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Abstract 50 

Parameter calibration and sensitivity analysis are usually not straightforward tasks for 51 

distributed hydrological models, owing to the complexity of model and large number of 52 

parameters. A two-step sensitivity analysis approach is proposed for analyzing the hydrological 53 

signatures based on the Distributed Hydrology-Soil-Vegetation Model in Jinhua River Basin, 54 

East China. A preliminary sensitivity analysis is conducted to obtain influential parameters via 55 

Analysis of Variance. These parameters are further analyzed through a variance-based global 56 

sensitivity analysis method to achieve robust rankings and parameter contributions. Parallel 57 

computing is designed to reduce computational burden. The results reveal that only a few 58 

parameters are significantly sensitive and the interactions between parameters could not be 59 

ignored. When analyzing hydrological signatures, it is found that water yield was simulated very 60 

well for most samples. Small and medium floods are simulated very well while slight 61 

underestimations happen to large floods.  62 
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DHSVM, Peak flow 64 

1 Introduction 65 

Distributed physically-based hydrological models have obtained ever-growing attention in 66 

recent decades owing to consideration of spatial variability and widely applications for ungauged 67 

basins (Razavi and Coulibaly 2012, Zhan et al. 2013, Palanisamy and Workman 2014, Noori et al. 68 

2014, Noori and Kalin 2016). Applications of these models are wide, including impact analysis of 69 

climate change and land cover, runoff and flood forecasting, and improving insights of 70 

hydrological process (Du et al. 2012, Rahman et al. 2013, Xu et al. 2013, Tan et al. 2015, 71 

Winchell et al. 2015, Cao et al. 2016, Chen et al. 2016).  72 

However, the applications of distributed hydrological models for these fields depend on the 73 

performance of model simulation, which is optimized by model calibration (Bittelli et al. 2010, 74 

Cibin et al. 2010). Hydrological models are characterized by a set of parameters, varying from 75 

simple lumped rainfall-runoff models with several parameters to sophisticated, distributed models 76 

with large numbers of parameters, even hundreds (Moradkhani and Sorooshian 2008). Therefore, 77 

manual calibration for distributed hydrological models with all parameters is time consuming and 78 

practically difficult to find optimal parameter sets. Likewise, a lack of identification for influential 79 

parameters in model simulation may cause waste of time on un-influential parameters (Bahremand 80 

and De Smedt 2008). Hence, it is very essential to identify the dominant parameters controlling 81 

model behavior, which contributes to raising calibration efficiency and obtaining more satisfactory 82 

simulation. One useful approach of dominant parameter identification is through implementation 83 
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of sensitivity analysis (SA), which can quantify the influence of parameters on model response 84 

(Wagener et al. 2001, Xu and Mynett 2006, Tang et al. 2007b, Zhang et al. 2013, Zhan et al. 2013, 85 

Song et al. 2015, Ren et al. 2016). The results of sensitivity analysis are helpful to determine 86 

sensitive parameters which should be paid more attention to in model calibration. A 87 

comprehensive comparison of various sensitivity analysis methods are implemented in literatures 88 

(Saltelli et al. 2000b, Saltelli et al. 2004, Tang et al. 2007b) and the results reveal that the Sobol’s 89 

method is the effective method to obtain global parameter sensitivities. Furthermore, Tang et al. 90 

(2007a) applied the Sobol’s method to a distributed hydrological model and obtained robust 91 

sensitivity rankings of the parameters, which could be able to significantly reduce the number of 92 

parameters for calibrating a hydrological model.    93 

Hydrological signatures are often used to quantify hydrological input variables and response 94 

variables (Yadav et al. 2007, Westerberg and McMillan 2015). Signatures are widely used for 95 

catchment classification (Wagener et al. 2007, Sawicz et al. 2011), change detection (Archer and 96 

Newson 2002) and model calibration (Gupta et al. 2008). Yadav et al. (2007) adopted hydrological 97 

signatures (slope of the flow duration curve (FDC) and runoff ratio) and similarity indices for 98 

catchments classification. Hartmann et al. (2013a, 2013b) evaluated hydrological model 99 

performance with respect to hydrological signatures. Likewise, Westerberg et al. (2011) applied 100 

several points selected on FDC for model calibration and two selection methods are compared to 101 

estimate their impacts on parameter calibration. Furthermore, the application of hydrological 102 

signatures in hydrological modeling can offer meaningful information contained in hydrographs. 103 

Signatures could also help to interpret the relations between models and underlying hydrological 104 

processes and reflect various aspects of model behaviors.  105 
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The Distributed Hydrology-Soil-Vegetation Model (DHSVM) (Wigmosta et al. 1994), a fully 106 

distributed hydrological model, is characterized by numerous parameters. It does not contain any 107 

sensitivity analysis or model calibration module. Therefore sensitivity analyses for DHSVM are 108 

often implemented using one-factor-at-a-time (OFAT) (Cuo et al. 2011), a local sensitivity test 109 

using stepwise, single parameter perturbation method (Du et al. 2014) and method of Morris 110 

(Kelleher et al. 2015). These SA methods are all simple or local and could not fully represent the 111 

relations between input parameters and model outputs due to their few sample sizes for lots of 112 

parameters and the interactions among parameters are often ignored. In this study, a two-step 113 

approach is therefore proposed for in-depth sensitivity analysis for DHSVM by adding two SA 114 

modules (Sobol’s and Analysis of Variance (ANOVA) methods, and iterated fractional factorial 115 

design (IFFD) sampling approach is applied in ANOVA to reduce the computational burden) into 116 

the DHSVM model, which can provide robust sensitivity rankings and parameter’s individual 117 

contributions, total contributions and interactions. Additionally, the parameters values for different 118 

soil and vegetation types are distinct in this study. In order to fully evaluate the performance of 119 

DHSVM, several hydrological signatures are selected in this study. 120 

The structure of this paper is as follows. Section 2 describes the material and methods used in 121 

the study. Section 3 presents the results of two-step sensitivity analysis and analysis of 122 

hydrological signatures. Section 4 provides discussion concerning the two-step sensitivity analysis 123 

approaches and its further application in future. Section 5 summarizes the findings in this study.  124 
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2 Material and methods 125 

2.1 Methodology framework 126 

The methodology framework of this study is presented in Figure 1. The first step is to 127 

prepare input data for the hydrological model and determine ranges of nearly all parameters. 128 

ANOVA sensitivity analysis is then undertaken to obtain preliminary sensitive parameters in the 129 

first step. This is because that model outputs are assumed to be normally distributed. Substantial 130 

departures from the assumption of normality can affect sensitivity analysis results (Lindman, 131 

1974) and the results of ANOVA sensitivity analysis may not be robust. Therefore, only the 132 

effect of individual parameters is adopted in the study. Additionally, the number of model runs in 133 

ANOVA method is smaller than that in the Sobol’s method used in the second step. These 134 

preliminary sensitive parameters from ANOVA are further analyzed via Sobol’s method to 135 

achieve robust results, including effects of individual parameters and interactions between 136 

parameters. Afterwards, final sensitive parameters and their interactions are quantified and 137 

ranked. The third step is to interpret the impact of final sensitive parameters on model simulation 138 

through considering objective functions, sensitivity index and values of parameters. The fourth 139 

step is to execute hydrological signature analysis and percentile analysis for peak flows for 140 

samples with efficiency criteria > 0.7. Moreover, detailed signatures analysis and percentile 141 

analysis are done for selected individual samples. 142 

Figure 1. Methodology framework used in this study. 143 

Page 6 of 46

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

7 

 

2.2 Study area 144 

Jinhua River, a tributary of Qiantang River, is located in the Midwest of Zhejiang Province, 145 

East China (Figure 2). This river has a length of 195 km and the catchment area is 6 782 km
2
 (Xu 146 

et al. 2015). In this study, the basin above Jinhua hydrological station is included and its 147 

catchment area is 5 996 km
2
, which is appropriate to apply DHSVM model (the model is mainly 148 

applicable to watersheds whose area is less than 10 000 km
2
). Also this model has been 149 

successfully used in the study area (Xu et al. 2015). The prevailing climate of the basin is Asian 150 

subtropical monsoon, which is characterized by abundant precipitation and high temperature in 151 

summer and rainless and cold winter. The annual average temperature is 17 ℃. The elevation 152 

ranges from 29 to 1 296 m in the basin (Figure 3). The annual mean precipitation is 1 424 mm. 153 

More than 50% of the annual total precipitation happens in the period from May to July. Because 154 

of the unevenly temporal distribution of precipitation, Jinhua River Basin suffers a lot from 155 

droughts and floods. Good hydrological simulation will provide support to disaster prediction 156 

and prevention, and sustainable river management. Figure 2 also presents the locations of five 157 

meteorological stations and the hydrological station used in the study. 158 

Figure 2. Location of the six stations used in the study. 159 

2.3 Overview of DHSVM  160 

Distributed Hydrology-Soil-Vegetation Model (DHSVM) (Wigmosta et al. 1994, Wigmosta 161 

and Burges 1997, Wigmosta et al. 2002) is a physically-based distributed hydrological model. 162 

DHSVM provides an integrated representation of hydrology-vegetation dynamics at the spatial 163 

scale identified by digital elevation map (DEM) data (the spatial resolution is typically 10-200 164 
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m). The river basin is separated into computational grid cells depending on DEM. Soil and 165 

vegetation characteristics are allocated to each computational grid cell. At each time step, 166 

DHSVM offers simultaneous solution to water and energy balance equations for every grid cell 167 

in the river basin. The hydrological connection of individual grid cell is realized by surface and 168 

subsurface flow routing. The spatial and temporal resolutions are 200 m and daily respectively. 169 

The version 3.1.1 of DHSVM is adopted in this study. 170 

DHSVM consists of seven modules, i.e., evapotranspiration, snowpack accumulation and 171 

melt, canopy snow interception and release, unsaturated moisture movement, saturated 172 

subsurface flow, surface overland flow and channel flow (Wigmosta et al. 2002). 173 

Evapotranspiration is presented adopting a two-layer canopy model with both two layers divided 174 

into wet and dry areas. Modules concerning snow, i.e., snowpack accumulation and melt and 175 

canopy snow interception and release, are not considered here owing to the fact that snow is rare 176 

in the study area. Unsaturated moisture movement with multiple root zone soil layers is assessed 177 

utilizing Darcy’s Law (Domenico and Schwartz 1988). Every grid cell exchanges available water 178 

with its adjacent grid cells using a function of its hydraulic conditions bringing about a transient, 179 

three-dimensional formulation of saturated subsurface flow and surface flow. DHSVM adopts a 180 

cell-by-cell method to route saturated subsurface flow utilizing a kinematic or diffusion 181 

approximation (Wigmosta et al. 1994, Wigmosta and Lettenmaier 1999). Grid cells in the basin 182 

are centered on each DEM point.  183 

Surface runoff is routed by a unit hydrograph method or an explicit cell-by-cell method (the 184 

explicit cell-by-cell approach is adopted in this study). Surface runoff occurs in a cell when 185 

meeting any of the following conditions: firstly, the available water in grid cell exceeds the 186 
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defined infiltration capacity; secondly, the water table exceeds the ground surface. The 187 

downslope movement of surface runoff is based on a cell-by-cell mode which is similar to the 188 

approach applied for subsurface flow. Flow in stream channels and road drainage ditches is 189 

routed by utilizing a cascade of linear channel reservoirs. Roads are not considered in this study 190 

owing to the fact that detailed road information is not available and the area percentage of roads 191 

is very small compared to the big basin area. However, it is kept in the mind that roads often 192 

generate overland flow from compacted surfaces, intercept subsurface flow at road cuts and alter 193 

hillslope hydrologic processes. Ignoring the roads may affect the accuracy of hydrological 194 

simulation, in particular peak and peak time. In the model, lateral inflow to a channel segment, 195 

from the cells which it passes through, is composed of subsurface flow and overland flow 196 

intercepted by channels.  197 

Generally, DHSVM parameters can be classified into elevation, stream, road, soil and 198 

vegetation categories. Parameters related to the characteristics of stream network such as stream 199 

segment length, width and aspect are determined based on the DEM data. That is to say, these 200 

parameters do not need to be calibrated. Soil/vegetation parameters such as field capacity need to 201 

be calibrated if its real value in physical meaning is not known or no observation is available. 202 

The calibration of vegetation and soil parameters in DHSVM is very common in other studies 203 

(Thanapakpawin et al. 2007, Safeeq and Fares 2012, Cuartas et al. 2012). 204 

2.4 Model input data 205 

The climate data including average air temperature, wind speed, relative humidity, sunshine 206 

duration and precipitation from five meteorological stations, i.e., Jinhua, Dongyang, Wuyi, 207 
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Yongkang and Yiwu (Figure 2), are available in this study. The climate data is obtained from 208 

Zhejiang Provincial Metrological Administration. The incoming shortwave radiation and 209 

longwave radiation are calculated using climate data. The observed runoff at Jinhua hydrological 210 

station is obtained from Zhejiang Provincial Hydrology Bureau (Figure 2). The time period of 211 

climate and runoff data is from 1991-2000. 212 

The other data needed for DHSVM include watershed boundary (mask), digital elevation 213 

map (DEM), soil type, vegetation type, soil depth and streams network. The DEM data (Figure 3) 214 

with a resolution of 90 m are downloaded from the Shuttle Radar Topography Mission (SRTM) 215 

website (http://srtm.csi.cgiar.org/). Considering computational burden, the resolution of DEM is 216 

redefined to 200 m in the model. The water boundary is determined based on DEM. The soil data 217 

(Figure 3) are obtained from Nanjing Institute of Soil Research, China. According to the USDA 218 

(United States Department of Agriculture) soil texture classification system needed in DHSVM, 219 

the soil classes are reclassified. The vegetation data (Figure 3) are obtained from WESTDC Land 220 

Cover Products 2.0 (2006) (http://westdc.westgis.ac.cn). Table 1 shows vegetation and soil 221 

classes and their percentages in Jinhua River Basin. The soil depth and streams network are 222 

generated based on DEM and mask using Arc Workstation.  223 

Figure 3. DEM (digital elevation map) (a) soil distribution (b) and vegetation distribution (c) in Jinhua River Basin. 224 

Table 1. Vegetation and soil classes and their percentages in Jinhua River Basin. 225 

2.5 Analysis of Variance (ANOVA) sensitivity analysis  226 

For this study, Analysis of Variance (ANOVA) is adopted to determine the preliminary 227 

sensitive parameters in DHSVM simulation owing to its popularity and common application (Steel 228 
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and Torrie 1988, Shinohara et al. 2016). In this method, parameters are sorted into specific scope of 229 

parameter values indicating intervals with same parameter value width. Based on ANOVA 230 

terminology, inputs are referred to as “factor” and values of factors are referred to as factor levels. 231 

Moreover, output is called “response variable”. ANOVA method was proposed by Fisher (1925). 232 

The F value is a key statistic in ANOVA and describes the statistical significance of differences in 233 

the mean responses among the levels of corresponding parameter. Therefore, the F values are 234 

utilized to judge whether parameter causes difference in response variable, i.e. sensitivity. The 235 

higher the F value is, the more crucial parameter is. Then, the parameter is more sensitive in 236 

model simulation. The equation of F value is described as follows: 237 

—

E

—

A

S

S
F =                                 (1)  238 

Where 
—

AS  is referred to group (treatment) mean squares from factor A, which reflects the 239 

differences between mean value of samples in different levels and mean value of all samples. 
—

ES  240 

is referred to error (residual) mean squares, which reflects the differences between value of each 241 

sample and mean value of samples in different levels. 242 

One-way ANOVA is used to evaluate the significance of one factor on response variable. 243 

Two-way ANOVA is dealt with two or multiple factors and applied to determine the single effect 244 

of factor and interaction effects between factors. No assumption is demanded regarding the 245 

functional form of relationships between the outputs and the inputs in ANOVA. Generally, 246 

ANOVA method could apportion the variance, but substantial departures from the assumption of 247 

normality can affect analysis results (Lindman, 1974). Therefore, only the effect of individual 248 

parameter is adopted in the study. 249 

ANOVA will become computationally infeasible if the number of input is large. The number 250 
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of model runs could be decreased and computational efficiency will be much higher by using 251 

IFFD sampling approach (Saltelli et al. 1995, Andres 1997). In IFFD, parameters are sampled at 252 

three different levels (groups): low, middle and high, rather than from a continuous range (Saltelli 253 

et al. 1995). These discrete levels are defined equally within the original parameter scope. The use 254 

of a slight number of factor levels empowers the sampling formula to achieve results effectively 255 

and accurately (Andres 1997). In Jinhua River Basin, there are ten vegetation classes and six soil 256 

classes. The number of parameters is more than 200, if all soil and vegetation classes are included. 257 

Because there is hardly any snow in the study area, parameters concerning snow are excluded in 258 

sensitivity analysis. Moreover, soil and vegetation classes are only chosen when their area 259 

percentages in the basin are higher than 10%. Thus, the vegetation and soil classes in italic script 260 

in Table 1 are selected. In total, three soil classes, i.e., sandy loam (SL), loam (L) and clay loam 261 

(CL), and three vegetation classes, i.e., mixed forests (MF), grasslands (GL) and cropland (CrL) 262 

are finally considered in ANOVA sensitivity analysis. The total percentages for selected soil and 263 

vegetation classes are about 90%. Consequently, in ANOVA sensitivity test, the number of 264 

parameters is 83 and the sample size is 14 000. According to Cuo et al. (2011), model simulation 265 

is sensitive to both vegetation height and vegetation minimum resistance. Different parameter 266 

ranges are used for these vegetation parameters in different vegetation stories (as shown in Table 2, 267 

italic). Ranges, unit and abbreviation of selected parameters are presented in Table 2. Besides, 268 

monthly LAI in different months is distinguished via appropriate multipliers and the ranges of LAI 269 

in Table 2 are represented for January which has the minimum LAI. 270 

Table 2. Ranges, unit and abbreviation of constant, soil and vegetation parameters for ANOVA sensitivity analysis.  271 
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2.6 Sobol’s sensitivity analysis  272 

Sobol’s sensitivity analysis method (Saltelli et al. 2000a, Sobol’ 2001), a variance-based 273 

method, is selected in this study for in-depth global sensitivity analysis since this method is able 274 

to quantify not only the contributions of individual parameter to DHSVM simulation but also 275 

their interactions, which could not be obtained accurately from ANOVA (Zhang et al. 2013, Xu 276 

et al. 2014). In addition, sensitivity index provided by the Sobol’s method are more effective 277 

than other sensitivity analysis methods for its capability of describing the interactions between a 278 

large number of variables for extremely nonlinear models, such as distributed hydrological 279 

models (Tang et al. 2007a, Tang et al. 2007b, Rajabi et al. 2015). In this method, the attribution 280 

of total output variance to individual model parameters and their interactions can be defined as 281 

follows (Bois et al. 2008): 282 

)()()()( ,...,2,1 k

mji

ijm

ji

ij

i

i VVVVV ++++= ∑∑∑
<<<

L             (2)

 

283 

Where V is the total variance of model output; iV is the first order variance for the i th 284 

variable ix ; ijV is the interaction variance between ix and jx ; k is the total number of input 285 

variables. The variances displayed in Equation (2) can be assessed by approximate Monte Carlo 286 

numerical integrations. The sensitivity of individual parameters or their interactions, 287 

i.e.sensitivity index are calculated according to their contribution in the total variance V .  288 
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Where iS is the first order sensitivity index corresponding to the input factor ix ; the second 292 
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order sensitivity index ijS evaluates the interactions between ix and jx ; the total order sensitivity 293 

index TiS calculates the total effects of the input factor ix on the model simulation.  294 

2.7 Objective function and parallel computing 295 

The proper choice of an objective function is often demanded for evaluating the performance 296 

of a hydrological model in sensitivity analyses and model calibration, but not essential (Hartmann 297 

et al. 2015, Pianosi et al. 2016). Objective function must be able to accurately express the distance 298 

between observation and simulation. Comprehensive objective functions and efficiency criteria 299 

have been used in hydrological simulation (Rao and Han 1987, Yan and Haan 1991). In the study, 300 

Nash-Sutcliffe efficiency (NS) is firstly selected. NS is a normalized statistic that confirms the 301 

relative difference of residual variance in contrast to observation variance (Nash and Sutcliffe, 302 

1970). NS is calculated as shown in Equation (6). NS is more sensitive to peak flows than low 303 

flows because squared deviations is utilized which leads to the possibility that low flows is not 304 

accurately simulated by hydrological models (Schaefli and Gupta 2007, Criss and Winston 2008, 305 

Muleta 2012, Hartmann et al. 2015). Erel (Equation (7)) is a statistic which is widely applied to 306 

evaluate the performance of low flow simulation (Krause et al. 2005, Raposo et al. 2012). The 307 

combination with equal weights (NE; Equation (8)) is then used as the final objective function in 308 

this study. The relevant equations are shown as follows:  309 
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Where Oi is referred as the observed streamflow; Si is referred as the simulated streamflow; O  314 

is referred as the average of observed streamflow. 315 

DHSVM runs relatively slowly. The meteorological data used in this study are from 1991 to 316 

2000 at daily scale data. The cell grid is 200m and the basin area is 5 996 km
2
. Therefore, each run 317 

of model will take about 50 minutes under Linux server. The run time of DHSVM is 486 days in 318 

ANOVA sensitivity analysis with a sample size of 14 000. Similarly, the run time is 708 days in 319 

Sobol’s sensitivity analysis with a set of 20 400 samples. Computer cluster consisting of five PCs 320 

with same configurations is used in this study and the logistical setup of computer cluster is a 321 

master-slave distribution. In other words, one PC plays as master and assigns tasks to slaves, i.e., 322 

the other four PCs. The slaves receive and finish the tasks from the master. Moreover, in order to 323 

decrease the run interval, the master also participates in running task as well as slaves. And the 324 

configuration in PC is single-CPU (central processing unit) with four cores. Moreover, 325 

Hyper-Threading (with Hyper-Threading, one physical core appears as two processors to the 326 

operating system) is installed in five PCs and the number of processors is then forty. The softwares 327 

which are necessary to be set up in five PCs include gcc, g++, NFS (File Share System), SSH 328 

(Secure Shell) and MPI (Message Passing Interface). The parallel pattern in this study is 329 

data-parallel. That is to say, the tasks for slaves and master are running model based on the sample 330 

sets generated by sensitivity analysis methods, and the process of generating sample sets is done 331 

on the master. The run intervals of ANOVA and Sobol’s sensitivity analyses are 13 days and 18 332 

days respectively via parallel computing. The computational efficiency has been greatly enhanced 333 

after parallel computing. 334 
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2.8 Hydrological signatures 335 

Hydrological signatures are able to investigate the simulation effect of hydrological models 336 

more comprehensively and thoroughly (Yadav et al. 2007, Yilmaz et al. 2008, Winsemius et al. 337 

2009). To analyze the performance of different aspects of streamflow simulated via DHSVM, 338 

five distinct conditions of hydrological signatures are selected, including average flow conditions, 339 

low flow conditions, peak flow conditions, duration of flow events for low flow conditions and 340 

duration of flow events for peak flow conditions (Olden and Poff 2003, Bormann et al. 2011, 341 

Westerberg and McMillan 2015, Shafii and Tolson 2015). The specific hydrological signatures of 342 

different conditions are described in Table 3, i.e., mean annual runoff for average flow conditions, 343 

low flow signature and base-flow signature for low flow conditions, specific mean annual 344 

maximum flows for peak flow conditions, annual minimum of 1-/3-/7-/30-d means of daily 345 

runoff and annual maximum of 1-/3-/7-/30-d means of daily runoff for duration of flow events. 346 

The detailed abbreviation, unit and definition are shown in Table 3. 347 

Table 3. Description of the six hydrological signatures used in the study. 348 

In order to evaluate the performance of simulation results conveniently, a new criterion (P) 349 

is used and can be calculated by Equation (9). The value of hydrological signatures for observed 350 

streamflow is constant. However, P-value of simulated streamflow changes depends on each 351 

parameter set.  352 

                                                                          (9) 353 

Where        is referred as the value of hydrological signature for observed streamflow;  354 

is referred as the value of hydrological signature for simulated streamflow. 355 

As shown in Equation (9), if P>0, the value of hydrological signature for simulated 356 

( )
1

)( sim −=
obsQHS

QHS
P

)( obsQHS

)( simQHS
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streamflow is higher than that of observed streamflow, indicating that the simulated signature is 357 

overestimated. On the contrary, the simulated signature is underestimated. The lower the absolute 358 

value of P is, the higher performance of hydrological model is. 359 

As described in Section 2.1, Jinhua River Basin suffers a lot from floods. Besides the 360 

peak-related hydrological signature shown in Table 3, peak flows extracted from observed and 361 

simulated runoff are compared via percentiles. Here, Peak-over-threshold (POT) (Obrien et al. 362 

2015, Hirsch and Archfield 2015, Mallakpour and Villarini 2015) is adopted to select peak flows. 363 

For POT method, the choice of the threshold is important. If the threshold is too low, excessive 364 

number of peak flows is selected. On contrary, only a few peak flows are considered when the 365 

threshold is too high. In this study, mean of observed daily runoff (1991-2000) is used. Two 366 

subsequent peak events (P1 and P2) are identified as independent when the following two 367 

conditions are satisfied (Lang et al. 1999): 368 

( )





<

+>

),min(
4

3

)log(5

21min PPX

Areaθ
                       (10) 369 

Where θ  is the interval of two subsequent peak events (days); Area  is the area of 370 

watershed (miles
2
); minX is the minimum runoff during interval of two subsequent peak events 371 

(m
3
/s). 372 

Based on these independent conditions and selected threshold, peak flows are extracted 373 

from the observed and simulated runoff in the study period (1991-2000). 374 
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3 Results 375 

3.1 ANOVA sensitivity analysis result 376 

Figure 4 presents the F-value and percentage of the total variance at a significance level of 377 

p=0.05. Sixteen sensitive parameters are preliminarily selected from all parameters (83) of 378 

DHSVM, based on the criterion that F-Value is bigger than 3.0. The sum of variance percentages 379 

of selected sixteen parameters is about 97.6%. The higher the F-value is, the more sensitive the 380 

parameter is.  381 

Figure 4 shows that F-values of some parameters exceed three orders of magnitude larger 382 

than 3.0. Hence, a threshold of 300 is adopted to determine whether a parameter is highly 383 

sensitive or not. There are three highly sensitive parameters, i.e., rain LAI multiplier (Rj), 384 

porosity of clay loam (φ(CL)) and field capacity of clay loam (θfc(CL)), accounting for 19.3%, 385 

9.6% and 40% of total variance respectively. Among these highly sensitive parameters, field 386 

capacity of clay loam is the most sensitive parameter and its F-value is 1 583.4 which is far 387 

larger than the threshold 300. Field capacity together with root zone depth (D(CrL)) determines 388 

realistic storage of available water in soil, and realistic storage will diminish with the decrease of 389 

field capacity. Consequently, the same amount water access soil subsurface layers will have 390 

higher runoff with decreasing field capacity. However, porosity together with root zone depth 391 

decides the capacity of water in soil. Simulated peak flows will decrease and routing time will 392 

increase with increasing porosity. Rain LAI multiplier is LAI multiplier for rain interception, 393 

which will influence interception storage and evaporation.  394 

Thirteen sensitive parameters are presented in Figure 4, including five soil parameters 395 
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(mainly from clay loam) and eight vegetation parameters (related to mixed forests and croplands). 396 

Understory minimum resistance (URsmin(MF)) and overstory minimum resistance 397 

(ORsmin(MF)) of mixed forest are sensitive parameters. According to Wigmosta et al. (2002), 398 

canopy resistance is calculated separately for the understory and overstory. Similarly, understory 399 

height (Uh(MF)) of mixed forest is sensitive to simulated streamflow. Additionally, in reality, the 400 

actual values for understory and overstory height of mixed forest are different. Vegetation height 401 

is related to aerodynamic resistance, which determines the rate of potential evaporation with 402 

other parameters. Vegetation minimum resistance, vapor pressure deficit (Ec(CrL)) and soil 403 

moisture threshold (θ*(CrL)) are used to calculate canopy resistance, which directly impact 404 

vegetation transpiration. LAI affects the capacity of canopy interception and acquisition of solar 405 

radiation. Therefore, the rate of potential evaporation will increase with increasing LAI. Lateral 406 

conductivity (K(CL)) is used in the calculation of lateral flow movement and lateral conductivity 407 

exponential decrease (f(CL)) describes exponent decrease of lateral conductivity with soil depth. 408 

Both of them influence the amount of lateral flow and routing time. Wilting point (θwp(CL), 409 

θwp(L)) and bulk density (ρB(CL)) are related to soil evaporation.  410 

Figure 4. ANOVA parameter sensitivities based on the NE measure (F-value > 3). 411 

Figure 5 shows the observed and simulated hydrographs (when the value of NE is the 412 

maximum in ANOVA sensitivity analysis) of 1994, 1995 and 1996, which correspond to 413 

moderate, wet and dry year respectively. The efficiency criteria for NS, Erel and NE (1991-2000 414 

years) are 0.83, 0.81 and 0.82 respectively, which show a good performance of the hydrological 415 

model. In addition, the bias is -7.8%, which is well within the range -25%~25% (Safeeq and 416 

Fares 2012, Xu et al. 2015). However, the runoff, especially peak flow, is slightly underestimated. 417 
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In general, the simulation demonstrates that DHSVM is able to simulate river flows in a good 418 

way. Also it can be observed from Figure 5 that the model performance in the dry year (1996) is 419 

better than that in the moderate year (1994).  420 

Figure 5. Model performance in 1994, 1995 and 1996 (corresponding to moderate, wet and dry year, respectively) when the 421 

value of NE (NS, Erel and NE are 0.83, 0.81 and 0.82 respectively) is the maximum in ANOVA sensitivity analysis. 422 

3.2 Sobol’s sensitivity analysis results 423 

The input factors for Sobol’s sensitivity test are preliminary sensitive parameters selected by 424 

ANOVA (as shown in Figure 4 and Table 4). As shown in Table 4, sixteen model parameters are 425 

considered in Sobol’s sensitivity analysis and a sample size of 20 400 is used (according to 426 

Saltelli and Tarantola (2002), this sample size is appropriate). Saltelli (2000a) extended the 427 

Sobol’s original work by adding special transformation to the randomly sampled parameters to 428 

reduce computational complexity. This transformation is used in this study and the ranges of 429 

porosity, field capacity and wilting point of clay loam are slightly changed (Italic in Table 4). The 430 

value of NE ranges from 0.2 to 0.88. Percentage of samples with NE value higher than 0.8, is up 431 

to 66.7%. Percentage of Erel that is larger than 0.8 accounts for nearly 60% and the highest value 432 

of Erel is 0.93. Moreover, a majority of samples has a value of NS higher than 0.7. In addition, 433 

biases are also calculated for all samples, and nearly all values are within the acceptable range of 434 

-25%~25% (Safeeq and Fares 2012). The percentage of correlation coefficient value higher than 435 

0.9 is nearly 97%.  436 

The total order sensitivity index is shown in Figure 6. Total order sensitivity index of 16 437 

parameters range from 0.00 to 0.29. According to Tang et al. (2007b), parameters are highly 438 
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sensitive when the sensitivity indices are higher than 0.1 and sensitive with the indices higher 439 

than 0.01. Parameters are insensitive to streamflow simulation when its total order sensitivity 440 

index is smaller than 0.01. Figure 6 shows that there are eight highly sensitive parameters, 441 

including one constant parameter (rain LAI multiplier), four soil parameters (lateral conductivity, 442 

porosity, field capacity and wilting point of clay loam), and three vegetation parameters 443 

(understory monthly LAI, understory minimum resistance and root zone depths of croplands). 444 

Compared with the results from ANOVA sensitivity test, it shows that the identified parameters 445 

are similar and the ranking of them is compatible. Moreover, the most sensitive parameter in 446 

both methods is field capacity of clay loam. The role of field capacity (θfc(CL)) is dominant in 447 

unsaturated moisture movement module. In DHSVM model, no unsaturated flow is allowed to 448 

occur when the moisture content is below the field capacity. Unsaturated flow will increase with 449 

decrease of field capacity. The amount of runoff is obviously impacted by the value of field 450 

capacity. The higher the value of field capacity is, the more runoff will generate. In other words, 451 

more runoff could be obtained by decreasing the value of field capacity. Root zone depth (D(CrL)) 452 

has significant impacts on unsaturated flow, soil evaporation and the amount of moisture in the 453 

soil column. Model simulation is also highly sensitive to wilting point (θwp(CL)) and understory 454 

LAI (ULAI(CrL)), owing to the fact that both of them play important roles in canopy resistance 455 

and evapotranspiration. As shown in Figure 3 and Table 1, the area percentage of forests/mixed 456 

forests is 34.7% (5.0%+0.1%+29.6%), and the area percentage only with understory is 64.5% 457 

(1.2%+22.9%+0.4%+36.7%+3.3%). It is easy to overlook that forests/mixed forests also have 458 

understory. Additionally, the mixed forest in the study area mainly consists of grasslands, 459 

shrublands and trees. The area percentage of trees in the mixed forest is about 30%, or less. 460 
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Moreover, the vegetation overstory parameters only have slight impacts on canopy interception 461 

and vegetation transpiration. This is an explanation for the conclusion that vegetation parameters 462 

related with overstory are less sensitive to model simulation.  463 

Table 4. Ranges, number and abbreviation of parameters for Sobol’s sensitivity analysis. 464 

Figure 6. Sobol’s total order sensitivity index based on the NE measure. 465 

Interactions between parameters, i.e., second order sensitivity index, are presented in Figure 466 

7. These interactions could not be identified with other local sensitivity analysis methods, such as 467 

OFAT (One-factor-at-a-time). The x-axis and y-axis are parameter numbers shown in Table 4. 468 

The constant parameter, rain LAI multiplier, has interactions with other fifteen parameters as 469 

shown in the first column of Figure 7. However, all sensitivity indices are smaller than a 470 

threshold value of 0.01, i.e., insensitive interactions. The interactions among field capacity of 471 

clay loam and other parameters are important. The second order sensitivity index between field 472 

capacity of clay loam and understory monthly LAI of croplands is the maximum and the value 473 

reaches 0.03. The total order sensitivity index of field capacity of clay loam reaches 0.29, which 474 

is much larger that its first order sensitivity index (0.18). As presented in Figure 3, clay loam and 475 

croplands covered most areas of the study area. In DHSVM model, LAI has direct effects on 476 

three crucial hydrological processes, i.e., vegetation canopy rainfall interception, evaporation and 477 

soil transpiration. LAI affects acquisition of solar radiation and is used as a multiplier in canopy 478 

precipitation interception. And the rate of potential evaporation will increase with the increase of 479 

LAI and available water into soil will then decrease. Moreover, field capacity is used to 480 

determine the realistic storage of available water in soil. Hence, the streamflow simulation is 481 

proven to be sensitive to the interactions between these parameters.  482 
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In addition, the interactions between field capacity of clay loam and root zone depth of 483 

croplands are also sensitive, for the reason that field capacity determines plant available water in 484 

soil with root zone depth (D(CrL)). The interactions increase the value of total order sensitivity 485 

index of root zone depth to 0.27. Similarly, the interactions between field capacity of clay loam 486 

and soil moisture threshold of croplands are also sensitive. The total sensitivity index of soil 487 

moisture threshold reaches to 0.07, which is much larger than its first order sensitivity index 488 

(0.03). This is due to the fact that soil moisture threshold also has an impact on transpiration of 489 

soil like LAI. Understory height affects evaporation and transpiration of vegetation. This 490 

explains the strong interactions between field capacity and understory height. Likely, the reason 491 

for that model simulation is sensitive to the interactions between field capacity and vapor 492 

pressure deficit is owing to the fact that vapor pressure deficit has an impact on evaporation and 493 

transpiration of vegetation. In addition, vegetation minimum resistance affects water balance and 494 

vegetation transpiration. Both wilting point and LAI have a significant influence on evaporation 495 

of soil. So their interactions are sensitive to model simulation.  496 

Figure 7. Interactions among sixteen parameters based on the NE measure. 497 

3.3 Hydrological signatures 498 

Six representative hydrological signatures from four flow conditions are selected in this 499 

study. Evaluation criterion P-value shown in Equation (9) is used to analyze the performance of 500 

the hydrological model based on hydrological signatures. Figure 8 shows the boxplots of 501 

P-values for four hydrological signatures of all samples used in Sobol’s sensitivity analysis, i.e., 502 

mean annual runoff (A1), Low flow signature (L1), Base-flow signature (L2) and Specific mean 503 
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annual maximum flows (H1). For hydrological signature A1, P-values range from -1.0 to 0.4. 504 

However, the P-values between 1% and 99% percentiles are totally within the acceptable scope 505 

(-25%~25%), which illustrates that the overall performance of A1 is good. For hydrological 506 

signatures L1, approximately 96% of P-values are bigger than 25%, that is to say, the percentage 507 

for P-value within the acceptable range is only 4%. A number of samples are good with the 508 

P-value of L2 close to zero. All of P-values of H1 are lower than zero and 15.8% of P-values of 509 

H1 are within the acceptable scope. 510 

Figure 8. Boxplot for P-value of hydrological signatures (A1 (Mean annual runoff), L1 (Low flow signature), L2 (Base-flow 511 

signature): and H1 (Specific mean annual maximum flows)) of all samples in Sobol’s sensitivity analysis. 512 

In order to better understand the performance of the model concerning the four hydrological 513 

signatures in some specific samples, four samples with the value of NE higher than 0.7 are 514 

selected from all samples in Sobol’s sensitivity analysis. Four samples, i.e., Sample A, Sample B, 515 

Sample C and Sample D, are selected according to the distinct intervals of NE value shown in 516 

Table 5. Sample A has the maximum value of NE. The results are displayed in Table 6. For 517 

Sample A, P-value of A1 is -0.10 and that of L1, L2 and H1 are 0.68, -0.35 and -0.29 respectively. 518 

This explains that a high value of efficiency criteria could not guarantee good performance in all 519 

aspects of a hydrograph. For Sample B, hydrological signature L1 (0.07) is close to zero and A1 520 

(-0.23) also within the acceptable range. L2 (-0.54) and H1 (-0.30) indicate less satisfactory 521 

simulations of base flow and peak flow. Nevertheless, base flow is reasonably simulated with L2 522 

(0.09) in Sample C, so is mean annual runoff (A1 is equal to 0.01). For Sample D, peak flow is 523 

excellently simulated with H1 (-0.22). Taking the total order sensitivity index (Section 3.2) and 524 

corresponding parameter values in Sample A into account, high value of porosity (0.58) and field 525 
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capacity (0.39) in clay loam result in the inferior performance of hydrological signature L1, L2 526 

and H1.       527 

Table 5. Selected samples based on the NE value.                                                                                                                             528 

Table 6. Hydrological signatures of the observed and the simulated from selected samples and corresponding P-values. 529 

Other hydrological signatures DH1-4 and DL1-4 of four selected samples are displayed in 530 

Figure 9 and Figure 10 respectively. For DH1, all four samples underestimate annual maximum 531 

of 1-day means of daily runoff in 1991-2000. As shown in Figure 9, the ranking of performance 532 

in DH1 is Sample D > Sample A > Sample B > Sample C. This ranking is similar to that of 533 

hydrological signature H1. Underestimation is greatly improved in DH2. For DH3, four selected 534 

samples perform very well in 1991-2000. For Sample D, runoff is mostly overestimated with 535 

minor degrees in all years in DH4, which corresponds to hydrological signature A1 with 0.21 of 536 

P-value. Different to DH1-3, the ranking of DH4 is that Sample C is the best, Sample A is the 537 

second, Sample B is the third and Sample D is the last. And the ranking of DH4 is similar to that 538 

based on hydrological signature A1. 539 

Figure 9. Hydrological signature DH1-4 for observed and simulated runoff from four selected samples as shown in Table 5. 540 

As presented in Figure 10, for DL1, Sample B simulates very well in all years. However, 541 

other three samples underestimate DL1 during most years. This ranking is totally similar to that 542 

of hydrological signature L1. The overestimation is improved for four samples in DL2. For DL3,  543 

performance of four samples is further better than DL1 and DL2. By comparing the meaning of 544 

DL3 and L2, it is reasonable that the ranking of DL3 is the same to L2. The ranking of DL4 is 545 

similar to that based on hydrological signature A1. 546 

Hydrological signatures DH1-4 and DL1-4 represent maximum and minimum annual flow 547 
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of various durations, which describe the performance of duration of flow event in model 548 

simulation and provide important insights into a hydrograph. As shown in Figure 9 and Figure 10, 549 

the performance of four selected samples in DH1 and DL1 is not ideal. However, performance of 550 

DH3 and DL3 is good, which illustrates annual maximum and minimum of 7-day means of daily 551 

runoff are reasonably simulated.  552 

Figure 10. Hydrological signature DL1-4 for observed and simulated runoff for four selected samples as shown in Table 5. 553 

Besides six hydrological signatures described above, peak flow percentile is further used to 554 

explore the performance of peak flow simulation. Figure 11 shows the peak flow percentiles for 555 

the observed and selected samples. These samples are from Sobol’s sensitivity analysis samples 556 

and chosen with NS higher than 0.7. As presented in Figure 11, Qs-1 (1
th

 percentile flows) – Qs-70 557 

(70
th

 percentile flows) are simulated reasonably. However, Figure 11 also shows that extreme 558 

peak flows (with percentile larger than 0.75）are not well simulated which is corresponding to the 559 

performance of hydrological signature H1 and streamflow curve shown in Figure 5. 560 

Figure 11. Peak flow percentiles for observed and simulated runoff from samples whose NS > 0.7 in Sobol’s sensitivity 561 

analysis. 562 

In order to understand the performance of peak flow simulation in individual samples, three 563 

samples are selected based on the NS value instead of NE value (Considering the fact that the 564 

maximum value of NS is 0.85 and NS should be bigger than 0.7, three not four distinct intervals 565 

are identified). Three samples, i.e., Sample PA (maximum value of NS), Sample PB and Sample 566 

PC, are selected according to various intervals of NS value shown in Table 7. The results are 567 

shown in Figure 12. For Sample PA, Qs-1- Qs-25 is simulated very well. However, the other peak 568 

flow percentiles are underestimated in Sample PA. The reason for this is the high value of field 569 
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capacity (0.38) and low value of wilting point (0.07) of clay loam. For Sample PB, Qs-1- Qs-75 570 

exhibits slight overestimation. Sample PC performs better than the others, Qs-1- Qs-70 is totally 571 

consistent to Qo-1- Qo-70 and Qo-75 - Qs-99 shows less underestimation.  572 

Table 7. Selected samples for peak flow based on the NS value. 573 

Figure 12. Peak flow percentiles for observed and simulated runoff from three selected samples as shown in Table 7. 574 

4 Discussion 575 

It is common to apply one sensitivity analysis method to hydrological models and identify 576 

dominant parameters in hydrological model simulation. However, the proposed framework in 577 

this study provides a means to identify parameter sensitivities of DHSVM by using a two-step 578 

sensitivity analysis approach. In the first step, the ANOVA method was used to identify 579 

preliminary sensitive parameters in the DHSVM model simulation. This is because model 580 

outputs are assumed to be normally distributed, which may cause the results of ANOVA 581 

sensitivity analysis not robust. Therefore, only the effect of individual parameters is adopted in 582 

the first step. The ANOVA method was actually used here as a screening sensitivity analysis 583 

method. Then these preliminary sensitive parameters identified by ANOVA were further 584 

analyzed via the Sobol’s method to achieve robust results, including effect of individual 585 

parameters and interactions between parameters in the second step. In the end, the performance 586 

of the model was investigated for different parameter sets based on hydrological signatures. As 587 

we explained before, our aim here is to mainly provide parameter identification results for 588 

further calibration and validation. However, we believe during this sensitivity analysis stage, 589 

checking how the different parameter sets play a role in model simulation (through hydrological 590 
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signature analysis) can also be interesting.  591 

In the two-step sensitivity analysis approach, the Sobol’s method can apportion the variance 592 

in model output (streamflow) to the variance in the model parameters and meanwhile consider 593 

interactions among parameters. The results demonstrated that field capacity of clay loam is the 594 

most important, showing the largest total order sensitivity index and high value of interactions 595 

with other parameters. Others sensitive parameters include rain LAI multiplier affecting 596 

evaporation, lateral conductivity and porosity of clay loam contributing to streamflow simulation, 597 

and wilting point of clay loam affecting soil evaporation. Highly sensitive vegetation parameters 598 

consist of understory monthly LAI of croplands influencing evaporation, understory minimum 599 

resistance of croplands strongly affecting water balance and root zone depths of croplands 600 

influencing soil evaporation. These results are in good agreement with that of Du et al. (2014) 601 

who showed that vegetation LAI, minimum resistance, porosity, rain LAI multiplier, wilting 602 

point and field capacity are important parameters in the simulation of water yield in northern 603 

Idaho, USA, using a stepwise, single parameter perturbation method. Cuo et al. (2011) also 604 

concluded that lateral saturated hydraulic conductivity, porosity, minimum resistance and LAI 605 

should be given special attentions during model calibration based on One-factor-at-a-time 606 

(OFAT). Meanwhile, other literatures have studied parameters sensitivities of DHSVM to model 607 

simulation as well (Surfleet et al. 2010, Kelleher et al. 2015). Nevertheless, the sensitivity 608 

analysis methods used in these studies could only obtain single contribution of parameters or less 609 

robust sensitivity results. The Sobol’s method is able to achieve robust sensitivity rankings and, 610 

what’s more, the interactions between parameters. In particular, in the current study, the 611 

interactions between field capacity of clay loam and other parameters cannot be ignored. As 612 
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shown in Figure 6, the total order sensitivity index becomes 0.29, which is much larger than the 613 

first order sensitivity index (0.18) after considering the interactions. This study demonstrates that 614 

the Sobol’s method did provide valuable information to parameter selections in DHSVM 615 

calibration, and promote further guides in searching for optimal parameter sets for this model 616 

through considering parameter interactions. 617 

In this study, several soil and vegetation types whose area percentages are bigger than 10% 618 

were considered in the two-step sensitivity analysis. Simplified soil and vegetation classes in the 619 

sensitivity analysis for DHSVM model may have an impact on simulation results (Cuo et al. 620 

2011, Surfleet et al. 2010, Du et al. 2014). For instance, it is obvious that model simulation will 621 

be affected if same values were set for overstory vegetation LAI of evergreen needleleaf forests 622 

and evergreen broadleaf forests. Likewise, it is unrealistic that same values were set for field 623 

capacity of clay and sand. 624 

It should be noted that four hydrological signatures could not be well simulated 625 

simultaneously in any individual sample from Sobol’s sensitivity analysis. Hence, in order to 626 

obtain better model simulation, multi-objective calibration is necessary to achieve optimal 627 

parameter sets. Considering the complexity of model and large number of parameters, manual 628 

calibration is inefficient and difficult to obtain global optimal parameter sets. Automatic 629 

calibration is preferred for DHSVM with parallel computing to reduce computational burden. 630 

Traditional calibration is usually performed with a single objective (Guo et al. 2014, Wang and 631 

Brubaker 2015). However, a single objective is often inadequate to meet multiple requirements 632 

(Vrugt et al. 2003). Efficient global optimization algorithms are therefore recommended for use 633 

to reliably search for the global optimal parameter sets (Zhang et al. 2013, Ye et al. 2014). 634 
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Peak flow is slightly underestimated in the model simulation of DHSVM. The possible 635 

reasons for this are from various dimensions. Firstly, model structural problems related to peak 636 

flow generation mechanism may exist in DHSVM, including that preferential flow was not 637 

considered in this study and the assumption that understory vegetation (if it exist) covers the 638 

entire cell in evapotranspiration mode. Secondly, only limited meteorological stations and daily 639 

scale data are used in the study. According to Booij (2003, 2005), the spatial and temporal 640 

variability of precipitation will affect the hydrological simulation. As shown in the test 641 

application from Wigmosta et al. (1994), the best time step of meteorological data for model 642 

simulation is 3-hour. Additionally, determination of appropriate resolution of DEM may be 643 

critical for model simulation. According to Dubin and Lettenmaier (1999), simulations of peak 644 

flow and runoff process are greatly impacted by DEM resolution. Safeeq and Fares (2012) also 645 

concluded that underestimation of the peak flows exist when modeling runoff of a Hawaiian 646 

watershed. 647 

5. Conclusion 648 

In this study, a two-step sensitivity analysis approach was used. Firstly, the sensitivity of 649 

nearly all parameters in DHSVM which was built for Jinhua River Basin, East China, was 650 

roughly analyzed via ANOVA. Sobol’s sensitivity analysis method, a variance-based global 651 

sensitivity analysis method, was then applied to analyze the contributions of the preliminary 652 

influential parameters identified by ANOVA to streamflow simulation, including single 653 

contributions, total contributions and interaction contributions. Parallel computing was applied to 654 

reduce the computational burden. For all samples from Sobol’s sensitivity analysis, performances 655 
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of hydrological signatures were also investigated. Additionally, peak flows extracted from the 656 

observation and simulation via POT approach were compared. The key findings of this study are 657 

summarized below: 658 

(1) According to the Sobol’s method, only a few number of model parameters are significantly 659 

sensitive in Jinhua River Basin, including a constant parameter (rain LAI multiplier), four 660 

soil parameters (lateral conductivity, porosity, field capacity and wilting point of clay 661 

loam), and three vegetation parameters (understory monthly LAI, understory minimum 662 

resistance and root zone depths of croplands). More attention should be paid to these 663 

parameters in future model calibration. 664 

(2) The interactions between parameters cannot be ignored. For example, the total order 665 

sensitivity index of field capacity of clay loam reaches to 0.29, which is much larger than 666 

the first order sensitivity index (0.18) after considering the interactions between field 667 

capacity of clay loam and other parameters. 668 

(3) High value of the objective function (NE) didn’t indicate excellent performance of 669 

hydrological signatures. For most samples from Sobol’s sensitivity analysis, water yield 670 

was simulated very well via DHSVM. However, minimum and maximum annual daily 671 

runoffs were underestimated in a majority of samples. And most of seven-day minimum 672 

runoffs were overestimated. However, good performances of these three signatures still 673 

exist in a number of samples. 674 

(4) The model performances of specific individual samples in percentile analysis were 675 

summarized. Considering sensitive parameters together with their values, the good 676 

performance of maximum annual daily runoff in Sample D is owing to the low values of 677 
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rain LAI multiplier, understory monthly LAI and root zone depth. Likewise, Sample PC 678 

has the best performance in that its small, medium and large floods show less 679 

underestimation than others. 680 

(5) Percentiles of peak flows extracted from the observed and simulated runoff indicate that 681 

small and medium floods were simulated reasonably. Slight underestimations happen to 682 

large floods. This is possibly due to the shortcomings of model structure and insufficient 683 

meteorological data used in the study. 684 

 (6) The work in this study helps further multi-objective calibration of DHSVM model and 685 

indicates where to improve to enhance the reliability and credibility of model simulation. 686 

Good simulation of the complete hydrograph is useful for water resources management, 687 

flood prediction and forecasting. Furthermore, the two-step sensitivity analysis approach 688 

can be applied to detailed parameter identification for model simulation with numerous 689 

parameters. The limitation of this approach lies in its demand for a large number of model 690 

runs.  691 
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Table 7. Selected samples for peak flow based on the NS value. 912 
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Figure 1. Methodology framework used in this study. 915 

Figure 2. Location of the six stations used in the study. 916 

Figure 3. DEM (digital elevation map) (a) soil distribution (b) and vegetation distribution (c) in Jinhua River Basin. 917 

Figure 4. ANOVA parameter sensitivities based on the NE measure (F-value > 3). 918 

Figure 5. Model performance in 1994, 1995 and 1996 (corresponding to moderate, wet and dry year, respectively) when the 919 

value of NE (NS, Erel and NE are 0.83, 0.81 and 0.82 respectively) is the maximum in ANOVA sensitivity analysis. 920 

Figure 6. Sobol’s total order sensitivity index based on the NE measure. 921 

Figure 7. Interactions among sixteen parameters based on the NE measure. 922 

Figure 8. Boxplot for P-value of hydrological signatures (A1 (Mean annual runoff), L1 (Low flow signature), L2 (Base-flow 923 

signature): and H1 (Specific mean annual maximum flows)) of all samples in Sobol’s sensitivity analysis. 924 

Figure 9. Hydrological signature DH1-4 for observed and simulated runoff from four selected samples as shown in Table 5. 925 

Figure 10. Hydrological signature DL1-4 for observed and simulated runoff from four selected samples as shown in Table 5. 926 

Figure 11. Peak flow percentiles for observed and simulated runoff from samples whose NE > 0.7 in Sobol’s sensitivity 927 

analysis. 928 

Figure 12. Peak flow percentiles for observed and simulated runoff from three selected samples as shown in Table 7. 929 

Page 38 of 46

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

 

Figure 1. Methodology framework used in this study. 

 

 

Figure 2. Location of the six stations used in the study. 
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Figure 3. DEM (digital elevation map) (a) soil distribution (b) and vegetation distribution (c) in Jinhua River Basin. 

 

Figure 4. ANOVA parameter sensitivities based on the NE measure (F-value > 3). 
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Figure 5. Model performance in 1994, 1995 and 1996 (corresponding to moderate, wet and dry year, respectively) when the 

value of NE (NS, Erel and NE are 0.83, 0.81 and 0.82 respectively) is the maximum in ANOVA sensitivity analysis. 

 

 

Figure 6. Sobol’s total order sensitivity index based on the NE measure. 

 

 

Figure 7. Interactions among sixteen parameters based on the NE measure. 
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Figure 8. Boxplot for P-value of hydrological signatures (A1 (Mean annual runoff), L1 (Low flow signature), L2 (Base-flow 

signature): and H1 (Specific mean annual maximum flows)) of all samples in Sobol’s sensitivity analysis. 

 

 

Figure 9. Hydrological signatures DH1-4 for observed and simulated runoff from four selected samples as shown in Table 5. 
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Figure 10. Hydrological signature DL1-4 for observed and simulated runoff from four selected samples as shown in Table 5. 

 

 

Figure 11. Peak flow percentiles for observed and simulated runoff from samples whose NS > 0.7 in Sobol’s sensitivity analysis. 

 

Figure 12. Peak flow percentiles for observed and simulated runoff from three selected samples as shown in Table 7. 
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Table 1. Vegetation and soil classes and their percentages in Jinhua River Basin. 

Vegetation Percentages 

(%) 
Vegetation Percentages 

(%) 
Evergreen needleleaf forests 5.0 Water bodies 0.8 

Evergreen broadleaf forests 0.1 Soil Percentages 

(%) 
Mixed forests 29.6 Sandy loam 16.5 

Shrublands 1.2 Loam 15.8 

Grasslands 22.9 Silty clay loam 4.6 

Wetlands 0.4 Clay loam 55.4 

Croplands 36.7 Clay 7.3 

Urban and built-up lands 3.3 Water 0.4 

The italics represent soil/vegetation types whose area percentages are bigger than 10%.  

 

Table 2. Ranges, unit and abbreviation of constant, soil and vegetation parameters for ANOVA sensitivity analysis. 

 

The abbreviations SL, L and CL in Table 2 represent sandy loam, loam and clay loam respectively. Similarly, MF, GL and CrL represent 

mixed forests, grasslands and croplands respectively. The italics represent parameters whose ranges for two vegetation stories are set 

separately. 

 

 

 

 

 

 

 

Parameters Abbrev. Range Parameters Abbrev. Range 

Constant Parameters Vegetation Parameters(Grasslands, GL; Croplands, CrL) 

Ground Roughness(m) Zou 0.001~0.03 Understory Root Fraction UFrjk 0~1 

Rain Threshold(℃) Tmin -1~0 Understory Monthly LAI(m2/m2) ULAI 0.3~3 

Reference Height(m) Zr 30~50 Understory Monthly Alb Uαj 0.1~0.3 

Rain LAI Multiplier(m) Rj 0.00001~0.001 Understory Height(m) Uh 0.3~2.5 

Temperature Lapse Rate(℃/m) Lt -0.008~ 0 Maximum Resistance(s/m) Rsmax 300~1000 

Vegetation Parameters( Mixed Forest, MF) Understory Minimum Resistance(s/m) URsmin 50~300 

Fractional Coverage
 
(m

2
/m

2
) F 0.7~1 Soil Moisture Threshold(m

3
/m

3
) θ* 0.1~0.35 

Radiation Attenuation Lb 0.1~0.3 Vapor Pressure Deficit(pa) Ec 1000~6000 

Trunk Space(m/m) Rt 0.4~0.6 Rpc Rpc 10~50 

Aerodynamic Attenuation Na 1.5~3.5 Root Zone Depths(m) D 0.1~0.8  

Overstory Root Fraction OFrjk 0~1 Soil Parameters(Sandy Loam, SL; Loam, L; Clay Loam, CL) 

Overstory Monthly LAI(m2/m2) OLAI 5~10 Lateral Conductivity (m/s) K 0.00001~0.09 

Overstory Monthly Alb Oαj 0.1~0.3 
Lateral Conductivity 

Exponential Decrease 
f 1~4 

Understory Root Fraction Ufrjk 0~1 Maximum Infiltration Rate (m/s) Imax 0.00001~0.09 

Understory Monthly LAI(m
2
/m

2
) ULAI 0.3~3 Surface Albedo (m/s) α 0.1~0.3 

Understory Monthly Alb Uαj 0.1~0.3 Porosity(m3/m3) φ 0.35~0.6 

Overstory Height(m) Oh 10~25 Pore Size Distribution m 0.2~0.5 

Understory Height(m) Uh 0.3~2.5 Bubbling Pressure(m) Ψb 0.1~0.76 

Maximum Resistance(s/m) Rsmax 2000~7000 Field Capacity(m
3
/m

3
) θfc 0.16~0.4 

Overstory Minimum Resistance(s/m) ORsmin 300~800 Wilting Point(m3/m3) θwp 0.05~0.25 

Understory Minimum Resistance(s/m) URsmin 50~300 Bulk Density(kg/ m
3
) ρB 1000~3000 

Moisture Threshold(m3/m3) θ* 0.1~0.35 Vertical Conductivity(m/s) Ks 0.0001~0.5 

Vapor Pressure Deficit(pa) Ec 1000~60000 Thermal Conductivity (W/mK) Kt 3~8 

Rpc Rpc 10~50 Thermal Capacity (J/m3K) CV 1×106~ 5×106 

Root Zone Depths(m) D 0.1~0.8     
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Table 3. Description of the six hydrological signatures used in the study. 

 

Table 4. Ranges, number and abbreviation of parameters for Sobol’s sensitivity analysis. 

 

Number Parameters Abbrev. Ranges Number Parameters Abbrev. Ranges 

1 Rain LAI Multiplier Rj 0.00001~0.00 9 Understory Height(MF) Uh(MF) 0.3~2.5 

2 Wilting Point(L) θwp(L) 0.05~0.25 10 
Overstory Minimum  

Resistance(MF) 
ORsmin(MF) 300~800 

3 Lateral Conductivity(CL) K(CL) 0.00001~0.09 11 
Understory Minimum  

Resistance(MF) 
URsmin(MF) 50~300 

4 Lateral    (CL) f(CL) 1~4 12 Understory Monthly LAI(CrL) ULAI(CrL) 0.3~3 

5 Porosity(CL) φ(CL) 0.35~0.6 13 
Understory Minimum  

Resistance(CrL) 
URsmin(CrL) 50~300 

6 Field Capacity(CL) θfc(CL) 0.16~0.4 14 Soil Moisture Threshold(CrL) θ
*
(CrL) 0.1~0.35 

7 Wilting Point(CL) θwp(CL) 0.05~0.25 15 Vapor Pressure Deficit(CrL) Ec(CrL) 1000~6000 

8 Bulk Density(CL) ρB(CL) 1000~3000 16 Root Zone Depths(CrL) D(CrL) 0.1~0.8 

The italics represent parameters in the Sobol's sensitivity analysis whose ranges differ from ANOVA. 

 

Table 5. Selected samples based on the NE value. 

NE 0.85-0.88 0.80-0.85 0.75-0.80 0.70-0.75 

Sample Sample A(max NE) Sample B Sample C Sample D 

 

Table 6. Hydrological signatures of the observed and the simulated from selected samples and corresponding P-values. 

Hydrological  

Signature 
Obs 

Sample A Sample B Sample C Sample D 

Sim P Sim P Sim P Sim P 

A1 9.34 8.44 -0.10 7.17 -0.23 9.43 0.01 11.3 0.21 

L1 0.05 0.08 0.68 0.05 0.07 0.11 1.37 0.092 0.97 

L2 0.23 0.15 -0.35 0.11 -0.54 0.25 0.09 0.13 -0.42 

H1 0.44 0.31 -0.29 0.31 -0.30 0.27 -0.39 0.34 -0.22 

 

Table 7. Selected samples for peak flow based on the NS value. 

NS  0.80-0.85  0.75-0.80   0.70-0.75  

Sample  Sample PA (max NS) Sample PB  Sample PC  

 

Conditions Hydrological signature Abbrev. Unit Definition 

Average flow conditions Mean annual runoff A1 m3s-1km-2 Mean annual flow divided by catchment area 

Low flow conditions 

Low flow signature L1 dimensionless 
Mean of the lowest annual daily flow divided by 

mean annual daily flow averaged across all years 

Base-flow signature L2 dimensionless 
Seven-day minimum flow Divided by mean 

annual daily flows averaged across all years 

Peak flow conditions Specific mean annual maximum flows H1 m
3
s

-1
km

-2
 

Mean annual maximum flows divided by 

catchment area 

Duration of flow events: 

Low flow conditions 

Annual minimum of 1-/3-/7-/30-day 

means of daily runoff 
DL1-4 m3s-1 

Magnitude of minimum annual flow of various 

duration, ranging from daily to monthly 

Duration of flow events: 

Peak flow conditions 

Annual maximum of 1-/3-/7-/30-day 

means of daily runoff 
DH1-4 m3s-1

 
Magnitude of maximum annual flow of various 

duration, ranging from daily to monthly 
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