. Boudouris, Jason Horng, Baisong Geng, Caglar

Girit, Alex Zettl, Michael F. Crommie, Rachel A. Segalman, Steven G. Louie, and Feng Wang.

Controlling inelastic light scattering quantum pathways in graphene. Nature, 471(7340):617–620,

Mar 2011.
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4
FeCl3-INTERCALATED GRAPHENE

NOTE: Some of the ideas and data presented in this chapter have appeared previously

in the following publication: Thomas H. Bointon, Gareth F. Jones, Adolfo De Sanctis,

Ruth Hill-Pearce, Monica F. Craciun and Saverio Russo. Large-area functionalized

CVD graphene for work function matched transparent electrodes. Scientific Reports,

5:16464 (2015).

The ability to manipulate and control the arrangement of atoms and molecules in a

lattice is the ultimate way to engineer novel physical properties of materials1. For ex-

ample, the chemical functionalisation of graphene2 leads to radical modifications of its

band structure and density of states, inducing an energy gap3, intrinsic superconduc-

tivity4 and magnetic properties5. Graphite intercalation compounds (GICs) have been

known for decades6 but only recently few-layer graphene (FLG) has been used and its

properties investigated in depth. Amongst the different forms of functionalisation, in-

tercalation with FeCl3
7, is used to induce strong p-type doping in the graphene layers

(up to 1014 charges/cm2), making this material particularly suitable for transparent

electrodes8;9. Indeed, it has been recently reported that FeCl3-intercalated few-layer

graphene (FeCl3-FLG) gives an enhanced light emission of 60%, when employed in a

light emitting device, compared to standard graphene electrodes and up to 40% en-

hancement compared to commercial conductive polymers10. At the same time, despite

the hydrophobic nature of the intercalant, this material displays an unprecedented sta-

bility in ambient conditions11: it can sustain temperatures above 100 °C in air and

up to 620 °C in vacuum, as well as exposure to 100 % humidity for weeks, without

structural changes.
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Figure 4.1: Intercalation of FLG with FeCl3. a, Schematic of the setup used to perform

the FeCl3 intercalation of graphene. The main parts are a three-zones furnace equipped with

glass tubes and a vacuum system able to evacuate the tube to a pressure of < 10−5 mBar. b,

Intercalation process using a three-zones furnace (Z1-3). c, Schematic diagram of the heating

cycle during intercalation (see also table 4.1).

In this chapter the basic properties and fabrication methods of this extraordinary

material are presented. Focus is put on its characterisation using Raman spectroscopy,

as a non-destructive tool to estimate the charge concentration. Finally, a detailed study

of large area FeCl3-FLG prepared from chemical vapour deposition (CVD)-grown FLG

is presented, as the base material used to demonstrate graphene-based light-emitting

devices.

4.1 INTERCALATION OF GRAPHENE WITH FeCl3

The procedure and the setup adopted in this work to intercalate FLG with FeCl3 are

illustrated in figure 4.1, and follow the work by Khrapach et al.7. The technique is a

vapour-transport method6, similar to CVD, in a sealed environment, without the use

of dangerous carrier gasses, such as Chlorine. FLG is prepared on the desired substrate

either by mechanical exfoliation from bulk graphite or by wet-transfer of CVD-grown

graphene (see also section 4.3). After, the sample is loaded into a glass tube mounted

in a three-zones furnace, as illustrated in figure 4.1a, with the sample placed in the
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Table 4.1: Intercalation heating cycle. Heating cycle for the intercalation of FLG with

FeCl3. The transition between two temperatures is always linear except for the cooling stage

in which it is exponential.

Zone 3a Zone 2 Zone 1
T1 (°C) 20 20 20
τ1 (min) 40 40 31
T2 (°C) 300 360 315
τ2 (min) 480 480 450
T3 (°C) 300 360 315
τ3 (min) - - -
T4 (°C)b 20 20 20

a With reference to figure 4.1a,b; b Power OFF.

central zone. On the other end of the tube a small vial filled with anhydrous FeCl3

(Sigma-Aldrich, powder, ≥ 99.99 % trace metals basis) is placed. The opposite end of

the tube is connected to a vacuum system designed to evacuate the tube to a pressure

< 10−5 mBar (see figure 4.1a), using a turbo-molecular pump in combination with a

liquid nitrogen (LN2) cold-trap. After reaching the desired vacuum the tube is sealed.

The furnace is then programmed to perform the heating cycle illustrated in table 4.1

and figure 4.1c, where τ2 can be varied depending on the area to intercalate8 (see

also section 4.3). The first zone, containing the FeCl3, is kept at the sublimation

temperature of FeCl3, in order to thermally decompose the powder into a gas. In this

way the Chlorine gas developed by the sublimation reaction acts as carrier gas for

the intercalation process. The second zone, containing the graphene sample, is kept

at a higher temperature in order to drive the FeCl3 gas towards it and facilitate the

intercalation process by relaxing the FLG stacking. The third zone, which is empty, is

kept below the sublimation temperature of FeCl3, in order to crystallize the excess gas

away from the sample during cooling.

The vacuum system shown in figure 4.1a has been purposefully designed and built

as a part of this PhD project. All components are made of stainless steel, in order to

avoid corrosion caused by residual FeCl3 pumped in the system. A LN2 cold trap is

used as a contamination barrier for the pumps, by freezing the incoming particles on
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its internal surface, it also acts as a pumping system, which shortens the total process

time. The furnaces can accommodate glass and quartz tubes up to 9 cm in diameter,

making it possible to intercalate large-area FLG on rigid substrates up to areas of ∼ 80

cm2.

4.2 CHARACTERISATION OF FeCl3-FLG

A schematic representation of the material resulting from the intercalation process

described in section 4.1 is shown in figure 4.3c. A layer of linked FeCl3 octahedra

intercalates between the graphene layers, increasing the intra-layer distance from 3.4 Å

to 9.2 Å, with the width of an individual layer of intercalant being 5.8 Å, as it was

observed in the past on intercalated bulk graphite12;13. This structure gives exceptional

properties to this material, resulting from the charge transfer between the FeCl3 and

the graphene.

The study of GICs and FeCl3-intercalated graphite has been conducted in the past

using a series of characterisation techniques, ranging from X-Ray diffraction (XRD)13;14

to high-resolution transmission electron microscopy (HRTEM)12. Raman spectroscopy

has been used as well15;16, giving a series of information unavailable with the other

techniques and nowadays is the main tool used to characterise this material. In this

section the electrical and optical properties of intercalated graphene are reviewed to-

gether with the peculiarities of its Raman spectrum. Raman spectroscopy can be used

to asses several remarkable effects of the intercalation on the pristine graphene and to

estimate the amount of induced charge (doping) per layer.

4.2.1 Electrical and optical properties

Figure 4.2a shows an optical micrograph of two pristine flakes of FLG together with

the same flakes after intercalation with FeCl3. The intercalated flakes clearly show a

different contrast and colouration of the substrate (the pictures are acquired in the

same conditions). This can be easily attributed to the presence of the FeCl3 molecules

which modify the absorbance and reflectance of both the graphene and the substrate.

As shown in figure 4.2b, the spectral transmittance of FeCl3-FLG is different from

pristine graphene. In particular, higher absorption at short wavelengths is observed

but, in contrast, higher transparency is observed at longer wavelengths and in the
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Figure 4.2: Electrical and optical properties of FeCl3-FLG. a, Optical micrograph

of pristine (top) and FeCl3-FLG (bottom) flakes on Si/SiO2 substrate. b, Transmittance

spectra of FeCl3-FLG for different number of layers. Dashed lines represent the literature

values for pristine graphene. c, Square resistance of FeCl3-FLG for different number of layers,

as a function of temperature. Adapted with permission from Ref. 7 ©WILEY-VCH Verlag.

infrared (IR). The latter is given by the induced doping, which effectively opens an

optical gap for photons with energy ~ω < 2EF (see section 2.2.1).

The resistance of FeCl3-FLG as a function of temperature is shown in figure 4.2c.

It is observed that flakes thicker than bilayer graphene (BLG) show characteristic

metallic behaviour, with a sheet resistance as low as 8 Ω/� at 300 K for 5L intercalated

graphene. This is due to the large charge transfer induced by the intercalant: Hall

measurements on the same sample7 show a charge density of ∼ 8.9 · 1014 cm−2. These

charge densities exceed the highest values demonstrated so far by gating with other

techniques17;18 and, combined with the high transparency, make this material the best

known transparent conductor. Therefore, FeCl3-FLG holds the potential for its use

in optoelectronic applications, in particular as a transparent conductor for display,

photovoltaic (PV) and light emitting device (LED) applications.

4.2.2 Raman spectroscopy

The Raman spectrum of graphene intercalated with FeCl3 shows two prominent fea-

tures7;19;20: an upshift of the G-bands, with respect to pristine graphene, and a change
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Figure 4.3: Raman spectroscopy of FeCl3-FLG. a, Representative spectra of trilayer

graphene (TLG), pristine (black) and FeCl3-intercalated (blue). Upon doping with FeCl3,

the pristine G0 peak at 1580 cm−1 up-shifts and splits into two peaks G1 and G2, each

corresponding to a different stage of intercalation. b, The reduced coupling within the layers

transforms the double-resonant 2D band around 2650 cm−1 from a multi-Lorentzian (6 in

this case, right) to a single-Lorentzian peak (left). c, Schematic diagram of the structure and

charge-transfer processes in FeCl3-FLG, bond lengths and intra-layer distances are in scale.

in the shape of the 2D band, as shown in figure 4.3a,b. The charge-transfer induced

by the FeCl3 molecules induces hole doping in graphene, which results in the stiffening

of the E2g mode21, responsible for the resonant G-band at ∼ 1580 cm−1 in the Raman

spectrum. Two intercalation stages12 are possible: when a graphene layer is in contact

with FeCl3 from one side (known as stage-2 intercalation) the charge doping shifts the

G-band from ∼ 1580 cm−1 to ∼ 1610 cm−1, this is usually referred to as G1 peak7.

When a graphene layer is sandwiched between two FeCl3 layers (known as stage-1 in-

tercalation) the G band shifts up to 1625 cm−1, which is usually called G2 peak. The

stage number indicates the number of graphene layers which are sandwiched between

two FeCl3 layers.

The increased distance between graphene layers reduces their coupling, causing the

double-resonant 2D band, originating from the A1g mode, to change from a multi-

peak band, characteristic for two and three layer graphene, to a single-Lorentzian

peak, typical of stacked non-interacting graphene monolayers, as shown in figure 4.3b7.
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The different intercalation stages and the related charge-transfer effect are shown in

figure 4.3c, where the shift in Fermi level due to the increased charge density is shown

schematically.

As already mentioned, doping in graphene results in a stiffening of the E2g phonon

mode. This is due to the presence of a Kohn anomaly in the phonon dispersion at the

Γ point. In general, the atomic vibrations in a solid are partially screened by electrons.

This screening can change rapidly in a metal for vibrations associated with particular

points of the first Brillouin zone (FBZ) which are determined by the shape of the Fermi

surface. At these points, an anomalous behaviour of the phonon dispersion is observed,

such as a discontinuity, and called Kohn anomaly22. Kohn anomalies may occur only

for points in the FBZ such that there are two electronic states, with momenta k1

and k2 = k1 + q, with q such that they both lie on the Fermi surface. As already

discussed (see section 2.1.3), in graphene the two equivalent points K and K’ are such

that K = K′ + 2K (the vectors K and K′ are defined in equation (2.3)). Therefore,

the two K points are connected by the vector K′ and Kohn anomalies can occur for

q = Γ or q = K23. Lazzeri et al.21 calculated, from first principles, the frequency

of the E2g mode of graphene at Γ, which is responsible for the G peak in the Raman

spectrum, as a function of doing. Their model showed that, by treating the phonons as

a dynamic perturbation and allowing for the increase of the graphene lattice spacing

due to the increased charge density (expanded lattice) a strong dependence of the

E2g phonon frequency with doping is observed, as shown in figure 4.4a. The key to

they model is the treatment of the perturbation as dynamic, as opposed to the static

Born-Oppenheimer (BO) approximation24.

The aforementioned model has been verified experimentally by Das et al.25 using a

top-gated graphene transistor, with a maximum charge induced with this technique of

4 · 1013 cm−2, below the levels reached by FeCl3 intercalation. To assess the accuracy

with which the stiffening of the E2g phonon mode, and consequent up-shift of the G

peak, can be reliably used to estimate the charge density in FeCl3-FLG, a comparative

study of the charge density obtained from the G peak shift and the period of the

Shubnikov-de Haas oscillations (SdHO), presented in the work of Ref. 7, was conducted.

Figure 4.4b shows the fit to Raman spectrum of a three-layer FeCl3-FLG, from the data

in Ref. 7. Using the model described above and the results shown in figure 4.4a, the G2

peak at 1623.24±0.02 cm−1 gives a charge density of nh = (9.0±0.5) ·1013 cm−2, while
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Figure 4.4: Raman estimation of charge density in FeCl3-FLG. a, Frequency of

the E2g Γ phonon (Raman G band) as a function of charge concentration: shift with respect

to the zero-doping frequency (1580 cm−1). Adapted with permission from Lazzeri M. and

Mauri F., Phys. Rev. Lett. 97, 266407 (2006), ©2017 by the American Physical Society21.

b, Raman spectrum of 3L FeCl3-FLG taken from the data in Ref. 7, where both stage-2 (G1

peak) and stage-1 (G2 peak) intercalation stages of graphene are present. Data courtesy of

Monica F. Craciun.

the SdHO measurements on the same sample7 report a value of nSdHO = (10.700 ±
0.005) · 1013 cm−2. Given that Raman spectroscopy is a local probe (the laser spot-size

is < 1 µm), it is possible to explain the discrepancy between the two measurements

by small inhomogeneities of the sample under examination. Therefore, an uncertainty

of ±1 · 1013 cm−2 an be associated with the estimation of charge concentration using

Raman spectroscopy, in FeCl3-FLG. Given the small discrepancy between the two

measurements it is possible to conclude that Raman spectroscopy is a valuable, non-

destructive, tool to estimate the charge concentration in highly doped graphene, in

particular over large areas.

4.2.3 Determination of the stacking order in FeCl3-FLG

Using a combination of optical microscopy and Raman spectroscopy it is possible to

determine the stacking order of FeCl3-FLG. This information is very important in or-

der to determine the total charge concentration of the whole stack and the associated
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electrical and optical properties. In Ref. 7, the authors used magneto-transport mea-

surement, together with Raman spectroscopy, to infer the stacking order of the mea-

sured flakes of FeCl3-FLG, relying on the fact that the presence of a stage-1 BLG (i.e.

a BLG which is sandwiched between to layers of FeCl3) would result in the presence of

massive Dirac fermions, whose mass was measured from the temperature dependence

of the amplitude of magneto-conductivity oscillations7. In this section I will show how

a careful analysis of the Raman spectrum and the knowledge of the thickness of the

pristine flake, can be used to determine the stacking order, at least for BLG and TLG,

in section 5.2.1 this technique is applied to a 4L graphene.

Figure 4.5a shows the optical micrograph of a pristine TLG flake, whose thickness

was determined by optical contrast (see section 2.2.2). After intercalation with FeCl3,

the Raman maps, shown in figure 4.5b show a prominent G1 peak and no G2 or pristine

G0 peaks. These maps show the height of the G-band peaks normalized to the height

of the Si peak at 520 cm−1. Therefore, in this case the intercalation is of stage-2 and

all graphene layers must be in contact with FeCl3, resulting in a stacking structure

in which one BLG is maintained, as shown schematically in figure 4.5a. The same

analysis is shown in figure 4.5c and figure 4.5d, where a BLG flake is used. In this case

the presence of a prominent G1 peak across the whole flake, indicates that one layer of

FeCl3 intercalates between the graphene, leaving two decoupled monolayer graphene

(MLG) in the stack.

Therefore, it is possible to use Raman spectroscopy to asses the stacking order

in intercalated graphene across a large area: this is important for the study of the

electronic and opto-electronic properties of this material, as it will be discussed in

chapter 5.

4.3 LARGE-AREA FeCl3-FLG

The development of flexible optoelectronic devices, such as PV cells and LEDs, depends

on the availability of flexible and transparent electrodes and their compatibility with

photoactive materials. At the same time, such electrodes should be scalable to large-

area production. Currently used transparent conductors, i.e. Indium-Tin Oxide (ITO)

and Fluorine-doped Tin Oxide (FTO), are brittle and degrade significantly under small

applied strains26;27. Furthermore, the diffusion of Indium from ITO into the photoac-
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Figure 4.5: Stacking order of FeCl3-FLG. a, Optical micrograph of a TLG flake on

Si/SiO2, with annotated contrast and schematic of the inferred stacking order. b, Raman

maps of the same flake showing the height of the G-bands, normalized to the Si peak at 520

cm−1. Yellow-dashed lines mark the region of the flake. c and d, Same micrograph and

Raman maps for a BLG flake (a green filter is used to enhance the contrast).

tive layers of PV cells or organic light emitting devices (OLEDs) is a well-known cause

of device degradation28. Other solutions have been proposed, such as meshes of metal-

lic nano-wires, which have high optical transmission (∼ 80 % at 550 nm) and low sheet

resistance (∼ 38 Ω/�)29 even when subjected to 16 % strain27. However, scattering of

light off nano-wires can introduce significant optical haze, limiting the applicability of

these materials in real applications. As shown in section 2.1, graphene has a high opti-

cal transmission and does not suffer of haze, while its conductance is unchanged even

when subject to strains up to 6.2 %30. Furthermore, contrary to ITO, no carbon migra-

tion has been reported in OLEDs that use graphene electrodes. However, the efficiency

of these devices is still low due to the high sheet resistance of graphene (> 500 Ω/�)

and poor matching of its work function (WF) to that of the photoactive layer31. As

already discussed, functionalisation of graphene2 can lower its sheet resistance but for

large-area applications, functionalised CVD-grown graphene still shows values greater

than ITO (8 Ω/�), causing excessive dissipation in electrical devices32;33;34. The high

sheet resistance causes the potential drop across the area of a transparent electrode

to result in gradients of light intensity over the surface of the organic light emitting



95 CHAPTER 4. FeCl3-INTERCALATED GRAPHENE

device (OLED). Furthermore, since the WF of pristine graphene is comparable to that

of ITO (4.6 eV for graphene and 4.8 eV for ITO)28, pristine graphene electrodes re-

quire electron or hole blocking layers for efficient PVs to account for the large WF

mismatch between the electrode and the photoactive layers. Therefore, a transparent,

flexible and highly conductive material that does not require charge blocking layers

when embedded in PV would enable the development of more efficient optoelectronic

devices.

To pursue this goal, CVD-grown graphene on Nickel (Ni-CVD)35 was used in this

work, since growth on Ni results in multilayer graphene with a continuous coverage over

large areas (up to 100 cm2). The intercalation of this kind of FLG was carried out as

described in section 4.1, resulting in a highly doped material with high transparency,

low sheet resistance and a WF comparable to that of gold. Its characterisation is

presented in the following sections.

4.3.1 Characterisation of Ni-grown CVD graphene

Characterisation of commercially available Ni-CVD graphene transferred on Si/SiO2

substrate is shown in figure 4.6 (see appendix A for details on growth and transfer of

CVD graphene). The datasheet of commercially available Ni-CVD (100 mm diameter

wafer from Graphene-supermarket) specify that this is a continuous film of FLG with

thickness varying from 1 to 7 − 10 layers. Figure 4.6a shows a false-colour map of an

optical micrograph picture (shown in figure 4.6b) of such graphene transferred on a

Si/SiO2 (300 nm thick SiO2) substrate using wet etching of Ni in 1M FeCl3 solution.

The variation in layer thickness of the different domains is clearly visible, while the

size of such domains is consistent with previous studies35. A statistical analysis of the

grain size shows that ∼ 35 % of the sample is 4 layers thick with and average domain

area of ∼ 150 µm2, see figure 4.6c.

4.3.2 Intercalation and Raman study of large-area FeCl3-FLG

The intercalation of Ni-CVD graphene was conducted according to the method dis-

cussed in section 4.1, with an intercalation time τ2 of 8, 12 and 36 h. No significant

differences were observed across the different samples.

Figure 4.6d shows an optical micrograph of a representative area of Ni-CVD after
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Figure 4.6: Characterisation of Ni-CVD graphene. a, False-colour map of pristine

Ni-CVD graphene grains, masked according to the number of layers. b, Optical micrograph

of the sample in a. c, Statistical study used to determine the relative coverage and average

grain size of the multilayer islands in a. d Optical micrograph of large-area FeCl3-FLG. e,

Statistical study of average grain area < A > of the sample in d. f and g, Scanning electron

microscope (SEM) images of Ni-CVD and FeCl3-FLG, respectively.



97 CHAPTER 4. FeCl3-INTERCALATED GRAPHENE

intercalation with FeCl3. A statistical analysis of the micrograph images, figure 4.6e,

shows no significant change of the average domain area upon intercalation, which is ex-

pected since the FeCl3 is not etching the graphene during the intercalation process7;11.

SEM images of Ni-CVD graphene on SiO2 before and after FeCl3 intercalation are

shown in figure 4.6f-g respectively. After intercalation a better contrast is observed in

the SEM image, given by the higher conductivity of the graphene. FeCl3 residues are

also present and appear as bright spots (since Fe has a higher Z than C) on the surface

and at the boundaries of the islands.

Raman spectroscopy is employed to further characterise the material. Figure 4.7a

shows a representative Raman spectrum of a 1 cm2 multilayer graphene on Si/SiO2

substrate intercalated for 36 h. The G-band can be fitted with four Lorentzian peaks,

which, following the discussion in section 4.2.2, can be labelled as G0 (1580 cm−1), G∗10

(1600 cm−1), G1 (1611 cm−1) and G2 (1622 cm−1). Upon doping the 2D-band is up-

shifted and its shape becomes the convolution of a smaller number of Lorentzian peaks,

as compared to the pristine multilayer graphene, in agreement with previous reports25.

In this case, four Lorentzian peaks are needed to obtain a good fit to the 2D-band, as

shown in figure 4.7a, right, with maxima at 2637 cm−1 (2D0), 2684 cm−1 (2D∗1), 2700

cm−1 (2D1) and 2721 cm−1 (2D2). As discussed in section 4.2.2, the positions of G-

and 2D- peaks are unique identifiers of the doping level in this intercalated compound.

In this case, however, a new set of peaks appears which were labelled G∗1-2D∗1. It is

reasonable, given the nature of large-area FLG, to attribute these peaks to graphene

layers in direct contact to one adjacent FeCl3 layer, as for the G1 peak, but with a

lower density of FeCl3 molecules, which results in a lower charge transfer.

As discussed in section 4.2.2, the Fermi energy in FeCl3-FLG can be measured using

Raman spectroscopy. Estimates of nh over a representative surface area of 104 µm2

in this material show three different doping levels, as shown in figure 4.7b. Hence,

the three corresponding charge concentrations are n0
h = 0.3 · 1013 ± 1 · 1012 cm−2,

n1
h∗ = 2.6 · 1013 ± 3 · 1012 cm−2 and n1

h = 4.6 · 1013 ± 5 · 1012 cm−2, see figure 4.7c.

In a few-layer graphene system, such as the Ni-grown CVD graphene presented

here, the total charge density in the system can reach values as high as 1015 cm−2 for a

sequence of 15 graphene layers. Since the exploitation of collective charge oscillations

in graphene (i.e. plasmons) strongly relies on doping, FeCl3-intercalation of multilayer

graphene provides an attractive platform for pioneering studies of surface plasmons
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Figure 4.7: Charge density estimation in large-area FeCl3-FLG a, Raman spectrum

(λexc = 532 nm) of FeCl3-FLG showing the G- and 2D-band regions with the associated

four-peaks fit (G0-2D0, G∗1-2D∗1, G1-2D1 and G2-2D2). b, Spatial distribution of the hole

concentration nh for the first three intercalation stages, over an area of 100 × 100 µm2. c,

Statistical study of nh for each intercalation stage over the 400 points in b. Adapted with

permission from Ref. 8.

at wavelengths of interest to the telecommunication industry (1 − 1.5 µm). More

specifically, the plasmon frequency in graphene scales as36:

~ωpl =

√
EF

D
, (4.1)

where EF is the Fermi level and D is the size of the resonant plasmonic structure.

Therefore, ans EF ≈ 1 eV, which corresponds to a total charge density of ∼ 7 · 1014

cm−2 (see equation (2.18)), would result in a plasmon resonance at a photon wavelength

of ∼ 1.4 µm. Such high charge density can be easily obtained in FeCl3-FLG.



99 CHAPTER 4. FeCl3-INTERCALATED GRAPHENE

4.3.3 Electrical and optical properties of Ni-CVD FeCl3-FLG

The room temperature resistivity of the Ni-CVD FeCl3-FLG was measured8 to be

20.5 ± 0.5 Ω/�, that is ∼ 1000 times smaller than the resistivity of graphene at the

neutrality point and more than 20 times smaller than the lowest values of resistivity

reported in CVD-grown graphene.

The optical transmittance of Ni-CVD FeCl3-FLG, deposited on a glass substrate,

is larger than 74 % for the wavelength range 450− 850 nm, with a value of 77 % at 550

nm, which is comparable to the transmittance of a 10 µm thick ITO37. The optical

transmittance was observed to increase monotonously up to 87 % at 850 nm incident

wavelength.

The WF of Ni-CVD FeCl3-FLG, ΦiFLG, was characterised using Scanning Kelvin

probe microscopy (SKPM)38;39 over a representative 20 µm2 areas of the sample8. A

distribution of ΦiFLG was observed, with the most commonly occurring at 4.9 eV, 5

eV and 5.1 eV, with the majority of the surface area of the sample (∼ 60 %) showing a

value ΦiFLG = 5.1 eV. The observed three dominant values of ΦiFLG are to be expected

in intercalated few-layer graphene and correlate very well with the three distinct in-

tercalation stages observed in Raman spectroscopy (see section 4.3.2). Furthermore,

while ΦiFLG was observed to vary on the nano-scale between 4.8− 5.2 eV, the average

value of 5 eV was observed to be uniform over a 1 cm2 scale, that is the size of the

sample.

4.4 FINAL REMARKS AND OUTLOOK

The unique properties of FLG intercalated with FeCl3 have been reviewed and a com-

prehensive study of its Raman spectrum, and the information that can be extracted

from it, has been shown. The ability to intercalate both exfoliated flakes and large-area

CVD-grown graphene makes this material an attractive platform for novel applications,

spanning different areas of technology. In particular, the unique combination of (1)

large work function, (2) low electrical resistivity and (3) high optical transmittance

make FeCl3-FLG an attractive system for flexible optoelectronics. At the same time,

a charge density per graphene layer of ∼ 5 · 1013 cm−2 makes it suitable for the study

of plasmons in the infrared region, with potential applications to the telecommunica-

tion industry40. The application of FeCl3-FLG in electroluminescent devices has been
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recently demonstrated, showing an enhancement in the light-emission from alternating

current electroluminescent (ACEL)-type devices, confirming that the low sheet resis-

tance of this material, indeed, is the key10. In chapters 5 and 6 the use of FeCl3-FLG

in two different kind of photodetectors will be demonstrated.
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5
LASER-DEFINED PHOTODETECTORS IN

FeCl3-INTERCALATED GRAPHENE

NOTE: The ideas and data presented in this chapter have been the subject of the

following publication: Adolfo De Sanctis, Gareth F. Jones, Dominque J. Wehenkel,

Francisco Bezares, Frank H. L. Koppens, Monica F. Craciun and Saverio Russo. Ex-

traordinary linear dynamic range in laser-defined functionalized graphene photodetec-

tors. Science Advances 3, 1602617 (2017).

5.1 INTRODUCTION

The unique combination of electrical and optical properties of graphene, discussed in

section 2.1, have been exploited in optoelectronic applications soon after its isolation.

Graphene-based photodetectors1 have demonstrated a unique range of properties, in-

cluding mechanical flexibility2, large operating bandwidth3 and a broadband spectral

response. However, state-of-the-art inorganic photodetectors (i.e. Si, Ga, GaAs, etc)

currently exhibit a linear response over a larger range of optical powers compared

to graphene. This is due to the comparatively small density of states at energies

below 1 eV in graphene (see section 2.1.4). Furthermore, the thermal diffusion of

photo-generated carriers has been found to dominate photocurrent signals measured

in graphene-based photodetectors4;5;6, leading to a strong photothermoelectric (PTE)

effect, which enables multiplication of hot carriers but also cause photo-responsive re-

gions to be smeared out over distances exceeding 2 microns7;5. The narrow linear

dynamic range (LDR) and the size of the photoresponsive regions in graphene pho-
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todetectors, ultimately, limits integration of graphene pixels in high resolution sensing

and video imaging applications.

Chemical functionalisation8 is a largely unexplored route to overcome the intrin-

sic limitations on sensing introduced by hot carrier dynamics in pristine graphene.

Although attempts have been made to use chemical functionalisation to engineer p-

n junctions in graphene9;10 and selectively define photo-responsive regions2;11;12, no

major improvements have been shown compared to pristine graphene devices and sev-

eral challenges remain. These include finding forms of functionalisation which give

ultra-high values of charge doping and are also air-stable. As discussed in chapter 4,

intercalation of graphene with FeCl3 has been found to result in high levels of hole-

doping, with a room temperature electrical conductivity up to 1000 times larger than

pristine graphene whilst maintaining equivalent absorption over the visible wavelength

range13;14. At the same time, an unforeseen stability to harsh environmental condi-

tions15, the ease of large-area processing14 and the promise for efficient coupling of

telecommunication wavelength light to electrical signals through surface plasmons16,

make this material uniquely suited to explore novel optoelectronic applications.

In this chapter, the use of FeCl3-FLG to form micro-metre and nano-metre scale

planar photo-responsive junctions is demonstrated. Such junctions are directly written

in the host material simply by using focused laser light. The measured photocur-

rent signals reveal a purely photovoltaic (PV) response and a LDR as large as 44

dB, which is at least 4500 times larger than any previously reported graphene pho-

todetector3;17;18;19;20;21. At the same time, these detectors exhibit remarkable stability

in atmospheric conditions without any form of encapsulation and maintain a broad

spectral response from UV-A to mid-infrared (MIR) wavelengths. Finally, the ability

to surpass the diffraction-limited resolution of far-field methods is demonstrated by

employing emerging nano-photonics tools such as near-field photocurrent nanoscopy

(NFPN), which allow to define photo-responsive junctions smaller than half the laser

wavelength used.

5.2 SAMPLE PREPARATION AND INTERCALATION OF FLG

Intercalation of FeCl3 molecules into mechanically exfoliated few layer graphene on a

Si/SiO2 substrate was conducted using the method described in section 4.1. A typical
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Figure 5.1: Inferred stacking order of four-layer FeCl3-FLG. a, Raman spectrum

of the four-layer graphene flake before intercalation with FeCl3. Inset, Image analysis of an

optical micrograph shows a 20% contrast between the flake and SiO2/Si before intercalation.

b, Schematic representation of the inferred stacking order.

Raman spectrum of the resulting system is shown in figure 5.2a, where the G0 peak at

1580 cm−1 is due to the E2g phonon mode of pristine graphene as well as the red-shifted

G1 = 1615 cm−1 and G2 = 1625 cm−1 peaks of the same mode caused by the charge

doping of FeCl3 molecules adjacent to only one side of a graphene layer (stage-2) or

sandwiching the carbon atoms (stage-1), as described in section 4.2.2.

5.2.1 Stacking order of FeCl3-FLG

As described in section 4.2.3, using a combination of optical microscopy and Raman

spectroscopy it is possible to determine the stacking order of the FeCl3-FLG. The

starting flake (before intercalation) used in the work presented in this chapter is a

four-layer graphene, as inferred from the 20 % optical contrast relative to the Si/SiO2

substrate, under white light illumination (see section 2.2.2), and the multi-peak struc-

ture of its Raman spectrum (figure 5.1a). Following FeCl3 intercalation, the splitting of

the G-band into three separate Lorentzian peaks is observed (figure 5.2b), as previously

described. Hence, from the Raman spectrum it is possible to identify the configuration

reported in figure 5.1b. Here one graphene layer remains isolated from FeCl3. Two

graphene layers are in contact with a single layer of intercalant and a fourth graphene

layer at the centre of the structure is fully intercalated. It is highly improbable for

FeCl3 to remain on the top (or at the bottom) of the flake considering that any such
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layer would be directly exposed to all solvents used during subsequent device fabrica-

tion processes. Furthermore, the G1 peak intensity is indicative of a larger presence of

stage-2 intercalated states, relative to stage-1, as expected for the structure shown in

figure 5.1b.

5.3 LASER-DEFINED JUNCTIONS IN FeCl3-FLG

Upon exposure of the intercalated flake to focused laser light with λexc = 532 nm at

Popt = 15.3 MW/cm2 incident power for 3 s, a drastic modification of the Raman G-

band is observed: with a pronounced down-shift of the G-peak positions; a reduction

of their full-width at half-maximum (FWHM), the disappearance of the G2 peak and

the emergence of the G0 peak, as shown in figure 5.2a. All of these changes indicate

a reduction in hole doping caused by laser-induced displacement of FeCl3, with the

disappearance of the G2 peak stemming from the complete removal of stage-1 interca-

lation.

The effectiveness of laser irradiation as a method for locally tailoring the interca-

lation of FeCl3 in graphene, was tested by exposing a 5.5µm wide section of the inter-

calated flake to a raster laser scan (Popt = 15.3 MW/cm2 for 3 s in 0.5µm steps). The

Raman spectra, collected at incrementally spaced locations across the laser-exposed

region, are shown in figure 5.2b, both before and after laser-irradiation. Comparing

the spectral profiles at each location, it is apparent that all irradiated regions undergo

a substantial degree of de-intercalation. In figure 5.2c, the positions of the G1 and G2

peaks along a 21µm line-scan are analysed. Uniform removal of the G2 peak from the

entirety of the rastered region clearly demonstrates that FeCl3 molecules may be dis-

placed from arbitrarily mapped areas. Importantly, the degree of intercalation remains

unchanged away from the irradiated area, with the resolution of FeCl3 displacement

defined by the laser spot profile. The remarkable effectiveness of laser-induced de-

intercalation over a significant fraction of the FeCl3-FLG flake area presents an elegant

method, akin to optical lithography, which can be used to locally customise the chem-

ical functionalisation of graphene layers.

As shown in section 4.2.2, the shift of the Raman G-peak is quantitatively translated

into a charge density. Adopting the same method, it can be seen that the laser irradi-

ation of FeCl3 causes a reduction in charge density of up to ∆ ptot ≈ −0.6× 1014 cm−2
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Figure 5.2: Raman spectroscopy study of changes in laser-irradiated FeCl3-FLG.

a, G-bands in FeCl3-FLG before (top) and after (bottom) exposure to a 30 mW laser for 3

s (λ = 532 nm), with superimposed Lorentzian fits to the G0, G1 and G2 peaks (continuous

lines). b, Optical micrograph of the FeCl3-FLG flake (delimited by red-dotted lines) with the

laser-irradiated region highlighted in green. Raman spectra are acquired along r before (left)

and after (right) laser-irradiation. c, G2 (top) and G1 (bottom) peak positions representing

stage-1 and stage-2 intercalation stages, respectively. Data points are extrapolated from the

fit of the peaks in b.
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Figure 5.3: Calibration of laser-induced displacement of FeCl3 a, Raman spectra

of FeCl3-FLG acquired on the same location after irradiating with a λexc = 532 nm laser at

different incident powers (0.15 MW/cm2, 1.5 MW/cm2, 4.1 MW/cm2 and 15.3 MW/cm2) for

20 seconds. b, Raman spectra of FeCl3-FLG after irradiating with a power of 15.3 MW/cm2

for 10 and 600 seconds compared with not-irradiated (t = 0 seconds). Each spectrum is

acquired with the same laser at power of 0.15 MW/cm2, red solid lines are Lorentzian fits.

c-d, Summary of the G2-peak Height (normalized to the Si peak at 520 cm−1) versus incident

power and exposure time, as extrapolated from the fits in panels a-b. e Optical microgra-

phy of the examined FeCl3-FLG flake before (right) and after (left) laser irradiation on the

highlighted spot (black circle), no optical modifications are visible in the flake.
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(see figure 5.4a) which, also, agrees well with electrical measurements showing a 170%

increase in resistivity over the modified area. Hence, the abrupt change in hole con-

centration at the boundaries of the laser-exposed region defines sharp p-p’ junctions.

Finally, the effect of the laser power was analysed. In order to calibrate the laser-

induced displacement of FeCl3 with respect to the incident laser power and time, a

Raman spectroscopy study on two spots of a representative flake (shown in figure 5.3)

was performed. The effect of exposing FeCl3-FLG to laser powers of 0.15 MW/cm2,

1.5 MW/cm2, 4.1 MW/cm2 and 15.3 MW/cm2 is shown in figure 5.3a-c: it is evident

that a change in G2-peak height, indicative of a reduction in doping, only occurs upon

exposure to a high-power light source. The dependence upon time was examined by

irradiating a spot on the flake with a fixed power of 15.3 MW/cm2 for 0, 10 and 600

seconds (figure 5.3b-d). The doping modification happens very quickly, within the first

10 seconds, while a prolonged exposure causes no further effect. Optical micrographs

of the flake before and after laser exposure are shown in figure 5.3e, no visible modi-

fications to FeCl3-FLG are observed. Notably, the absence of a defect-related Raman

peak at ∼ 1350 cm−1 does not emerge, demonstrating that this functionalisation can

sustain higher laser powers than pristine graphene.

5.4 OPTOELECTRONIC RESPONSE OF LASER-DEFINED p− p′ JUNCTIONS

In order to characterise the optoelectronic properties of these laser-defined junctions,

scanning photocurrent microscopy (SPCM) was conducted on the device, as shown

figure 5.4b, in short-circuit configuration (see section 3.4.4). The laser light was focused

to a beam spot size of 1.0µm at Popt = 300µW . The acquired SPCM maps are

shown in figure 5.5b-c for a variety of excitation wavelengths, together with an optical

micrograph of the device (figure 5.5a). As expected for uniform doping, no significant

photocurrent is observed in FeCl3-FLG before laser patterning. However, when a p-p’-

p junction is defined by laser-assisted displacement of FeCl3, a photocurrent as large

as 9 nA is measured at each of the lateral interfaces.

A multitude of physical mechanisms can give rise to a photoresponse. Of these, two

play a major role in graphene-based photodetectors. They are the photothermoelectric

PTE effect and the photovoltaic PV effect1. The PTE effect originates from a difference

in Seebeck coefficients across a graphene junction formed by regions with a differing
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Figure 5.4: Formation of p-p’ junctions in FeCl3-FLG. a, Total charge carrier concen-

tration before and after laser-assisted displacement of FeCl3, estimated from G-peak positions

in figure 5.2c. b, Short-circuit configuration (top) for scanning photocurrent measurements

of a p-p’-p junction in (p’ region in green). Schematic band structure (bottom) of each region

illustrates of photo-generated carriers drifting under a chemical potential gradient.

density of states, as described in section 3.4.3. If the junction is illuminated, a local

increase of temperature results in the diffusion of carriers and an opposing photovoltage

is generated (see equation (3.29)). Hot carrier dynamics are generally recognised to

dominate photocurrent generation in supported graphene devices due to inefficient

cooling of electrons with the lattice5;6. For the PV effect, incident photons generate a

density (nph) of carriers which, in the presence of an in-built electric field, are separated

and induce current at the electrodes (see figure 5.4b). Other mechanisms such as the

bolometric effect, photogating effect and Dyakonov-Shur effect require an externally

applied voltage1 and are therefore not active in the short circuit configuration adopted

in these measurements.

A first insight on the microscopic mechanism behind the observed photocurrent

can be gained by comparing the laser power dependence in pristine and intercalated

graphene. Figure 5.6a shows a typical power dependence for photocurrent (IPH ∝ P α)

generated in one of several measured monolayer graphene devices, where α = 2/3 was

obtained (see equation (3.32)). On the other hand, the photoresponse in FeCl3-FLG

is strikingly different from that of pristine graphene, exhibiting a linear dependence

extending beyond three logarithmic decades of incident laser power. The observed

difference originates from the charge carrier dynamics. More specifically, in pristine
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Figure 5.5: SPCM study of laser-irradiated FeCl3-FLG p-p’ junctions. a, Optical

micrograph of a FeCl3-FLG flake (red-dashed lines) with Au contacts (yellow lines). b,

SPCM map of the photoresponse of the pristine device in a, measured at 473 nm incident

wavelength. c, SPCM map after selective laser-assisted displacement of FeCl3 (white dashed

lines), measured at excitation wavelengths of 375 nm and 473 nm.

graphene the chemical potential (µ) lies close to the charge neutrality point and the

small Fermi surface imposes tight constraints on the maximum energy lost through

momentum-conserving acoustic phonon emission (∆Eac < 2~vsk, where vs ∼ 2 ×
104 m s−1 is the acoustic phonon speed and k is the hot carrier wavenumber)22. As

a result, photo-excited carriers reach a steady state temperature far above that of

the lattice (Th >> Tl) and are cooled via short-range “supercollision” processes at

sites of disorder17;23. If the PTE effect is similarly responsible for photocurrent in

FeCl3-FLG, the steady state temperature of hot carriers must lie significantly closer

to that of the lattice (Th − Tl << Tl) in order to justify the observed linear power

dependence17. A reduction in Th can, indeed, be explained by the ultrahigh levels

of charge density achieved through FeCl3 intercalation; the expanded Fermi surface

enhances ∆Eac to as much as 60 times that of pristine graphene, accelerating the

cooling of photo-generated charges. On the other hand, the small temperature gradients

present at these highly doped junctions could diminish thermoelectric currents so much

that they become negligible compared to signals generated by the PV effect. A linear

power dependence would also be expected in this case, provided that the incident

light intensity is sufficiently low so as to not affect the average lifetime of the photo-

generated carriers. The observation of photocurrent with a linear dependence upon

incident power therefore indicates enhanced cooling of hot carriers in FeCl3-FLG but
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Figure 5.6: Photoresponse characterisation at p-p’ junctions in FeCl3-FLG. a,

Photocurrent produced by λexc = 473 nm as a function of incident power density measured

at a laser-defined p-p’ junction and for pristine monolayer graphene (black). Power-law

exponents (Iph ∝ Pα) are detailed for each data set with fits shown as solid lines. Powers

within the range at which photocurrent in pristine graphene has been reported to saturate

are highlighted in green. Yellow-shaded area represents the extended range of FeCl3-FLG. b,

Photocurrent measured at the junction A in figure 5.5c using different excitation wavelengths,

solid lines are linear fits. c, Spectral responsivity of a p-p’ junction in FeCl3-FLG shown with

(filled circles) and without (open circles) correcting for reflections from the SiO2/Si substrate.

Dashed line is a guide to the eye. Inset: schematic of the model used to correct Re(λ) for

substrate reflections.

cannot, in contrast to what other studies have suggested20, be used independently to

distinguish between PTE and PV effect.

A careful analysis of the properties of the presented devices shows that these junc-

tions are characterised by a pure PV response, thanks to the suppression of the tem-

perature gradient at the FeCl3-FLG junctions. Such analysis falls beyond the scope of

this thesis, and it is detailed in Ref. 24.

5.4.1 Bandwidth, noise and extraordinary linear dynamic range

As discussed in section 3.4.1 and table 3.1, several parameters characterise the perfor-

mance of a photodetector. Amongst those, the LDR defines the range in which the

response of the detector is a linear function of the incident optical power, above the

noise level. The LDR is expressed in decibels (dB) as:
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Figure 5.7: BW and NEP of a laser-written FeCl3-FLG junction device. a

Frequency-modulated photoresponse of the device measured in figure 5.6a: photocurrent is

normalized to the DC value and the −3dB cut-off is marked by the dashed line. b Rise (top)

and fall (bottom) time of the same device. Solid lines mark the steady state, dashed lines

mark the 10%−90% thresholds. c, Photoresponse as a function of laser power (red) together

with the RMS noise measured during the same experiment (blue). The intersection marks

the value of the NEP.

LDR = 10× log10
(
Psat

NEP

)
[dB], (5.1)

where the noise-equivalent power (NEP) is defined as the power at which the signal-

to-noise ratio (SNR) has a value of 1 and Psat is the power at which the photoresponse

deviates from linearity. The NEP can be measured directly or computed as:

NEP =
SI
R

[
W√
Hz

]
, (5.2)

where SI is the root-mean-square (RMS) current noise (in A/
√

Hz) and R is the re-

sponsivity of the photodetector (in A/W). The operating bandwidth (BW), ultimately

determines the speed at which the detector can record information. This is defined

as the frequency at which the power of the detector is cut by 1/2, that is, when the

photoresponse signal is depleted by −3 dB with respect to the direct-current (DC)

value. The BW is related to the rise and fall time of the detector, which, ultimately,

depend on the microscopic mechanisms which give rise to the observed photoresponse.
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Table 5.1: LDR of graphene and functionalized graphene devices.

Literature Reference Psat
a NEPb LDRc

Kim et al.18 10−3 W/cm2 - -
Liu et al.21 1.27 W/cm2 0.03 W/cm2 15 dBd

Tielrooij et al.4 23 kW/cm2 - -
Mueller et al.3 51 kW/cm2 10 kW/cm2 7.5 dBe

Graham et al.17 57 kW/cm2 - -
Patil et al.20 14 kW/cm2 - -
Wang et al.12 120 kW/cm2 3.3 kW/cm2 15 dBe

This work (Graphene) 45 kW/cm2 - -
This work (FeCl3-doped) > 104 kW/cm2 4 kW/cm2 44 dBd

a Power density at which saturation of photocurrent is observed; b Noise Equivalent
Power; c Linear Dynamic Range; d Measured; e Estimated.

The frequency-modulated photoresponse of the FeCl3-FLG device is shown in fig-

ure 5.7a. The −3dB cut-off gives an operating BW of 700± 5 Hz, in good agreement

with the rise and fall time measurements shown in figure 5.7b. To determine the NEP,

RMS noise measurements were performed with a lock-in amplifier measuring the pho-

tocurrent directly (that is, with no current preamplifier in the circuit). The lock-in

noise-equivalent bandwidth (NEBW) was set to be 16.6 Hz, the modulation frequency

was 689 Hz, just below the operating BW of the device. Measured values are reported

in figure 5.7c, together with values of the photocurrent, as a function of incident laser

power. The NEP can be extrapolated and it is 4 kW/cm2.

Using equation (5.1), the LDR of the laser-written FeCl3-FLG device is 44 dB. This

is 4500 times larger than previously reported graphene photodetectors (LDR ≈ 7.5

dB)3 and ∼ 800 times larger than other functionalized graphene devices (LDR ≈ 15

dB)12. Furthermore, table 5.1 shows the saturation power density (Psat) of graphene

and functionalized graphene photodetectors reported in literature compared to the

values measured in this work for FeCl3-FLG junctions. Previous works have shown

deviation from linear behaviour and saturation of photocurrent for power densities

< 57 kW/cm2 in graphene17 and < 120 kW/cm2 in functionalized graphene12. In

contrast, FeCl3-FLG junctions show a saturation level > 104 kW/cm2, more than two

orders of magnitude larger than other reports.

Equation (5.2) was used to calculate the NEP of different graphene-based photode-
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tectors reported in literature3;12. Assuming a graphene photodetector operating at the

same frequency as the device used in this work (689 Hz), it is possible to take as the

main source of noise the 1/f contribution25. Using the results in Ref.s 25 and 26, the

spectral noise for the examined device in table 5.1 is calculated to be SI = 1.0 · 10−8

A/
√

Hz. The NEP for reference 21 is taken from the measured values and the LDR

agrees well with the estimation made for the other reports.

5.4.2 Spectral photoresponse

Further assessment of the suitability of FeCl3-FLG for optoelectronic applications is

given by its spectral response, shown in figure 5.6b. The power dependence of photocur-

rent at a p-p’ junction in FeCl3-FLG is measured for various wavelengths of incident

light ranging from UV-A (375 nm) to red (685 nm). Fits of the power exponent at

each wavelength give: α 375 = 0.99 ± 0.01, α 473 = 1.05 ± 0.06, α 514 = 0.97 ± 0.03,

α 561 = 0.99 ± 0.01 and α 685 = 0.95 ± 0.05. Again, no deviation from a strictly

linear power dependence in the whole measured power range is observed for each wave-

length. This indicates that the ultra-high degree of charge carrier doping introduced

by FeCl3 intercalation acts as a uniquely stable method to fix the photo-generated

carrier dynamics of graphene to an extended linear dynamic regime, avoiding the sen-

sitivity to processing methods and environmental conditions which pristine graphene

photodetectors3;17 inevitably suffer from. In figure 5.6c, the spectral responsivity,

R(λ) = Iph/Popt(λ), of a p-p’ junction is displayed with and without correcting for

reflections from the Si/SiO2 substrate (see appendix B). The photoresponse remains

remarkably consistent across the entirety of the visible range, where R(λ) varies by

only one order of magnitude. Of particular interest is the increase in responsivity

towards UV-A wavelengths, a region where the performance of silicon photo-diodes

decreases. The extended LDR can be attributed to accelerated carrier cooling and

the enhanced responsivity to an increased high energy density of states introduced by

FeCl3 intercalation27. This consistent proportionality between output electrical sig-

nal and incident optical power over a broad spectral range makes FeCl3-FLG-based

photodetectors ideally suited to radiometry and spectroscopy applications.
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5.5 BELOW THE DIFFRACTION LIMIT

The spatial resolution of FeCl3 displacement at the engineered p-p’ junctions is de-

termined by the profile of the laser spot used for patterning. In far-field optical mi-

croscopy, spot sizes are dictated by the Abbe diffraction-limit, ∼ λ/(2NA), where NA

is the numerical aperture of the objective (see also section 3.5.1.2). In order to explore

the density to which graphene-based imaging pixels may be packed in the absence

of hot carrier effects, a novel technique, that is scattering-SNOM, is employed to de-

fine photo-active junctions below the aforementioned limit. This technique has been

used extensively to study the plasmonic28 and optoelectronic29 response of graphene-

based devices and involves focusing a laser onto a metallised AFM tip which creates

a strong, exponentially-decaying, field at its apex. The tip is then scanned across the

sample, allowing parameters including topography, scattered light emission and local

photo-current to be measured with sub-wavelength resolution30.

Figure 5.8a-c show photocurrent maps, using a λexc = 10µm, from a tunable CO2

laser, taken before and after displacement of FeCl3 by a λexc = 632 nm HeNe laser.

The measurements were performed in short-circuit configuration. Planar junctions ex-

hibiting a photovoltaic response are readily defined with a peak-to-peak separation

of just 250 nm (figure 5.8f) whilst concurrent topography mapping (figure 5.8d-e) in-

dicates that the flake surface remains undamaged. Importantly, the absorption of

photons with energy E << 2µ in FeCl3-FLG highlights the role of transitions to the π

band from localized states introduced by Fe, as predicted by density-functional theory

(DFT) calculations31. This prevents Pauli blocking of long wavelengths and maintains

a broadband spectral response in these novel photodetectors.

5.6 SUMMARY AND OUTLOOK

In conclusion, laser-patterning is an elegant method of creating photo-responsive junc-

tions in intercalated few-layer graphene which is compatible with commercial roll-to-roll

processes. Photo-responsive junctions in FeCl3-FLG are engineered on the sub-micron

scale and remain highly stable under atmospheric conditions and intense light expo-

sure. This presents a unique opportunity relative to other methods of chemical func-

tionalisation, whereby photocurrent mechanisms are reliably pinned to produce a linear
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Figure 5.8: High-resolution photo-active junctions in FeCl3-FLG defined using

scanning near-field optical microscopy (SNOM). a, Spatial map of photocurrent in

a uniformly-doped FeCl3-flake before laser irradiation. b, Atomic force microscopy (AFM)

topography and c, SPCM maps of the FeCl3-FLG flake after laser irradiation with λexc =

632 nm, scanned over a 500 nm region (white dashed lines). Insets: illustrations of the

chemical structure in p- and p’-doped regions. Schematics of the excitation wavelength

focussed on a metallized AFM tip in each measurement are included in a-c, outlines of

the flake are superimposed (black dashed lines). Scale bars 500 nm. Magnified concurrent

AFM topography and scanning photocurrent maps are shown before, d, and after, e, laser

irradiation. f, Line profiles of photocurrent measured cross laser-defined p-p’-p junctions (d

and e, red and black dashed lines) before (top panel) and after (middle panel) displacement

of FeCl3 molecules. First derivative plots of the photocurrent signal after FeCl3 displacement

(bottom panel) shows a peak-to-peak distance of 250nm between adjacent p-p’ junctions

(red arrows).
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response over broad ranges of power and wavelength with no requirement for encapsu-

lation from the environment. These junctions show an extraordinary linear dynamic

range up to 44 dB, more than 4500 times larger than other graphene photodetectors,

that can operate at incident optical powers up to 104 kW/cm2 in the whole visible

range and in the near-UV.

In order to exploit these findings in practical applications, future work will be

required to achieve uniform intercalation of FeCl3 in large-area few-layer graphene

films of a consistent layer number. If this can be realized, these finds provide exciting

prospects towards the development of novel light sensors with potential applications in

imaging and spectroscopy.
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6
HEXAGONAL-DOMAIN FeCl3-FLG FOR

POSITION-SENSITIVE PHOTODETECTORS

NOTE: The ideas and data presented in this chapter have been the subject of the

following publication: Adolfo De Sanctis, Matthew D. Barnes, Iddo Amit, Monica F.

Craciun and Saverio Russo. Functionalised hexagonal-domain graphene for position-

sensitive photodetectors. Nanotechnology, 28:124004 (2017).

The growth of the APCVD graphene here reported was carried out by Matthew D.

Barnes with assistance from the author in the transfer stage.

6.1 INTRODUCTION

As discussed in chapter 5, the photoresponse of graphene-based photodetectors (PDs)

has been investigated with many techniques. Graphene has been tested in many ap-

plications, such as: high-responsivity1 and high-speed2 broadband PDs, wave-guide

coupling3 and transparent and flexible electrodes4. However, so far, no reports have

been made of its application in position-sensitive detectors (PSDs). Such devices tra-

ditionally consist of a semiconductor (Si or Ge) junction with four contacts, which

exploits the so-called lateral photoeffect 5. This consists of a photovoltage generated

at the junction plane in the presence of localized illumination, in addition to the con-

ventional photovoltage effect that is formed across the junction. This effect has been

extensively studied in the past6;7 and it is at the base of PSDs presently used in many

applications, such as: laser alignment, motion control, automation and scanning probe

microscopy. The detection of focussed X-rays via field-effect in a graphene transistor
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has been shown8, though no other uses of graphene for PSDs in the ultra-violet (UV),

visible and near-infrared (NIR) spectral range have been reported. Furthermore, the

use of functionalised graphene for such applications has not been demonstrated.

In this chapter, the first all-graphene position-sensitive detector (PSD) is presented.

This is based on chemically functionalized multilayer hexagonal domains of graphene

grown by atmospheric pressure chemical vapour deposition (APCVD)9.

6.2 SAMPLES PREPARATION

Multilayer hexagonal domains of graphene were grown on copper by APCVD10 using a

melting/re-solidification pre-treatment step to reduce nucleation density and increase

domain size. Growth was carried out at ∼ 1075°C using diluted CH4 (1000 ppm) as

the carbon precursor and a high H2/CH4 (50/25 sccm) to aid multilayer formation.

The crystals where then transferred to highly doped Si substrate capped with 285 nm

thermal SiO2 using poly(methyl methacrylate) (PMMA)-supported electrochemical de-

lamination11;12. The delamination step was performed using a 0.5M NaCl solution and

glassy carbon anode at 0.5 A, followed by rinsing in de-ionised water. Intercalation with

FeCl3 was carried out using the method reported in section 4.1, with an intercalation

time τ2 of 12 hours.

Devices were fabricated using standard electron-beam lithography, as described in

appendix A.2 and characterised using the techniques and the apparatus described in

chapter 3.

6.3 CHARACTERISATION OF FUNCTIONALISED HEXAGONAL-DOMAINS OF

GRAPHENE

Figure 6.1a shows the optical micrographs and Raman spectra of a pristine, as-transferred,

multi-layer hexagonal domain of graphene grown by APCVD. Each layer grows in a

stacked sequence, where the multi-layers appear at the centre of the first single-layer

sharing the same nucleation site13. The Raman spectrum of the first layer (1) shows

the the G peak at ∼ 1585 cm−1 and the 2D peak at ∼ 2700 cm−1. The shape of

the 2D band, a single Lorentzian peak, and intensity ratio I2D/IG ∼ 1.9 confirm the

single-layer nature of the crystal. The spectrum of the second layer (2) shows the same
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Figure 6.1: Raman characterisation of intercalated APCVD graphene. a, Optical

micrograph (left) and Raman spectra (right) of pristine APCVD graphene hexagonal crystals

on three different locations: (1) first crystal on substrate, (2) second layer grown on the first,

(3) third layer. Dashed lines indicate the twisting of the hexagonal crystals. b, Optical

micrograph and Raman spectra of the same crystals after intercalation with FeCl3. Raman

spectra are normalized to the height of the 1-TO mode of Si at 520 cm−1.

features but with a ratio I2D/IG ∼ 3.36, which deviates from the expected ratio for

two AB-stacked graphene layers14. This is due to the rotation of the crystallographic

axes with respect to the underlying layer, producing an effective decoupling of the two

stacked layers15;10. The third layer (3) is slightly twisted with respect to the second,

as shown by optical inspection, and the spectrum shows a 2D band that can be fitted

with the convolution of 4 Lorentzian peaks, which is characteristic of twisted bilayer

graphene with a twist angle < 3°, as reported in literature10;16. These observations are

common to all examined crystals.

Figure 6.1b presents the optical micrograph and the Raman spectra of the interca-

lated flake. The Raman spectra are acquired in the same locations as in figure 6.1a and

show the characteristic peaks of FeCl3-FLG. The first layer (1) shows an upshift of the

position of the G peak to 1600 cm−1 and an increase in the height (I2D/IG ∼ 0.92). The

second (2) and third (3) layers show the expected split of the G band into three peaks,
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each corresponding to different doping levels, as previously detailed in section 4.2.2:

the G0-peak is the signature of pristine graphene; the G1-peak is given by a graphene

layer in contact with one FeCl3 layer (stage-2) and the G2-peak is given by one layer of

graphene sandwiched between two FeCl3 layers (stage-1). The shape of the 2D-band

also indicates the effective decoupling of the graphene layers by the intercalant. The

peaks related to the FeCl3 molecules lie at significant lower energies (100−400 cm−1)17,

therefore they do not interfere with the modes of graphene. These results confirm the

successful intercalation of hexagonal-domains of APCVD graphene with FeCl3.

Atomic force microscopy (AFM) was used to evaluate the quality of the intercalated

APCVD graphene. Figure 6.2a-b show the topography image of a pristine crystal,

with a second layer grown at the centre, as seen optically (inset). Here, a series of

parallel wrinkles (green arrows) can be observed. These match the topography of

the re-solidified copper used as metal catalyst during the growth. More interestingly,

larger wrinkles running in the perpendicular direction with respect to the first ones,

originating from the centre of the crystal (blue arrows) and ending close to the middle

of the hexagon’s side, are observed as well. Wrinkles in APCVD graphene have been

previously reported12;18 to form during the cooling stage due to the different thermal

expansion coefficients of graphene and copper.

Intercalation with FeCl3 also affects the surface of graphene. Figure 6.2c-d show the

AFM topography and phase images of an intercalated crystal. In this case the image

was acquired after fabrication of metal contacts. Focusing on the topographic features,

the absence of the substrate-related wrinkles is apparent, while a number of bubble-

like structures are still present and the cross-directional wrinkles can still be seen (blue

arrows). The disappearance of small wrinkles is attributed to the intercalation process:

by separating the graphene layers, the intercalant allows them to relax. The AFM phase

image can readily distinguish between different materials, as it represents the phase

lag between the tip excitation signal and its motion that is due to the (viscoelastic)

damping properties of the sample19. In figure 6.2d it can be seen that the bubble-like

structures observed in topography show a clear phase contrast. Their distribution and

density is comparable with what is observed in the pristine crystals, suggesting that

those structures can be attributed to PMMA residues from the transfer process20.
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Figure 6.2: AFM characterisation of intercalated APCVD graphene. a, AFM

topography of a pristine APCVD graphene hexagonal crystal after transfer on Si/SiO2 sub-

strate. Inset: optical micrograph of the same crystal. b, High resolution AFM topography

of the central area. Blue and green arrows indicate wrinkles. Inset: profile of a wrinkle,

height 2.7 nm and width 115 nm. c, AFM topography of a FeCl3-FLG hexagonal crystal in

a multi-terminal photodetector device. d, Tapping phase image of the same device. Dashed

lines as in figure 6.3, blue arrows indicate the residual wrinkles after intercalation.

6.3.1 APCVD graphene photodetectors

The optoelectronic properties of intercalated hexagonal-domain of multi-layer graphene

are now studied. Figure 6.3a shows a schematic representation of a multi-terminal

device, where the contacts have been positioned in parallel to the sides of the top-

layer hexagon, as shown in the optical micrograph (figure 6.3b). The resistance across

two opposing pair of contacts, namely 1-4 and 3-6 in figure 6.3b, was measured to be

R1−4 = 660 ± 2 Ω and R3−6 = 670 ± 2 Ω, in agreement with the results in chapters 4

and 5. The photoresponse of the device was characterized using SPCM, employing,

each time different pairs of contacts. Figure 6.4a,b show the SPCM maps acquired

with contacts 1-4 and 3-6, respectively. Both SPCM maps show photocurrent Iph

being generated across the whole device, with a net change in sign appearing at the

centre of it, in the direction orthogonal to the contacts. The dashed black lines in

figure 6.4a,b mark the position of the maxima of the photocurrent. Measuring across

both pair of contacts and summing the two signals, a SPCM map is obtained, which

displays a clear four-fold symmetry of the photocurrent, as shown in figure 6.4c. where
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Figure 6.3: Multi-terminal hexagonal graphene device. a, Schematic of the multi-

terminal device and scanning photocurrent microscopy (SPCM) measuring geometry. Inset:

layer structure of FeCl3-FLG. b, Optical micrograph of the device.
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Figure 6.4: SPCM maps of hexagonal graphene device. a, SPCM map with contacts

1 and 4 connected. b, SPCM map with terminals 3 and 6. c, Sum of the SPCM maps shown

in panels a and b. Dashed green lines mark the first graphene layer while dashed hexagons

(white and orange) mark the second. Dashed black lines indicate the regions in the flake

where Iph reverses sign.
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the black dashed lines are the same as in figure 6.4a,b. Superimposing these lines,

extrapolated from the SPCM map, onto the AFM maps of the same device, shown in

figure 6.2c-d, it is clear that they match the observed crossed wrinkles in the graphene

crystal.

The role of grain boundaries and wrinkles in graphene-based photodetectors has

been studied using near-field photocurrent nanoscopy (NFPN), where the presence of

grain boundaries was associated with a reversal in the sign of the photocurrent while

enhanced photocurrent was observed in the presence of wrinkles21. The growth of

hexagonal domains by APCVD is known to give high-quality, defect-free, graphene

with no grain boundaries present across the device. The results presented so far, point

towards the fact that the observed photocurrent is related to the intercalation spatial

inhomogeneity, and thus to the doping inhomogeneity, of the graphene crystals. The

presence of wrinkles is likely to create clusters of FeCl3, increasing the level of doping

in those regions, while sign reversal is related to a sharp change in doping, forming

a p-p+ junction in the highly doped graphene. These junctions can therefore act as

photoactive centres giving the observed photoresponse for the overall device.

To confirm these hypotheses, a Raman map of the device was acquired. In fig-

ure 6.5a,d the fit of Lorentzian peaks to the G-band region are reported. Figure 6.5a,b

show the height and position of the G0 peak, respectively, while the G1 band is shown

in figure 6.5c,d. The presence of a blueshifted G0 peak which agrees very well the

boundaries of the crystal and indicates areas with partial intercalation of FeCl3 within

the graphene layers. The G1 peak height decreases significantly in the region where a

sign reversal in photocurrent is observed (the cross-shaped structure). This decrease

in height is also accompanied by a redshift of the G1 peak, from ∼ 1612 cm−1 to

∼ 1605 cm−1, in the same region, as shown in figure 6.5d. Using the model described

in section 4.2.2 it is possible to extrapolate the total density of holes in doped graphene

from the position of the G-band peaks. The results are shown in figure 6.6 (bottom

insets) where a gradient of charge density is present along the two lines determined

by the photocurrent maps, confirming our hypotheses. These doping gradients are

discussed in the next section.
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Figure 6.5: Raman maps of the hexagonal graphene device. a, G0 peak height and

b, G0 peak position. c, G1 peak height and d, G1 peak position. Solid and dashed lines as

in figure 6.4.

6.3.2 Towards position-sensitive light-detection in intercalated graphene

The unique photocurrent distribution, with a four-fold symmetry, observed in the ex-

amined device (figure 6.4c), can be used for position-sensitive applications. Commercial

PSDs exploit the photovoltage generated parallel to a semiconductor junction in the

presence of local illumination5. This effect has been extensively studied in the past6;7

and is characterized by a bipolar linear photoresponse as a function of illumination po-

sition. Figure 6.6a,b (top panels) show the line profiles extrapolated from the SPCM

maps in figure 6.4a,b, while in the bottom panels the same line profiles acquired on the

charge density nh maps are reported. The mean value of the log-normal distribution of

nh (nh = (4.27±0.02) ·1013 cm−2) separates values nh < nh (low doping, p regions) and

nh > nh (high doping, p+ regions). It can be seen that the extremes of Iph are located

where nh crosses nh, i.e. in the presence of a p-p+ junction. At the same time, bipolar

linear regions are present (green lines), where the photocurrent changes sign at the

centre of the photoactive junction. This behaviour is very similar to what is observed

in a lateral photoactive junction5. In this case the junction is formed between areas of

different doping in the functionalised graphene, induced by the inhomogeneity of the

FeCl3 intercalation driven by the wrinkles in the pristine APCVD crystals. Therefore,

exploiting a multi-terminal geometry, as the one adopted here, it is possible to use

these linear regions to determine the position of a focussed light spot on the device.
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Figure 6.6: PSD characterization. a, Line profiles of photocurrent Iph (top) and total

hole density nh (bottom) taken along the dashed lines shown in the right panels, with contacts

3 and 6 connected. b, Same line profiles as in a with contacts 1 and 4. Green solid lines mark

the linear regions, green-shaded areas mark the maxima and minima of the photocurrent and

the corresponding hole density. nh is the log-normal mean value of the reported data.

6.4 SUMMARY AND OUTLOOK

In summary, the successful intercalation of multilayer APCVD-grown hexagonal crys-

tals of graphene has been demonstrated together with its use as a PSD. The degree

of intercalation and the resulting doping of graphene was characterised, showing the

formation of multiple p-p+ junctions associated with the presence of wrinkles in the

pristine APCVD crystals. At the same time, the photoresponse of a multi-terminal

device shows a strong spatial correlation between the observed photocurrent and the

p-p+ junctions. The photoresponse is found to be a linear function of the laser spot

position and changes sign at the centre of each junction. This behaviour, combined

with a four-fold pattern in the spatially resolved photocurrent, make these devices ideal

candidates for position sensitive detection of focussed light. Furthermore, all measure-

ments have been repeated after ∼ 11 months exposure of the device to environmental

conditions, showing no change in the photoresponse, in agreement with the previ-

ously reported stability of this material22. These findings pave the way to additional

functionality in graphene-based optoelectronic devices and open a new route towards

flexible, lightweight, transparent and highly stable PSDs, with possible employment in

smart textile and wearable electronics23.
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7
STRAIN-ENGINEERED PHOTODETECTORS IN

ULTRATHIN HFS2

NOTE: The ideas and data presented in this chapter have been the subject of the

following publication: Adolfo De Sanctis, Iddo Amit, Steven Hepplestone, Monica F.

Craciun and Saverio Russo. Strain-engineered energy funneling in a layered semicon-

ductor. (Under review in Advanced Materials).

The first principles calculations here reported were carried out by Steven Hepplestone

and Robert Keens. The AFM characterisation was carried out by Iddo Amit with the

assistance of the author.

7.1 INTRODUCTION

In chapters 4,5 and 6 I showed how laser-irradiation of functionalised graphene can

be used to realise novel optoelectronic devices, demonstrating that intercalation with

FeCl3 allows one to fix the carrier dynamics in this atomically-thin material to achieve

a pure PV response. Similarly to graphene, other layered materials display unique op-

tical and electrical properties which can be tuned in a similar way, using, for example,

chemical functionalisation, strain or laser irradiation. Such materials are suitable for

the realisation of novel optoelectronic devices as they display unique feature thanks

to their layered structure. In particular, transition metal dichalcogenides (TMDs)1

are attracting a growing attention in applications such as solar energy harvesting and

sensing since they display a unique layer-dependent indirect-to-direct bandgap transi-

tion3, strong optical anisotropy4 and valley dichroism5. However, efforts to improve
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the efficiency of such devices have been hampered by several factors, including the

lack of efficient extraction of photogenerated carriers, low quantum yield due to strong

excitonic effects6 and, ultimately, the limit imposed by the principle of detailed bal-

ance in p-n junction devices7. It has been recently proposed8;9 that a spatially varying

bandgap, caused by a local strain field, could be used to “drive” excitons (particle-hole

pairs bound within the bandgap of the material) towards the regions of least gap, where

they can be efficiently separated. This “exciton funnel” effect has been experimentally

demonstrated using photoluminescence experiments10;11 while the electrical detection

this phenomenon could be used to boost the efficiency of solar devices beyond the

aforementioned limits. Furthermore, such effect is expected also in the presence of

weakly bound excitons and free charges, allowing its use without low temperatures or

ultra-pure samples8.

Strain-engineering in traditional semiconductors (e.g. Si, Ge, etc.) has been used

to tune and improve their performances12. Unfortunately, most bulk semiconductors

fail at strains of ∼ 0.1 − 0.4%13 with thin membranes able to sustain up to ∼ 1 −
2%14. On the contrary TMDs can sustain strains up to 25% without rupturing15;16;9,

with profound implications on their electronic structure. For instance, the bandgap of

semiconducting black phosphorus depends sensitively on applied strain, to the point in

which it vanishes for compressive strains above 2 %17;18. Furthermore, single-photon

emission from localized excitons has been reported in TMDs, where structural defects

or local strain is induced19;20. Therefore, strain-engineering of the optical and electrical

properties of TMDs is a promising field with the potential to enable the development

of conceptually new optoelectronic applications.

In this work a novel method for engineering strain in ultrathin HfS2 is demonstrated.

A focused laser beam is used to drive the controlled oxidation of the exposed areas of

HfS2. The complementary study of a wide range of experimental techniques (i.e. spa-

tially resolve absorption and Raman spectroscopy, elemental analysis and atomic force

microscopy) and theoretical modelling with density-functional theory (DFT) clearly

demonstrate that the lattice mismatch between the HfO2 and the pristine HfS2 induces

compressive strain in the HfS2, resulting in the spatial modulation of the bandgap of

this material away from the oxidised area. Scanning photocurrent microscopy (SPCM)

reveals an enhanced signal in proximity of this interface, with a responsivity 350 %

higher than in the pristine device, indicating efficient extraction of photogenerated
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Figure 7.1: Crystal and band structure of HfS2. a, Photograph of a commercial

bulk HfS2 crystal grown via vapour-transport method and its crystal structure. The stable

polymorph at 300 K is the 1T phase, with octahedral coordination of the Hf atoms. b,

Calculated band structure of bulk HfS2, conduction (valence) bands in red (black). The

energy scale is relative to the highest occupied state (0 eV).

carriers. The bias dependence of the photocurrent reveals the funneling of energy, also

known as charge-funnel effect, which is measured electrically for the first time.

7.2 BASIC PROPERTIES OF HFS2

Hafnium disulphide (HfS2) is a semiconducting transition metal dichalcogenide (TMD)

with an octahedral coordination of the Hf atoms at room temperature, therefore the

crystal structure is 1T (Oh), as shown in figure 7.1a. This structure is also historically

known as the CdI2 structure. The first studies started in 1965 with the measurements

of the optical21 and electronic22 properties of bulk samples grown by vapour transport

technique23.

The basic optical and electronic properties of HfS2 are reported in table 7.1, from

literature. The bulk crystal appears as dark red hexagonal plates with a metallic

lustre, as shown in figure 7.1a, inset. Figure 7.1b shows the band structure of bulk

HfS2 computed via DFT. The indirect band gap is ∼ 1.38 eV between Γ and M, while

the direct gap at the Γ point is ∼ 2.1 eV. These values are ∼ 40% off the measured

ones21;26 but in line with other DFT calculations27.
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Table 7.1: Properties of HfS2. Basic structural, electronic and optical properties of HfS2.

a (Å) c (Å) Eind
g (eV)a Edir

g (eV)b σ (Ω−1cm−1)c Ref.

3.625± 0.005 5.88± 0.03 1.96± 0.02 2.90± 0.1 3.0 · 10−3 21;23

Raman modes (cm−1) A1g Eg Eu(TO) Eu(LO)
337 260 155-166 321 24;25

a Indirect bandgap (experimental); b Direct bandgap (experimental); c Room-
temperature electrical conductivity;

7.2.1 AFM and Raman spectroscopy of HfS2

Figure 7.2a shows the atomic force microscopy (AFM) topography of a thin flake of

HfS2 deposited on a Si/SiO2 substrate (inset). The height profile across a “step” allows

to measure the height of a single layer of HfS2 to be 0.76± 0.08 nm.

HfS2 has three atoms per unit cell, therefore it has 6 modes in the optical branch25:

A1g+Eg+2A2u+2Eu, of which the A1g and Eg, depicted in figure 7.2b, are Raman active

while the others are infrared (IR) active (although the Eu modes are visible also in a

typical Raman experiment24). The Raman spectrum of HfS2 is shown in figure 7.2c,

for flakes of different thickness, acquired with λext = 514 nm. In the bulk material all

the first order modes are observed: A1g = 337 cm−1, Eg = 260 cm−1, plus the two

other modes Eu(LO) = 321 cm−1 and Eu(TO) = 136 cm−1; All these modes are well

described by a fit with a Lorentzian curve with a full-width at half-maximum (FWHM)

∼ 10 cm−1 and the peak positions agree well with previous studies24;25, except for the

Eu(TO) mode which appears blue-shifted (literature value ∼ 155 − 166 cm−1). For

thinner flakes, it becomes increasingly difficult to acquire a spectrum: spectra A and

B in figure 7.2c show, in fact, that it is not possible to resolve the Eu and Eg modes for

very thin flakes. At the time of printing this work, no reports have shown the isolation

of single-layer HfS2.

7.3 LASER-IRRADIATED HFS2

Thin flakes of HfS2 were deposited on CaF2, Quartz and Si/SiO2 substrates, using

micro-mechanical exfoliation28 from commercial bulk crystal (HQ Graphene). The
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Figure 7.2: AFM and Raman of ultra-thin HfS2. a, AFM topography and optical

micrograph of an exfoliated flake of HfS2 on top of a Si/SiO2 substrate. The height of a

single layer is measured to be 0.76±0.08 nm. b Schematic representation of the main Raman

active modes in HfS2. c, Raman spectra of HfS2 acquired on a bulk sample (> 100 µm thick)

and on a thinner flake exfoliated on Si/SiO2 (areas A and B in the optical micrograph), after

subtraction of the pristine substrate spectrum (inset).
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Figure 7.3: Laser-induced oxidation of ultra-thin HfS2. a, Optical micrograph of an

HfS2 flake before (top) and after (bottom) laser exposure of a rectangular area in its centre. b,

Raman spectrum acquired in location A (panel a), showing a Lorentzian peak corresponding

to the A1g mode at 337 cm−1 (FWHM 10 cm−1) of HfS2 (top), and in location B, showing nine

Lorentzian peaks compatible with the modes of HfO2 (bottom, after background subtraction

and smoothing). The peak named L corresponds to a spurious laser line.

choice of substrate was dictated by the different characterizations performed.

Upon exposure to focused laser light (λ = 375 nm, P = 1 MW/cm2) for 1 s, the

exposed area becomes transparent to the naked eye, possibly suggesting the ablation of

HfS2, see figure 7.3a. Surprisingly, topographic AFM measurements show no ablation

of material in the exposed area. At the same time, the tapping phase image clearly

reveals a change in the viscoelastic properties of the material, see figure 7.4a. To

elucidate the nature of the laser-exposed HfS2, energy-dispersive X-ray micro-analysis

(EDXMA) was used. In this case the HfS2 was deposited on CaF2 since no oxygen can

be detected in it with EDXMA and, at the same time, has a well defined Raman peak

at 322 cm−1, away from the HfS2 features. The microanalysis reveals the absence of the

S peaks (K lines) and the appearance of an O peak (Kα line) in this region, in contrast

to the pristine area, as shown in figure 7.4b. No change was observed in the Hf and

substrate peaks. A quantitative analysis shows that, upon laser irradiation, the weight

ratio of S decreased from ∼ 20% to ∼ 1% of the total, while the O content increased

from ∼ 1% to ∼ 20%, indicating the formation of HfO2. Raman spectroscopy in the

pristine region shows the characteristic A1g mode of HfS2 at 337 cm−1 (figure 7.3b while

the Raman spectrum of the laser-irradiated area, figure 7.3c, shows a series of peaks

in good agreement with the nine modes reported in literature for monoclinic HfO2
29,
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Figure 7.4: Characterisation of laser-irradiated HfS2. a, AFM topography with

phase contrast ϕ signal superimposed of the flake shown in figure 7.3a, after laser irradiation.

Bottom-right inset: height (H) and phase signal along a 5 µm line profile (black line). b,

EDXMA spectra acquired in the regions A and B in figure 7.3a and quantitative analysis of

the chemical elements (right).

as detailed in table 7.2. In particular, good agreement is observed for the relative

intensities of the peaks, with the strongest being the Ag mode at 500 cm−1.

7.4 PHOTO-OXIDATION MECHANISM IN HFS2

The oxidation mechanism, responsible for the observed changes, can be determined

using three important experimental observations: (1) The oxidation process is found

to be thickness-dependent. For thin flakes (h ∼ 6 − 20 nm) it was found that short

exposures, ∼ 1− 2 s, at relatively low power densities, ∼ 105 W/cm2, are sufficient to

oxidise the flake. Thick flakes (h > 60 nm) showed that even after prolonged exposure

at high powers, it was not possible make the entire flake transparent and, instead,

ablation of the material was observed; (2) The oxidation area is compatible with the

diffraction-limited spot size of the laser system used (see section 3.5.1.2), as shown in

figure 7.5a. Here the AFM topography and tapping phase images of a thick (h ∼ 80

nm) flake are shown. The flake was exposed to a 375 nm laser for 10 s at a power

density of 1.5 MW/cm2 in a single spot where it presents a bubble-like structure with

a 25% increase in height (compatible with a previous report on the natural oxidation of

HfS2
30). This feature shows a Gaussian profile with a FWHM of 260 nm, as expected

for the system used; (3) Exposing different areas of the flake, in the same conditions

as in (2), for different lengths of time, no changes in the FWHM of the Gaussian
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Table 7.2: Lorentzian fit results from figure 7.3c and comparison with literature values.

Peak
Number

ω0 (cm−1)
Exp.

ω0 (cm−1)
Lit.a

Intensity
(Lit)b

1 338 336 0.89 (m)
2 381 384 0.54 (s)
3 393 398 0.69 (s)
4 500 500 1.00 (vs)
5 513 522 0.06 (m)
6 560 552 0.30 (m)
7 580 580 0.47 (m)
8 648 642 0.03 (s)
9 658 672 0.37 (s)

a From Ref. 29; b Normalized to peak 4. () s-strong, m-medium, w-weak, from Ref.
29;

profile was recorded, as shown in figure 7.5b. All these observations point towards a

light-assisted oxidation process, as opposed to a thermally-driven one.

7.4.1 Charge-transfer and photo-oxidation: semiconductors in ambient conditions

The laser-induced doping of semiconducting TMDs in a dopant gas atmosphere has

been recently reported31, where the laser is used to create chalcogen vacancies in the

TMD. At the same time, Favron et al.32 demonstrated photo-oxidation in exfoliated

black phosphorus, and related the process to the rate of charge-transfer (CT) between

the black phosphorus and the aqueous oxygen present in air. Indeed, the work of

Jaegermann and Schmeisser33 also suggested that, in the presence of H2O, oxidation

occurs via the oxygen-water redox couple:

2H2O −−⇀↽−− O2(aq) + 4e− + 4H+, (7.1)

where the O2 binds to a metal site. Adopting the same model and supported by the

EDXMA data, a model for the reaction is proposed, as illustrated in figure 7.6a. The

intrinsic chemical potential of HfS2 is µi = −5.2 eV (calculated from the distance

from the vacuum level to the top of the valence band, φ = −6.68 eV and indirect

bandgap Eg = 1.96 eV), while that of the oxygen acceptor state is µ0
redox = −4.1 eV.

This induces a band-bending at the surface of the layered semiconductor such that an
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Figure 7.5: Photo-oxidation dynamics study. a, AFM topography (top) and phase

signal (bottom) of an 80 nm-thick flake exposed to intense laser light (λ = 375 nm, P = 1.5

MW/cm2) for 10 seconds, a Gaussian peak can be fitted with a FWHM of 260 nm. b,

AFM topography of laser-irradiated spots for different exposure times (λ = 473 nm, P = 4.3

MW/cm2). Inset: FWHM of the Gaussian fits as a function of exposure time, dashed line

marks the average value of 446 nm. c, Left: time evolution of the HfS2 A1g mode, upon

intense laser exposure (λ = 514 nm, P = 3.0 MW/cm2) in a 4.9 nm thick flake, shown in the

inset. The peak named L corresponds to a spurious laser line. Right: normalized A1g peak

height as a function of time for different incident laser powers (0.5 - 3.0 MW/cm2), solid

lines mark monoexponential decays; Inset: log-log plot of decay time τ versus incident power

density, solid line marks a slope of −1.
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optical transition above the bandgap can make an electron ready to be transferred to

the oxygen empty states, making the photo-oxidation reaction highly feasible across

the whole visible range, explaining the instability of few-layer HfS2 in atmospheric

conditions.

The CT reaction starts with a photon of energy ~ω impinging on HfS2, which pro-

duces an optical excitation, leaving the material in an excited state: HfS2 + ~ω −−→ HfS2
∗.

This state provides the carriers for the CT reaction at the surface according to:

HfS2
∗ + O2(aq) −−→ HfS2 + O2

·−(aq) + h+, (7.2)

the oxygen radical ion O2
·–(aq) can then react with the HfS2 and, upon cleavage of the

Hf−S bond, bind to the Hf sites:

Hf + 2S + 3O2
·−(aq) + 3h+ −−→ HfO2 + 2 SO2(g). (7.3)

Therefore the total reaction can be written as:

HfS2(s) + 3O2(aq) + ~ω −−→ HfO2(s) + 2SO2(g). (7.4)

The energy cost for the reaction in equation (7.4), considering the formation of mon-

oclinic HfO2, was calculated to be of −11.58 eV per HfS2 molecule, making it very

favourable. The feasibility of the proposed reaction was verified by simulating the

crystal structure of the different compounds and calculating the energy cost per re-

action, as detailed in figure 7.6b and in table 7.3. The energy cost was calculated as

ER = Ereagents − Eproducts.

The possibility of the formation of two-dimensional (2D) HfO2, as opposed to mon-

oclinic 3D HfO2, was also considered. Such material is given by the substitution of

each S by O in the 2D precursor. However, calculations show that the proposed re-

action in equation (7.4) has an energy cost of −10.90 eV for 2D HfO2, a difference

∆E = 0.68 eV as compared to monoclinic HfO2, which makes the formation of 2D

HfO2 not favourable. In the same way, the formation of cubic HfO2, has a ∆E = 0.30

eV as compared to monoclinic HfO2. The findings of the DFT modelling are also con-

sistent with the observed Raman spectrum (see figure 7.3c and table 7.2). Therefore, it

is possible to conclude that the photo-oxidation of HfS2 in ambient conditions leads to
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Figure 7.6: Charge-Transfer model and crystal structures of HfO2 a, Energy

diagram of multi-layer HfS2 in contact with the redox couple O2/H2O present in air in atmo-

spheric conditions. The density of states (DOS) of the redox couple is calculated according

to ref. 34: the chemical potentials of the oxidizing and reducing species are µox = −3.1

eV and µox = −5.1 eV, respectively; the chemical potential of the oxygen acceptor state is

µ0redox = −4.1 eV. The intrinsic work function of HfS2 is µi = −5.7 eV with Eg = 1.96 eV.

Green vertical arrow represents the absorption of a photon. b Simulated crystal structure of

octahedral HfS2, monoclinic HfO2 cut along the [111] face and 2D HfO2. The energy differ-

ence for the reactions, ∆E, is calculated with respect to the formation of monoclinic HfO2

(E = −11.58 eV). Unit cell highlighted in blue.

Table 7.3: Reactions energetics

Reaction Energy
cost
(eV)

Energy
cost (eV)
per HfS2

∆E
(eV)a

per HfS2

HfS2 + 3 O2 −−→ HfO2 + 2 SO2
b -11.58 -11.58 0

32 HfS2 + (32 + 64 )O2 −−→ Hf32O64 + 64 SO2
c -370.55 -11.58 0

HfS2 + 3 O2 −−→ HfO2(2 D) + 2 SO2
f -10.90 -10.90 0.68

HfS2 + 3 O2 −−→ HfO2(cubic) + 2 SO2
g -11.28 -11.28 0.30

aCompared to lowest energy reaction; b1× 1× 1 Primary unit cell of monoclinic
HfO2;

cLarge 2× 2× 2 unit cell of monoclinic HfO2;
f Energy cost to produce 2D

HfO2;
gEnergy cost to produce cubic HfO2;
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the formation of monoclinic HfO2, embedded in the 2D matrix of the few-layer HfS2.

7.4.2 MGT theory of CT reaction

Marcus-Gerischer theory (MGT)34 can be used to estimate the rate of change of the

pristine material composition, based on the rate of charge transfer from the HfS2 to

the O2(aq)32:

dΘ

dt
∝ ΘΦph[O2] exp

−
(

Eg

2
+ Ei − E0

F,red − λ
)2

4kbTλ

 , (7.5)

where Θ is the initial amount of pristine material, Φph is the laser flux, [O2] is the

oxygen concentration, Eg is the direct gap energy, Ei is the intrinsic Fermi level, E0
F,red

is the energy of the oxygen acceptor state (∼ 3.1 eV) with respect to the vacuum level

and λ is the renormalization energy of oxygen in water (∼ 1 eV)34. The solution of

equation (7.5) gives:

Θ = Θ0 exp [−ΦphΓt] , (7.6)

where Γ = [O2] exp
[
−
(
Eg/2 + Ei − E0

F,red − λ
)2
/4kbTλ

]
and Θ0 is the initial amount of

material. Equation (7.6) shows that the oxidation has an exponential dependence over

time with a time constant τ ∝ Φ−1ph . This is verified in figure 7.5c where the intensity

of the Raman A1g mode of HfS2, an indication of the amount of pristine material

present in the sampling volume Θ, is plotted against time for different laser fluxes.

Monoexponential decay fits give a decay time τ with the expected power dependence

(figure 7.5c, inset).

7.5 PHOTORESPONSE AND STRAIN IN PHOTO-OXIDISED HFS2

SPCM mapping was employed in order to study the photoresponse of a HfS2 pho-

todetector in a field effect transistor (FET) configuration, as shown in figure 7.7a.

The device was fabricated on a doped Si substrate capped with 285 nm of thermally-

grown SiO2. Contacts were defined via electron-beam lithography, as described in

appendix A.2. Figure 7.7c,d show the SPCM maps before and after photo-oxidation
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Figure 7.7: Photo-response characterisation of HfS2/HfO2 device. a, Schematic

diagram of the device and SPCM mapping. Inset: optical micrograph of the device, after

laser-irradiation of a single spot (green dashed circle). b, Responsivity before (blue, R0) and

after (red, R) laser-assisted oxidation as a function of incident optical power. Inset: ratio

R/R0. c and d, SPCM maps of the device before and after laser-irradiation acquired with:

Vsd = −5 V, Vbg = 50 V, λ = 473 nm, P = 150 W/cm2 and 0.5µm steps.
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Figure 7.8: Photo-oxidation-induced strain in HfS2. a, Absorption coefficient α2

of: (A) HfS2 away and (B) close to the oxidised area and (C) HfO2. Extrapolated direct

bandgap: EA
g = 2.785± 0.001 eV and EB

g = 2.815± 0.001, ∆Eg = 30± 1 meV. Inset: optical

micrograph of the flake with the measured regions highlighted. b, Calculated valence and

conduction bands of HfS2 at the Γ point, as a function of strain. c, Calculated direct bandgap

energy shift ∆Eg as a function of strain. Relaxed lattice constant of HfS2: a0 = 3.625 Å.

of a single spot in the channel, where an enhancement of the photoresponse close to

the laser-oxidised area (green circles in figure 7.7a,d) was observed. Strikingly, the

responsivity of the device is enhanced by ∼ 350,% at low powers and ∼ 200 % at the

saturation power (120 W/cm2), as shown in figure 7.7b.

The observed enhancement of the photoresponse, localized in the proximity of the

oxidised area, suggests that the presence of the oxide affects the HfS2. Indeed, strain

induced by the lattice mismatch between the two materials, is the key factor. As shown

from calculations (see figure 7.6b) The [1, 1, 1] cleavage plane of monoclinic HfO2 has a

spatial arrangement of Hf atoms commensurate to that of the basal plane of HfS2, with

an Hf-Hf distance of 3.426 Å. Since the Hf-Hf distance in HfS2 is 3.625 Å, a transition

between these two structures is likely to introduce an average 2.7% compressive strain

in the HfS2 (and extensive in theHfO2) at the interface between the two materials. This

would result in a change in the bandgap of HfS2 of ∼ 30 meV, as shown in figure 7.8c

from first principles calculations. A measurement of the absorption coefficient α of

HfS2 (see section 3.3.2) confirms such hypothesis. In figure 7.8a, the measured α is

shown together with the extrapolated direct bandgap, in the region far from the laser-

written oxide (A), EA
g = 2.785± 0.001 eV, and close to it (B), EB

g = 2.815± 0.001 eV.

A difference of ∆Eg = 30 meV is observed, compatible with a 3% compressive strain

in the HfS2. The absorption coefficient measured in the centre of the oxidised area is
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Figure 7.9: Electrical characteristic of HfS2/HfO2 devices. a, Current-voltage

(Isd-Vsd) characteristic of the device shown in figure 7.7, before laser-assisted oxidation in the

dark and for different incident optical powers (λ = 473 nm, Vbg = +50 V). b, Current-voltage

characteristic of the same device after laser-assisted oxidation. c, Gate voltage dependence

of the photocurrent for the same device, after laser-assisted oxidation, Vsd = −5 V.

close to zero, showing that the direct absorption edge lies > 2.9 eV.

For completeness the electrical characterization of the device is shown in figure 7.9.

Figure 7.9a shows the current-voltage (Isd-Vsd) characteristic before the photo-oxidation

at different incident optical powers and figure 7.9b shows the same curves acquired

after the photo-oxidation. Sweeping the Vsd in both direction, no significant hysteresis

is observed. In figure 7.9c the gate voltage Vbg sweep, as a function of incident optical

power, is shown for the same device, after photo-oxidation. In this case a very large

hysteresis is observed, due to the contamination of the device in ambient conditions.

The observed hysteresis is in agreement with previous results30.

Both the SPCM and electrical measurements were performed in the setup described

in section 3.5: the electrical signal from the device was amplified with a DL Model 1211

current preamplifier and measured with an Ametek Model 7270 DSP Lock-in amplifier.

The locking frequency was provided by the function generator which modulated the

lasers. The bias and gate voltages were provided by a Keithley 2400 SourceMeter.
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Figure 7.10: Charge funnel effect in HfS2/HfO2 photodetectors. a, Optical micro-

graph of the device, the oxidised region is highlighted in green. b, Band diagram of a device

subject to strain induced by local oxidation, with Vsd = 0 V. “Fast” and “slow” indicate the

drift velocity of the charges due to the local electric field. c, Band diagram of the device

under Vsd > +Vth. d, SPCM map of the device under Vsd = +1 V. e and f, Band diagram

and SPCM map of the device under Vsd = −1 V < Vth.

7.6 CHARGE-FUNNEL EFFECT IN STRAINED HFS2

The role of strain in the enhanced photoresponse is studied in a second device, where

a single spot of oxide is formed in the channel (see figure 7.10a). Figure 7.10b shows

the band alignment in such device for an applied bias Vsd = 0 V, considering direct

transitions at Γ. The effect of strain in the conduction and valence band of HfS2 at

the Γ point is shown in figure 7.8b. Excited electron-hole pairs, in the proximity of the

strained area, will be efficiently separated by the built-in field created by the strain

gradient and “funnelled” towards the electrodes, giving an enhanced photoresponse8;9.

In this case, both sides of the strained junction will give equal contribution. The

application of a bias Vsd > +Vth between the electrodes, where Vth is the difference

between the conduction band energy at the maximum strain point and its value in the

untrained region, will result in the situation depicted in figure 7.10c, where one side

of the strained interface will show a larger photoresponse due to the steeper gradient.

This is indeed observed in the SPCM map shown in figure 7.10d. Reversing the bias,

i.e. Vsd > −Vth, the same behaviour is expected but on the other side of the oxidised
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area, as shown in figure 7.10e and demonstrated in figure 7.10f. Therefore, it is possible

to switch the position of photoactive region by simply reversing the bias voltage.

7.7 SUMMARY AND OUTLOOK

In summary, the controlled photo-oxidation of ultrathin HfS2 was studied showing that

charge-transfer between HfS2 and aqueous oxygen in air is the leading mechanism for

oxidation and a model based on MGT theory was experimentally verified. These find-

ings indicate that the photo-oxidation process is readily controllable, with the oxidation

resolution determined by the spot size of the focused laser beam. This controlled oxida-

tion has been then used to modulate the bandgap of HfS2 through local strain induced

by the lattice mismatch between the oxide and the pristine material. A charge-funnel

effect was then demonstrated in such strain-engineered photodetector which showed an

improved responsivity up to 350% compared to the pristine device and the ability to

switch on and off the photoactive region simply with the applied bias. These results

open the route towards the exploitation of strain-engineered devices for high-efficiency

energy harvesting and sensing applications, with the ability to overcome the intrinsic

limitations of current solar cells. In the future such devices could be incorporated

in emerging wearable electronics technologies35 and smart buildings, creating a new

paradigm in energy efficiency.
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8
FINAL REMARKS AND OUTLOOK

The results presented in this thesis demonstrate the use of graphene and transition

metal dichalcogenides (TMDs) in novel optoelectronic applications. Intercalation of

graphene with FeCl3 has been shown to result in a material that can be arbitrarily tuned

using laser-irradiation to form photo-active junctions. The investigation of the photo-

response of these junctions showed a purely photovoltaic (PV) effect, for the first time,

in an all-graphene detector thanks to the quenching of the thermoelectric contribution

which stems from the enhanced cooling of hot carriers in graphene. For the same reason,

these devices show an extraordinary linear dynamic range (LDR) up to 44 dB, more

than 4500 times larger than other graphene photodetectors, that can operate at incident

optical powers up to 104 kW/cm2 in the whole visible range, in the near-UV and at

MIR wavelengths. The extended LDR, broadband operation and spatial extension

of such junctions paves the way towards the development of atomically-thin, flexible

devices for light detection in applications such as: laser-induced plasmas; ultra-violet

(UV) photo-catalytic water sanitation processes; and high precision manufacturing. In

such environments, these novel sensors could eliminate the need for attenuating optics

in the detection of ultra-bright light signals with high spatial resolution.

Intercalated graphene, in the form of hexagonal domains, was also used to demon-

strate the first all-graphene position-sensitive detector (PSD), which exploits the sym-

metry of the junctions formed by the intercalant at the folds in the graphene layers.

These junctions show a linear and bipolar photo-response with respect to the laser po-

sition. Such photodetectors (PDs) could be potentially employed in flexible-electronic

applications for sensing, such as in the detection of vibrations from buildings or ma-

chinery.
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In both cases future work should focus on the enhancement of the responsivity of

such photodetectors through the use of an increased number of intercalated graphene

layers and optimisation of the de-intercalation process to maximise the chemical po-

tential gradient at the p-p’ junctions. Intercalation of FeCl3 throughout large-area

graphene films of a uniform layer number will be crucial for implementing these findings

in practical applications. To this end, intercalation of large-area CVD-grown graphene

has already been demonstrated (as discussed in chapter 4) and roll-to-roll processing

of graphene is readily applicable to intercalated films. Therefore future work should

be devoted to achieving full control over the number of graphene layers grown by CVD

over large areas (∼m2).

Following the knowledge acquired with intercalated graphene, laser-irradiation has

been used to tune the optoelectronic response of a semiconducting transition metal

dichalcogenide (TMD). The controlled photo-oxidation of HfS2 is studied and the for-

mation of monoclinic HfO2 in the two-dimensional (2D) matrix of the HfS2 is demon-

strated. This spatially-confined oxidation induces compressive strain in the HfS2. Such

strain leads to a spatially-varying bandgap which then enhances the responsivity of a

photodetector (PD) by 350 % compared to the unstrained device. This enhancement

arises from the so-called “inverse charge-funnel” effect, which is electrically measured

for the first time in a layered semiconductor. This effect allows the photo-excited

charges to be driven away from the excitation region, towards the electrodes, where

they can be extracted more efficiently. This work represents the first step towards the

realisation of PV cells which could overcome their intrinsic limitations in efficiency.

Future work should be devoted to the study of this effect in similar materials in or-

der to optimise the laser-oxidation process, both from an experimental and theoretical

point of view. Of particular interest will be the study of the interface between the two

materials in order to model the strain gradient at these interfaces. This would allow

one to gain insight into the possible ways of increasing such induced strain. The growth

of TMDs on a large-area is another field that would push the proposed devices into

real-life applications although their instability in ambient conditions is still a critical

factor which prevents, at the moment, their industrial exploitation. Therefore, further

developments in encapsulation techniques are needed. As laser-irradiation is readily

available in industry, this technique could be immediately employed to realise arrays

of “funnel-type” photodetectors with ultra-high efficiency.
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A
MATERIALS PREPARATION AND SAMPLE

FABRICATION

A.1 GRAPHENE PREPARATION AND TRANSFER

There are different methods to obtain graphene. The first and most direct approach

is micro-mechanical cleavage of bulk graphite1, also known as “tape method”. This is

the main technique used to produce graphene for the devices studied in this work.

Chemical vapour deposition (CVD) is used to produce large-area graphene2 and

hexagonal, single-crystal domains of high-quality graphene3. The most common pre-

cursor used in the CVD growth of graphene is methane (CH4) which generally pyrolyses

at 1100 °C or above over a wide range of pressure. Other common precursors are ethy-

lene (C2H6) and acetylene (C2H2). To date, the CVD growth of graphene has been

demonstrated on many polycrystalline metals such as Fe, Co, Ni, Cu, Ru, Rh, Ir, Pt, Au

plus some compounds and alloys, such as Cu-Ni alloy4 or Mo-Ni alloy5. CVD growth

on metals, which yields to uniform, large area (∼ cm2) monolayer graphene (MLG)

has been reported for the first time in 2009 on polycrystalline Cu foils6, exploiting

thermal catalytic decomposition of CH4 and the low carbon solubility of Cu. Growth

on Ni is known to give few-layer graphene (FLG), as studied in section 4.3. Here, large-

area FLG grown on Ni (wafer of 100 mm purchased from Graphene supermarket) was

transferred to glass substrates using poly(methyl methacrylate) (PMMA) as a support

during the wet-etching of nickel in a FeCl3 solution. The PMMA-supported graphene

was subsequently transferred to ultra pure water, to a concentrated HCl solution for 1

hour and rinsed in ultra pure water. Finally, the stack of multilayer graphene/PMMA

was transferred to glass substrates and, after 24 hours, the PMMA was removed with

165
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Figure A.1: Schematic procedure of Electon-beam (e-beam) lithography. a,

(1) Deposition of graphene/transition metal dichalcogenides (TMDs); (2) Spin-coating of

PMMA, two layers are used (see text); (3) Exposure to electron beam; (4) PMMA develop

in appropriate solution; (5) Evaporation of metals (Cr, Au, Pt, etc.); (6) Lift-off in Acetone

bath. b, Optical micrograph of exfoliated graphene on Si/SiO2 using a green filter. c,

Optical micrograph of the same flake after developing the PMMA and d, after metallisation

with Cr/Au (5/50 nm) and lift-off.

Acetone.

A.2 DEVICES FABRICATION

The devices presented in this work consist of a thin flake of graphene or HfS2 deposited

on top of a doped Silicon substrate (p-type) capped with 285 nm of SiO2. After deposi-

tion, electric contacts to the material were defined via e-beam lithography, as illustrated

in figure A.1a. A double-layer of PMMA is spin-coated on the substrate. This layer is

formed by 300 nm of 950 K PMMA on top of 300 nm of 450 K PMMA, where the “K”

number indicates the number of monomers in the polymer chain. The purpose of a

double-layer is to obtain a step during the development phase, which allows easy lift-

off after metallisation. The pattern is the defined via e-beam exposure using a Nano

Beam NBL-3. The electrons are accelerated to 20 keV and have the energy to break
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the polymer chains of PMMA. After, the sample is immersed in a developer solution

(15 % Isopropanol (IPA) + 5 % Methyl isobutyl ketone (MIBK) + 1 % Methyl ethyl

ketone (MEK)), which removes the exposed PMMA. After rinsing in IPA and drying

with N2 a metallisation step is performed using either e-beam od thermal evaporation

of a double layer of Ti and Au typically 5 and 50 nm thick, respectively. The first

metal is used as a sticking layer to the SiO2, other common choices are Cr and Au

and Al capped with either Pd or Au to avoid oxidation. After the metallisation stage

the stack is lifted-off using an Acetone bath, leaving only the metal in the exposed

regions. An example is shown in figure A.1b-d, where graphene is contacted using

Cr/Au (5/50 nm). This technique allows a resolution below 10 nm.
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B
CORRECTION OF RESPONSIVITY SPECTRA FOR

SUBSTRATE REFLECTIONS

As discussed in chapter 5, the presence of a reflecting Si/SiO2 substrate affects the mea-

sured spectral responsivity of the FeCl3-FLG photodetectors. As shown in figure 5.6c,

a correction which accounts for these reflections was performed in order to examine the

intrinsic spectral response of the laser-written p-p’ junctions. Figure B.1a illustrates

the model used for this correction which consists of considering an incident photon flux

(Φ0) partially absorbed by a FeCl3-FLG flake of transmittance T and a transmitted

remaining flux, Φt = TΦ0. A portion of this transmitted flux (Φr = ΦtR, where R

is the reflectance of Si/SiO2) is reflected by the substrate and absorbed/transmitted

by FeCl3-FLG, leaving a flux Φt′ = TΦr reflected into the environment. Further re-

flections can be neglected due to the high transmittance of FeCl3-FLG and define the

spectral responsivity as R (λ) = Iph/ε0Φ. Hence, the photon flux incident on a sup-

ported FeCl3-FLG detector is effectively (Φ0 + Φr) and the ratio between the measured

(R) and intrinsic (R0) responsivity may be evaluated using just T and R:

R0

R
=

Φ0

Φ0 + Φr

=
1

1 + TR
. (B.1)

Figure B.1b shows the transmittance of a four-layer FeCl3-FLG sample reproduced

with permission from Ref. 1 and the reflectivity of the Si/SiO2 substrate measured

in the range 420 − 700 nm. A simulation of the substrate reflectivity using TFCalc

software (Software Spectra Inc.) shows excellent agreement with the experimental data,

therefore allowing the extrapolation of the reflection coefficient from the simulated

curve down to λ = 375 nm where no experimental data points are available. In the
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Figure B.1: Correction of spectral responsivity for substrate reflections. a,

Substrate reflection correction of responsivity: solid arrow is the incoming light (Φ0), dotted

lines represent the transmitted light through the FeCl3-FLG (Φt) and the reflected part by

the Si/SiO2 interface (Φr). b, Reflectivity of Silicon substrate with 290 nm of SiO2 on top:

experimental values (black dots) in the region 420 − 700 nm and computed curve (solid red

line) between 370−700 nm; the green line represents the transmittance of 4-layer FeCl3-FLG

(data from Ref. 1). Vertical dotted lines represent the laser wavelengths used in this work.

same way, the absorption coefficient of FeCl3-FLG, for the same wavelength range, is

extrapolated from the experimental data. The computed correction factors used in

figure 5.6c are reported in table B.1.

Table B.1: Corrections to responsivity due to substrate reflection.

λ (nm) T R R0/R
375 0.872 0.385 0.749
473 0.870 0.355 0.764
514 0.874 0.207 0.847
561 0.883 0.102 0.917
685 0.906 0.234 0.825
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