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Abstract 

The explosive increase in the use of mobile digital devices has posed great 

challenges in the design and implementation of Wireless Local Area Networks 

(WLANs). Ever-increasing demands for high-speed and ubiquitous digital 

communication have made WLANs an essential feature of everyday life. With 

audio and video forming the highest percentage of traffic generated by multimedia 

applications, a huge demand is placed for high speed WLANs that provide high 

Quality-of-Service (QoS) and can satisfy end user’s needs at a relatively low cost. 

Providing video and audio contents to end users at a satisfactory level with various 

channel quality and current battery capacities requires thorough studies on the 

properties of such traffic. In this regard, Medium Access Control (MAC) protocol of 

the 802.11 standard plays a vital role in the management and coordination of 

shared channel access and data transmission. Therefore, this research focuses on 

developing new efficient analytical models that evaluate the performance of 

WLANs and the MAC protocol in the presence of bursty, correlated and 

heterogeneous multimedia traffic using Batch Markovian Arrival Process (BMAP). 

BMAP can model the correlation between different packet size distributions and 

traffic rates while accurately modelling aggregated traffic which often possesses 

negative statistical properties. 

The research starts with developing an accurate traffic generator using BMAP to 

capture the existing correlations in multimedia traffics. For validation, the 

developed traffic generator is used as an arrival process to a queueing model and 

is analyzed based on average queue length and mean waiting time. The 
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performance of BMAP/M/1 queue is studied under various number of states and 

maximum batch sizes of BMAP. The results clearly indicate that any increase in 

the number of states of the underlying Markov Chain of BMAP or maximum batch 

size, lead to higher burstiness and correlation of the arrival process, prompting the 

speed of the queue towards saturation. 

The developed traffic generator is then used to model traffic sources in IEEE 

802.11 WLANs, measuring important QoS metrics of throughput, end-to-end delay, 

frame loss probability and energy consumption. Performance comparisons are 

conducted on WLANs under the influence of multimedia traffics modelled as 

BMAP, Markov Modulated Poisson Process and Poisson Process. The results 

clearly indicate that bursty traffics generated by BMAP demote network 

performance faster than other traffic sources under moderate to high loads.  

The model is also used to study WLANs with unsaturated, heterogeneous and 

bursty traffic sources. The effects of traffic load and network size on the 

performance of WLANs are investigated to demonstrate the importance of 

burstiness and heterogeneity of traffic on accurate evaluation of MAC protocol in 

wireless multimedia networks. 

The results of the thesis highlight the importance of taking into account the true 

characteristics of multimedia traffics for accurate evaluation of the MAC protocol in 

the design and analysis of wireless multimedia networks and technologies. 
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Chapter 1: 

Introduction 

 

Past decade has witnessed rapid development of wireless communication and 

technologies. Explosive growth in the number of wireless devices such as 

smartphones, PCs, personal digital assistants and home entertainment systems, 

along with the rapid formation of advanced multimedia applications, such as Voice-

Over-IP (VoIP), Video Conferencing, IPTV, Telemedicine and Internet Gaming 

have resulted in revolutionary advance and deployment of the wireless technology. 

Noted for being the most desired networking technology of choice, IEEE 802.11 

based Wireless Local Area Networks (WLANs), also known as Wi-Fi (Wireless 

Fidelity) [1], have experienced impressive commercial success owing to their low 

cost and easy deployment. WLANs have connected an immensely expanding 

range of user-centric WiFi-equipped mobile devices over the last decade. With 

consumer services and applications that are persistently in need of a ubiquitous 

network access, WLANs are the preferred means of internet access for users and 

product developers worldwide. However, the constant increase in demand for high 

bandwidth and Quality-of-Service (QoS) of high definition multimedia applications 

in WLANs has made them extremely dense, posing great challenges on their 

design and deployment. Several technology forecasts predict that by 2020, the 

global mobile data traffic is expected to increase nearly eightfold. With 75% of the 

mobile data traffic being video, it is expected for the mobile data traffic to reach an 

average of 30.6 Exabyte per month, 53 percent higher than it was in 2015 [2]. A 
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great portion of this increasing high volume traffic is generated and carried through 

WLANs.  

The great strain of constant and continuous high volume generation of multimedia 

traffic and in particular video will be a stern test for the 802.11-based WLANs. With 

the emergence of video streaming websites such as Netflix, Hulu, YouTube, and 

etc., video applications are recognized as significant drivers of current network 

traffic. As well as video, high volumes of traffic is generated as a result of online 

and instantaneous data synchronization and backups through mobile devices 

alongside the use of VoIP applications such as Skype and FaceTime.  

Since its first release in 1997, the IEEE 802.11 standard has gone through various 

stages of development. Nonetheless, the primary aim of this standard, simple and 

best effort local area communication has always been a priority. However, almost 

all previous amendments to the standard were aimed at increasing the peak 

physical data rate through the exploitation of new modulation and coding schemes 

and recently through the use of Multiple-Input-Multiple-Output (MIMO) antenna 

mechanisms.  

The IEEE 802.11 standard only deals with the two lowest layers of the Open 

System Interconnection (OSI) reference model: the Medium Access Control layer 

(MAC) (a sub-layer of the Data Link layer), and the Physical layer (PHY), as shown 

in Figure 1.1. The MAC layer offers two types of contention free channel access 

service: 1) a service provided by the Distributed Coordination Function (DCF), and 

2) a polling-based service provided by the Point Coordination Function (PCF). 

These services are available on top of the Physical layer. DCF is originally the 



18 
 

mandatory service utilized by the MAC sub-layer, whereas PCF is provided as an 

optional service with a lower throughput, and as a result is rarely implemented in 

commercially available WLANs. The ratified DCF in IEEE 802.11 standard is based 

on the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) 

protocol [3, 4]. 

 

Figure 1.1: The IEEE 802.11 standard focuses on the bottom two levels of the OSI 

model: PHY and MAC 

 

The legacy IEEE 802.11 a/b/g standards are able to support bandwidth intensive 

applications such as interactive games and audio or video streaming. However, 

they cannot guarantee QoS when traffic load increases. In order to overcome 

these problems and meet the QoS requirements of multimedia applications, the 

IEEE force group has introduced IEEE 802.11n, 802.11ac and 802.11ad standards 

which provide higher data rates [1, 5, 6]. With the implementation of Multiple Input 

Multiple Output (MIMO) antennas, frame aggregation, Block Acknowledgment (BA) 

and Orthogonal Frequency Division Multiplexing (OFDM), the new IEEE 802.11 

standards address the need for increased network capacity, lower power 

consumption, longer range and ease of use. Due to promises of higher throughput 

and more performance reliability in the 5GHz of unlicensed band, the WLAN 
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market is now gradually evolving from IEEE 802.11n to 802.11ac [1] with 802.11ad 

[7] following. However the goal of IEEE 802.11 standards is to be backward 

compatible, in particular at the MAC or Data Link layer of all the standard series. 

For this reason each of the IEEE 802.11 standards would mainly differ in their PHY 

layer characteristics and the medium access mechanisms are left mostly 

unchanged.  

Majority of existing analytical works on performance modelling of the DCF scheme 

in MAC layer are built upon the model originally proposed by Bianchi [8]. This 

model adopts a bi-dimensional discrete-time Markov chain to derive the saturation 

throughout of DCF. For analytical tractability and simplicity, most existing models 

have been developed under the assumption of unrealistic working scenarios where 

the traffic is saturated or the traffic model follows a Poisson process. However, 

realistic network conditions are non-saturated as very few networks operate in a 

situation where all nodes have frames to send at all times.  

Many high quality measurement studies [7, 9-12] have shown that realistic traffic 

generated by multimedia applications in wireless and mobile networks exhibits self-

similar nature and bursty outlook over a wide range of timescales. Since Self-

similarity and burstiness can degrade network performance through requirement of 

large buffers, causing long delays and high volume of packet loss, it is of most 

importance that it is taken into consideration in the study and development of 

highly efficient WLANs. Conventional teletraffic models such as Poisson model 

were initially successful and analytically simple for modelling the non-bursty traffic 

behaviour; however these models are no longer applicable and adequate for 

capturing traffic burstiness of compressed voice and video in modern 
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communication networks, where batch arrivals, event correlations and burstiness 

are of paramount importance [13-19].  

To this end, this thesis studies and develops novel analytical models for capturing 

the characteristics of IEEE 802.11 standard MAC sublayer implemented in WLANs 

under bursty and self-similar traffic using the Batch Markovian Arrival Process 

(BMAP) [20]. BMAP can accurately model aggregated traffic which often 

possesses negative statistical properties (correlated arrivals, burstiness and self-

similarity [21]). These properties are not only imitated on the level of packet 

arrivals, but BMAP can also capture the correlation between arriving packet size 

and the current packet arrival intensity. 

 

1.1. Motivations and Challenges 

Performance modelling and analysis has become a necessity in the design and 

development of computer and communication networks for the purpose of 

providing the best QoS possible to end users. To this end, accurate analytical 

models that can capture the real characteristics of network traffics play a pivotal 

role in maximizing the efficiency of future network designs.  

With ever-increasing demands for multimedia applications and large increase in 

communication traffic over wireless local area networks in recent years, modelling 

and analysing performance metrics of IEEE 802.11 DCF protocol has become an 

important factor in design, development and optimization of WLANs. Developing 

analytical models using processes that are incapable of capturing the true 

characteristics of modern network traffic can lead to unexpected and incorrect 
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results. To obtain an in-depth understanding of the performance characteristics of 

WLANs, significant research efforts have been devoted to developing analytical 

models for the DCF protocol, however, there is a gap in literature to cover the 

analysis of this protocol under realistic network traffic characteristics of burstiness, 

correlation and self-similarity all combined in one comprehensive model. Areas 

related to this topic that required further research and attention are pointed out in 

the following. 

1. Today’s WLANs are integrating and transmitting a diverse range of traffic 

generated by multimedia applications which significantly differ with each other 

in their packet arrival rates and packet sizes, including video, voice and text 

[2, 22]. Although initially successful and analytically simple for modeling the 

non-bursty traffic behavior, the Poisson model has proven inadequate for 

capturing traffic burstiness of compressed voice and video in modern 

communication networks, where batch arrivals, event correlations and 

burstiness are important factors. The fractal behavior of multimedia traffic 

should be modeled using statistically self-similar processes [23], which have 

significantly different theoretical properties from those of the conventional 

Poisson process. Therefore, in order to accurately evaluate and to obtain a 

better understanding of the performance characteristics of modern WLANs, it 

is critical to consider the burstiness, correlation and self-similar characteristics 

of the traffic transmitting through these networks. 

2. Most studies on WLANs have been carried out under unrealistic network 

conditions of saturated stations and small or infinite buffer sizes for MAC. In 

real world scenarios, WLANs operate under unsaturated network conditions 
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with limited but adequate buffer sizes [24-26]. Even though the IEEE 802.11 

MAC DCF protocol has been extensively studied, it is imperative to study and 

investigate its performance behavior under unsaturated bursty and correlated 

traffic loads in order to develop a comprehensive and accurate analytical 

model. The model should be able to calculate the important performance 

measures required for real-time network traffic such as end-to-end delay, 

frame loss probability and network throughput. 

3. In reality, WLANs are non-homogeneous and convey heterogeneous traffics 

from sources to destinations. For simplicity and tractability, most developed 

models study the properties of WLANs and the MAC protocol in scenarios 

where all the stations of the model are homogeneous and generate similar 

type of network traffic. Therefore, there is a void in literature for an accurate 

analytical model for non-homogeneous bursty and correlated flows in random 

access WLANs. An accurate model is required to evaluate and obtain a better 

understanding of the performance and heterogeneous characteristics of non-

homogenous multimedia WLANs under bursty and correlated traffic. 

4. With many simulation platforms available for design and analysis of WLANs, 

none can implement a traffic generator that considers self-similarity, 

burstiness and correlation characteristics of actual traffics flowing through 

these networks.  
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1.2. Research Aims and Contributions 

This research is focused on the analysis and enhancement of the IEEE 802.11 

MAC protocols in multimedia WLANs under bursty and correlated traffic and real 

working environments. The main contribution is the design and development of 

new analytical models for evaluating the impact of the bursty traffic arrival on the 

MAC scheme under unsaturated traffic loads and finite buffer capacity using the 

Batch Markovian Arrival Process (BMAP). To this end, the following studies have 

been carried out:  

1. A reliable traffic generator is developed for generating bursty, correlated and 

self-similar multimedia traffic using BMAP and generalized 𝑚-state Markov 

Modulated Poisson Process (MMPP). The accuracy of the developed traffic 

generators are validated through modelling and analysis of 𝐵𝑀𝐴𝑃/𝑀/1/𝑁 

and 𝑀𝑀𝑃𝑃/𝑀/1/𝑁 queues using different input settings and scenarios. 

2. Reliable, cost-effective and efficient tools are developed for performance 

evaluation of 802.11 DCF protocol in WLANs under bursty, correlated and 

self-similar multimedia traffic using the developed BMAP and 𝑚-state MMPP 

traffic generators. 

3. The effect of bursty traffic on important performance metrics of throughput, 

mean waiting time in queue, mean queuing delay, packet loss probability and 

energy consumption of packets transmitted in unsaturated WLANs under 

different settings of traffic intensity, buffer size, and network size are 

thoroughly studied. An in-depth performance analysis is then carried out to 

compare the QoS metrics between the gained results from the study of 
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WLANs under bursty traffic with models using Poisson Process or the 2-state 

MMPP. The model validations are subject to the traffic parameters obtained 

from the accurate measurements of the real-world multimedia video 

resources. 

4. The MAC scheme of 802.11 standard is evaluated in the presence of 

heterogeneous traffic, through developing a versatile analytical model that 

captures the traffic heterogeneity and models the features of bursty and 

correlated traffic. The performance results highlight the importance of taking 

into account the heterogeneous traffic for the accurate evaluation of the MAC 

scheme in wireless multimedia networks.  

5. The accuracy of the developed models is corroborated through extensive 

comparisons between the analytical model results and those obtained from 

NS-2 [27] simulation experiments. 

 

1.3. Outline of the Thesis 

The rest of this thesis is organized as follows: 

Chapter 2: Background and Literature Review 

This chapter introduces the background knowledge in regards to IEEE 802.11 

standards, the DCF protocol ratified in the MAC layer, ad-hoc WLANs and 

traffic models, and also methods available in literature for modelling network 

traffics using real data traces. Finally the chapter covers a detailed literature 

review on the modelling and analysis of DCF protocols. 
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Chapter 3: Analysis of the BMAP/M/1 Queue 

In Chapter 3, a detailed description on the analytical model for the BMAP/M/1 

queue is presented. The formulas for the calculation of the first and second 

moments of mean waiting time, and mean queue length are presented along 

with the simulation and analytical results gained from modelling the queue.  

Chapter 4: Performance Modelling of Wireless Local Area Networks under 

Bursty Traffic 

Chapter 4 proposes a new analytical model for the MAC DCF scheme under 

unsaturated conditions with bursty traffic using BMAP. The chapter presents 

detailed analysis of the developed model and compares the gained analytical 

and simulation results with scenarios in which simpler processes are used to 

model network traffic. 

Chapter 5: Performance Analysis of Wireless Local Area Networks with 

Heterogeneous Stations under Bursty Traffic 

In this chapter an analytical model for the DCF protocol in WLANs is developed 

with heterogeneous stations. The analytical model is used to investigate the 

effects of the DCF protocol on the QoS of WLANs when heterogeneous 

sources of traffic are present. The chapter presents detailed analysis of the 

developed model and compares the gained analytical and simulation results 

with WLANs composed of homogeneous traffic sources. 
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Chapter 6: Conclusion 

The thesis is concluded in this chapter by drawing together all the elements 

from the preceding chapters and discussing potential avenues of future 

investigation. 

 

1.4. Summary 

This chapter has briefly introduced the main challenges and research objectives of 

the thesis. Relevant background materials are now introduced in the following 

chapter before presenting the developed models. 
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Chapter 2: 

Background and Literature Review 

 

2.1. Introduction 

Wireless communication technology has received much attention during the last 

decade. The IEEE 802.11 standard for Wireless Local Area networks [3], also 

commonly known as Wi-Fi (Wireless Fidelity), is a well-developed technology that 

has been around for almost 19 years. Today’s IEEE 802.11 standards have come 

a long way since the release of the first version in 1997. The first version was 

introduced as an alternative or extension to the existing wired LANs which were 

based on the Ethernet technology and the IEEE 802.3 standard. Since its 

emergence, the IEEE 802.11 standard has endured continuous amendments and 

modifications in order to accommodate new functionalities and technologies and 

also to fulfil the evolving needs of the ever expanding digital world. 

Low cost installation, easy deployment, accessibility and flexibility of IEEE 802.11 

WLANs has resulted in their widespread use everywhere (e.g., homes, public, 

enterprise environments and etc.). At the same time, most mobile and wearable 

devices (e.g., smart watches and smart glasses) are equipped with Wi-Fi interface 

and technology, and it is expected for Wi-Fi to be increasingly installed on various 

emerging consumer electronics and embedded systems. The number of people 

using internet applications as well as the devices connected to the Internet and 

networks are growing immensely every day. Clearly this results in continuous 
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increase of the traffic flowing through networks and in particular WLANs. This in 

turn has and will continue to increase the demand for mobile-rich multimedia 

content, resulting in the constant need for WLANs to evolve and supply new and 

effective solutions for tackling the uprising challenges. 

 

2.2. IEEE 802.11 Wireless Local Area Networks 

Wireless LANs must meet the requirements of any LAN such as high capacity, 

ability to cover short distances, full connectivity among attached stations and the 

ability to broadcast [28]. The main communication medium for WLANs is radio 

waves, so they transmit data between devices without the need of physical 

connections. As a result, WLANs can either extend or replace wired LANs to 

provide the connectivity between a backbone network and the in-building or on-

campus users. 

IEEE 802.11 is the dominant wireless digital data transmission standard aimed at 

providing connection within WLANs between portable devices and a fixed network 

infrastructure. It supports three basic topologies: 1) the Independent Basic Service 

Set (IBSS), 2) the Basic Service Set (BSS), and 3) the Extended Service Set 

(ESS). All three configurations are totally supported by the MAC layer 

specifications. 

The standards also define two types of operational modes in WLANs: ad-hoc/IBSS 

(peer-to-peer) mode and infrastructure mode. In the ad-hoc mode, the wireless 

nodes are self-configuring and communicate directly or indirectly with each other 

through the wireless communication medium without any pre-existing or 
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centralized infrastructure. The IBSS WLANs include a number of wireless stations 

or nodes that communicate directly with each other on ad-hoc, peer-to-peer basis. 

This normally results in building a full mesh or partial-mesh topology. Logically, an 

ad-hoc configuration is analogous to peer-to-peer office network in which no single 

node is required to function as a server. A very important feature of wireless ad-

hoc networks is the multi-hop packet transmission, which is aimed to overcome 

transmission range limitation of radio transceivers and guides the packets via 

multiple hops to reach a distant destination node. It is important to note that it is 

very common to design and build a wireless ad-hoc network through the extension 

of single-hop based IEEE 802.11 Wi-Fi networks, as these types of networks have 

become the most sound and feasible solution for WLANs (Figure 2.1).  

The Infrastructure mode uses fixed interconnected access points to provide 

connectivity to mobile and portable wireless devices. They are composed of at 

least one Access Point (AP) connected to the wired network infrastructure and a 

set of wireless nodes/ stations, where wireless nodes communicate with each other 

via the use of AP [3]. This type of configuration is called Basic Service Set (BSS). 

In 802.11 WLANs, communication goes through the Access Point which acts as a 

base station. For example if node A wants to communicate with node B, the data 

from node A flows to the AP and then from the AP to node B. 

Extended Service Set (ESS) is a set of two or more BSSs forming a single 

subnetwork. Configurations of ESS consist of multiple BSS cells that can be linked 

by either wired or wireless backbones. 
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Access Point

 

Figure 2.1: (a) Independent and (b) Infrastructure BSS architecture 

 

In general, IEEE 802.11 WLAN standards focus on two main layers: the Medium 

Access Control (MAC) layer and the Physical (PHY) Layer. The layers allow 

functional separation of the standards and more importantly they allow for single 

data protocol to be used with several different radio frequency transmission 

techniques.  

The PHY layer defines the different radio frequency transmission techniques, such 

as Frequency Hopping Spread Spectrum (FHSS), the Direct Sequence Spread 

Spectrum (DSSS), etc. The MAC layer provides various services to manage 

authentication, de-authentication, privacy and most importantly data transfer. The 

MAC layer will be discussed in more details in section 2.2.3 as it is the main focus 

of this research. 

The following section provides a brief overview of the evolution of the IEEE 802.11 

standard over years and shows where the standard lies currently. 
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2.2.1. Evolution of IEEE 802.11 Standards 

The base standard for WLAN communications was released by IEEE in 1997 as 

IEEE Std. 802.11-1997 [3]. The main scope of the standard was to develop a set of 

specifications for connecting fixed, portable and mobile stations wirelessly within 

an area. It defined the specifications of the PHY and MAC layers for a wireless 

LAN. Initially the standard was designed to be used within the unlicensed spectrum 

bands of Industrial Scientific and Medical (ISM). This means that the IEEE 802.11 

standard works in 2.4 GHz and 5GHz frequency bands, which are globally 

available [3]. The first version of the standard was capable of providing data rates 

of 1 to 2 Mbps. In September 1999, the 802.11b “High Rate” amendment was 

ratified into the 802.11 family which added two higher speeds of 5.5 and 11 Mbps. 

The basic architecture features and services of IEEE 802.11b, like most up to date 

versions, were defined by the original 802.11 standard, with changes made only to 

the PHY layer. The changes resulted in higher data rates and more robust network 

connectivity. To increase the support of the MAC-layer QoS in WLANs, IEEE 

802.11e Enhanced Distributed Channel Access (EDCA) protocol was proposed in 

2005. The standard proposes three QoS differentiation schemes in terms of 

Arbitrary Inter-Frame Space (AIFS), Contention Window (CW), and Transmission 

Opportunity (TXOP) which are of critical importance for delay-sensitive 

applications, such as Voice and streaming multimedia [29]. 

Up until 2009, the 802.11 family included six over-the-air modulation techniques, all 

involving the same protocol, where the most popular ones were defined by a, b and 

g amendments to the original standard and are also known as 802.11 legacies. In 

2009 another modulation technique which incorporates Multiple-Input Multiple-



32 

Output (MIMO) was introduced with the establishment of the IEEE 802.11n. In the 

years following, the shortcomings of the first WLAN products resulted in many 

amendments to the standard and up until today have resulted in the evolution of 

the IEEE 802.11 specification. During this time throughput enhancements have 

been the main priority of the IEEE 802.11 development [30]. One of the key 

solutions to a higher throughput in WLANs has been the adoption of new physical 

layer techniques. The earliest techniques used the Orthogonal Frequency-Division 

Multiplexing (OFDM) which increased the maximum data rate up to 54 Mbps. The 

most recent versions of IEE 802.11 standard benefit from the adoption of Multiple-

Input Multiple-Output (MIMO) antenna technologies [31], with IEEE 802.11n, also 

known as high throughput network, being the first standard to benefit from this 

advancement in 2009. The maximum data rate defined for IEEE 802.11n standard 

is 600 Mbps. As part of the amendments to 802.11n several MAC Layer 

enhancements were presented in [31], such as frame aggregation. One of the 

advances in the development of 802.11n was to increase the throughput by 

reducing the MAC layer overhead. For this purpose two approaches to frame 

aggregations are presented in IEEE 802.11n: 1) the first approach is to Aggregate 

MAC Service Data Unit (A-MSDU) and, 2) the second approach is to Aggregate 

MAC Protocol Data Unit (A-MPDU). A-MSDU approach allows different MSDUs 

destined for the same destination to be sent together in one single MPDU of 

maximum 7935 bytes. As a result they would share a common MAC header and 

Cyclic Redundancy Check (CRC) fields. This makes the MAC less dependent to 

transmission errors as when errors occur the whole packet needs to be 

retransmitted. However, on the other hand, the A-MPDU aggregates several 

MPDU sub-frames into a single PHY packet with maximum size of 65536 bytes. 
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The aggregation happens after the MAC headers are added to each frame; 

therefore it will allow each sub-MPDU to have its own CRC field. 

However the widespread dissemination of mobile devices equipped with diverse 

networking and multimedia capabilities and extensive use of advanced multimedia 

applications is intensifying the growth of mobile video traffic, which was already 

encompassing more than half of the global mobile data traffic by the end of 2013 

[32]. Therefore it is obvious that WLANs require specific functions and 

enhancements to be able to manage and cope with various multimedia 

applications which would include real-time inter-active audio and video, or 

streaming live and stored audio and video. 

Protocol Release Date Operating 
Frequency  
(GHz.) 

Data Rate 
(Max) 

Legacy 1997 2.4-2.5 2 Mbit/s 

802.11a 1999 5 54 Mbit/s 

802.11b 1999 2.4-2.5 11 Mbit/s 

802.11g 2003 2.4-2.5 54 Mbit/s 

802.11e 2005 2.4-5 11 Mbit/s 

802.11n 2009 2.4/5 54-600 Mbit/s 

802.11ac 2013 5 6.77 Gbit/s 

802.11ad 2012 60 7 Gbit/s 

Table 2.1: A summary of the IEEE 802.11 standard family 

 

Therefore, to enhance throughput even further two new important amendments 

have been introduced to the IEEE 802.11n standard which are IEEE 802.11ad and 

IEEE 802.11ac. IEEE 802.11ac enables throughput of up to 6.77 Gbps and 

supports multi-user access techniques. IEEE 802.11ad enables throughput of up to 
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7 Gbps with the possibility of transmitting in the 60 GHz band that provides the 

opportunity for much wider band channels. Table 2.1 summarizes the important 

versions of the 802.11 standard family. 

 

2.2.2. Ad-Hoc Networks 

Due to their easy deployment and fast configuration, ad-hoc networks have gained 

increasing popularity in recent years. These networks can usually be set-up in 

environments where establishing a planned network is impossible or difficult or 

even not economically feasible, such as training grounds, conference sites, 

disaster areas, etc. Mainly ad-hoc networks are composed of wireless and 

potentially mobile stations which do not require any infrastructure or a centralized 

AP for administration. The administration and utilization of these networks are 

managed and performed in a distributed peer-to-peer manner. In cases where the 

stations are mobile, they are free to move around randomly and organize 

themselves and the connections arbitrarily. As a result, ad-hoc networks usually do 

not have fixed topologies and their network topology may change unpredictably 

and rapidly. Therefore it is important that ad-hoc networks are quick in adapting to 

varying number of stations. Due to limited transmission ranges, situations could 

occur where the wireless ad-hoc network is not fully connected and as a result the 

data travels through multiple intermediate stations in a multi-hop mode before 

reaching the destination [33]. From this point of view ad-hoc networks are 

considered different to peer-to-peer communication where similar devices directly 

communicate with each other and all data transmissions take place over single hop 

connections. 
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For wireless ad-hoc networks to become more supportive of multimedia 

applications that have specific QoS requirements, they should provide correct 

traffic differentiation and support for heterogeneous services. Multimedia traffic is 

usually delay-sensitive, and video or audio data have a threshold on end-to-end 

delays. Therefore end-to-end QoS assurance is only possible if every station in the 

network provides the means for offering QoS guarantees. 

One of the most important features of wireless ad-hoc networks is the Medium 

Access Control (MAC) protocol. The MAC protocol has direct effect on how 

efficient and reliable data is transmitted in wireless ad-hoc networks as it should 

address the channel contention and collision problems among stations while 

effectively utilizing the communication channel. To develop a QoS aware MAC 

protocol, much attention should be paid to providing a good balance between 

protocol complexity, signalling overhead, QoS reservation methods, efficient use of 

resources, energy consumption and most importantly available traffic classes.  

 

2.2.3. Medium Access Control (MAC) 

MAC Protocol supplies the functionality required to provide reliable delivery 

mechanisms for user data over noisy, unreliable wireless media, therefore it plays 

a pivotal role in wireless networks through data transmission coordination [4]. 

When two or more stations within a WLAN transmit simultaneously over the 

wireless channel, collisions can occur. Therefore it is the job of the MAC layer 

protocol to determine when and how the stations access the shared wireless 

channel in order to avoid the occurrence of collisions as much as possible.  
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IEEE 802.11 MAC layer covers three main functional areas of reliable data 

delivery, medium access control, and security.  

802.11 MAC is based on two types of algorithms: 1) distributed access protocols 

and 2) centralized access protocols. In distributed access protocols the decision to 

transmit is distributed over all the nodes within the network using a carrier-sense 

mechanism. In the centralized access protocol there is a centralized decision 

maker which regulates the transmissions. For ad-hoc networks a distributed 

access protocol makes sense and can be attractive in wireless LAN configurations 

that consist of bursty traffic [28].  

The next section covers the mechanism of the Distributed Coordination Function 

ratified in the IEEE 802.11 MAC protocol which plays a major part in transmission 

coordination of data within ad-hoc WLANs. 

 

2.2.4. Distributed Coordination Function (DCF) 

The lower sub layer of the MAC is the Distributed Coordination Function (DCF) 

[34]. DCF is the basic and most prominent method in the MAC protocol to access 

the shared medium. It is a random access scheme based on Carrier Sense 

Multiple Access with Collision Avoidance (CSMA/CA) mechanism and uses a 

contention algorithm to provide access to the channel. 

DCF employs two techniques for packet transmission: Basic Access (BA) 

mechanism and Request-To-Send/Clear-To-Send (RTS/CTS) mechanism. Basic 

Access mechanism is the default mechanism which uses binary exponential 

backoff rules for the management of hosts and retransmission of collided packets. 



37 

BA is a two-way handshaking technique and is characterized by the immediate 

transmission of a positive acknowledgement (ACK) by the destination station, upon 

successful reception of a packet transmitted by the sender station. 

Source

Destination

Other 

stations

DATA

SIFS

ACK

DIFS

Waiting Time

Contention window

(randomized back-off mechanism)

Medium Busy

DIFS

Direct access if

Medium is free ≥ DFS

DIFS

DATA

Slot time

 

Figure 2.2: The Basic Access mechanism of DCF 

 

A station with a new packet to transmit monitors the channel for a period of time. If 

the channel is idle for duration of Distributed Inter-Frame Space (DIFS), as shown 

in Figure 2.2, then the station transmits, otherwise if the channel is sensed busy 

(either immediately or during the DIFS duration) then the station continues to 

monitor the channel until it is idle for DIFS duration. When the situation is right, the 

station generates a random backoff interval before transmitting. This is the 

Collision Avoidance (CA) feature of the protocol. The backoff procedure also helps 

to avoid channel capture by allowing the stations to wait a random backoff time 

between two consecutive new packet transmissions, even if the medium is sensed 

idle in the DIFS time. The time immediately following the idle DIFS is slotted and 
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stations are allowed to transmit at the beginning of each time slot, which is 

dependent on the physical layer. 

At each packet transmission the backoff time is uniformly chosen from the range of 

[0, 𝑊𝑖 − 1], where 𝑊 specifies the current Contention Window (CW) size and 𝑖 

indicates the backoff stage. The value of 𝑊 depends on the number of 

transmission failures for a packet. At the beginning of transmission and in the first 

attempt the value of 𝑊 is set equal to the minimum contention window size. After 

each unsuccessful transmission the value of the contention window is doubled up 

to a maximum value of 𝑊𝑚 = 2𝑚𝑊 , where 𝑚 represents the backoff stage. When 

reaching the maximum, size of the contention window remains at the value of 𝑊𝑚 

until the transmission is successful or the retransmission attempts reach a retry 

limit. As long as the channel is sensed idle, the backoff counter is decreased by 

one for each time slot. When a transmission is detected on the channel, the 

backoff counter is “frozen” and then reactivated when the channel is sensed idle 

again for a period of DIFS. The station transmits when the channel counter 

reaches zero [34]. At the same time, other stations which are in the hearing 

distance of the transmission of the frame, update their Network Allocation Vector 

(NAV) to the expected period of time in which the wireless channel will be busy. 

This is known as Virtual Carrier Sensing mechanism. The stations start their 

backoff procedure either when the virtual carrier sensing or the physical carrier 

sensing indicate that the channel is busy [34]. 

Successful packet reception is signalled by the destination station via sending an 

ACK frame immediately after a Short Inter-Frame Space (SIFS) from complete 

reception. The SIFS duration plus the propagation delay is shorter than the DIFS 
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duration, therefore no other station is able to detect the channel idle for a DIFS 

until the end of the ACK. If the source does not receive the ACK frame within a 

specified ACK-Timeout period, or detects the transmission of a different packet on 

the channel, it reschedules for a retransmission of the packet based on the backoff 

procedure. The retransmission process continues until the retransmission limit is 

reached and by that time the packet is dropped. 

DCF does not include a collision detection function (i.e., CSMA/CD) because 

collision detection is not practical on a wireless network. Another consideration in 

wireless networks is the problem of hidden terminals [35], which is the situation 

when a station is unable to detect a potential competitor for the channel because 

they are not within the transmission range of each other. The RTS/CTS shown in 

Figure 2.3 is a four-way handshaking technique implemented by DCF to help 

overcome the problem of hidden terminals. A station wanting to transmit a packet 

listens to the channel until it is sensed idle for a DIFS, then it follows the 

exponential backoff rule and then transmits a short frame called Request-To-Send 

(RTS). When the receiving station detects the RTS frame it responds after a SIFS 

with a Clear-To-Send (CTS) frame. The transmitting station then sends its packet if 

the CTS frame is received. The RTS and CTS frames carry information about the 

length of the packet to be transmitted. The listening stations can read this 

information and update their Network Allocation Vector (NAV). When detecting one 

frame among the RTS and CTS, a hidden station can delay further transmissions 

and thus avoid collision [8, 28, 36]. 
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Figure 2.3: The RTS/CTS mechanism of DCF 

 

2.3. Network Planning and Traffic Models 

Performance evaluation plays a significant role in the field of computer and 

telecommunication networks, as optimal utilization of resources along with the end 

user satisfaction of QoS and QoE (Quality-of-Experience) is of paramount 

importance. One of the main goals of teletraffic engineering is to develop accurate 

models using queueing theory and stochastic processes in order to investigate, 

examine and predict the performance of communication systems with sufficient 

accuracy for the purpose of providing the necessary QoS demands of applications 

while controlling the cost [37].  

To carry out an accurate network performance study, several important steps are 

needed where the first and foremost is the analysis and modelling of network traffic 

characteristics. Modelling and analysis of computer network traffic has been an 

area of extensive research for a very long time [15, 37-41]. A challenging issue in 

traffic characterization is obtaining accurate characteristics description of the 

complex traffic flow in order to form the system inputs. The most convenient 
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method in this regard is the use of mathematical, stochastic modelling based 

approach [42]. In modelling features of data streams, having a broad, versatile 

classes of point processes that can model qualitative features of arrival processes 

is extremely helpful as they are versatile, analytically and algorithmic tractable and 

are best candidates for simulation studies.  

A method for extending the capabilities of the advanced arrival process is the 

generalization of the existing ones. The best candidate for generalization is the 

Poisson Process with exponential interarrival times. However, with the increased 

complexity of network traffics, the widely used simple descriptors such as the mean 

rate and peak-to-mean-ratio may not be sufficient enough for accurate 

representation of the burstiness, correlation and self-similarity characteristics of the 

network traffic. Several other descriptors have been proposed in literature that 

capture the correlation of network traffic and help to develop a close 

representation, such as the Peakedness Coefficient, the Auto-covariance, the 

Index of Dispersion over an observation time, and the Hurst parameter [43, 44]. An 

important step would be the good use of these descriptors in a traffic model, such 

as Markovian models.  

The following subsections introduce the above mentioned descriptors and present 

the popular processes that can be used for traffic modelling such as Poisson 

Process and Markovian Arrival processes. 
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2.3.1. Network Traffic Modeling Descriptors 

Modelling the traffic generated by network resources and applications is a highly 

complex task, as the users and protocols influence the behaviour of the 

applications [45]. However, network traffic simulation and modelling is proven to be 

very useful for both researchers and industry practitioners. In [40], the authors 

conducted a traffic analysis on Local Area Networks (LAN) and proposed for the 

first time that the Internet and LAN network traffic have self-similar characteristics. 

The result of many studies on network traffics analysis proved the fact that self-

similarity, correlation and burstiness properties exists in the traffics generated 

within Ethernet, Wide Area and ad-hoc networks [40, 46]. Also the traffic generated 

through the World Wide Web, IP networks and the well-known 802.11 wireless 

LAN networks show the same characteristics [9, 10, 47-49]. 

Traffic that is considered bursty on many or all time scales statistically is described 

as self-similar. Self-similarity is a property characterized by factuality, meaning that 

self-similar phenomena displays similar structural patterns and the same statistical 

properties across a wide range of time scales. In the case of stochastic objects like 

time series, self-similarity is closely related to the so-called “bursty” behaviour 

(extended periods above the mean) and Long Range Dependence (LRD) at a wide 

range of time scales. In other words, burstiness in network traffic is the tendency of 

packets to form dense and sparse regions over a time period [50-52]. Burstiness 

property has negative effects on queues as the queueing system fed by bursty 

traffic has to operate at lower utilizations to be able to offer QoS at an acceptable 

level. In general burstiness is a result of two very important phenomena [52]: 

heavy-tailed distributions of interarrival times and high correlation between distant 
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events. The correlation between time distant events is described by the correlation 

function. The correlation function is also used to classify random processes into 

Long-Range-Dependant (LRD) or Short-Range-Dependant (SRD) processes. In 

wireless networks burstiness comes as a consequence of the effects of users, 

protocols and applications [53, 54].  

Substantial body of literature has been devoted to Self-similarity [7, 23, 55-58] as it 

can considerably deteriorate the user-perceived QoS and degrade network 

performance by large delays, packet dropping and by requiring large buffers. The 

intensity and degree of self-similarity is measured by means of the Hurst parameter 

which is a dimensionless factor. The higher the Hurst parameter of a certain 

process, the more self-similar the process becomes. Estimations of the Hurst 

parameter are useful to understand the correlation structure and the evolution of a 

process, and to thus attain the aforementioned goals which the study of self-

similarity is based on.  

Assume 𝑋 = (𝑋𝑡: 𝑡 = 0,1,2, … ) to be a covariance stationary stochastic process with 

the correlation function of 𝑟(𝑘). For each value of 𝑚 = 1,2,3, …. let 𝑋(𝑚) =

(𝑋𝑘
(𝑚)

: 𝑘 = 1,2, … ) define the new covariance stationary time series (with 

corresponding correlation function 𝑟(𝑚)) which can be obtained from averaging the 

original series of 𝑋 over non-overlapping and consecutive blocks of size 𝑚 [50, 52]. 

 The process 𝑋 is known as second order self-similar when the correlation 

function of the aggregated process 𝑋(𝑚) is identical to the correlation function 

of the original process 𝑋 in the limit of large 𝐾: 

𝑙𝑖𝑚𝐾→∞
𝑟(𝑚)(𝐾)

𝑟(𝐾)
= 1,    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚     (2.1) 
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 LRD traffic has a slowly decaying correlation function that makes the traffic 

bursty [51]. Therefore process 𝑋 is said to be LRD if its correlation function 

𝑟(𝐾) decays so slowly that its sum diverges: 

lim𝑛→∞ ∑ 𝑟(𝐾) = ∞𝑛
𝑘=1       (2.2) 

In order for a long-range dependence to occur, the correlation function should 

drop off with a power-law: 

𝑟(𝐾)~
1

𝐾𝛼−1 ,    1 < 𝛼 < 2      (2.3) 

The LRD process whose correlation function decays as a power-law with an 

exponent α, is a second order self-similar with Hurst parameter[50]: 

𝐻 = (3 − 𝛼)/2       (2.4) 

The Hurst parameter is defined to be limited to the range of (0 <  𝐻 < 1, 𝐻 ∈ ℝ). 

When the Hurst parameter lies in the range of 0 < 𝐻 <  0.5, the process is said to 

be Short-Range Dependent (SRD). A value of 0.5 < 𝐻 < 1 indicates self-similarity 

with positive near neighbour correlation. The more 𝐻 is closer to 1, the more self-

similar the process and therefore it is known as LRD. Graphically speaking, the 

lower the 𝐻 is, the noisier or more volatile the process is, while the higher the 𝐻 is, 

the smoother it is. When the Hurst value is equal to 0.5, the process is said to be 

absent of trends and memory less.  

As mentioned above, Self-similarity is one way of defining the burstiness of 

network traffic. Other descriptors that can also be used to describe the burstiness 

property of network traffic are Squared Coefficient of Variation and the Index of 

Dispersion for Counts (IDC). The simplest definition for burstiness is the ratio of 
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peak rate to mean rate, however this does not reveal much information about the 

source because it does not capture how long the peak rate, which has the greatest 

effect on the model, can be sustained. 

The squared coefficient of variation 𝑐2(𝑋) = 𝑣𝑎𝑟(𝑋)/𝐸2(𝑋) is a normalized version 

of the variance of 𝑋, 𝑣𝑎𝑟(𝑋), normalized by dividing by the squared mean. 

A related but more sophisticated measure is the index of dispersion of counts or 

IDC, 𝐼𝑖𝑑𝑐(𝑡) = 𝑣𝑎𝑟(𝑁(𝑡))/𝐸(𝑁(𝑡)); which is the variance of the number of arrivals 

up to time 𝑡 normalized by the mean number of arrivals. The number of arrivals up 

to time 𝑡, 𝑁(𝑡), is the number of interarrival times fitting in the interval (0, 𝑡). Thus, 

the IDC captures similar but more timescale-dependent information than the 

coefficient of variation. 

 

2.3.2. Poisson Process 

The Poisson process is a stochastic counting process and is characterized as a 

renewal process with exponentially distributed interarrival times. It is one of the 

most important random processes in probability theory, which has been widely 

used to model the traffic behaviour and inputs in many communication networks 

and systems [26, 59-61].  

In a Poisson process the events occur continuously and independently of one 

another and follow an Exponential distribution [62] which is the key to modelling 

traffics using the Poisson process. The cumulative distribution function of the 

Exponential distribution is [62]: 
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𝑃(𝑋 < 𝑥) = {1 − 𝑒−𝜆𝑥,   𝑥 ≥ 0
0,                𝑥 < 0

        (2.5) 

In the above equation, 𝑥 is a stochastic variable, 𝜆 is the mean arrival rate of a 

Poisson process, and 1/𝜆 is the mean time between two arrivals.  

The most important factor of Poisson process is the memory less property, which 

considerably facilitates the analysis of queuing systems. The number of arrivals 

found in the Poisson process during a finite interval depends only on the length of 

the interval and not on its starting point. As a result, the Poisson process is not 

able to model the bursty behaviour of multimedia traffic with time-varying arrivals. 

Some researchers [63] state that the Poisson Process cannot accurately model the 

network traffic as some aspects of network traffic show the properties of 

asymptotically second-order self-similar processes. Furthermore, both the 

processes of the interarrival times and of the packet sizes of aggregated traffic 

appear to be long-range dependent in addition to the packet and byte count. 

 

2.3.3. Point Process 

Point processes [64] are generalizations of the Poisson process, which are a class 

of discrete parameter stochastic processes in which each random variable is 

interpreted as the point in time when the 𝑛-th arrival occurs. 

In the special case where the interarrival times are independent and identically 

distributed (i.i.d), the processes are known as Renewal process [65, 66]. One class 

of processes that is more general than the class of Renewal processes is the 

Markov Renewal processes. Markov Renewal processes are bivariate processes 
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where, as well as the time until the next renewal, the state at the time of renewal is 

also kept track of [44, 65]. Special cases of Markov Renewal process in which the 

time until the next arrival is exponentially distributed give rise to several useful and 

well known arrival processes, such as: Markovian Arrival Process (MAP) and 

Markov Modulated Poisson Process (MMPP). The generalization of MAP that 

includes batch arrivals is known as Batch Markovian Arrivals (BMAP) [65]. 

 

2.3.3.1. Markovian Arrival Process (MAP) 

A popular tool for modelling arrival processes of stochastic systems is Markov 

Arrival Process (MAP). MAP which was first introduced by Neuts in 1979 [67], is 

most popular modelling process used in many areas such as queueing systems, 

reliability systems, telecommunication networks, inventory and supply chain 

systems, and risk and insurance systems. Versatility in modelling stochastic 

systems along with the Markovian property that leads to Markovian structures and 

flexibility in the resulting Markov chains are the most important properties of MAP 

that have led to its popularity [68-70].  

Like the Poisson Process, MAP is also considered to be a popular counting 

process where the counting is modelled by the transition of the underlying 

continuous-time Markov Chain. Instead of switching between different arrival rates 

that depend on the states of the underlying Continuous-Time Markov Chain 

(CTMC), in MAP, an arrival is triggered by specific transitions between states. 

Through the utilization of this idea in a systematic manner, Neuts introduced 

Markov Arrival Process as generalizations of Poisson process, compound Poisson 

process, and Markov Modulated Poisson Process [67], which was however named 
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as versatile Markovian Point Process at first. Later in 1990, Lucantoni et. al. 

renamed this process to Non-renewal Arrival Process [65]. In 1991, Lucantoni [71] 

also introduced a simple matrix representation for Markovian Arrival processes, 

which made it easy to interpret parameters of Markovian Arrival Processes and to 

use Markovian Arrival Processes in stochastic modelling. 

 

Mathematical Definition of MAP: 

As mentioned earlier, MAP is a counting process whose arrival rate is governed by 

a continuous-time Markov chain (CTMC). If the underlying CTMC has 𝑚 distinct 

phases called states and currently is in state  ,1 ≤ 𝑖 ≤ 𝑚 , it leaves this state with 

rate 𝜆𝑖. This transition ends in state 𝑗, 1 ≤ 𝑗 ≤ 𝑚 (𝑖 = 𝑗 𝑚𝑎𝑦 ℎ𝑜𝑙𝑑), with probability 

𝑝𝑖𝑗, and triggers an arrival. Or with probability 𝑝𝑖𝑗
′ , 𝑖 ≠ 𝑗, this transition could end in 

state 𝑗, 1 ≤ 𝑗 ≤ 𝑚, without triggering any arrival. It is important to note that all 

outgoing transition probabilities from one state sum up to one: 

∑ 𝑝𝑖𝑗 + ∑ 𝑝𝑖𝑗
′ = 1,      1 ≤ 𝑖 ≤ 𝑚𝑚

𝑗=1
𝑗≠𝑖

𝑚
𝑗=1     (2.6) 

The infinitesimal generator matrix 𝑄𝑀𝐴𝑃 of the underlying CTMC is given by: 

𝑄𝑀𝐴𝑃 = 𝐷0 +  𝐷1       (2.7) 

Let 𝐷0 denote the infinitesimal generator of the underlying CTMC in the case of no 

arrivals, and assume 𝐷1 to be the rate matrix in the cases of an arrival which leads 

to a possible state transition of the underlying CTMC. The corresponding 𝐷0 and 𝐷1 

are defined as: 



49 

𝐷0 = (
𝐶11 ⋯ 𝐶1𝑚

⋮ ⋱ ⋮
𝐶𝑚1 ⋯ 𝐶𝑚𝑚

)         𝐷1 = (
𝐷11 ⋯ 𝐷1𝑚

⋮ ⋱ ⋮
𝐷𝑚1 ⋯ 𝐷𝑚𝑚

)  (2.8) 

where the elements of 𝐷0 and 𝐷1 matrices are defined as follows: 

𝐷0 = [𝐶𝑖𝑗],      1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚,    (2.9) 

𝐷1 = [𝐷𝑖𝑗],      1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚,    (2.10) 

where: 

𝐷𝑖𝑗 = 𝜆𝑖𝑗𝑝𝑖𝑗,   1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚,    (2.11) 

𝐶𝑖𝑗 = 𝜆𝑖𝑗𝑝𝑖𝑗
′ ,    1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚, 𝑖 ≠ 𝑗,   (2.12) 

𝐶𝑖𝑖 = −𝜆𝑖,       0 ≤ 𝑖 ≤ 𝑚,     (2.13) 

𝐷1 is a non-negative matrix, with elements that give transition rates of the 

transitions that trigger an arrival event. 𝐷0 has negative diagonal elements and 

non-negative off-diagonal elements representing the rates of the hidden transitions. 

It should be noted that 𝑄 ≠ 𝐷0, which implies that 𝐷0 is invertible and that arrival 

process does not terminate. 

The steady state probability vector of the underlying CTMC is calculated using the 

following equations: 

𝜋𝑄𝑀𝐴𝑃 = 0 and   𝜋1 = 1   (2.14) 

where 0 is a row vector of zeros, 1 is a column vector of ones, and 𝜋 =

(𝜋1, 𝜋2, … , 𝜋𝑚). 

The mean steady-state arrival rate 𝜆𝑡𝑜𝑡 generated by the MAP and squared 

coefficient of variation are calculated as [72]: 
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𝜆𝑡𝑜𝑡 = 𝜋𝐷11       (2.15) 

𝑐𝑣𝑎𝑟
2 = 2𝜆𝑡𝑜𝑡𝜋(−𝐷0)−1𝑒 − 1     (2.16) 

One of the most important measures in the family of MAPs is the lag 𝑘 (𝑘 > 0) 

correlation which is related to the time dependency of MAPs. It captures the 

correlation between interarrival times and can be calculated as: 

𝜌𝑘 =
𝜆𝑡𝑜𝑡𝜋[(−𝐷0)−1𝐷1]𝑘(−𝐷0)−1𝑒−1

2𝜆𝑡𝑜𝑡(−𝐷0)−1𝑒−1
     (2.17) 

The superposition of independent Markovian Arrival Processes yields a MAP again 

[71]. 

Setting 𝐷0 = [−𝜆], 𝐷1 = [𝜆] and 𝜋 = (1) and following Eq. (2.15), it can be seen that 

the MAP is equivalent to a Poisson process with rate 𝜆𝑡𝑜𝑡 = (1)𝐷11 = 𝜆 [44, 65, 

73]. 

 

2.3.3.2. Markov Modulated Poisson Process (MMPP) 

The Markov Modulated Poisson Process (MMPP) is a non-stationary Point Process 

model, which has been extensively used for modelling time-varying arrival rates 

and important correlations between interarrival times [38, 74-78]. MMPP was firstly 

introduced by Naor and Yechiali [79], and later by Neuts [80]. 

MMPP is a generalization of many processes such as the Poisson process, 

Interrupted Poisson Process [81], and autoregressive process. In other words, 

MMPP could be assumed as a Poisson process whose arrival rate is determined 

by the states of an m-state irreducible CTMC. MMPP has been widely used to 

model several types of communication traffics, including packetized voice and 
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image sources, video and data traffic, and those resulting from their integration [74, 

76, 82-84]. 

In a mathematical sense, MMPP is also known to be a subclass of MAP where the 

arrival matrix (𝐷1), is a diagonal matrix containing the arrival rate of the states of 

the underlying CTMC, Figure 2.5. However, the essential difference between MAP 

and MMPP is whether or not the phase changes just after an arrival.  

 

Mathematical Definition of MMPP: 

An MMPP parameterized by an m-state CTMC with infinitesimal generator 𝑄, and 

𝑚 Poisson arrival rates 𝜆1, 𝜆2, 𝜆3, . . , 𝜆𝑚, can be described as a Poisson process 

whose arrival rate is given by 𝜆∗[𝐽(𝑡)], where 𝐽(𝑡), 𝑡 ≥ 0, is an m-state irreducible 

Markov process. When the Markov chain is in state 𝑖, arrivals occur according to a 

Poisson process rate of 𝜆𝑖. Therefore the arrivals of an MMPP occur according to a 

Poisson process of arrival rate 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝑚, defined by the current state 𝑖 of an 

underlying irreducible Continuous-Time Markov Chain (CTMC) with 𝑚 states. The 

counting process of an MMPP is given by the bivariate process [(𝐽 (𝑡), 𝑁(𝑡)): 𝑡 ∈

𝑇], where 𝑁(𝑡) is the number of arrivals within a certain time interval of 𝑡, 𝑡 ∈ 𝑇, 

and 0 ≤ 𝐽(𝑡) ≤ 𝑚, is an m-state irreducible Markov process (the underlying CTMC).  

𝑄 = [

−𝜎11 ⋯ 𝜎1𝑚

⋮ ⋱ ⋮
𝜎𝑚1 ⋯ −𝜎𝑚𝑚

]  𝜆 = [
−𝜆1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ −𝜆𝑚

] (2.18) 

𝜎𝑖 = ∑ 𝜎𝑖𝑗
𝑚
𝑗=1,𝑗≠𝑖        (2.19) 

𝛬 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑚)      (2.20) 



52 

The element 𝜎𝑖𝑗 is the transition rate from state 𝑖 to state 𝑗 of the MMPP and 𝜎𝑗𝑖 is 

the rate out of state 𝑗 to 𝑖. 

The MMPP model is commonly used in telecommunication traffic modelling and 

has several attractive properties, such as being able to capture correlations 

between interarrival times while still remaining analytically tractable. 

Special cases of MMPP are the Switched Poisson Process (SPP), which is a two-

state MMPP, and the Interrupted Poisson Process (IPP), where in SPP one arrival 

rate is zero [39, 44, 84-87]. The IPP, also known as the On-Off process [84, 87], is 

defined as a 2-state MMPP with one arrival rate and is considered an important 

process for characterizing the bursty properties of network traffic, where packets 

only arrive during the ON period (state), and the traffic source becomes idle when 

the model is in OFF period (state), which means no data is generated during this 

time. The durations of the ON and OFF periods are exponentially distributed with 

means 1 𝜎𝑜𝑛⁄  and 1 𝜎𝑜𝑓𝑓⁄  respectively. The infinitesimal generator matrix and the 

rate matrix of IPP are as follows: 

𝑄 = [
−𝜎𝑜𝑛 𝜎𝑜𝑛

𝜎𝑜𝑓𝑓 −𝜎𝑜𝑓𝑓
]   𝜆 = [

𝜆𝑜𝑛 0
0 0

]  (2.21) 

The On-Off traffic source is thus a stream of deterministically distributed correlated 

bursts and silent periods. The mean traffic arrival rate 𝜆𝑡𝑜𝑡 is given by: 

𝜆𝑡𝑜𝑡 =
𝜆𝑜𝑛𝜎𝑜𝑓𝑓

𝜎𝑜𝑓𝑓+𝜎𝑜𝑛
       (2.22) 

Such features of MMPP have made it very attractive for modelling bursty traffic. 

And in particular this process is famous for modelling Voice traffic. A two-state 
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MMPP can be used to model the superposition of multiple On-Off voice sources 

[88], as superposition and splitting of MMPPs result in a new MMPP.  

In many studies, the Markov Modulated Poisson Process has been used for 

modelling of aggregated On-Off voice sources [38, 88] and video sources [89]. In 

voice resources, during the talk spurts (i.e., during the On states), traffic is 

generated at a fixed rate of 𝑅 (frames/second). And during the silences (i.e., during 

the Off states) no frames arrive. The On and Off durations are exponentially 

distributed with 1/𝛼 and 1/𝛽 (1/𝛼, means sojourn time in the On state and 1/𝛽, 

means sojourn time during the Off state). 

To model the correlation characteristics of 𝑘 On-Off voice sources, a superposition 

of two-state MMPPs can be used, whose parameters can be determined using the 

Index of Dispersion for Counts (IDC) matching technique:  

𝜆1 = 𝑅
∑ 𝑖𝜋𝑖

𝑘′

𝑖=0

∑ 𝜋𝑗
𝑘′
𝑗=0

 and 𝜆2 = 𝑅
∑ 𝑖𝜋𝑖

𝑘
𝑖=𝑘′+1

∑ 𝜋𝑗
𝑘
𝑗=𝑘′+1

   (2.23) 

𝜎1 =
2(𝜆2−𝜆𝑡𝑜𝑡)(𝜆𝑡𝑜𝑡−𝜆1)2

(𝜆2−𝜆1)𝜆𝑡𝑜𝑡(𝐼𝐷𝐶(∞)−1)
 and 𝜎2 =

2(𝜆2−𝜆𝑡𝑜𝑡)2(𝜆𝑡𝑜𝑡−𝜆1)

(𝜆2−𝜆1)𝜆𝑡𝑜𝑡(𝐼𝐷𝐶(∞)−1)
 (2.24) 

where  

𝐼𝐷𝐶(∞) =
1−(1−𝛼 𝑅⁄ )2

(𝛼 𝑅⁄ +𝛽 𝑅⁄ )2      (2.25) 

𝜋𝑗 =
𝑘!

𝑗!(𝑘−𝑗)!
𝑞𝑗(1 − 𝑞)𝑘−𝑗      (2.26) 

where  𝑞 =
𝛽

𝛼+𝛽
 , 𝑘′ = [𝑞𝑘], 𝜆𝑀𝑀𝑃𝑃 = 𝑘𝑅𝑞 

As well as voice, self-similar traffic can also be modelled by MMPP through the 

superposition of 𝐿 two-state MMPPs. Self-similar traffic is famous for modelling 
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video in communication networks. The superposition of 𝐿 two-state MMPPs results 

in a new MMPP with 2𝐿 sates [55, 82]. Assume each two-state MMPP, named as 

𝑀𝑀𝑃𝑃𝑗 with subscript 𝑗 denoting the 𝑗-th two-state MMPP (1 ≤ 𝑗 ≤ 𝐿), has the 

infinitesimal generator 𝑄𝑗, and the rate matrix Λ𝑗 defined as: 

𝑄 = [
−𝛿1𝑗 𝛿1𝑗

𝛿2𝑗 −𝛿2𝑗
]   Λ = [

𝜆1𝑗 0

0 𝜆2𝑗
]  (2.27) 

The parameter matrices of the new MMPP, e.g. the infinitesimal generator 𝑄 and 

the arrival rate Λ, are thus calculated as follows (the symbol ⨁ denotes the 

Kronecker sum [90]): 

𝑄 = 𝑄1⨁𝑄2⨁ … ⨁𝑄𝐿  and  Λ = Λ1⨁Λ2⨁ … ⨁Λ𝐿  (2.28) 

The resulting multi-state MMPP can then be used to characterize self-similar traffic. 

It should be noted that MMPP in the form of MAP is defined as [20, 71]: 𝐷0 =

𝑄𝑀𝑀𝑃𝑃 − 𝜆 and 𝐷1 = 𝜆. 

 

2.3.3.3. Batch Markovian Arrival Process (BMAP) 

One of the many ways to analyse communication systems is through the 

application of queueing models, where the arrival process plays a fundamental 

role. In this regard, Batch Markovian arrival process (BMAP) is defined to be an 

attractive model for describing backbone packet traffic of communication systems 

and Internet Protocol [41]. BMAP came to light as Poisson Process was deemed to 

no longer be accurate enough in capturing specific characteristics of network traffic 

[38, 39].  
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The Batch Markovian Arrival process [20, 71] is a subclass of Stochastic Point 

process that generalizes the standard Poisson Process (and other Point 

Processes) by allowing “batches” of arrivals, dependent interarrival times, non-

exponential interarrival time distributions and correlated batch sizes. It is equivalent 

to the Versatile Markovian Point Process (VMPP) which was introduced by Neuts 

[67] and is often referred to as the N-process [91]. The Versatile Markovian Point 

Process (VMPP) has a more complex notation than the BMAP defined by 

Lucantoni in [71]. The primary objective of VMPP was to extend the standard 

Poisson process to account for more complex customer arrival processes in 

queuing models. Ramaswami [91] incorporated the VMPP, which he called the N-

Process in honour of Neuts, as an arrival process to a single-server queue with 

generally-distributed service times. In [92] the authors show that stationary MAPs 

or BMAPs are capable of approximating stationary (batch) Point Processes, 

suggesting the versatility and range of applications of such processes. 

A distinguishing feature of the BMAP is the underlying Markovian structure; and is 

known to represent various arrival patterns including the stationary Poisson 

Process, Phase type process (PH), the correlated arrivals such as Markov 

Modulated Poisson Process (MMPP), Interrupted Poisson Process (IPP), 

Markovian Arrival Process (MAP), etc. [68, 93-96]. BMAP has been extensively 

studied and applied to various real world systems such as communication or 

teletraffic systems, production systems, modelling packets with different byte 

lengths in the Internet, reliability or insurance where batch dependent arrivals are 

commonly observed, such as customers arriving in batches to a queue, 
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simultaneous claims in an insurance company and failures occurring at the same 

time within an electronic device [97-101]. 

Since BMAP includes arrival of batches with sizes greater than 1 it is possible to 

say that BMAP is a generalization of MAP. Batches add to the modelling power 

and flexibility of MAPs, a fact that has been exploited in [102] to model IP traffic. 

 

Mathematical Definition of BMAP: 

The Batch Markovian Arrival process can be constructed by generalizing the 

Poisson Process with batch arrivals to allow for non-exponential times between the 

arrivals of batches while preserving the underlying Markov structure. 

Assume a Poisson process that has a rate value of 𝜆, where the arrival probability 

of a batch size of 𝑗 is 𝑝𝑗 , 𝑗 ≥ 1; in this case 𝑁(𝑡) would resemble the number of 

arrivals in (0, 𝑡]. As a result, the process {𝑁(𝑡)} is considered to be a Markov 

process on the state space {𝑖: 𝑖 ≥ 0} with an infinitesimal generator of the form [71]: 

𝑑𝑜 𝑑1 𝑑2 . .. 
𝑄 =       𝑑𝑜 𝑑1 . .. 
                   𝑑𝑜 . .. 

                                                                   ⋮     (2.29) 

where 𝑑0 = −𝜆 and 𝑑1 = 𝜆𝑝𝑗 for all 𝑗 ≥ 1. In state 𝑖, after an exponential sojourn 

with mean 1/𝜆, with probability 𝑝𝑗 the process jumps to state 𝑖 + 𝑗. This transition 

corresponds to an arrival where 𝑗 corresponds to the batch size of the arrival. 

Batch Markovian Arrival Process is achieved through generalization of the above 

batch Poisson process. The achieved BMAP allows for non-exponential times 
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between the arrivals of batches, while still preserving the underlying Markov 

structure.  

To present BMAP, a 2-dimensional Markov process of {𝑁(𝑡), 𝐽(𝑡)} is used on the 

state space of {(𝑖, 𝑗): 𝑖 ≥ 0,1 ≤ 𝑗 ≤ 𝑚}, where the infinitesimal generator 𝑄 has the 

following structure:  

𝑄 =
𝐷0   𝐷1   𝐷2   𝐷3 ⋯  
       𝐷0   𝐷1   𝐷2 ⋱ ⋮
              𝐷0   𝐷1 ⋯  ⋮

     (2.30) 

      ⋯ 

In the matrix presented above, 𝐷𝑘, 𝑘 ≥ 0, are 𝑚 × 𝑚 matrices and 𝐷0 has negative 

diagonal elements and non-negative off-diagonal elements. The row sums in 𝐷0 

are less than or equal to zero and the matrix is assumed to be non-singular. In 

other words 𝐷0 is a stable matrix, and it is considered to govern the transitions of 

the phase process that do not generate any arrivals. On the other hand, 𝐷𝑘 is 

considered to govern the rate of batch arrivals of size 𝑘 (with appropriate phase 

change), 𝐷𝑘, 𝑘 ≥ 1.  

It is important to note that the strictly negative diagonal elements of 𝐷0 mean that 

the BMAP process can remain in any phase without any arrival for any finite time 

interval with positive probability.  

Matrix 𝐷, 𝐷 ≠ 𝐷0, is an irreducible infinitesimal generator which is defined as: 

𝐷 = ∑ 𝐷𝑘
∞
𝑘=0        (2.31) 

Should 𝑁(𝑡) represent a counting variable, and 𝐽(𝑡) be an auxiliary state variable, 

then the above Markov process would define a batch arrival process in which the 

transitions from a state (𝑖, 𝑗) to (𝑖 + 𝑘, 𝑙), 𝑘 ≥ 1, 1 ≤ 𝑗, 𝑙 ≤ 𝑚, corresponds to batch 
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arrivals of size 𝑘, therefore batch sizes are completely dependent on the states 𝑖 

and 𝑗.  

A key quantity for analysing 𝐵𝑀𝐴𝑃 is the matrix generating function defined as [20, 

71]: 

𝐷(𝑧) = ∑ 𝐷𝑘𝑧𝑘∞
𝑘=0       (2.32) 

Assume 𝜋 to be the stationary probability vector of the Markov process with 

generator 𝐷, then 𝜋 satisfies the following conditions: 

𝜋𝐷 = 0,   𝜋𝑒 = 1       (2.33) 

where 𝑒 is a column vector of 1’s.  

As a result, the fundamental arrival rate for the BMAP arrival process, which gives 

the expected number of arrivals per unit of time, is calculated as: 

𝜆𝑡𝑜𝑡 = 𝜋
𝑑𝐷(𝑧)

𝑑𝑧
|

𝑧=1
𝑒 

𝜆𝑡𝑜𝑡 = 𝜋 ∑ 𝑘𝐷𝑘𝑒 = 𝜋𝑑,∞
𝑘=1  𝜆′ = 𝜆𝑡𝑜𝑡

−1
   (2.34) 

𝑑 = ∑ 𝑘𝐷𝑘𝑒       (2.35) 

where 𝜆′ is the mean arrival rate. 

Assume the underlying Markov process with generator 𝐷 is in a random state of 

𝑖, 1 ≤ 𝑖 ≤ 𝑚, and the sojourn time in this state is exponentially distributed with 

parameter 𝜆𝑖. At the end of the sojourn time, a transition to another state (or 

possibly the same state) occurs. This transition may or may not correspond to an 

arrival epoch. With probability of 𝑝𝑖 (𝑗, 𝑘), 𝑗 ≥ 1,1 ≤ 𝑘 ≤ 𝑚, there will be a transition 
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to state 𝑘 with a batch arrival of size 𝑗. Or with probability 𝑝𝑖 (0, 𝑘),1 ≤ 𝑘 ≤ 𝑚, 𝑘 ≠ 𝑖, 

there will be a transition to state 𝑘 without any arrival. Therefore we have the 

following for 1 ≤ 𝑖 ≤ 𝑚: 

∑ 𝑝𝑖(0, 𝑘) + ∑ ∑ 𝑝𝑖(𝑗, 𝑘)𝑚
𝑘=1

∞
𝑗=1

𝑚
𝑘=1
𝑘≠𝑖

= 1    (2.36) 

Based on the transition probabilities, it is convenient to represent the evolution of 

the system in terms of a sequence of matrices {𝐷𝑘, 𝑘 ≥ 0} as: 

(𝐷0 )𝑖𝑖 = −𝜆𝑖   1 ≤ 𝑖 ≤ 𝑚        

(𝐷0 )𝑖𝑘 = 𝜆𝑖𝑝𝑖 (0, 𝑘)   1 ≤ 𝑖, 𝑘 ≤ 𝑚, 𝑘 ≠ 𝑖     

(𝐷𝑗  )𝑖𝑘 = 𝜆𝑖𝑝𝑖 (𝑗, 𝑘)   𝑗 ≥ 1,1 ≤ 𝑖, 𝑘 ≤ 𝑚    (2.37) 

𝐷0 governs transitions in the phase process that do not generate arrivals and 𝐷𝑘 

governs the transitions that generate batches of size 𝑘 (with the appropriate phase 

change). 

Therefore the sojourn time in state 𝑖 is thus exponentially distributed with 

parameter 𝜆𝑖, where: 

𝜆𝑖 = −(𝐷0)𝑖𝑖       (2.38) 

With 𝑁(𝑡) representing the number of arrivals in (0, 𝑡] and 𝐽(𝑡) representing the 

auxiliary phase at time 𝑡, 𝑃𝑖𝑗(𝑛, 𝑡) denotes the probability that 𝑃𝑟{𝑁(𝑡) = 𝑛, 𝐽(𝑡) =

𝑗| 𝑁(0) = 0, 𝐽(0) = 𝑖} and is the (𝑖, 𝑗)-th element of the 𝑚 × 𝑚 matrix known as 

𝑃(𝑛, 𝑡). The 𝑃(𝑛, 𝑡) matrix represents the probability of 𝑛 arrivals in (0, 𝑡] with a 

phase transition from 𝑖 to 𝑗. The matrix generating function of the transition 

probability matrix is defined as: 



60 

𝑃∗(𝑧, 𝑡) = ∑ 𝑃(𝑛, 𝑡)𝑧𝑛,    𝑓𝑜𝑟 |𝑧| ≤ 1, 𝑡 ≥ 0∞
𝑛=0    (2.39) 

If a routine argument conditioning is applied to the first transition, the following 

result can be achieved: 

𝑃∗(𝑧, 𝑡) = 𝑒𝐷(𝑧)𝑡  ,   𝑓𝑜𝑟 |𝑧| ≤ 1, 𝑡 ≥ 0     (2.40) 

where 𝑒𝐷(𝑧)𝑡 is an exponential matrix. If Eq. (2.40) is differentiated with respect to 𝑧 

while the value of 𝑧 is set to 𝑧 = 1, the outcome would be the vector: 

𝜆𝑡𝑒 + (𝐼 − 𝑒𝐷𝑡)(𝑒𝜋 − 𝐷)−1𝜂     (2.41) 

The 𝑖th element of the vector would then give the expected number of arrivals in 

(0, 𝑡] given that the phase at time 𝑡 = 0 is 𝑖. 

The intensity  of group arrivals, 𝜆𝑔, (arrival rate of batches or groups, excluding 

batch sizes) can be computed as: 

𝜆𝑔 = 𝜋𝐷𝑒        (2.42) 

For BMAP with single arrivals, the fundamental arrival rate would be equal to the 

intensity of group arrivals, 𝜆𝑡𝑜𝑡 = 𝜆𝑔. The variance 𝜈 of intervals between group 

arrivals (or variance between interarrival times) is equal to: 

𝜈 = 2𝜆𝑔
−1𝜋(−𝐷0)−1𝑒 − 𝜆𝑔

−2
     (2.43) 

While the correlation coefficient 𝑐𝑐𝑜𝑟 at lag 𝑘 and the squared variation coefficient 

𝑐𝑣𝑎𝑟
2  of intervals between successive group arrivals are given by: 

ccor(𝑘) = (𝜆𝑔
−1𝜋(−𝐷0)[(𝐷 − 𝐷0)(−𝐷0)−1]𝑘𝑒 − 𝜆𝑔

−2)/𝜈  (2.44) 

cvar
2 = 𝜈𝜆𝑔

2
       (2.45) 
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Probability that an arriving batch is of size 𝐿 can be given as: 

𝑃(𝐵 = 𝐿) = 𝜋(−𝐷0)−1𝐷𝐿𝑒 ,   𝑓𝑜𝑟 𝐿 = 1, … , 𝑘   (2.46) 

From which the moments of 𝐵 are obtained as  

𝐸[𝐵𝑛] = 𝜋(−𝐷0)−1𝐷𝑛
∗𝑒     (2.47) 

where 𝐷𝑛
∗ = ∑ 𝑙𝑛𝐷𝑙

𝑘
𝑙=1 . 

 

2.4. Parameter Estimation 

As stated in [41] accurate modelling of network traffic requires matching closely not 

only the packet arrival process but also the packet size distribution. Matching the 

arrival process has received considerable attention in literature, whereas packet 

size distribution is often ignored, mainly because simple and analytically tractable 

processes such as Poisson are unable to model both arrival and packet size 

distributions. In this regard, a natural problem that exists with the application of 

MMPP and BMAP for modelling network traffic is the estimation of their parameters 

from existing data traces. Most available traffic data traces consists of counts of 

events during a fixed length interval, such as bytes per second or packets per 

second, whilst BMAP and MMPP require more than just these important values for 

accurate fitting and modelling of network traffics. Furthermore, due to 

computational burdens, estimating parameters for MMPPs and BMAPs with more 

than a few states is too complex.  

Many methods are available in literature for parameter fitting of MMPP processes 

to real network traces. Most of the methods stem from two very important 
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techniques of moment-based matching [83, 103] and likelihood-based [104, 105]. 

Dempster et.al., [106] introduced the Expectation-Maximization (EM) algorithm for 

computing Maximum Likelihood Estimates (MLE) from incomplete data. Based on 

this work, Deng and Mark [107] introduced the first approach for adapting the EM 

algorithm for MMPP, which uses the probability density function on interarrival time 

and data traces to derive the required parameters. Later, Ryden [105] surveyed the 

methods based on moment matching and maximum likelihood and proved that 

MLE methods are strongly consistent. In [108] he tailored the EM algorithm for the 

MMPP and developed an implementation which was then improved in [109]. 

Batch Markovian Arrival Process has enough flexibility to describe a wide variety of 

data and rate fluctuations in many applications. As with MMPP, a challenging issue 

in the study and application of BMAP is the accurate estimation of its parameters 

based on real-world systems. Any method used to estimate the parameters has to 

be as accurate as possible and should keep the number of states small enough for 

a tractable model. Due to incomplete data, standard statistical techniques such as 

moment matching cannot be used for BMAP. Since measured trace data does not 

contain all statistical properties required for the unique specification of a 

corresponding BMAP, a very common and important method for its parameter 

estimation would be the Maximum-Likelihood Estimation (MLE) [102]. In this 

regard, the Expectation-Maximization (EM) algorithm [106] is one of the methods of 

computing MLEs effectively. It is a statistical framework that computes the MLEs 

under incomplete data and is particularly useful for stochastic models with many 

parameters, hence BMAP. The fundamental idea in Maximum-Likelihood 

Estimation is to find the parameters maximizing the likelihood that the observed 
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data occurs. The correlation of data is not directly used in these methods of 

estimating parameters for BMAP, in fact the correlation values enter the model 

indirectly through the developed transition matrix [110]. 

Limited number of works exists in literature that focus on developing the required 

BMAP parameters from existing data traces [41, 102, 111]. In this research, the 

technique developed in [102] is used for parameter estimation of BMAP from actual 

data traces, which is based on the EM algorithm. A huge challenge in accurately 

estimating parameters of BMAP is keeping the number of states in the Markov 

chain small enough to make the performance models tractable. In general BMAPs 

are highly-parameterised models while in practice only interarrival times and sizes 

of batch arrivals or packets are commonly observed, therefore it can be viewed 

that data observed is actually being generated from a hidden Markov process 

[112]. 

 

2.5. Related Work 

Significant amount of research has been carried out on the analysis and modelling 

of 802.11 protocols. In this section, prior literature relevant to the analytical 

modelling of DCF and the model-based admission control approaches are 

surveyed in order to present the existing gaps and demonstrate how the current 

research covers some of the important issues. 

Performance modelling of 802.11 DCF has been widely studied through various 

approaches in literature; however majority of existing analytical works are built 

upon the model originally proposed by Bianchi in [8]. This model adopts a bi-

dimensional discrete-time Markov chain to describe the exponential backoff 
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mechanism of the DCF scheme in order to derive the saturation throughput of 

WLANs under ideal channel conditions, absence of noise and hidden stations. 

For analytical tractability and simplicity, Bianchi along with many other researchers 

have developed their models based on the assumption of unrealistic network 

scenarios in which the buffers of the stations are assumed to be saturated, or 

unlimited retries are considered [113-118]. 

In [24] Malone et al. extend Bianchi’s model to the case of unsaturated traffic, 

taking into consideration the post-backoff behaviour with the assumption of ideal 

channel conditions and unlimited retries. Daneshgaran et al. in [119] propose 

another extended model which considers non-ideal channels and unsaturated 

traffic with the assumption of independence between transmission errors and 

packet collisions. As a result, they use equivalent probability of failed transmission 

to replace the collision probability in Bianchi’s model and simplify the post-backoff 

stage with a single idle state and unlimited retries. In [120] the same authors 

extend Bianchi’s bi-dimensional discrete time Markov-chain model by introducing a 

new state to the Markov chain and through complicated algebraic manipulation on 

Bianchi’s throughput formula they approximately express the throughput as a linear 

function of the average packet arrival rate. In [121] the authors analyse the non-

saturated IEEE 802.11 DCF networks through describing the behaviour of each 

station using a Markov renewal process, however they consider unlimited sized 

buffers. 

Nevertheless, these simplified assumptions exclude any need for considering 

queuing dynamics or traffic models for performance analysis while currently 

WLANs are integrating and transmitting diverse range of traffic generated by 
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multimedia applications which significantly differ with each other in packet arrival 

rates and patterns, including video, voice and text [2, 22]. Multimedia applications 

are more sensitive to packet delay and jitter than traditional data applications, 

therefore it is unrealistic to assume unlimited MAC retransmissions and buffer 

sizes, which unnecessarily increase packet delays and jitter. These specific traffic 

characteristics and strict QoS requirements of multimedia applications in terms of 

bandwidth, delay, jitter and packet loss tolerance, have posed great challenges in 

wireless and resource constrained networks [122] and steered many researches 

towards developing models using realistic networking environments with 

unsaturated scenarios [24, 25, 75-77, 119, 121, 123-130], or using stochastic 

processes such as Poisson Process to model the traffic of WLANs [14, 121, 123, 

125]. 

In this regard, the Poisson process and M/M/1 queues played a significant role in 

the development of many analytical models for the study of DCF protocol. For 

example in [123], Zhai, Kwon, and Fang demonstrate the usefulness of the 

Exponential distribution in approximating the MAC service time through the use of 

M/M/1/K queue in order to model the stations of the WLAN under Poisson traffic. 

Also in [125] Medepalli and Tobagi present a unified model where the transmission 

queue of each station is modelled as an M/M/1 queuing system. In [25, 130] the 

authors use the conventional Poisson Process within an M/G/1 queuing model to 

analyse the performance of WLANs under unsaturated network conditions. In 

[121], the authors describe the behaviour of each station of a 802.11-based WLAN 

as a Markov renewal process using M/G/1 queues.  
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The main interest of these studies in the use of Poisson Process for modelling the 

generated traffic within WLANs is the simplicity and tractability of this stochastic 

process. Finding a stochastic process that can accurately capture the specific 

characteristics of network traffic while remain analytically tractable is not easy. 

Providing the best effort service for the earlier data applications was completely 

sufficient and could be easily modelled using the conventional Poisson Process 

which is analytically simple and tractable. However today, popular multimedia 

applications such as HTTP video streaming (e.g. YouTube), Cloud computing [131] 

and interactive games feature high-frame transmission rates, enhanced frame 

density, high levels of burst-like packet loss, latency, jitter and stringent delay 

constrains to provide a smooth viewing experience. This requires new modelling 

techniques in order to provide the best possible QoS. With video streaming already 

consuming the main portion of bandwidth within WLANs [132] and Variable-Bit-

Rate (VBR) video traffic exhibiting noticeable burstiness over a wide range of time 

scales [7, 15, 16, 133], Poisson Process would no longer be adequate for capturing 

the complex characteristics of traffic generated by todays multimedia applications 

[7, 13-19, 110, 113, 133]. 

Besides burstiness, multimedia traffic and in particular video, require models that 

can capture the self-similarity and correlations between packet size distribution and 

packet arrival rates. Even though many studies have focused on the analysis of 

WLANs under multimedia traffic [134-139], to the best of our knowledge little 

research is available that concentrates on modelling the DCF protocol taking into 

account important characteristics of burstiness, self-similarity and correlation 

between the arrival rates and packet sizes. For example in [134] the authors 
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evaluate the performance of a video streaming applications over ad-hoc networks 

by varying video quality and network size, but assume all generated video packets 

have a fixed size; therefore they ignore any possible existing correlation between 

arrival rates and packet sizes. Even though many studies focus on using the 

Markov Modulated Poisson Process [74, 75, 140, 141] rather than Poisson 

process, MMPP [85] is only capable of capturing the burstiness and correlation that 

might exist between the arrival rates of packets in multimedia traffics and lacks the 

ability to capture the inherent self-similarity characteristics that exists in for 

example video traffic or the correlation between packet size distributions. This 

makes MMPP to be mainly suitable for accurate modelling of voice traffic [76, 142, 

143]. Even though it is possible to model self-similarity through super-positioning of 

multiple MMPPs, as presented in [76], but still MMPP lacks the ability to capture 

the correlation between arrival rates and packet sizes in highly bursty multimedia 

traffics. In [76], the authors use the superposition of a number of two-state MMPPs 

to model the self-similarity properties of video traffic in wireless multimedia 

networks. Abdrabou and W. Zhuang in [142], use MMPP as a novel way to 

characterize the service (not the arrival) process of the IEEE 802.11 DCF shared 

channel to derive its effective capacity. In [143] the authors develop an analytical 

model to analyse the performance of the power saving protocols of the 802.11 

family using MMPP to model general long-range dependent network traffics.  

Modelling of packetized video, voice and data traffic has been an interesting topic 

of research over the years, and has always required the use of stochastic arrival 

processes. However, the stationary Poisson process, MMPP and others have 

proven to be inadequate for capturing the characteristics of the generated traffic as 
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the interarrival times and packet sizes in data streams are strongly correlated, and 

data is transmitted and received in batches of various sizes. Some studies take 

into account batch arrivals without correlation [144, 145], and some consider 

correlation and ignore batch arrivals [146-148].  

In this regard BMAP has proven to be able to model dependent and non-

exponential inter-arrival time distributions between batches and correlated batch 

sizes of arriving packets [102]. With no work available in literature that evaluates 

the performance of 802.11-based WLANs under multimedia traffic through the use 

of BMAP, this research will be the first in itself to model all three properties of 

burstiness, correlation and self-similarity of traffic in WLANs, not only in the arrival 

level but also in packet sizes of the generated traffics. 

 

2.6. Summary 

Self-similarity properties that exist in packet interarrival times, form one aspect of 

the correlation that exists in network traffic. The same properties exists and have 

been observed for the packet lengths of network traffic [149], meaning that the 

packet lengths can also be correlated with the interarrival times [41]. It is important 

to note that all these correlations significantly affect the accuracy of any 

performance model developed for the analysis of WLANs.  

Majority of models designed for WLANs do not consider the variable packet 

lengths of network traffic which may lead to large errors, hence correct packet 

length distribution would indeed increase the accuracy of the models [84, 150]. The 

analytically tractable BMAP model with its batch arrivals is considered to be the 
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most flexible model from the Markov family that can be used for increased 

accuracy modelling of network traffic. BMAP can be used to model real time-

varying correlated flows as it can capture the joint characterization of variable 

arrival rates and packet lengths of real traffic. It can be customized so that different 

packet lengths are represented by batch sizes of arrivals. 

When packet lengths are considered to be independent of arrival rates and no 

batch arrivals are considered, BMAP is simplified and reduced into MAP or MMPP.  

The main research of this thesis is based on the use of BMAP as the arrival 

process of developed models on performance analysis of Wireless Local Area 

Networks. In summary of the subjects discussed in this chapter, the reason for 

choosing BMAP as the arrival process is due to the following reasons: 

1. The BMAP can not only model batch arrivals, correlation of interarrival times, 

and variance of interarrival times, but it can also model other subtle 

characteristics of the arrival process such as the correlation between local 

intensity of arrivals of batches with the size of the arriving batch [151]. 

2. Due to available parameter fitting techniques developed for BMAP [102, 111], 

these great capabilities of BMAP can be used for the analysis and modelling of 

real multimedia traffic. 

3. And finally BMAP entails a unique advantage of combining great complexity 

and modelling capabilities of Markovian processes with the analytical 

tractability [152].  
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Chapter 3: 

Modelling and Analysis of the BMAP/M/1 Queuing 

Systems 

 

3.1. Introduction 

Queueing systems under various types of arrivals and service processes have 

been extensively investigated by researchers due to their applicability in various 

networking situations, production and manufacturing systems, as covered in the 

literature. In this regard, traditional queueing analysis using the conventional 

Poisson Process is proven to be not powerful enough to capture the correlated 

nature of arrival processes.  

To capture batch arrivals with variable rates, Lucantoni [65, 71] introduced the 

Batch Markovian Arrival Process (BMAP) which is a formal representation of the 

Versatile Markovian Point Process introduced by Neuts [67]. BMAP generalizes 

many familiar input processes such as: Markovian Arrival Process (MAP), Markov 

Modulated Poisson Process (MMPP), Phase-type renewal process, Interrupted 

Poisson Process (IPP) and Poisson Process. Since its introduction, many 

published papers have investigated the traffic modelling capability of BMAP as a 

wide range of real life traffic can be approximated using BMAP for modelling of 

input processes [41, 70, 102]. A real life example in which the use of BMAP seems 

to be the natural choice when modelling the arrival process, is in production and 
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manufacturing systems, where jobs (or customers) arrive in batches from various 

sources to a common processing centre and therefore the arrival process 

encompasses complicated characteristics that can no longer be assumed to follow 

the conventional Poisson process. Overall, the main idea of BMAP is to 

significantly generalize the Poisson processes and still keep the tractability 

property for modelling purposes. Also it is important to note that BMAP is a 

convenient tool for modelling both renewal and non-renewal arrival processes, and 

can be defined for both discrete and continuous times. 

Furthermore, the analysis of queuing systems using BMAP to model the arrival 

process has received considerable attention in the stochastic modelling community 

[21, 70, 97-102]. With many useful particular cases, BMAP often leads to 

algorithmically tractable models. In [20] Lucantoni provided a nice summary of a 

number of important results for the BMAP/G/1 system.  

One of the most significant features of BMAP is the underlying Markovian structure 

which fits ideally in the context of matrix-analytical solutions for stochastic models. 

The vast majority of the analysed BMAP/G/1 queuing models are based on the 

standard matrix analytic-method pioneered by Neuts [153, 154] and further 

extended by many other researchers (e.g., Lucantoni [20, 71]).  

The key ingredient to the matrix analytical is the solution of 𝐺, a matrix functional 

equation. 𝐺 is related to the busy period of the queue and indirectly, to the 

behaviour of the arrival process during successive idle periods of the queue. The 

relationship between the matrix analytical model and the traditional approach is 
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that the roots in the traditional analysis are eigenvalues of the matrix 𝐺 in the 

matrix analytical model. 

The remaining of this chapter concentrates on the important mathematical 

definitions of BMAP/M/1 queue with the sole purpose of introducing methods for 

calculating main performance measures such as the average queue length, 

average waiting time in queue of when the queue has limited buffer size. A 

simulator is developed to simulate 𝑚-state BMAP/M/1 queue with batch sizes of 

maximum 𝐾, for the purpose of validation of the developed analytical models of the 

queue. 

To make sure the developed models and simulator for the analysis of 𝑚-state 

BMAP/M/1 queue with maximum batch size of 𝐾 are correct and valid, a general 

analytical model and simulator are developed for 𝑚-state MMPP/M/1 queue. Due 

to complexity and for ease of tractability most studies in the literature concentrate 

on model and simulation of two state BMAP and MMPP queues. To fulfil the 

existing gap, the developed model and simulator for BMAP and MMPP queues are 

extended to be able to model and simulate BMAP and MMPP queues of any 

number of states, and for BMAP they can be adjusted to any maximum batch size.  

The models and simulators developed in this section provide the basis of later 

studies on performance evaluation of Wireless Local Area Networks under bursty, 

correlated and self-similar traffics, as well as forming a great comparison 

environment for performance evaluation of BMAP/M/1 and MMPP/M/1 queues. 

For the stability of the developed queueing systems in this section, the traffic 

intensity of the queues (𝜌) which is calculated as 𝜌 = 𝜆𝑎𝑣𝑔 ∗ 𝐸(𝑠) (with 𝐸(𝑠) being 
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the first moment of the service time distribution of the queue), is assumed to be 

less than one at all times: 𝜌 < 1. 

 

3.2. Study of the Busy Period 

BMAP is a natural generalization of the (batch) Poisson arrival process, where the 

most important parameter towards modeling the performance factors of the 

BMAP/M/1 queue, is the calculation of the matrix 𝐺. 

First it is assumed that the service time distribution of the BMAP/M/1 queue is 

composed of an Exponential distribution 𝐻(𝑥) defined with Cumulative Density 

Function (CDF) of: 

𝐻(𝑥) = {1 − 𝑒−𝜆𝑥   𝑥 ≥ 0
0              𝑥 < 0

     (3.1) 

The Laplace transform of this service time distribution, 𝐻̃(𝑠), is: 

𝐻̃(𝑠) =
𝜆

𝜆+𝑆
      (3.2) 

With finite mean of 𝐸(𝑠) = 𝜇1
′ , second and third moments of 𝜇2

′  and 𝜇3
′  respectively. 

The traffic intensity of the queue is calculated as: 

𝜌 = 𝜆𝑡𝑜𝑡 ∗ 𝐸(𝑠) < 1     (3.3) 

In the context of BMAP/M/1 queue, 𝐺(𝑧, 𝑠) is the two-dimensional transform of the 

number of jobs served during, and in the duration of the busy period. It is shown in 

[71] and [155] that 𝐺(𝑧, 𝑠) is the solution to:  

𝐺(𝑧, 𝑠) = 𝑧 ∫ 𝑒−𝑠𝑥𝑒𝐷[𝐺(𝑧,𝑠)]𝑥𝑑𝐻(𝑥)
∞

0
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≡ 𝑧ℎ(𝑠𝐼 − 𝐷[𝐺(𝑧, 𝑠)])     (3.4) 

It is possible to define the matrices 𝐺(𝑠) ≡ 𝐺(1, 𝑠) and 𝐺 ≡ 𝐺(0) and should also 

note that the matrix 𝐺 should satisfy the following equation: 

𝐺 = ∫ 𝑒𝐷[𝐺]𝑥𝑑𝐻(𝑥)
∞

0
     (3.5) 

Matrix 𝐺 is stochastic when 𝜌 ≤ 1. For 𝜌 < 1, the invariant probability vector 𝑔, of 

the positive stochastic matrix 𝐺, satisfies: 

𝑔𝐺 = 𝑔 , 𝑔𝑒 = 1      (3.6) 

The vector 𝑔 is known as the stationary probability vector of the infinitesimal 

generator 𝐷[𝐺]. Matrix 𝐷[𝐺] has a nice probabilistic interpretation which was 

originally pointed out in [64]. Since 𝐺 is calculated as being strictly positive, the off-

diagonal entries of 𝐷[𝐺] are non-negative. So when the queue is stable, 𝐺 is 

stochastic and as a result 𝐷[𝐺]𝑒 = 0, which means that 𝐷[𝐺] is the infinitesimal 

generator of a finite-state, irreducible Markov Process. On the other hand, in the 

unstable case ( i.e. when 𝜌 > 1), 𝐺 is strictly substochastic so that 𝐷[𝐺] is a stable 

matrix. Eq. (3.6) implies that 𝑔 is the stationary vector of the matrix 𝐷[𝐺] and 

therefore the 𝑗-th component of this vector is the stationary probability that the 

arrival process is in state 𝑗 given that the server is idle. 

Once 𝑔 is computed, moments of the queue length and waiting time distributions 

can be immediately computed.  

An efficient algorithm is proposed by Lucantoni in [71] for the calculation of 𝐺 using 

the matrix analytical methods, where the basic idea is to use the concept of 



75 

uniformization. As a result, if 𝑄 is the inifinitesimal generator of a continuous 

Markov process, then based on Eq. (3.5): 

𝑒𝑄𝑡 =  ∑ 𝑒−𝜃𝑡 (𝜃𝑡)𝑛

𝑛!
𝐿𝑛∞

𝑛=0      (3.7) 

where 𝜃 = 𝑚𝑎𝑥𝑖{(−𝐷0)𝑖𝑖} and 𝐿 = 𝐼 + 𝜃−1𝑄, which is a stochastic matrix. Based on 

these formulas, the new method leads to: 

𝐺 = ∑ 𝛾𝑛(𝐼 + 𝜃−1𝐷[𝐺])𝑛∞
𝑛=0     (3.8) 

where: 

𝛾𝑛 = ∫ 𝑒−𝜃𝑥∞

0

(𝜃𝑥)𝑛

𝑛!
𝑑𝐻̃(𝑥),    𝑓𝑜𝑟 𝑛 ≥ 0   (3.9) 

Thus 𝐺 can be computed by successively iterating the following recursion: 

𝐻𝑛+1,𝑘 = [𝐼 + 𝜃−1𝐷[𝐺]]𝐻𝑛,𝑘𝑛 = 0,1,2, …,   (3.10) 

𝐺𝑘+1 = ∑ 𝛾𝑛𝐻𝑛,𝑘
∞
𝑛=0      (3.11) 

where 𝐼 is an identity matrix and 𝐻0,𝑘 = 𝐼.  

The most important factor in this algorithm is the starting value for 𝐺0. If the 

algorithm starts with 𝐺0 = 0, the successive values of 𝐺𝑘 will monotonically 

increase to the unique solution; however the convergence can be slow especially 

for high values of 𝜌. Lucantoni [20] suggests that starting with a stochastic matrix 

leads to extremely fast convergence which appears to be independent of 𝜌, and so 

recommends the iteration should start with 𝐺0 = 𝑒𝜋. 
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After calculating the 𝐺 matrix using Eqs. (3.10) and (3.11), the value of 𝑔 is 

calculated from Eq. (3.6). 

 

3.3. Moments of the Queue Length at Departures 

The equations required to calculate the moments of the queue length for the 

BMAP/M/1 queue at departures require the use of moment matrices of 𝐴(𝑖)(1), 𝑖 =

0, 1, 2, 3. These moment matrices are defined for the 𝑚 × 𝑚 matrix of mass function 

[𝐴̃𝑛(𝑥)]𝑖𝑗 defined as: the probability of given a departure at time 0, which left at 

least one customer in the system and the arrival process in phase 𝑖, the next 

departure occurs no later than time 𝑥 with the arrival process in phase 𝑗, and 

during that service there were 𝑛 arrivals. The moment matrices are computed 

simultaneously as a concentrated matrix: 

[𝐴, 𝐴(1), 𝐴(2), 𝐴(3)] = ∑ 𝛾𝑛𝐿𝑛
∞
𝑛=0     (3.12) 

The value of 𝛾𝑛 is defined in Eq. (3.9). 𝐿0 is an 𝑚 × 4𝑚 matrix of [𝐼, 0, 0, 0], and is 

calculated as: 

𝐿𝑘+1 = 𝐿𝑘(𝐼 + 𝜃−1𝑆),   𝑘 ≥ 0    (3.13) 

where 

𝑆 = 

𝐷 𝐷(1) 𝐷(2) 𝐷(3) 

 (3.14) 
0 𝐷 2𝐷(1) 3𝐷(2) 

0 0 𝐷 3𝐷(1) 

0 0 0 𝐷 
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In order to calculate the moments of the queue length at arbitrary times, the 

moments of the queue length at departures should be calculated first. To this aim 

the important value required for the calculation of the queue length is the vector 𝑥0. 

To define how 𝑥0 is calculated we should first consider the definition for the 

stationary vector of the Markov chain embedded at departures from the queue. 

This stationary vector is defined as a joint probability of density of the stationary 

queue length and the phase of the arrival process, which can be defined as: 

𝑃 = 

𝐵0 𝐵1 𝐵2 … 

 (3.15) 

𝐴0 𝐴1 𝐴2 … 

0 𝐴0 𝐴1 … 

0 0 𝐴0 … 

…  …  

 

The stationary probability vector 𝑥 = (𝑥0, 𝑥1, … ), where 𝑥𝑖 , 𝑖 ≥ 0, and 𝑥𝑖 are 𝑚-

vectors, is defined from the 𝑃  matrix. The 𝑥0 vector defines the stationary 

probability that a departure leaves the system empty, e.g. 𝑥0𝑗 resembles the 

stationary probability that a departure leaves the system empty with the arrival 

process in state 𝑗. By a classical property of Markov chains, the quantity of (𝑥0𝑗)−1 

is the mean recurrence time of the state (0, 𝑗) in the Markov chain 𝑃.  

Using the arguments classical in the theory of Markov renewal process [71], the 

value of 𝑥0 can be expressed in terms of the invariant probability vector 𝓚 of 𝑘, 

which satisfies 𝓚𝐾 = 𝓚, 𝓚𝑒 = 1, and the vector 𝓚∗ = 𝐾(1)(1)𝑒, of the row-sum 

means of 𝐾(𝑧). 𝐾(𝑧) is defined as the transition matrix generating function of the 

𝑚-state Markov renewal process generated from observing the chain 𝑃 only at its 
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visits to the level 𝟎, and recording the indices of the states visited as well as the 

number transitions in 𝑃 between consecutive visits to 𝟎. 

So the matrix 𝐾(𝑧) is defined as: 

𝐾(𝑧) = 𝐾(𝑧, 0) = 𝑧 ∑ 𝐵𝑣𝐺𝑣(𝑧)∞
𝑣=0    (3.16) 

𝐾 = 𝐾(1) = 𝐾(1,0) = ∑ 𝐵𝑣𝐺𝑣∞
𝑣=0    (3.17) 

Therefore 𝐾 would be: 

𝐾 = −𝐷0
−1[𝐷[𝐺] − 𝐷0] = 𝐼−𝐷0

−1𝐷[𝐺]   (3.18) 

The matrix 𝐷[𝐺] is considered to be the infinitesimal generator of a Markov process 

during the busy period and can be obtained by excising the busy period. Having 

defined all the necessary values and calculations finally 𝑥0 can be calculated as: 

𝑥0 =
𝓚

𝓚𝓚∗       (3.19) 

where 𝓚∗ is obtained from: 

𝓚∗ = −𝐷0
−1[𝐷𝐷 − [𝐺] + 𝑑𝑔][𝐼 − 𝐴 + (𝑒 − 𝜷)𝑔]−1𝑒  (3.20) 

The vector 𝜷 whose 𝑗-th component is the conditional number of arrivals during a 

service which starts the arrival process in phase 𝑗 is explicitly defined as: 

𝜷 = (
𝜇′

𝜆′⁄ ) 𝑒 + (𝐴 − 𝐼)(𝑒𝜋 + 𝐷)−1𝑑   (3.21) 
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For all queues of type M/G/1, the traffic intensity, 𝜌, can be calculated by 𝜌 = 𝜋𝜷 

which is also calculate as 𝜌 =
𝜇′

𝜆′⁄  as expected. 

Now we can define the calculations of the moments of queue length at departures 

and use them to calculate the moments of queue length at arbitrary times for the 

BMAP/M/1 queue.  

The factorial moment vectors of the queue length at departures are given by the 

quantities 𝑋(𝑛)(1), where: 

𝑋(1) = 𝜋 +  −𝑥0𝐷0
−1𝐷𝐴(𝐼 − 𝐴 + 𝑒𝜋)−1  (3.22) 

The final expressions for calculating the first and second moments of the queue 

length at departures are presented as: 

𝑋(1)𝑒 =
1

2(1−𝜌)
{𝑋𝐴(2)𝑒 + 𝑈(2)𝑒 + 2{𝑈(1) − 𝑋[𝐼 − 𝐴(1)]}(𝐼 − 𝐴 + 𝑒𝜋)−1𝛽} (3.23) 

And 

𝑋(2)𝑒 =
1

3(1−𝜌)
{3𝑋(1)𝐴(2)𝑒 + 𝑋𝐴(3)𝑒 + 𝑈(3)𝑒 + 3{𝑈(2) + 𝑋𝐴(2) − 2𝑋(1)[𝐼 −

𝐴(1)]}(𝐼 − 𝐴 + 𝑒𝜋)−1𝛽}     (3.24) 

In the above equations, 𝑈(𝑧) is defined as 𝑈(𝑧) = −𝑥0𝐷0
−1𝐷(𝑧)𝐴(𝑧). The 

derivatives of 𝑋(1) = 𝑋 are written as 𝑋(𝑖) = 𝑋(𝑖)(1). Also the derivatives of 

𝑈(𝑖) = 𝑈(𝑖)(1) and 𝐴(𝑖) = 𝐴(𝑖)(1). 
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3.4. Moments of the Queue Length at Arbitrary Time 

The expressions for moments of the queue length at an arbitrary time can be 

obtained by differentiating the following equation [71]: 

𝑌(1)𝑒 = 𝑋(1)𝑒 −
1

2
𝜆′𝜋𝐷(2)𝑒 + [𝜆′𝜋𝐷(1) − 𝑋](𝑒𝜋 + 𝐷)−1𝐷(1)𝑒  (3.25) 

The above equation shows the first moment of the queue length at arbitrary time 𝑡. 

The derivatives are written as 𝑌(𝑖) = 𝑌(𝑖)(1) and 𝐷(𝑖) = 𝐷(𝑖)(1), for 𝑖 ≥ 0. The 

second moment of the queue length at arbitrary time 𝑡 is presented as: 

𝑌(2)𝑒 = 𝑋(2)𝑒 − 𝜆′𝑌(1)𝐷(2)𝑒 −
1

3
𝜆′𝜋𝐷(3)𝑒 − 2[𝑋(1) − 𝜆′𝑌(1)𝐷(1) − 𝜆′𝜋𝐷(2)](𝑒𝜋 +

𝐷)−1𝐷(1)𝑒        (3.26) 

 

3.5. Moments of the Virtual Waiting Time Distribution 

To calculate the moments of the actual waiting time it is required to first calculate 

the moments of the virtual waiting time or workload distribution. The queueing 

delay, also known as the virtual waiting time or workload, is the length of time a job 

awaits in a buffer before transmission. 

The virtual waiting time distribution is the joint probability that at an arbitrary time 

the arrival process is in phase 𝑗 and that a virtual customer arriving at that time 

waits at most a time 𝑥 before entering service. The virtual waiting time distribution 

is shown as [91]: 

𝑊𝑣(𝑠) = 𝑠(1 − 𝜌)𝑔 [𝑠𝐼 + 𝐷 (𝐻̃(𝑠))]
−1

, 𝑊𝑣(0) = 𝜋  (3.27) 
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From this we have the following: 

𝑤𝑣(𝑠) = 𝑠(1 − 𝜌)𝑔 [𝑠𝐼 + 𝐷 (𝐻̃(𝑠))]
−1

𝑒   (3.28) 

where 𝑒 is a column vector of 1s. Eq. (3.28) illustrates the distribution of the virtual 

waiting time of the 𝐵𝑀𝐴𝑃/𝑀/1 queue. 

The first two moments of the virtual waiting time distribution are calculated using 

the following formulas: 

𝑠𝑤(𝑠) + 𝑤(𝑠)𝐷 (𝐻̃(𝑠)) = 𝑠𝑦0     (3.29) 

where 𝑦0 = (1 − 𝜌)𝑔. To make the equation easier, the following values are 

defined: 

𝑉(𝑠) = 𝐷 (𝐻̃(𝑠))       (3.30) 

𝑤(𝑖) = 𝑤(𝑖)(0),   𝑓𝑜𝑟  𝑖 ≥ 1     (3.31) 

𝑉𝑖 = 𝑉(𝑖)(0), 𝑓𝑜𝑟  𝑖 ≥ 1      (3.32) 

Then by subsequently differentiating 𝑉(𝑠) we have: 

𝑉(1) = −𝜇1
′ 𝐷(1)       (3.33) 

𝑉(2) = (𝜇1
′ )2𝐷(2) + 𝜇2

′ 𝐷(1)     (3.34) 

𝑉(3) = −(𝜇1
′ )3𝐷(3) − 3𝜇1

′ 𝜇2
′ 𝐷(2) − 𝜇3

′ 𝐷(1)   (3.35) 

where 𝜇𝑖
′ is the 𝑖-th moment of the service time distribution 𝐻(𝑠). 𝐷(𝑛) is calculated 

using the following formula: 
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𝐷𝑛 =
𝑑𝑛

𝑑𝑧𝑛 𝐷(𝑍) z=1 ∑
𝑘!

(𝑘−𝑛)!

∞
𝑘=𝑛 𝐷𝑘 , 𝑛 ≥ 0   (3.36) 

Note that 𝜋𝐷(1)𝑒 = 𝜆𝑡𝑜𝑡, and the following definition holds 𝑣𝑖 = 𝑉(𝑖)𝑒. Now if we 

successively differentiate Eq. (3.29) then we will have the moments of the virtual 

waiting time distribution: 

𝑤(1) = (
1

2(1−𝜌)
) [2𝜌 + 1(𝑦0 − 𝜋𝑉(1))(𝑒𝜋 + 𝐷)−1𝜈1 + 𝜋𝜈2] (3.37) 

𝑤′(0) = (𝑤1𝑒)𝜋 − 𝜋 + (𝑦0 − 𝜋𝑉(1))(𝑒𝜋 + 𝐷)−1  (3.38) 

𝑤(2) = (
1

3(1−𝜌)
) [3(2𝑤′(0) + 2𝑤′(0)𝑉(1) + 𝜋𝑉(2))(𝑒𝜋 + 𝐷)−1𝜈1 − 3𝑤′(0)𝜈2 − 𝜋𝜈3]

   (3.39) 

 

3.6. Moments of the Actual Waiting Time 

The probability that the incoming customer belongs to a batch of size 𝑘 is [156]: 

𝑃𝑏𝑎
(𝑘)

=
𝜋𝑘𝐷𝑘𝑒

𝜆𝑡𝑜𝑡
      (3.40) 

The probability that an arbitrary customer will occupy a particular position, say 𝑛-th 

(1 ≤ 𝑛 ≤ 𝑘) in a batch of size 𝑘 is 1/𝑘.  

The first moment of the actual waiting time of the first customer in the batch of size 

𝑘 is: 

𝐸[𝑊𝑘] =
−𝑤1𝐷𝑘𝑒

𝜋𝐷𝑘𝑒
      (3.41) 
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This makes it possible to calculate the first moment of the actual waiting time of an 

arbitrary customer: 

𝐸[𝑊] = ∑ 𝑃𝑏𝑎
(𝑘)

[𝐸[𝑊𝑘] + 𝜇1
′ (

𝑘−1

2
)]∞

𝑘=1    (3.42) 

And the second moment of the actual waiting time for an arbitrary customer is 

calculated as follows: 

𝐸[𝑊𝑘
2] =

𝑤2𝐷𝑘𝑒

𝜋𝐷𝑘𝑒
      (3.43) 

𝑤2 = 𝐸[𝑊𝑘
2]𝜋 − 𝜋𝑉(2) + 2𝑤1(𝐼 + 𝑉(1))(𝑒𝜋 + 𝐷)−1  (3.44) 

𝐸[𝑊2] = ∑ 𝑃𝑏𝑎
(𝑘)

[𝐸[𝑊𝑘
2] + 𝜇2

′ (
𝑘−1

2
) + (𝑘 − 1)𝐸[𝑊𝑘]𝜇1

′ +
(𝑘−1)!

(𝑘−3)!

𝜇1
′2

3
]∞

𝑘=1  (3.45) 

 

3.7. Special Cases of the Simplified BMAP/G/1 Queuing System 

Based on the arrival processes and the number of state the underlying Markov 

chain can have, special cases of BMAP can be obtained. Some of the most useful 

and famous examples are listed below.  

 

3.7.1. The MAP/G/1 Queueing Systems 

If all arrival batches of BMAP are of size one, then the BMAP would be Markovian 

Arrival Process (MAP), Figures 3.1 and 3.2. Therefore it is obvious that 𝐷𝑘 = 0, for 

𝑘 > 2 [65]. From this class there are many well-known arrival processes: 

 Poisson process: 
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The conventional Poisson process is a special case of the BMAP process with 

rate 𝜆, where 𝐷0 = −𝜆, 𝐷1 = 𝜆 and 𝐷𝑘 = 0, for all 𝑘 ≥ 2. 

 PH-renewal Process:  

The Phase type (PH) renewal process first introduced by Neuts [157] with 

representation (𝛼, 𝑇), is considered to be a 𝐵𝑀𝐴𝑃 with 𝐷0 = 𝑇, 𝐷1 = −𝑇𝑒𝛼 and 

𝐷𝑘 = 0, for all 𝑘 ≥ 2. 

This class of processes also contains the Erlang, 𝐸𝑘, and hyperexponential, 

𝐻𝑘, arrival processes as well as finite mixtures of these. 

 Markov-Modulated Poisson Process (MMPP): 

MMPP is a doubly stochastic Poisson process whose arrival rate is governed 

by 𝜆̂[𝐽(𝑡)] ≥ 0, where 𝐽(𝑡), 𝑡 ≥ 0, is and 𝑚-state irreducible Markov process. As 

a result, the arrival rate only takes 𝑚 values of 𝜆1, … , 𝜆𝑚, depending on the 

state of the Markov process. If 𝛬 = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑚), and the underlying Markov 

process has the infinitesimal generator of 𝑅, then the MMPP is a special case 

of BMAP where 𝐷0 = 𝑅 − 𝛬, 𝐷1 = 𝛬 and 𝐷𝑘 = 0, for 𝑘 ≥ 2, Figures 3.3 and 3.4. 

 

0 1D1,00 D1,11

 

Figure 3.1: Two-state Continuous Time Markov Chain underlying a MAP. 
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Figure 3.2: State transition diagram of a MAP/M/1 queue with two-state MAP. 
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(a)                                                                  (b) 

Figure 3.3: Two-state (a) and three-state (b) Continuous Time Markov Chain underlying a 

MMPP.  
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Figure 3.4: State transition diagram of a MMPP/M/1 queue with a three-state MMPP. 
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3.7.2. Superposition of BMAP’s 

The class of BMAP’s is closed under superposition. The superposition of 𝑛 

independent BMAP’s with representations {𝐷𝑘(𝑖)}, 1 ≤ 𝑖 ≤ 𝑛, is also a BMAP with: 

𝐷𝑘 = 𝐷𝑘(1)⨁ … ⨁𝐷𝑘(𝑛), 𝑘 ≥ 1     (3.46) 

 

The ⨁ sign denotes the matrix Kronecker sum [90]. 

 

3.8. Analysis of MMPP/M/1 Queuing Systems 

As mentioned before BMAP is a generalization of MAP and, MMPP is a special 

case of MAP where the transition from one state to another does not ignite any 

arrival. To model the MMPP/M/1 queue in the same format as BMAP/M/1, the 

following should hold [46]: 

𝐷0 = 𝑅 − 𝛬 and 𝐷1 = 𝛬      (3.47) 

And 𝐷𝑘 = 0, for 𝑘 ≥ 2. 

The 2-state MMPP has received a lot of attention as a simple tractable process 

which can predict queuing delays very accurately [38]. The equations used for 

BMAP are reduced to very simple forms for the 2-state MMPP [85]: 

𝑄 = [
−𝜎1 𝜎1

𝜎2 −𝜎2
], 𝛬 = [

𝜆1 0
0 𝜆2

],  𝐺 = [
1 − 𝐺1 𝐺1

𝐺2 1 − 𝐺2
] (3.48) 
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where 𝑄 presents the infinitesimal generator, 𝛬 represents the arrival rate matrix of 

each of the states of the underlying markov chain and 𝐺 shows the structure of the 

famous 𝐺 matrix in a 2-state MMPP/M/1 queue. 

At the beginning, the value of 𝐺1 should be set to 0. Then recursively the following 

formulas should be calculated until 𝐺1 and 𝐺2 become stable, the value for 𝐺1 and 

𝐺2 are calculated using the following formulas: 

𝐺2 =
𝐺1𝜎1

𝜎1+𝐺1(𝜆1−𝜆2)
       (3.49) 

𝐺1 = 1 − 𝐺2 − 𝐻(𝜎1 + 𝜎2 + 𝜆1𝐺1 + 𝜆2𝐺2)    (3.50) 

𝐻 is the Laplace Transform of the service distribution of the queue under study. 

From the results of the above equations the value of 𝑔 for a two state MMPP can 

be calculated directly as: 

𝑔 = (𝑔1, 𝑔2) =
1

𝐺1+𝐺2
(𝐺1, 𝐺2)   (3.51) 

After implementing the analytical model for the specific 2-state MMPP, the model 

for the general 𝑚-state MMPP [85] based on the methods presented in this section 

was developed for later comparison with BMAP queue. The model for 𝑚-sate 

MMPP is very close to BMAP in method of implementation. 

 

3.9. Simulation of BMAP/M/1 Queuing Systems 

An important field of study in the area of computing and communication is 

development of simulation studies, which form an integral part in the performance 
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evaluation of computer and communications systems. Simulation is an important 

method of assisting teletraffic engineers in the design and development of 

communication networks that enforce Quality of Service (QoS) objectives and 

improve the cost and performance of such systems [158]. In this regard, traffic 

modelling which deals with the issue of characterizing the randomness and nature 

of traffic generated by end users and applications in networks, is the main priority 

as understanding the nature of traffic in communication systems and selecting the 

appropriate processes to model it, is crucial in the success of the whole simulation 

study. An extremely important aspect to focus on when dealing with 

communication traffic is capturing the correlation characteristics of the traffic traces 

[37, 46]. This is only possible through developing an accurate analytical model that 

is capable of capturing every detail and characteristic of real world traffic. 

For this purpose as part of this research new traffic generators are developed in 

C++ programming language that accommodate the properties of Batch Markovian 

Arrival Process as an input for the simulation of BMAP/M/1/N queue, and 𝑚-state 

MMPP process as an input for the simulation of MMPP/M/1/N queue. The traffic 

generator developed for 𝑚-state MMPP is a generalization of the simulator for a 

two state 𝑀𝑀𝑃𝑃 which is very well studied in literature.  

The traffic generator developed for BMAP is able to simulate traffics generated 

based on the underlying Continuous Time Markov Chain of 𝑚-state BMAPs with 

batch size of maximum 𝐾 in accordance to the behavior of the processes. To start 

the simulation, the initial state 𝑖0 𝜖 𝑆 = {1,2, … , 𝑀} is randomly selected according to 

the initial state probability distribution vector 𝝅 = (𝜋1, 𝜋2, … , 𝜋𝑀) of the underlying 

Markov chain of the 𝑀-state BMAP with batch size of maximum 𝐾. The transitions 
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between the states of the Markov Chain are done randomly based on the state 

transition rate probabilities of the BMAP. For example, at the end of an 

exponentially distributed sojourn time in state 𝑖, with mean arrival rate of 𝜆′
𝑖 =

−1
𝐷0(𝑖, 𝑖)⁄ , 𝑀 possible state transitions can occur, as explained in previous 

sections. The phase transition matrix during an inter-batch arrival time of jobs 

accepted in the system is developed as: 

𝐷̅ = (−𝐷0)−1𝐷𝑘, 𝑘 ≥ 1     (3.52) 

Having developed the generator of the arrival traffic, the simulations of the queues 

are executed using Discrete Event Simulation (DES). The simulation scenario for 

each queuing model is executed for large number of jobs (e.g. 100000) so that the 

final calculated performance results are generated when the queue has reached a 

steady state. At this stage all queuing models under study have unlimited buffer 

sizes and for the purpose of comparison, the outputs of two important performance 

measures are calculated for each model which are: mean queue length at an 

arbitrary point in time (in number of jobs in the queue), and mean waiting time in 

queue for an arbitrary customer (in seconds). 

 

3.9.1. Model Validation and Numerical Results 

This section presents validation results of the developed analytical model of the 

BMAP/M/1 and MMPP/M/1 queues via the developed DES simulators under 

various settings and scenarios. 
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Presented analytical results provide the basis of creating stable numerical 

procedures for calculating the desired performance measures in future study of 

Wireless Local Area Networks. The validation of the numerical results via 

simulation demonstrates the accuracy and feasibility of the developed BMAP and 

MMPP traffic generators, which are then used to study the performance of real 

world networks under bursty and correlated traffics. 

The following subsections contain the detailed information of the parameterized 

settings used for the analytical models and simulations and the comparison of the 

output results.  

 

 Scenario 1: Validation of the Developed Simulators 

To test and validate the simulators and developed analytical models for accuracy 

and reliability for use in future studies, for the first step a 2-state MMPP/M/1 queue 

is studied in the format of a simplified 𝑚-state BMAP/M/1 with batch size of 

maximum 1. To validate the developed model and simulator, two methods are 

used: I) the first method develops the model and simulator of the MMPP/M/1 queue 

using the simplified analysis of a 2-state MMPP/M/1 queue presented in section 

3.9, and II) the second method develops the analytical model and simulator for a 2-

state BMAP/M/1 with batch size of maximum 1, which also resembles a 2-state 

MMPP/M/1 queue. Since the first method has been thoroughly used and tested in 

previous literature [76, 83, 84, 146], it can act as a safe comparison platform for the 

validity of the models and DES simulators developed for BMAP of any number of 

states and batch sizes.  
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The simulation and analytical model of both methods are executed for different 

values of overall arrival rates so that the two performance measures of mean 

queue length and mean waiting time in the queue can be compared for different 

traffic intensities. The traffic intensity varies from a very small value close to 0.001 

up to maximum 1, and for stability of the models during all studies the value of 

traffic intensity is always kept to less than 1. 

For the flexibility and scalability of the simulation experiments, the parameters of 

the MMPP/M/1 queue are accurately fitted to real-world multimedia applications. 

The parameters of the queue are obtained from the high-quality measurement of 

the multimedia application of the G.711 codec voice sources as stated and used in 

[76], which are as follows: 

𝑄 = [
−0.2 0.2
0.8 −0.8

]  Λ = [
6𝜆2 0

0 𝜆2
]    

The mean service rate is set to 𝜇 = 10.0: 

Similar parameters but in the form usable by BMAP/M/1 queue are used for the 2-

state MMPP/M/1 queue modelled and simulated as special case of BMAP: 

𝐷0 = 𝑄 − Λ = [
−0.2 − 6𝜆2 0.2

0.8 −0.8 − 𝜆2
] 𝐷1 = Λ = [

6𝜆2 0
0 𝜆2

]   

The results from executing the models and the simulations are depicted in Figures 

3.5 and 3.6. The figures show a great match between the analytical models and 

simulations of 2-state MMPP/M/1 queue using the two different introduced 

methods of implementations. It is clear from the figures that as the traffic intensity 

of the queue increase as a result of increasing the overall load, the values of the 



92 

mean queue length and mean waiting time also gradually increase. This process 

continues until when the traffic intensity gets closer to 1, at which stage the queue 

starts to become saturated meaning that the arrival rate of the customers or 

packets coming in to the queue becomes higher than the service rate and as a 

result the queueing system starts to over load. This situation in queuing systems is 

called saturation. Saturation  is when any more increase in the load of the queue 

will have no effect on the performance measures of the queue, and as a result the 

values of the performance measures stays almost the same from that point 

onwards. 

 

Figure 3.5: Mean queue length in a 2-State MMPP/M/1 queue. 
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Figure 3.6: Mean waiting time in a 2-State MMPP/M/1 queue. 

The great match between the models and simulations of the two methods is a solid 

proof that the developed simulator and analytical model for 𝑚-state BMAP/M/1 

queue with any maximum batch size is accurate and reliable to use in future 

studies. 

Since the BMAP/M/1 model and simulator have proven to be accurate, they can be 

used to test the model and simulator developed for 𝑚-state MMPP/M/1 queue. For 

this purpose, the performance measures of a 5-state MMPP/M/1 queue model and 

simulation are compared with a 5-state BMAP/M/1 queue with batch size of 

maximum 1, which also resembles a MMPP/M/1 queue. 

The parameterization used for these models and simulations are based on real 

world multimedia applications adopted using the Expectation-Maximization (EM) 

method introduced in [102], as discussed previously in section 2.4. The data trace 

used is obtained from the high quality measurement of the video stream for the film 

“Tears of Steel”, encoded in H.265/HEVC codec [159]. To vary the traffic load of 
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the queue, the arrival rates of the 5 states of the underlying Markov Chain are 

varied according to the overall load of the traffic placed on the queue. 

The infinitesimal generator matrix of the 5-state MMPP, Q, and the arrival rates of 

each state for the original analytical model and simulator of MMPP/M/1 queue are 

set as follows:  

        −0.3 0.08 0.06     0.10 0.06 
        0.19 −0.97 0.29    0.26 0.24 

𝑄 =   0.42 0.40 −1.62    0.43 0.38 
         0.64 0.60 0.51    −2.30 0.56 

         0.76 0.87 0.75    0.69 −3.08 
 

        0.57𝜆𝑡𝑜𝑡 0 0     0 0 
         0 0.19𝜆𝑡𝑜𝑡 0    0 0 
Λ =    0 0 0.1𝜆𝑡𝑜𝑡      0 0 

          0 0 0    0.08𝜆𝑡𝑜𝑡 0 
           0 0 0    0 0.05𝜆𝑡𝑜𝑡 

 

Similar parameters are used for BMAP/M/1 queue with batch size of maximum one 

which resembles the 5-state MMPP/M/1 queue. The parameters are used in forms 

usable by the BMAP model and simulator and they are as follows for mean service 

rate of 𝜇 = 10.0: 

                          −0.3 − 0.57𝜆𝑡𝑜𝑡 0.08 0.06     0.10 0.06 
                           0.19 −0.97 − 0.19𝜆𝑡𝑜𝑡 0.29    0.26 0.24 

𝐷0 = 𝑄 − Λ =   0.42 0.40 −1.62 − 0.1𝜆𝑡𝑜𝑡    0.43 0.38 

                           0.64 0.60 0.51    −2.30 − 0.08𝜆𝑡𝑜𝑡 0.56 

                           0.76 0.87 0.75    0.69 −3.08 − 0.05𝜆𝑡𝑜𝑡 

 

                  0.57𝜆𝑡𝑜𝑡 0 0     0 0 

                 0 0.19𝜆𝑡𝑜𝑡 0    0 0 
𝐷1 = Λ =    0 0 0.1𝜆𝑡𝑜𝑡      0 0 
                  0 0 0    0.08𝜆𝑡𝑜𝑡 0 
                  0 0 0    0 0.05𝜆𝑡𝑜𝑡 
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Figures 3.7 and 3.8, respectively depict the mean queue length and mean waiting 

time for the queues under study. 

Once again the results show great accuracy in the results developed using the 

analytical model and the simulator specifically developed for 𝑚-state MMPP/M/1 

queue and the model and simulator developed for the study of 𝑚-state BMAP/M/1 

queue with any batch size.  

 

Figure 3.7: Mean queue length in a 5-State MMPP/M/1 queue. 

 

Figure 3.8: Mean waiting time in a 5-State MMPP/M/1 queue. 
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 Scenario 2: Effect of Coefficient of Correlation on BMAP/M/1 Queues 

For the second scenario, four different settings of 3-state BMAPs with maximum 

batch sizes of three are considered and compared to each other for the purpose of 

studying the effect of burstiness and correlation on the mean queue length and 

mean waiting time performance measures of queues whose arrival process are 

modelled using BMAP. For this reason the infinitesimal generator 𝑄, defined for all 

four BMAP settings are kept the same and only the proportion of the arrival rates at 

different states of the underlying Markov Chain are varied in accordance to the 

total load 𝜆𝑡𝑜𝑡 placed on the queue during each run. Also, the 𝐷0 matrix is defined 

the same for all four BMAPs, however, as explained, the diagonal elements of the 

𝐷0 matrix which represent the arrival rates of the states of the underlying Markov 

Chain, will vary in each of the BMAPs. This will result in different correlation 

intensities between the interarrival times in each case under study, which will help 

to analyse the effect of correlation and burstiness on the performance of the 

queues. Also, as a result of varying the total queue load during each run, it will be 

possible to compare the performance measures using the value of traffic intensity 

(𝜌) which varies from a small value close to zero to maximum of one.  

The parameterization used for the BMAPs is based on the values calculated and 

used in [98], therefore the infinitesimal generator 𝑄 and the matrix 𝐷0, are defined 

as: 

𝑄 =
−0.247533 0.156836 0.090698
0.123767 −0.247533 0.123767
0.090698 0.103926 −0.194622

      𝐷0 =

−𝜆1 0.090698 0.090698
0.090698 −𝜆2 0.090698
0.090698 0.090698 −𝜆3
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The BMAPs under study are named as 𝐵𝑀𝐴𝑃(1), 𝐵𝑀𝐴𝑃(2), 𝐵𝑀𝐴𝑃(3) and 

𝐵𝑀𝐴𝑃(4).  

For 𝐵𝑀𝐴𝑃(1) the relationship between the arrival rates of the three states and the 

fundamental arrival rate are defined as: 𝜆1 = 2.0 × 𝜆𝑡𝑜𝑡  , 𝜆2 = 0.9 × 𝜆1 , 𝜆3 = 1.0 ×

𝜆1 , and the calculated average correlation coefficient for 𝐵𝑀𝐴𝑃(1) at 𝑙𝑎𝑔(1) is 

ccor = 0.002. 

The relationship between the arrival rates of the three states of 𝐵𝑀𝐴𝑃(2) with the 

fundamental arrival rate is defined as: 𝜆1 = 3.0 × 𝜆𝑡𝑜𝑡  , 𝜆2 = 1.0 × 𝜆1 , 𝜆3 = 5.0 ×

𝜆1, the calculated average correlation coefficient for 𝐵𝑀𝐴𝑃(2) 𝑙𝑎𝑔(1)  is ccor = 0.26. 

For 𝐵𝑀𝐴𝑃(3) the relationship between the arrival rates of the three states and the 

fundamental arrival rate is defined as: 𝜆1 = 1.0 × 𝜆𝑡𝑜𝑡  , 𝜆2 = 1.0 × 𝜆1 , 𝜆3 = 10.0 ×

𝜆1 , and the calculated average correlation coefficient for 𝐵𝑀𝐴𝑃(3) 𝑙𝑎𝑔(1)  is: 

ccor = 0.48. 

And finally for 𝐵𝑀𝐴𝑃(4), the arrival rates are set as 𝜆1 = 5.0 × 𝜆𝑡𝑜𝑡  , 𝜆2 = 1.0 × 𝜆1 ,

𝜆3 = 0.5 × 𝜆1, with calculated average correlation coefficient at 𝑙𝑎𝑔(1)  being 

ccor = 0.076. 

For each of the BMAPs, the rest of the matrices of 𝐷𝑘 , 1 ≤ 𝑘 ≤ 3, are calculated 

using the method introduced in [98] where having 𝐷0 and 𝑄 would be used to first 

calculate the sum of the remaining matrices defined as 𝐷. Then using the formula 

introduced below, the rest of the 𝐷𝑘, 𝑘 = 1,3̅̅ ̅̅  are calculated as follows, where 

𝑞 = 0.8: 

𝐷 = 𝑄 − 𝐷0      (3.53) 
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𝐷𝑘 = 𝐷𝑞𝑘−1(1 − 𝑞)/(1 − 𝑞3)    (3.54) 

The mean service rate of the four examples of BMAP/M/1 queue is set to 𝜇 = 10.0. 

The fundamental arrival rate is increased during the execution of the analytical 

model and simulation for the purpose of comparing the average waiting time and 

increase of queue lengths in regards to the increase of the load intensity of the 

queue.  

 

Figure 3.9: Mean queue length in 3-State BMAP/M/1 queue with  

different average correlation coefficient values. 

 

Figure 3.10: Mean Waiting Time in Queue for 3-State BMAP/M/1  

queue with different average correlation coefficient values. 
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Figures 3.9 and 3.10 depict the results of analytical modelling and simulation of the 

mean queue length and mean waiting time of the BMAP/M/1 queues under various 

traffic intensities with different auto-correlation coefficients. The results explicitly 

confirm the fact that the increase in the auto-correlation coefficient of interarrival 

times of the arrival process increases the burstiness of the incoming traffic which in 

turn increases the mean waiting time and queue length of the models. In this 

regard, the mean queue length and mean waiting time of 𝐵𝑀𝐴𝑃(3), which on 

average has the highest auto-correlation coefficient of interarrival times (0.48) at 

𝑙𝑎𝑔(1), reach the saturation level at a point much sooner than the other BMAPs. 

The mean queue length of this model reaches saturation point when the traffic 

intensity of the queue is around 4.5 in comparison to 𝐵𝑀𝐴𝑃(1) which has the 

lowest auto-correlation coefficient of interarrival times (0.002) at 𝑙𝑎𝑔(1). These 

results show that the auto-correlation coefficient of interarrival times has a great 

effect on the performance results and dominates the queueing performance. 

The increase of the auto-correlation coefficient of interarrival times as the traffic 

intensity increases on the mean queue length and mean waiting time of the queues 

are shown in Figures 3.11 and 3.12, respectively. However, for clarity of the figures 

𝐵𝑀𝐴𝑃(1) results are omitted due to the very small value of the correlation 

coefficient of interarrival times.  

Figure 3.13 shows the relationship between the increase in the traffic intensity and 

the increase in the correlation coefficient of interarrival times of the queues under 

study. 
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Figure 3.11: Comparison of mean queue length in 3-state BMAP/M/1  

queue with correlation coefficient of interarrival times. 

 
Figure 3.12: Comparison of mean waiting time in 3-State BMAP/M/1  

queue with correlation coefficient of interarrival times. 

 
Figure 3.13: Comparison of correlation coefficient of interarrival times in 3-

state BMAP/M/1 queues with traffic intensity. 
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 Scenario 3: Effect of the Number of States of the Underlying Markov 

Chain on BMAP/M/1 Queues  

For this scenario, four different BMAP/M/1 queues are considered where the 

maximum batch sizes are fixed while the number of states of the underlying 

Markov Chain varies. This provides the basis for the analysis and study of the 

effect of number of states composing the underlying Markov Chain on the 

performance of queues whose input is modelled using the BMAP process.  

In this section, a set of real data traces are used for developing BMAPs 

parameters. Again the data traces are obtain from the high quality measurement of 

the video stream for the film “Tears of Steel”, encoded in H.265/HEVC codec [159]. 

Utilizing the Expectation Maximization technique as in [102], a set of parameters 

are estimated such that the resulting model closely matches the statistical 

properties of the original trace. To be able to compare the BMAPs with different 

number of states with each other, a single source of data trace should be used. 

However, just like previous scenarios the overall load on the system and the mean 

service time are kept the same for all BMAPs at each point of time for comparison 

purposes. Having estimated the infinitesimal generator and the 𝐷0 matrix using the 

aforementioned EM algorithm, the rest of the the 𝐷𝑘 , 𝑘 = 1,3̅̅ ̅̅  matrices are 

developed using the same method as in previous scenario via: 𝐷 = 𝑄 − 𝐷0  and 

𝐷𝑘 = 𝐷𝑞𝑘−1(1 − 𝑞)/(1 − 𝑞3), where 𝑞 = 0.8. 

The BMAPs under study are named in the form of 𝐵𝑀𝐴𝑃(𝑖, 𝑗), where 𝑖 represents 

the number of states and 𝑗 represents the maximum batch size. Maximum batch 

sizes for BMAPs under study are kept to 3 during this scenario. The models and 
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simulations are studied under varying traffic intensities which is the result of 

varying arrival rates. The infinitesimal generator and matrix 𝐷0 of each of the 

BMAPs are as follows: 

 BMAP(2,3): 

𝑄 = [
−0.086 0.086
0.549 −0.549

]  𝐷0 = [
−0.86 ∗ 𝜆𝑡𝑜𝑡 0.022

0.174 0.14 ∗ 𝜆𝑡𝑜𝑡
]   

 BMAP(3,3): 

𝑄 =
−0.158 0.096 0.063

0.4 −0.76 0.366
0.66 0.765 −1.43

       

𝐷0 =

−0.75 ∗ 𝜆𝑡𝑜𝑡 0.021 0.012
0.11 −0.17 ∗ 𝜆𝑡𝑜𝑡 0.054

0.099 0.19 −0.077 ∗ 𝜆𝑡𝑜𝑡

    

 BMAP(4,3):  

𝑄 =
−0.27
0.28

   
0.09

−0.81
   

0.08
0.24

   
0.08
0.29

       

             
0.38
0.81

    
0.40
0.54

   
−1.40
0.72

  
0.61
−2.1

      

𝐷0 =
−0.63 ∗ 𝜆𝑡𝑜𝑡

0.059
   

0.02
−0.18 ∗ 𝜆𝑡𝑜𝑡

   
0.02
0.07

   
            0.03
            0.05

    

             
0.095
0.252

    
                0.14
                0.13

       
−0.11 ∗ 𝜆𝑡𝑜𝑡

0.12
  

0.17
−0.08 ∗ 𝜆𝑡𝑜𝑡

   

 BMAP(6,3): 

𝑄 =
−0.39 0.06 0.08
0.25 −1.1 0.21
0.39 0.33 −1.8

    
0.07 0.09 0.09
0.23 0.16 0.25
0.37 0.36 0.36

    

           
0.37 0.45 0.44
0.71 0.57 0.55
0.77 0.71 0.61

    
−2.38 0.46 0.66
0.68 −3.1 0.59
0.62 0.70 3.41

    

c 
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𝐷0 =

−0.53 ∗ 𝜆𝑡𝑜𝑡 0.01 0.02
0.06 −0.16 ∗ 𝜆𝑡𝑜𝑡 0.05
0.07 0.05 −0.1 ∗ 𝜆𝑡𝑜𝑡

        
0.02               0.02               0.02
0.08                0.06               0.07
0.09                0.11                0.06

 

            
0.07              0.06               0.15
0.17             0.11               0.21
0.21             0.24              0.16

         

−0.08 ∗ 𝜆𝑡𝑜𝑡 0.13 0.14
0.16 −0.06 ∗ 𝜆𝑡𝑜𝑡 0.22
0.10 0.19 −0.06 ∗ 𝜆𝑡𝑜𝑡

 

 

Figures 3.14 and 3.15 show the results for mean queue length and mean waiting 

time of the four BMAPs with varying number of states. The results clearly indicate a 

direct relationship between the increase in the number of the states of the 

underlying Markov Chain of the BMAP process and the increase in the saturation 

speed of the queues. When the number of the states is equal to 6, the increasing 

speed of the mean queue length is faster than when the number of states is less, 

e.g. 3. The same stands for the mean waiting time; smaller Markov Chain results in 

the queue reaching the saturation state in a lower speed.  

From the outcome of the study it can be concluded that increase in the number of 

the states of the underlying Markov Chain increases the burstiness of the traffic 

generated by the BMAP process, and therefore affects the performance of the 

queue through increasing the speed towards reaching a saturation point. 

 

 Scenario 4: Effect of Batch Size on BMAP/M/1 Queues 

For this part of studying queues with BMAP as input process, the effect of increase 

in the variety of batch sizes on the performance of the queue is considered. For 

this reason, the number of states of the underlying Markov Chain is kept the same 

for all models and throughout all points of time during the simulations for each run. 

c 
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However during different runs, the possible maximum batch size is increased. The 

BMAPs are modelled with a 3 state Markov Chain and are shown as 𝐵𝑀𝐴𝑃(3, 𝑗), 

where 𝑗 resembles the maximum batch size acceptable for each BMAP. The 

maximum batch sizes considered are 2, 5 and 10. 

 

Figure 3.14: Mean queue length for BMAP/M/1 queue with 

variable number of states in Markov Chain with maximum batch size of 3. 

 

Figure 3.15: Mean waiting time in queue for BMAP/M/1 queues with 

variable number of states in Markov Chain with maximum batch size of 3. 
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The parameterization used for the BMAPs is based on the values calculated and 

used within [98], therefore the infinitesimal generator 𝑄 and the matrix 𝐷0, are 

defined as: 

𝑄 =
−0.247533 0.156836 0.090698
0.123767 −0.247533 0.123767
0.090698 0.103926 −0.194622

          

𝐷0 =

−0.3 ∗ 𝜆𝑡𝑜𝑡 0.090698 0.090698
0.090698 −0.34 ∗ 𝜆𝑡𝑜𝑡 0.090698
0.090698 0.090698 −0.36 ∗ 𝜆3

    

As in previous scenarios, the rest of the matrices of each BMAP, 𝐷𝑘 , 1 ≤ 𝑘 ≤ 𝐾𝑚𝑎𝑥, 

are calculated using the method introduced in [98] where having 𝐷0 and 𝑄 would 

help to calculate the sum of the remaining matrices defined as 𝐷, and then using 

the introduced formulas in Eq. (3.53) and Eq. (3.54) the rest of the 𝐷𝑘 , 𝑘 = 1, 𝐾𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

are calculated. However, Eq. (3.54) should be updated each time according to the 

maximum possible batch size as: 𝐷𝑘 = 𝐷𝑞𝑘−1(1 − 𝑞)/(1 − 𝑞𝐾𝑚𝑎𝑥), with 𝑞 = 0.8. The 

mean service rate of all BMAP/M/1 queues is set to 𝜇 = 10.0. 

Figures 3.16 and 3.17 show the effect of increased maximum batch size on the 

performance of queues modelled using a 3-state BMAP as an arrival process. 

From the results it is clear that increase in the possible maximum batch size of the 

BMAP process increases the speed by which the queue reaches the saturation 

point. Three different BMAP processes are considered for the same queue with 

different maximum batch sizes of 2, 5 and 10. The mean queue length and mean 

waiting times in the BMAP/M/1 queue with maximum batch size of 10 are overall 

higher than the other two queues. Moreover the performance measures of this 

queue reaches saturation point a lot quicker than the queues with maximum batch 
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sizes of 2 and 5. The results for BMAP/M/1 queue with maximum batch size of 5 

also show higher performance measures compared to the queue with maximum 

batch size of 2. However it is important to note that the increase in maximum batch 

size does not significantly affect the correlation of the interarrival times of the 

incoming batches to the queue. Instead, the increase in maximum possible batch 

size for BMAP increases the burstiness of the traffic generated and so the queue 

reaches the saturation point a lot sooner than when the maximum possible batch 

size is smaller. 

 

Figure 3.16: Mean queue length for 3-State BMAP/M/1 queues with 

varying maximum batch size. 

 

Figure 3.17: Mean waiting time in queue for 3-State BMAP/M/1 queues with 

varying maximum batch size. 
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3.10. Summary 

This chapter concentrated on the study of MMPP/M/1 queue and mainly 

BMAP/M/1 queue. The properties of these queues were studied with the aim of 

developing models and simulators that would form the basis of future studies. It 

was explained that the 𝐺 matrix plays and important role in the analysis of 

BMAP/M/1 queue and calculations of its important performance measures, as it 

captures the characteristics of the queue during the busy period. A general 

numerical procedure was presented based on the work of Lucantoni in [71], for 

developing an analytical solution for the performance measures of the BMAP/M/1 

queue. Below is a summary of the main steps of this procedure: 

1. Compute matrix 𝐴 through summation of the {𝐴𝑛} matrices which are the 

starting point of a long series of numerical computations, which should be 

computed to high level of accuracy. 

2. Compute the G matrix through generation of a sequence of non-negative 

matrices which increase monotonically to the unique solution required for G. 

Once G is calculated up to the desired accuracy, the stationary probability 

vector of g can be generated. 

3. Calculate the value of the desired vector β and vector μ. This is the stage at 

which a powerful accuracy check can be carried out through verification of 

equation: 𝑔𝜇 = (1 − 𝜌)−1, using the computed estimates of g and μ. 
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4. Calculate matrix 𝐷[𝐺] using the famous Horner’s method. With the 

computation of the two important values of 𝒦 and 𝐾, vector 𝐾∗ can be gained 

which can then be used to calculate the 𝑥0 vector. 

5. At this stage, all required parameters for calculating the queue length at 

departures are computed, therefore the first two moments of the queue length 

distribution at departures (𝑋(1)(1)𝑒 and 𝑋(2)(1)𝑒) can be calculated explicitly in 

terms of 𝑥0. 

6. To calculate the moments of the queue length at arbitrary times, the value of 𝑦0 

should be calculated which is then used for the calculation of 𝑌(1)(1)𝑒 and 

𝑌(2)(1)𝑒, the first and second moments of the queue length at arbitrary times. 

Also the moments of the virtual waiting time distribution can be calculated 

using 𝑦0, from which the moments of the actual waiting times can then be 

calculated. 

With completion of the analytical study of the BMAP/M/1 queue, the rest of the 

chapter focused on the study of the queue under different settings. The aim was to 

1) validate the developed models and simulators for 𝑚-state BMAP/M/1 queue with 

various maximum batch sizes and 𝑚-state MMPP/M/1 queues, 2) to understand 

the effect of different settings of maximum number of states or batch sizes of the 

BMAP process on the performance measures of the BMAP/M/1 queue, 3) to study 

the effect of different batch sizes and number of states on the correlation 

coefficient of interarrival times and burstiness of the generated traffic using the 

BMAP process. 
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From the study of the models and simulations it was noted that even though the 

increase in the traffic intensity does increase the performance measures of mean 

waiting time and mean queue length until the queue becomes saturated, different 

settings have important effects on the speed towards saturation. For example 

when the BMAP process has higher number of states in the underlying Markov 

Chain or it has the possibility of having bigger batch sizes, the increase in the 

mean waiting time and mean queue length towards saturation is faster. It is safe to 

say that any increase in the maximum batch size or number of states in the 

underlying Markov Chain increases the burstiness of the traffic and results in 

higher values of mean waiting time and mean queue length. 

At times when the number of states of the underlying Markov Chain and the 

maximum possible batch size are the same, the increase in the correlation 

coefficient of interarrival times of the BMAP process increases the burstiness of the 

generated traffic. In particular the gained results illustrate the dependence of the 

waiting time of packets and queue length on burstiness, correlation and variation of 

packet arrival rates. 

The results clearly prove that BMAP is a versatile process that can greatly capture 

the burstiness and correlation of interarrival times and packet size distributions of 

the multimedia traffic under various settings. Finally, the results also illustrate the 

fact that BMAP/G/1 queues can be greatly used in modelling wireless 

communication networks where the network parameters can constantly change, 

e.g., due to unreliability of some elements of the network, imperfect channels, 

mobility of the stations, etc. 
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Chapter 4: 

Modelling of Wireless Local Area Networks under 

Bursty Traffic 

 

4.1. Introduction 

Burstiness and self-similarity are two most important characteristics of multimedia 

traffic generated by various applications in computer networks (compressed video, 

voice, file transfer and etc.). The two properties play a critical role in determining 

efficient network design as there is a strong relationship between burstiness and 

correlation within multimedia traffic, since strong positive correlations are major 

causes of burstiness.  

The weaknesses of the existing analytical models developed for the IEEE 802.11 

MAC DCF scheme reported in the current literature are threefold: 

1- While existing traffics within networks have the above described properties, 

many studies on the performance analysis of WLANs still use processes that 

do not embrace correlation or burstiness characteristics of network traffic, such 

as the Poisson Process or MMPP. 

2- Most existing analytical models reported in the current literature on 802.11 

MAC DCF, primarily focus on the analysis of system throughput and access 

delay, and do not consider other important QoS performance metrics, such as 

end-to-end delay and energy consumption.  
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3- Also, the analytical models developed for the MAC DCF scheme are mainly 

based on unrealistic network assumptions such as saturated stations and 

infinite transmission buffers.  

As a result, this chapter presents the fundamental methodology and components to 

develop an analytical model for the analysis of WLANs under practical and realistic 

working conditions. The transmission queue at each station is modelled as a 

BMAP/G/1/N queuing system where the arrival traffic follows a Batch Markovian 

Arrival Process with the average arrival rate of 𝜆𝑡𝑜𝑡 (frames/second), to support 

multimedia applications including real-time and non-real-time video and voice. The 

BMAP process enables the modelling of the batch arrivals, variance of interarrival 

times, correlation of interarrival times, and many other subtle characteristics of the 

arrival process (e.g. the correlation between the local intensity of arrivals of 

batches with the size of an arriving batch), which are property of utmost importance 

in the queueing performance of multimedia traffic. Also BMAP has a unique 

advantage of combining great complexity and modelling capabilities with the 

analytical tractability which makes it a great solution for modelling multimedia traffic 

in WLANs.  

The service time of the queueing system is defined as the time interval from the 

instant that a frame starts contending for the channel to the instant that either the 

data is acknowledged following successful transmission or data is terminated due 

to transmission failure. The service time is calculated through modelling the backoff 

procedure of the frame transmission scheme under unsaturated conditions. The 

final developed model can be used in real-time traffic control schemes in network 

elements in order to predict congestion and QoS. 
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The rest of this chapter is organized as follows: section 4.2 presents the analytical 

model for the MAC DCF mechanism with the assumption of un-saturated network 

conditions for all sources. Section 4.3 presents the analytical model for calculation 

of waiting time, queue length, loss probability and energy consumption of nodes in 

a WLAN modelled using BMAP/M/1/N queue. In section 4.4 the developed model 

is validated through NS-2 simulation experiments and performance evaluations are 

conducted for the comparison of the results from the analytical model with the 

results gained from simulation. And finally section 4.5 summarizes and concludes 

this chapter. 

 

4.2. Analytical Model of the IEEE 802.11 MAC DCF Scheme 

As a result of massive changes in consumption patterns of digital devices and high 

demands for multimedia services due to rapid arising and widespread usage of 

advanced hardware and software technologies, large amounts of traffic are 

constantly generated and transferred on ubiquitous IEEE 802.11-based WLANs 

and in particular ad-hoc WLANs which have become imperative in the context of 

wireless networks. 

In this regard, IEEE 802.11 is the dominant standard implemented in majority of 

digital devices using ad-hoc technology. The standard first introduced in 1997 [3] 

presents the set of media access and physical layer specifications required for 

implementing WLANs. The main channel access mechanism provided by IEEE 

802.11 is the Distributed Coordination Function (DCF), which allows sharing of the 

wireless medium through the use of Carrier Sense Multiple Access with Collision 
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Avoidance (CSMA/CA). In section 2.2.3 of Chapter 2, the mechanism of the DCF 

function and CSMA/CA in IEEE 802.11 WLANs is explained in details. 

Bianchi [8] developed a bi-dimensional Markov chain to model the backoff 

procedure of the IEEE 802.11 in single hop WLANs, deriving the saturation 

transmission probability, with the assumption that all stations are always ready for 

transmission and their transmission queues are assumed to always be non-empty. 

Duffy et al. in [124], extended Bianchi’s model [8] for non-saturated conditions and 

Wu et al in [160] extended the model to accommodate the case of retry limit. In this 

section, the analytical models of [124, 160] are extended to develop an analytical 

model for WLAN under unsaturated network conditions with limited retry and 

limited buffer size in order to develop a condition closer to realistic networks for 

applying the multimedia traffic. Therefore, the analytical model is based on the 

assumption of ideal channel conditions (i.e. no hidden terminals) and fixed number 

of identical stations (𝑛) in an unsaturated scenario.  

An 802.11 WLAN can be considered as a discrete time system which contains 

multiple generic time slots. In this report, the term time slot is used to denote the 

time interval between the starts of two consecutive decrements of backoff counter, 

while the term physical time slot represents a fixed time interval (unit time) 

specified in the IEEE 802.11 standard [3], which is dependent on the physical layer 

and accounts for the propagation delay. A generic slot may contain an empty slot, 

a collision, or a successful transmission. 



114 
 

A station transmits only when its transmission queue is non-empty, therefore the 

transmission probability 𝜏 is calculated by weighting the saturation transmission 

probability with the probability of the non-empty transmission queue:  

𝜏 = (1 − 𝑃0)𝜏′       (4.1) 

where 𝑃0 is the probability that the transmission queue of the station is empty, the 

value of which will be calculated in section 4.3. Eq. (4.1) is calculated with the 

assumption of no post backoff as stated in [24]. Whenever there is a new packet 

arrival, the station starts a backoff procedure. 𝜏′ is the saturation transmission 

probability or the stationary probability that the station transmits a packet in a 

generic (i.e. randomly chosen) slot time, and is calculated as [160]: 

𝜏′ =
2(1−2𝑝)(1−𝑝)

(1−2𝑝)(1−𝑝𝑚+1)+(1−𝑝)𝑊(1−(2𝑝)𝑚′+1)+𝑊2𝑚′
𝑝𝑚′+1(1−2𝑝)(1−𝑝)𝑚−𝑚′  (4.2) 

where 𝑊 is the minimum contention window size, 𝑚 is the maximum backoff stage 

(i.e. retry limit) and 𝑚′denotes the maximum number of times that 𝑊 can be 

doubled. 𝑝 is the conditional collision probability and is equal to the probability that 

at least one of the remaining stations transmits in a given time slot: 

𝑝 = 1 − (1 − 𝜏)𝑛−1      (4.3) 

The mean service time is the summation result of the average channel access 

delay, 𝐸[𝐴], and average transmission delay,  𝐸[𝑇]. The channel access delay is 

the time interval from the moment the frame reaches the head of the queue and 

contends for the channel until the time it gains access and is ready for 

transmission. The transmission delay is the time interval of the frame being 

successfully transmitted. Thus, the mean service time can be shown as follows: 
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𝐸[𝑆] = 𝐸[𝐴] + 𝐸[𝑇]      (4.4) 

Assuming that the frame is successfully transmitted after experiencing 𝑗, (𝑗 ≥ 0), 

collisions, its channel access delay would equal to the delay caused by 𝑗 

unsuccessful transmission and the (𝑗 + 1) backoff stages. Therefore the channel 

access delay is calculated as: 

𝐸[𝐴] = 𝑇𝑐𝜑 + 𝜎′𝛿      (4.5) 

where 𝑇𝑐 is the collision time, 𝜑 is the average number of collisions before a 

successful transmission from the station, 𝜎′ is the average length of a time slot, 

and 𝛿 represents the average number of time slots the station defers during the 

backoff stages. 

𝜑 = ∑
𝑗𝑝𝑗(1−𝑝)

(1−𝑝𝑚+1)
𝑚
𝑗=0       (4.6) 

𝛿 = ∑ ∑
𝑊ℎ−1

2

𝑝𝑗(1−𝑝)

(1−𝑝𝑚+1)

𝑗
ℎ=0

𝑚
𝑗=0      (4.7) 

where 𝑝𝑗 is the probability that the frame experiences 𝑗, (0 ≤ 𝑗 ≤ 𝑚), collisions and 

𝑊ℎ−1

2
 denotes the mean of the backoff counters generated in the ℎ-th (0 ≤ ℎ ≤ 𝑗) 

backoff stage. 

𝑃𝑡𝑟 represents the probability that at least one of the remaining stations transmits in 

a given time slot while the current station is in backoff procedure. When a station 

transmits, the value of 𝑃𝑡𝑟 would be equal to the value of 𝑝 which is given in Eq. 

(4.3). 
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𝑃𝑠 is the probability that a transmission occurring on the channel is successful 

given by the probability that exactly one station transmits on the channel, 

conditioned on the fact that other stations are in a backoff procedure: 

𝑃𝑠 = 𝑛𝜏(1 − 𝜏)𝑛−1      (4.8) 

The average size of a time slot shown by 𝜎′, is calculated differently at different 

stages. When the station is in the backoff stage, the size of the time slot is 

obtained by considering the fact that the channel is idle with probability: 

𝑃𝑖𝑑𝑙𝑒 = (1 − 𝑃𝑡𝑟).       (4.9) 

When the transmission is successful, it equals to 𝑃𝑠. And finally when there is a 

collision the size of time slot would equal to (𝑃𝑡𝑟 −  𝑃𝑠). Therefore the value of 𝜎′ is 

calculated as follows: 

𝜎′ = (1 − 𝑃𝑡𝑟)𝜎 + 𝑃𝑠𝑇𝑠 + (𝑃𝑡𝑟 − 𝑃𝑠)𝑇𝑐    (4.10) 

where 𝜎 is the duration of an empty physical time slot as mentioned in [36]. 

𝑇𝑠 is the average time the channel is sensed busy by each station because of 

successful transmission, and 𝑇𝑐 is the average time the channel is sensed busy by 

each station during a collision [8]. The values of 𝑇𝑠, 𝑇𝑐 and 𝜎 should all be 

expressed with the same unit. 

𝑇𝑠 = 𝑇𝐻 + 𝑇𝐿 + 𝑆𝐼𝐹𝑆 + 2𝛥 + 𝐴𝐶𝐾 + 𝐷𝐼𝐹𝑆   (4.11) 

𝑇𝑐 = 𝑇𝐻 + 𝑇𝐿 + 𝐷𝐼𝐹𝑆 + 𝛥     (4.12) 
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where 𝑇𝐻 is the average time required to transmit the frame header ( 𝐻 = 𝑃𝐻𝑌ℎ𝑑𝑟 +

𝑀𝐴𝐶ℎ𝑑𝑟). 𝛥 is the propagation delay and 𝑇𝐿 is the average time required to transmit 

the longest frame payload. 

As mentioned earlier 𝐸[𝑇] is the average transmission delay which can be 

expressed as: 

𝐸[𝑇] = 𝐷𝐼𝐹𝑆 + 𝑇𝐻 + 𝑇𝐿 + 𝑆𝐼𝐹𝑆 + 𝐴𝐶𝐾 + 2𝛥   (4.13) 

 

4.3. BMAP/M/1/N Queueing Analysis of Stations 

This section concentrates on the modelling and analysis of transmission queue of 

the stations within the WLAN. As mentioned earlier, in this model the stations 

within the WLAN are modelled as BMAP/M/1/N queuing systems [71], where 𝑁 

represents the limited buffer size of each station. The idea is the same as any 

queueing model, when a frame reaches the head of the transmission queue, the 

server becomes busy, and as soon as a frame is acknowledged by the destination 

following a successful transmission, the server becomes free. The service time is 

dependent on the size of the frame transmitted and is modelled by an exponential 

distribution function with mean 𝐸[𝑆]. Thus, the service rate, 𝜇, can be calculated 

as: 

𝜇 = 1/𝐸[𝑠]       (4.14) 

BMAP is characterized by an underlying Continuous Time Markov Chain (CTMC). 

The number of states in the CTMC represents the number of states considered for 

BMAP. Figure 4.1 presents a 3-state CTMC of the model with maximum batch size 

of 3, and Figure 4.2 shows the state transition diagram of the BMAP/M/1/N queue 
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assuming that the maximum buffer size of each station is 𝑁 (𝑁 = 50) with the 

maximum batch size of 3: 

 

Figure 4.1: Three-state CTMC underlying BMAP with batch size three 

 

Figure 4.2: State transition diagram of the BMAP/M/1/N (N=50) queue 
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For clarity and simplicity, the following definitions are presented assuming that a 

three state BMAP with batch size of maximum three models the nodes of the 

stations within the network under study. The definitions are definitely extendible to 

a more general BMAP. 

State (𝜂, 𝑠), where (𝑠 = 0, … , 𝑁) and (𝜂 = 0,1,2), represent the case that there are 𝑠 

frames in the queuing system and the three-state BMAP characterizing the traffic 

of the station is at state 𝜂. The transition rate diagram of the BMAP/M/1/N queue is 

complex. It is characterized based on the states and the batch size of the arrival 

process. If the batch size is one, meaning that only one frame arrives at the station 

at one time, then, the transition rate from state (𝜂, 𝑠) to (𝜂, 𝑠 + 1) in the CTMC 

would be determined by the respective value from the matrix of 𝐷1(𝜂, 𝜂), 

considering that the arrival rate of the generated frame stays the same, meaning 

that the CTMC is still at the same state. For batch sizes greater than 1, the 

transition rate from state (𝜂, 𝑠) to (𝜂, 𝑠 + 𝑘), would be determined by 𝐷𝑘(𝜂, 𝜂) for 

(𝑘 > 1), again with the arrival rate staying the same as before. However if there is 

a transition from state 𝜂 to any other state, e.g. 𝜂 + 1, with arrivals of batch size of 

𝑘, then the transition rate would be determined by 𝐷𝑘(𝜂, 𝜂 + 1). 

The transition rate out of state (𝜂, 𝑠) to (𝜂, 𝑠 − 1), would equal to the service rate 𝜇. 

Whereas the transition rate from state (𝜂, 𝑠) to (𝜂′, 𝑠), where 𝜂′ = (0,1,2) and 𝜂′ ≠

𝜂, would have to be determined by the 𝐷0(𝜂, 𝜂′) matrix considering there is no 

arrival at the time of transition, or by 𝐷𝑘(𝜂, 𝜂′) for (𝑘 > 0) if there is any arrival 

during the transition time. 
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Following the above analysis, the transition rate matrix 𝐺, which would be of size 

(𝑁 + 1) × (𝑁 + 1) (with 𝑁 being the size of the buffer for each station), of the 

underlying CTMC of Figure 4.2 can be obtained: 

     

−(𝐷0(0,1) + 𝐷0(0,2) + 𝐷1(0,0) + ⋯ ) 𝐷1(0,0) 𝐷2(0,0)

𝜇 −(𝜇 + 𝐷0(0,1) + ⋯ ) 𝐷1(0,0)

0 𝜇 −(𝜇 + 𝐷0(0,1) + ⋯ )

    

𝐷3(0,0) 0 …

𝐷2(0,0) 𝐷3(0,0) …

𝐷1(0,0) 𝐷2(0,0) …

 

𝐺 =             ⋮  ⋱   ⋱   ⋱  ⋱ 

     𝐷0(2,0)          𝐷1(2,0)              𝐷2(2,0)         𝐷3(2,0)   ⋯ 

  ⋮  ⋱   ⋱ … 

(4.15) 

To calculate the steady state probability vector 𝑃 = (𝑃𝑠,𝜂 , 𝑠 = 0,1, . . . , 𝑁, 𝜂 =

0,1,2) = (𝑃0, 𝑃1, … , 𝑃𝑁) of the Markov chain, the transition rate matrix 𝐺 and the 

following equations can be used: 

𝑃𝐺 = 0   𝑎𝑛𝑑   𝑃𝑒 = 1      (4.16) 

where 𝑃𝑠 =  (𝑃𝑠,0,  𝑃𝑠,1,  𝑃𝑠,2),   0 ≤  𝑠 ≤  𝑁. 

Using the method indicated in Eq. (4.17) [85], the above equations can be solved 

in order to calculate the steady-state vector, 

𝑃 = 𝑢(𝐼 − ℛ + 𝑒𝑢)−1      (4.17) 

where ℛ = 𝐼 + (
𝐺

𝑚𝑖𝑛{𝐺(𝑗,𝑗)}
) denotes the minimum diagonal element of the transition 

rate matrix 𝐺. In Eq. (4.17), 𝑢 is an arbitrary row vector of ℛ, and 𝑒 is a column 

vector of 1’s. As a result of the above method, the probability 𝑃0 that the 

transmission queue of a station is empty is obtained. 
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4.4. Performance Measures 

This section concentrates on the analysis and calculation of unsaturated 

throughput, end-to-end delay, loss probability and energy consumption of the IEEE 

802.11 MAC protocol under bursty traffic. The analytical model is based on the 

assumption of ideal channel conditions (i.e. no hidden terminals) and fixed number 

of unsaturated stations. In other words each station transmits only when its 

transition queue is non-empty. 

Basically the arrival process of each station is modelled using the Batch Markovian 

Arrival Process; the service time distribution is given by the distribution function of 

𝐻(𝑠) which is assumed to be Exponential, and the service discipline (or the queue 

discipline of each station) is modelled as First Come First Serve (FCFS). What is 

important is that the system capacity is finite and is equal to 𝑁. This means that the 

total number of frames in the system of each station must not exceed N. Frames 

arriving when the queue is full are lost and never return. The service times are 

assumed to be mutually independent and that they do not depend on the arrival 

process.  

𝜋𝑠 denotes the steady-state probability of 𝑠 frames being in the queuing system of 

a station and is given by: 

𝜋𝑠 = 𝑃𝑠𝑒,    𝑓𝑜𝑟  0 ≤ 𝑠 ≤ 𝑁     (4.18) 

The probability that the transmission queue of the station is empty, 𝑃0, can be 

calculated by 𝜋0. Assume 𝜋𝑠
′  represents the steady-state probability of 𝑠 frames 
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being in the queuing system of a station when a frame arrives. In the case of 

BMAP traffic, 𝜋𝑠
′  can be written as [161]: 

𝜋𝑠
′ =

𝑃𝑠𝛬𝑒

∑ 𝑃𝑠𝛬𝑒𝑁
𝑠=0

,      𝑓𝑜𝑟   0 ≤ 𝑠 ≤ 𝑁    (4.19) 

where 𝛬 is a diagonal matrix containing the arrival rates of each state of the 

underlying CTMC of BMAP. The values of the 𝛬 matrix can be gained from the 

absolute values of the diagonal elements of the 𝐷0 matrix of BMAP. 

The loss probability, the probability that an arriving frame finds the buffer of the 

station full, is shown by 𝑃𝑏, and can be gained from 𝜋𝑁
′ . 

𝑃𝑏 = 𝜋𝑁
′ =

𝑃𝑁𝛬𝑒

∑ 𝑃𝑠𝛬𝑒𝑁
𝑠=0

,      𝑓𝑜𝑟   0 ≤ 𝑠 ≤ 𝑁   (4.20) 

With 𝐸[𝑃] being the frame payload size and 𝜆𝑡𝑜𝑡 the fundamental traffic arrival rate 

of the station, then the throughput, 𝑇𝐻, of the station can be computed by: 

𝑇𝐻 = 𝜆𝑡𝑜𝑡𝐸[𝑃](1 − 𝑝𝑏)     (4.21) 

The end-to-end delay is the time interval from the instant that a frame enters the 

transition queue of the source station, to the instant that the frame is acknowledged 

after successful transmission by the destination station. Using the Little’s Law, the 

average end-to-end delay of a frame being transmitted from a source station to a 

destination station, 𝐸[𝐷], can be calculated as: 

𝐸[𝐷] =
𝐸[𝑁]

𝜆𝑡𝑜𝑡(1−𝑝𝑏)
      (4.22) 

𝐸[𝑁] is the average number of frames in the queuing system of the station, which 

can be computed as: 
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𝐸[𝑁] = ∑ 𝑠𝜋𝑠
𝑁
𝑠=1       (4.23) 

𝜆𝑡𝑜𝑡(1 − 𝑝𝑏) is the effective arrival rate of the transmission queue of the station. 

When the finite buffer becomes full, any arriving frames are discarded. 

 

4.5. Calculating the Energy Consumption 

With the increased maturity of 802.11 technologies over the years and ubiquity of 

WLANs in providing continuous Internet and network access to many mobile 

devices, many concentrations have focused on reducing the energy consumption 

of wireless networks. Since batteries limit the capability of most portable devices, 

energy conservation has become an increasing concern in the design and 

implementation of network protocols and technologies. As a result, many 

researches have devoted their studies into modelling the energy consumption of 

WLANs with the aim of gaining insights on the power consumption behaviour of 

real world wireless devices as well as ways to increase the energy efficiency and to 

prolong the battery life of wireless stations [162-164]. Major proportion of energy 

consumption in a WLAN interface relates to the contention based MAC protocol, 

which uses CSMA/CA mechanism [165]. High amount of energy is consumed not 

only during the active states, but also during the idle states of the protocol.  

The energy consumption (in Joules) of a WLAN interface is determined by the 

power (in Watts) consumed by the WLAN interface during transmission, receiving 

and idle states (doze), as well as the duration (in hours) the WLAN interface 

operates in these states. So in general, a WLAN interface is defined by three 

states of idleness (dozing), transmitting and receiving [31]. The solutions proposed 
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to reduce the energy consumption of wireless devices mainly evolve around two 

main issues: 1) reducing the power consumption of the WLAN interface or 2) 

minimizing the time WLAN interface operates in each of the states, e.g. 

transmitting or receiving. 

As a result, in this section the energy consumption of per successful frame within 

the developed model is considered and analysed as it could play an important role 

in design and implementation of WLANs. 

The average energy consumed by the interface of each station in a WLAN for 

successful transmission of a frame is calculated as: 

𝐸 = 𝐸𝑠𝑢 + 𝐸𝑐𝑜𝑙 + 𝐸𝑏𝑓 + 𝐸𝑒𝑚    (4.24) 

In the above equation, 𝐸 is composed of four components defined by 𝐸𝑠𝑢, 𝐸𝑐𝑜𝑙, 𝐸𝑏𝑓 

and 𝐸𝑒𝑚. 𝐸𝑠𝑢, is the energy consumed to successfully transmit a frame from source 

to destination. 𝐸𝑐𝑜𝑙 is the energy lost or wasted on collision of the frame while 

contending for the channel before successful transmission. 𝐸𝑏𝑓 is the amount of 

energy consumed during the backoff stages. The energy consumed by the stations 

when the queue is empty and the station has no pending frame for transmission is 

shown as 𝐸𝑒𝑚, which is also known as the doze or idle period. 

Even during the backoff stages, the stations consume energy, this is denoted here 

as 𝑒𝑜𝑣, or the energy of overhearing, as the station must continue to monitor the 

state of the channel and incoming data. When in the transmitting state, the station 

consumes energy which is denoted as 𝑒𝑡𝑥. This is composed of the energy 

consumed to transmit the data payload as well as MAC header frames. The energy 
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consumption of WLANs at the transmitting state is higher than that of the receiving 

state. This is due to the fact that when transmitting a frame, the station must 

amplify the signal so that the sending frame has enough power to reach its 

destination successfully.  

The energy consumed during the receiving phase is denoted as 𝑒𝑟𝑥 and the energy 

consumed during idle periods, when there is no transmitting or receiving of data, is 

shown as 𝑒𝑖𝑑. The rest of this section focuses on calculating the components of the 

energy consumption for each successful transmission of the stations in a WLAN. 

The first step is to find and calculate the energy consumed as a result of a 

successful frame transmission: 

𝐸𝑠𝑢 = 𝑒𝑡𝑥(𝑇𝐿 + 𝑇𝐻) + 𝑒𝑟𝑥𝑇𝐴𝐶𝐾 + 𝑒𝑖𝑑𝑇𝑆𝐼𝐹𝑆   (4.25) 

It is clear that the energy consumed for successful transmission entails the amount 

of energy used to transmit the header and payload, energy used to receive the 

acknowledgement and the energy consumed for the idle period of time that the 

station waits in between of transmission and receiving the acknowledgement, 

SIFS.  

The next step would be to calculate the energy consumed when the station incurs 

collision. On average each station entails 𝜑(1 − 𝑃𝑑) collisions, where 𝜑 represents 

the average number of collisions before a successful transmission from the station, 

and 𝑃𝑑 is the probability that the frame is dropped due to transmission failures and 

can be calculated as: 

𝑃𝑑 = 𝑃𝑡𝑟
𝑚+1      (4.26) 
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where 𝑃𝑡𝑟 is the probability that at least one of the remaining stations transmits in a 

given time slot while the current station is in backoff procedure, which as stated 

before would be the same as the value of 𝑃 calculated using Eq. (4.3). Therefore 

the consumed energy during collisions is expressed as: 

𝐸𝑐𝑜𝑙 = (𝑒𝑡𝑥(𝑇𝐿 + 𝑇𝐻) + 𝑒𝑖𝑑(𝑇𝐷𝐼𝐹𝑆 + 𝑇𝑆𝐼𝐹𝑆 + 𝑇𝐴𝐶𝐾)) ∗ (𝜑(1 − 𝑃𝑑))  (4.27) 

The next value to calculate is the energy consumed during the backoff process. If 

the channel is sensed idle, the backoff counters start to decrement by one physical 

time slot 𝜎 per time. However if there is a collision or a successful transmission 

from the other stations of the WLAN and the channel is sensed busy, the backoff 

counter is halted. Based on the equation defined for the calculation of average 

length of time slot in Eq. (4.10), the energy consumed during backoff stages can be 

calculated as: 

𝐸𝑏𝑓 = (𝑒𝑖𝑑𝜎 + 𝑒𝑜𝑣(𝑃𝑠𝑇𝑠 + (𝑃𝑡𝑟 − 𝑃𝑠)𝑇𝑐))(𝛿(1 − 𝑃𝑑))   (4.28) 

The value of the average number of time slot that each station defers during the 

backoff stages, 𝛿, is already presented in Eq. (4.7). 𝑃𝑠 is the probability that a 

transmission occurring on the channel is successful and can be calculated based 

on Eq. (4.8).  

𝐸𝑒𝑚 is the last part of Eq. (4.24) that should be calculated. 𝐸𝑒𝑚 represents the 

amount of energy consumed during the idle state of the station when there is no 

frame for transmission and the queue is empty. For this purpose, the average time 

that the transmission queue is empty, 𝑇𝑒𝑚, should be calculated. This can be done 

as: 
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𝑇𝑒𝑚 = 𝐸𝑠(
𝑃0

1−𝑃0
)     (4.29) 

where 𝐸𝑠, the mean service time of a buffer transmitted from a station, is already 

presented in Eq. (4.4). 𝑃0, the probability that the transmission queue of the station 

is empty, is calculated in section 4.3. Based on the value defined for 𝑇𝑒𝑚 and 

regardless of whether the channel is sensed busy or idle, the value of 𝐸𝑒𝑚 can be 

presented as: 

𝐸𝑒𝑚 = 𝑇𝑒𝑚(𝑒𝑖𝑑(1 − 𝑃𝑡𝑟) + 𝑒𝑜𝑣𝑃𝑡𝑟)   (4.30) 

 

4.6. Model Validation and Performance Evaluation 

In this section, the developed model for performance evaluation of the IEEE 802.11 

standard under bursty traffic is validated through extensive simulations using the 

NS2 [27] simulation environment under various scenarios and conditions. 

The developed model is simulated within a Basic Service Set (BSS) of WLANs 

where 𝑛  static stations are distributed within a rectangular 100𝑚 × 100𝑚 grid, and 

each station generates and transmits traffic to its paired stations. All stations are 

considered to be within the transmission range of each other and are paired 

randomly. 

The simulations are executed for duration of 600 seconds of NS2 simulation time, 

which is sufficiently long to gain a stable simulation and reliable performance 

results. The simulation results are collected after a 10 second warm up period. The 

remaining simulation settings of the WLAN and stations are summarized in Table. 

4.1: 
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𝐶𝑊𝑚𝑖𝑛 32 Retry limit (m) 7 

𝐶𝑊𝑚𝑎𝑥 1024 Basic Data 

Rate 

1 Mbps 

Slot time 20 μs Channel Data  

Rate 

11 Mbps 

DIFS 50 μs Propagation 

delay 

2 μs 

SIFS 10 μs ACK Frame  

Payload 

112 bits 

MAC hdr 224 bits PHY Header 192 𝑏𝑖𝑡𝑠 

Table 4.1: System parameters for performance analysis of IEEE 802.11 standard under 

bursty traffic 

 

To validate the developed model, a new traffic generator is developed in NS2 to 

accommodate the Batch Markovian Arrival Process using C++ and TCL 

programing languages. The practical usefulness of the analytical results using 

BMAP depends on how good the model is parameterised based on the original 

used traffic trace. For flexibility and scalability of the simulation experiments and 

the analytical model, real-world multimedia applications are adopted using the 

method presented in [102] for the calculation of the parameters. In each scenario, 

the details of the used data trace and developed parameters are explained in more 

details. 

The generated traffic in NS2 is then injected into the MAC buffer of the simulated 

stations where the wireless ad-hoc network will then transmit the traffic through a 

single-hop route.  
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 Scenario 1: Comparison Between 3-state BMAP, 3-state MMPP and 

Poisson 

In this scenario, the WLAN is composed of 𝑛 (𝑛 = 10) identical stations which are 

equipped with the 802.11𝑏 physical layer. The WLAN is assumed to be under ideal 

wireless channel conditions. The buffer size of all stations is configured to be 

maximum 50 frames and the size of all data frame payload is set to be 500 Bytes. 

To be able to show the accuracy of BMAP in modelling network traffic, four 

scenarios are considered: I) traffic generated by the stations modelled as a 3-state 

BMAP with maximum batch size of 3, II) traffic generated by the stations modelled 

as a 3-state BMAP with maximum batch size of 5, III) traffic generated by the 

stations modelled using a 3-state MMPP, and IV) traffic generated by the stations 

modelled by a Poisson Process. 

At this stage, as regards to the practical size limits and for ease of modelling and 

simulation, the BMAP of the queueing model at each station of the WLAN is 

considered to be composed of three states. The stations are assumed to be able to 

generate batches of maximum three and five frames at one time for different 

scenarios; however the accuracy of the model will slightly increase as the CTMC is 

extended, and a three state CTMC at this stage will generate a good result.  

The data trace used is obtained from the high quality measurement of the video 

stream for the film “Tears of Steel”, encoded in H.265/HEVC codec [159]. Using 

the data trace and the EM algorithm [102], parameters for a 3-state BMAP with 

maximum batch sizes of three and five, and the 3-state MMPP are estimated.  
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To vary the traffic load of the stations, the arrival rate of each state of the 

underlying Markov Chain of the BMAP process defined in matrix 𝐷0 are varied 

according to the overall load of the traffic placed on the network. The infinitesimal 

generator matrix of the 3-state BMAP with batch size of maximum 3, 𝑄, and the 𝐷0 

matrix are as follows: 

𝐷0 =

−𝜆1 0.01 0.03
0.05 −𝜆2 0.08
0.17 0.20 −𝜆3

          𝑄 =
−0.17 0.07 0.10
0.34 −0.7 0.36
0.61 0.7 −1.33

    

where 𝜆2 = 0.4 ∗ 𝜆1 and 𝜆3 = 0.1 ∗ 𝜆1 and 𝜆1 = 0.5 ∗ 𝜆𝑡𝑜𝑡, with 𝜆𝑡𝑜𝑡 being the overall 

traffic load of the station. For 3-state BMAP with maximum batch size of five the 

following results were estimated using the same data trace: 

𝐷0 =

−𝜆1 0.03 0.03
0.1 −𝜆2 0.1
0.2 0.12 −𝜆3

  𝑄 =
−0.25 0.14 0.11
0.49 −1.1 0.57
0.78 0.96 −1.93

   

For the purpose of comparison, the developed model is executed using BMAP, 

MMPP and Poisson processes. To generate comparable results, the overall load of 

the stations is kept the same in all the models. The stationary probability vector of 

all three models using BMAP and MMPP is 𝜋 = [0.722 0.175 0.102].  

With the infinitesimal generator 𝑄 and 𝐷0 matrices of the BMAPs defined as above, 

the rest of the matrices, 𝐷1 to 𝐷𝑘 (𝑘 = 3 𝑜𝑟 5) , are developed using the method 

presented in [98]. For three-state MMPP the following was estimated for the 

infinitesimal generator 𝑄 using the EM algorithm: 

𝑄 =
−0.079 0.039 0.04
0.180 −0.416 0.24
0.33 0.33 −0.66
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The MMPP with infinitesimal generator 𝑄 and arrival rate matrix 𝛬 = 𝑑𝑖𝑎𝑔(𝜆1,… ,𝜆𝑚) 

is a 𝐵𝑀𝐴𝑃 process [71] with 𝐷0 = 𝑄 − 𝛬, and 𝐷1 = 𝛬 , and 𝐷𝑘 = 0 (𝑘 > 1). 

Therefore with the infinitesimal generator estimated above, and the arrival rates set 

as 𝜆2 = 0.4 ∗ 𝜆1, 𝜆3 = 0.1 ∗ 𝜆1 and 𝜆1 = 0.5 ∗ 𝜆𝑡𝑜𝑡, the result of the models will be 

comparable. The corresponding Poisson process in the format of BMAP is a 

process with rate 𝜆, where 𝐷0 = −𝜆 and 𝐷1 = 𝜆. 

Figures 4.3 to 4.6 depict the throughput, end-to-end delay, frame loss probability 

and energy consumption of the WLAN under study with different traffic models. 

The figures reveal a good match between the analytical and the simulation results, 

therefore proving the accuracy and reliability of the developed model. There are 

minor discrepancies between the model and the simulation results at some stages 

which are mainly due to the approximations taken into consideration to make the 

model tractable. An instance of the approximations is the assumption made that 

the collision probability is the same at all times regardless of the backoff stage of 

the DCF protocol. However the extensive comparisons made between the 

analytical results and those gained from simulation prove that the model has an 

acceptable accuracy. It is evident from the results that bursty traffic models have 

significant impacts on the network performance. At lower rates, the throughput of 

the WLAN with different models is similar, but as soon as the load reaches around 

0.2 Mbps differences start to appear. 

For the Poisson and 3-state MMPP the results remain close up to the load of 0.3 

Mbps, with continuous increase in the load, the network reaches saturation point 

for 3-state MMPP while in the Poisson model the throughput continues to increase 
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until reaching a steady value at 0.34 Mbps. In both the Poisson model and the 3-

state MMPP, the WLAN reaches saturation point when the load reaches 0.4 Mbps, 

whereas for the 3-state BMAP with batch sizes of 3 and 5, the network reaches 

saturation point earlier, when the load is around 0.2 Mbps. Overall the maximum 

throughput of the network during saturation is higher for Poisson, 0.34 Mbps, than 

the other three traffic models. After Poisson, stands the three-state MMPP with 

0.29 Mbps, then 3-state BMAP with batch size of maximum three with 0.17 Mbps 

and finally is the 3-state BMAP with maximum batch size of five with 0.12 Mbps. 

The same analysis stands for the frame loss probability and the end-to-end delay. 

The network has the highest loss when the traffic is modelled using the three-state 

BMAP with batch size of maximum five, even higher than three-state BMAP with 

batch size of maximum three. The three-state MMPP has a lower loss probability 

than the two BMAPs but still has a higher loss rate compared to the Poisson 

model. The results are logical as BMAP with maximum batch size of five generates 

more burstiness, as seen in chapter 3, whereas the Poisson process or the MMPP 

process generates one packet at each instance. The end-to-end delay comparison 

shows that the delay in the WLANs with highly bursty traffic reaches a high level at 

even lower loads. When the traffic is modelled using Poisson or MMPP, the 

network has a period of very low end-to-end delay before a sharp increase which 

then stays nearly the same during the saturation period. The reason is that with 

highly bursty traffic models, even at low rates, there are more packets competing 

for the shared media and therefore the delay for access to the wireless channel 

increases. 
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Figure 4.3: Throughput of WLANs with traffic generated by 

Poisson, MMPP and BMAP with maximum batch size of 3 and 5. 

 

Figure 4.4: End-to-end delay of WLANs with traffic generated by 

Poisson, MMPP and BMAP with maximum batch size of 3 and 5. 

 

Figure 4.5: Loss probability of WLANs with traffic generated by  

Poisson, MMPP and BMAP with maximum batch size of 3 and 5. 
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Figure 4.6: Energy consumptions of successful transmissions  

in WLANs with stations generating traffic using Poisson, 3-state  

MMPP and 3-state BMAP with maximum batch size of 3 and 5. 

 

The power required for transmitting, receiving, overhearing and being idle are 1.65, 

1.4, 1.4, and 1.15 W, respectively. Figure 4.6 illustrates the energy consumption of 

the WLAN per successful transmission, it is worth mentioning that overall the 

energy consumption decreases as the traffic load increases, and this is because 

much energy is wasted in the idle period when the loads are low. Using the same 

reasoning it is possible to see that the Poisson process has the highest 

consumption of energy at the start and all through when the network load is low. 

But from when the load of the stations reaches 0.4 Mbps, the energy consumption 

of all the models drops down to the same level as they all reach their saturation 

point, during which little or no idle time is wasted in the DCF scheme, hence the 

low energy consumption. 

Moreover, in general the results show that the throughput and end-to-end delay 

first increase and as the traffic loads grow they start to stabilize whereas the frame 

dropping probability keeps rising with the loads.  
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Overall it can be seen from the results that the QoS measures of stations under 

bursty traffic are similar to those under Poisson traffic when the network operates 

at low traffic loads (less than 0.2 Mbps). This is because the collision probability at 

lower rates is very small hence the low frame loss probability and queueing delays. 

However from the figures it is very obvious that as the load increases, the network 

performance and the QoS measures start to drift apart as the load on the network 

increases rapidly under bursty traffic. This is an obvious proof to the fact that the 

traffic generated by multimedia applications is highly bursty, correlated and self-

similar, and the conventional Poisson model is no longer adequate for modelling 

current network traffic. 

 

 Scenario 2: Effect of Buffer Size 

In this scenario, the WLAN is composed of 𝑛 (𝑛 = 10) identical stations equipped 

with the 802.11𝑏 physical layer, and ideal wireless channel conditions are 

assumed. The traffic generated by each station of the WLAN is modelled by a 3-

state BMAP with maximum batch size of three. To investigate the impact of the 

buffer size on the performance of the WLAN under bursty and correlated traffic, the 

model is studied under three different buffer sizes of 5, 10 and 50 frames while the 

size of all data frame payload is set to be 500 Bytes. 

Depending on the applications and how sensitive they might be to delay, e.g. video 

applications, or loss, e.g. voice applications, the size of the buffer set on the 

stations can become an important issue. Enlarging the buffer size can result in 

lower blocking probability but in turn could increase the end-to-end delay and vice 
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versa. Therefore in order to reach a reasonable trade-off between these 

parameters it is important that both performance measures are calculated. 

Similar to Scenario1, for parameter estimation of the BMAPs the video stream for 

the film “Tears of Steel”, encoded in H.265/HEVC codec is used [159], from which 

the parameters for a 3-state BMAP with maximum batch size of three are 

estimated using the EM algorithm [102]. 

To vary the traffic load of the stations, the arrival rate of each state of the 

underlying Markov Chain of the BMAP process defined in matrix 𝐷0 are varied 

according to the overall load of the traffic placed on the network. The infinitesimal 

generator matrix of the 3-state BMAP with batch size of maximum 3, 𝑄, and the 𝐷0 

matrix are as follows: 

𝐷0 =

−𝜆1 0.01 0.03
0.05 −𝜆2 0.08
0.17 0.20 −𝜆3

  𝑄 =
−0.17 0.06 0.10
0.34 −0.70 0.36
0.61 0.71 −1.33

    

where 𝜆2 = 0.2 ∗ 𝜆1 and 𝜆3 = 0.1 ∗ 𝜆1 and 𝜆1 = 0.7 ∗ 𝜆𝑡𝑜𝑡, with 𝜆𝑡𝑜𝑡 being the overall 

traffic load of the station. The stationary probability vector of the BMAP is 𝜋 =

[0.722 0.175 0.102].  

Figures 4.7 to 4.10 illustrate the results gained from the analytical models and 

simulation of the WLAN with different buffer sizes of 5, 10 and 50 (where 𝑁 

resembles the buffer size). The results show that under similar conditions and 

traffic loads, the WLAN in which the stations have larger buffer sizes achieves a 

higher throughput and faces lower loss probability while causing an increased 

delay. The increase in end-to-end delay of the WLAN with buffer size of 50 is 
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incredibly higher than the other two WLANs with buffer sizes of 5 and 10, whereas 

the difference in the loss probability and throughput is now as high. This is because 

the end-to-end delay is calculated for frames that wait in the queue; therefore 

under similar traffic burstiness and traffic intensity conditions, it takes longer for the 

frames waiting in the queue of the WLAN with buffer size of 50 to be transmitted 

and successfully received at the destination station. Moreover, when the buffer size 

increases from 5 to 10 frames, the improvement of throughput and loss probability 

is not significant, however between having buffer size of 5 and buffer size of 50 the 

differences are considerable. As throughput and loss probability are the most 

important performance metrics of delay-insensitive applications, it is desirable to 

set a large buffer size for these applications. However, for the delay-sensitive 

applications such as voice and video, a large buffer results to the high delay that 

may be intolerable for these inelastic applications. Thus, a small buffer is 

preferable for delay-sensitive applications. 

The energy consumption results show differences for when the load on the stations 

reaches a higher level. At the beginning as the load on the stations is low the 

energy consumption of all three WLANs with buffer sizes of 5, 10 and 50 is very 

close to each other. However as soon as the load reaches around 0.3 Mbps, and 

the networks start to become saturated the energy consumption of the WLAN with 

smaller buffer size increases. This is because the stations of that network have to 

deal with high rates of frame loss and as a result the energy consumption 

increases. It can be understood from the results that during the saturation period, 

the throughput, loss probability and energy consumption of all three WLANs 

reaches a similar steady point. 
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Figure 4.7: Throughput of WLANs with varying buffer sizes and stations 

generating traffic using 3-state BMAP with maximum batch size of 3. 

 

Figure 4.8: End-to-end delay of WLANs with varying buffer sizes and stations 

generating traffic using 3-state BMAP with maximum batch size of 3. 

 

Figure 4.9: Loss probability of WLANs with varying buffer sizes and stations 

generating traffic using 3-state BMAP with maximum batch size of 3. 
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Figure 4.10: Energy consumption of successful transmissions in WLANs with 

varying buffer sizes and stations generating traffic using 3-state BMAP with 

maximum batch size of 3. 

 

 Scenario 3: Effect of Traffic Burstiness on WLANs 

In this scenario the effect of maximum batch size of BMAP process used to model 

the network traffic is studied on WLANs. The variability in the maximum batch size 

of BMAP results in different burstiness in the generated traffic of the stations within 

the WLANs. For each WLAN, 𝑛 (𝑛 = 10) identical stations are defined which are 

each equipped with the 802.11𝑏 physical layer, and ideal wireless channel 

conditions are assumed. The BMAP used for generating the traffic is composed of 

a 3-state underlying Markov Chain. All data frame payloads are set to be 500 

Bytes. 

Similar to previous scenarios the parameters of the BMAP are estimated from the 

“Tears of Steel” data trace encoded in H.265/HEVC using the EM algorithm 

defined in [102]. 
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The BMAPs are modelled with a 3 state Markov Chain and are shown as 𝐵𝑀𝐴𝑃(𝑗), 

where 𝑗 resembles the maximum batch size acceptable for each BMAP. The 

maximum batch sizes considered are 3, 5 and 10. 

To vary the traffic load of the stations, the arrival rate of each state of the 

underlying Markov Chain of the BMAP process defined in matrix 𝐷0 are varied 

according to the overall load of the traffic placed on the network. The infinitesimal 

generator matrix of the 3-state BMAP, 𝑄, and the 𝐷0 matrix are as follows: 

𝐷0 =

−𝜆1 0.01 0.03
0.05 −𝜆2 0.08
0.17 0.20 −𝜆3

  𝑄 =
−0.17 0.06 0.10
0.34 −0.70 0.36
0.61 0.71 −1.33

    

where 𝜆2 = 0.2 ∗ 𝜆1 and 𝜆3 = 0.1 ∗ 𝜆1 and 𝜆1 = 0.7 ∗ 𝜆𝑡𝑜𝑡, with 𝜆𝑡𝑜𝑡 being the overall 

traffic load of the station. The stationary probability vector of the BMAP is 𝜋 =

[0.722 0.175 0.102].  

As in Scenario 4 of section 3.10.1, the rest of the matrices of each BMAP, 𝐷𝑘, 1 ≤

𝑘 ≤ 𝐾𝑚𝑎𝑥, are calculated by substituting the value of 𝐾𝑚𝑎𝑥 with the maximum batch 

size for each WLAN in Eq. (3.54).  

Figures 4.11 to 4.14 depict the gained results for each of the performance 

measures of throughout, end-to-end delay, loss probability and energy 

consumption of the WLAN in successful transmissions. It is clear that any increase 

in burstiness of the traffics generated by the stations of the network highly affect 

the performance results. The increase in burstiness as a result of generating 

batches with maximum size of 10 frames significantly reduces the throughput of 

the network, and increases the frame loss probability and end-to-end delay. 
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However this increase in maximum possible batch size and burstiness results in 

less energy consumption in successful transmission when the network is under 

lower traffic loads. The reason being is that during this time the network is less idle 

and hence less energy is consumed. So depending on the purpose of the designed 

network there needs to be a balance between the energy consumption of the 

stations and the loss and end-to-end delay of the frames. 

These results have important points in regards to encoding video traffics 

transmitted within WLANs. It can be concluded that the higher the variation of the 

frame sizes used for encoding the video traces, the lower the throughput of the 

networks is going to be. Also the increase in the end-to-end delay and loss 

probability show how the increase in frame size variation can degrade the 

performance of delay sensitive or loss sensitive applications. This is an important 

outcome that should be incorporated in design and deployment of network 

applications. 

 

 

Figure 4.11: Effects of burstiness on throughput,  

3-state BMAP/M/1/N with variable maximum batch sizes. 
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Figure 4.12: Effects of burstiness on end to end delay, 

3-state BMAP/M/1/N with variable maximum batch sizes. 

 

Figure 4.13: Effects of burstiness on loss probability,  

3-state BMAP/M/1/N with variable maximum batch sizes. 

 

Figure 4.14: Effects of burstiness on energy consumption  

of successful transmission,  

3-state BMAP/M/1/N with variable maximum batch sizes. 
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 Scenario 4: Effect of Network Size 

In this scenario the aim is to execute models and simulations that exhibit the 

explicit relationship between the performance metrics of WLANs and the size of 

network. For this purpose, four different settings for BMAP are used to model the 

traffic generation of the stations within four WLANs which are similar with each 

other in all terms other than the BMAP process. The difference between the 

BMAPs used is in the maximum possible batch size of the BMAP which are set to 

3, 4, 5 and 10. To identify the WLANs from each other, they are resembled by the 

maximum batch size of the respective BMAP used as 𝐵𝑀𝐴𝑃(𝐾𝑚𝑎𝑥), where 𝐾𝑚𝑎𝑥 

resembles the maximum batch size. The number of the states of the underlying 

Markov Chain used for all four BMAPs is kept to three to create comparable 

situations. 

The stations within each WLAN are identical and are each equipped with the 

802.11𝑏 physical layer. The traffic rate, buffer size and data frame payloads at 

each station are set to 𝜆𝑡𝑜𝑡 = 0.35 Mbps, 50 frames and 500 Bytes, respectively. 

The WLANs are modelled in ideal wireless channel conditions. The number 

stations in each WLAN is increased from 5 to 50 over the region of 100𝑚 × 100𝑚. 

The parameters of the BMAP in this scenario again are estimated from the “Tears 

of Steel” data trace encoded in H.265/HEVC using the EM algorithm defined in 

[102]. The matrix 𝐷0 and the infinitesimal generator matrix, 𝑄, for each BMAP is 

defined as follows: 

𝐷0 =

−𝜆1 0.01 0.03
0.05 −𝜆2 0.08
0.17 0.20 −𝜆3

  𝑄 =
−0.17 0.06 0.10
0.34 −0.70 0.36
0.61 0.71 −1.33
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where 𝜆2 = 0.2 ∗ 𝜆1 and 𝜆3 = 0.1 ∗ 𝜆1 and 𝜆1 = 0.7 ∗ 𝜆𝑡𝑜𝑡, with 𝜆𝑡𝑜𝑡 being the overall 

traffic load of the stations defined as 0.35 Mbps. The stationary probability vector of 

the BMAP is 𝜋 = [0.722 0.175 0.102].  

As in Scenario 4 of section 3.10.1, the rest of the matrices of each 𝐵𝑀𝐴𝑃(𝐾𝑚𝑎𝑥), 

𝐷𝑘, 1 ≤ 𝑘 ≤ 𝐾𝑚𝑎𝑥, are calculated by substituting the value of 𝐾𝑚𝑎𝑥 with the 

maximum batch size (3, 4, 5 or 10) for each WLAN in Eq. (3.54).  

Figures 4.15 to 4.17 plot the performance metrics of the WLANs, modelled using 

BMAPs with different maximum batch sizes, as a function of the network size. 

From the figures it can be established that when the number of stations is small, 

the burstiness of the traffic has little impact on the performance of the WLAN since 

the network is under light loads, except for 𝐵𝑀𝐴𝑃(10). Maximum batch size of 10 

increases high burstiness in the traffic generated by the stations, and as a result 

the performance measures are greatly affected. The increase in traffic burstiness 

reduces the throughput, increases the end-to-end delay and loss probability. This 

shows that with less bursty traffic, the network can sustain more stations. 

Overall in all four settings, when the number of stations reaches 10, the network 

becomes saturated and the values of the performance measures take abrupt 

change. For WLANs modelled using 𝐵𝑀𝐴𝑃(3), 𝐵𝑀𝐴𝑃(4) and 𝐵𝑀𝐴𝑃(5) after 

saturation the values of the end-to-end delays become extremely close to each 

other.  
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Figure 4.15: Effects of network size and burstiness on throughput,  

3-state BMAP/M/1/N with variable maximum batch sizes. 

 

 

Figure 4.16: Effects of network size and burstiness on end-to-end delay,  

3-state BMAP/M/1/N with variable maximum batch sizes. 
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Figure 4.17: Effects of network size and burstiness on loss probability,  

3-state BMAP/M/1/N with variable maximum batch sizes. 

 

4.7. Summary 

In this chapter a novel analytical model was presented for 802.11 WLANs under 

bursty traffic. The accuracy of the developed model was verified through 

comparing the analytical results with extensive NS2 simulation experiments. The 

expressions of the important QoS performance metrics including throughput, end-

to-end delay, frame loss probability, and energy consumption were calculated. A 

thorough investigation into the impact of the traffic load, traffic burstiness, buffer 

size, and number of stations on the QoS performance of the 802.11 WLAN was 

conducted.  

The performance results have shown that the bursty traffic can substantially affect 

the QoS performance of WLANS by reducing the throughput and energy 

consumption of successful transmission while increasing the end-to-end delay and 

the loss probability. When the network is under light load, the QoS performance is 

less affected except for the energy consumption. However, as the network loads 
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become moderate and heavy, the stations with burstier traffics perceive the 

degrading QoS than those under less bursty traffic. 
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Chapter 5: 

Modelling and Analysis of Heterogeneous 

Multimedia WLANs under Bursty Traffic 

 

5.1. Introduction 

Heterogeneous wireless networks widely adopt layered video encoding for 

multimedia video applications. As well as resulting in high Variable Bit Rate (VBR) 

in video traffics, they often create correlation between the base layer and the 

enhancement layer(s) of video data [166, 167]. These correlations lead to extreme 

burstiness and self-similarity in video traffics transmitted over WLANs which 

emphasizes the importance and necessity of accurate performance models for the 

analysis of bursty and correlated traffics in wireless networks [168]. 

Many studies have been carried out on developing models that can accurately 

capture the properties of video traffics and in particular their burstiness 

characteristics [76, 141, 169-172]. In [172] the authors thoroughly study the 

properties of video traffics over networks encoded via multiple encoding schemes 

and show that the LRD (Long Range Dependence or self-similarity) characteristics 

of video traffics [7, 173, 174] exposed in previous studies [175] on itself is not 

sufficient for the modelling and analysis of these types of traffic in modern 

communication systems. They show with precise results that as well as LRD, video 

traffics exhibit high bit rate variability also known as burstiness, which fractal 
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analysis and even the Poisson Process falls short in fully describing. In [171] the 

authors develop versatile traffic models that focus on the MAC and the Physical 

(PHY) layers suitable for use in multiple simulation scenarios. This work is an 

extension to the author’s earlier [170] work which adopts the superposition of 

several IPPs (Interrupted Poisson Process) to produce typical internet traffic over a 

wireless network. The resulting IPP-based On-Off model is easy to use and 

scalable enough to provide accurate results and so it was proposed for IEEE 

802.16 networking standard [176]. The developed On-Off models have extensively 

been used since then to model traffic generated by voice applications in various 

wireless networks [141, 143, 177, 178]. In [76] the authors use superposition of 

multiple 2-state MMPPs to model the On-Off characteristics of voice. As well as 

correlation between the variable arrival rates, burstiness in video and other 

multimedia traffics is also the result of correlation between packet size distributions 

and packet arrival rates [41]. MMPP can only capture the correlation between the 

arrival rates and lacks the ability to capture the inherent correlation that exists 

between packet size distributions and arrival rates. Whereas BMAP [20, 65] has 

the capability to model dependent and non-exponential inter-arrival time 

distributions between batches and correlated batch sizes of arriving packets. 

However with the availability of the aforementioned analytical results as well as 

other studies on the analysis of WLANs under multimedia traffic [26, 135, 179]; to 

the best of our knowledge, there is no work available in literature that considers the 

use of continuous-time BMAP for traffic generation in the analysis and performance 

evaluation of heterogeneous WLANs under multimedia traffic.  
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Since Bianchi’s work, many further models have been proposed in literature that 

present a more refined and accurate model for the DCF [113, 114, 116, 118, 128, 

160]. Among the models proposed, most concentration is on non-saturated [25, 

119, 121, 123, 124, 180, 181] network conditions and homogeneous traffic sources 

(i.e. sources with the same distribution and arrival rates). Only limited research is 

available that considers heterogeneity of non-saturated traffic sources within the 

network [24, 60, 182-186]. For example in [187] the authors present throughput 

analysis of heterogeneous IEEE 802.11 DCF WLAN where nodes are grouped 

based on saturated and un-saturated traffic generation conditions, their rates and 

backoff window size. However WLANs today are utilized in a wide variety of 

environments where miscellaneous devices generate tremendous volume of 

multimedia traffic with distinct characteristics and respective Quality-of-Service 

(QoS) guarantees [188]. 

To model varying arrival rates and packet size distributions, this chapter presents a 

new and practical analytical model for the analysis of the MAC layer in 802.11 

WLANs under bursty heterogeneous multimedia traffics using BMAP which 

calculates the throughput, end-to-end delay and loss probability performance 

measures. As burstiness, correlation and self-similarity can degrade network 

performance through long delays, severe packet dropping and large buffer 

requirements, it is important that they are taken into consideration in the study and 

development of highly efficient WLANs.  

The rest of this chapter is organised as follows: the analytical model for 

heterogeneous Wireless Local Area Networks subject to heterogeneous 
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multimedia traffics based on bursty traffic generators is presented in Section 5.2. 

Section 5.3 validates the accuracy of the model using thorough simulations is NS2, 

as well as presenting performance evaluations. And finally Section 5.4 concludes 

and summarizes this chapter. 

 

5.2. Analytical Model 

This section presents the analytical model for evaluating the performance of 

unsaturated WLANs with heterogeneous stations generating bursty and correlated 

multimedia traffic using the Batch Markovian Arrival Process and background data 

traffics using the Poisson Process. The transmission queues of the stations 

generating voice or video traffic are modelled as 𝐵𝑀𝐴𝑃/𝐺/1/𝑁 queuing system, 

and the ones generating the background data are modelled as 𝑀/𝐺/1/𝑁 queueing 

system.  

The analytical model is developed based on the assumption that the stations are 

divided into 𝐺 groups of heterogeneous IEEE 802.11 stations, where each group is 

identified with the label 𝑔𝑖  (1 ≤ 𝑖 ≤ 𝐺). The nodes in the same group are assumed 

to have identical traffic settings.  

While the traffic models differ between the groups, the overall rate of the stations 

are kept the same for comparison purposes. All stations are unsaturated with a 

limited sized buffer of 𝑁. The quantities of interest calculated by the model are 

throughput, end-to-end delay and frame loss probability of individual group of 

stations. 
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5.2.1. Analysis of the Service Time 

Bianchi [8] developed a bi-dimensional Markov chain to model the backoff 

procedure of the IEEE 802.11 in single hop WLANs, deriving the saturation 

transmission probability, with the assumption that all stations are always ready for 

transmission and their transmission queues are assumed to be non-empty at all 

points in time. D. Malone et al. in [24], extend Bianchi’s model for non-saturated 

and heterogeneous conditions, and Wu et al in [160] extend the model to 

accommodate the case of retry limit. In this section, the models of [24, 160] are 

extended to develop an analytical model for WLANs under unsaturated network 

conditions with heterogeneous stations, retry limit and limited buffer size in order to 

develop conditions closer to realistic networks. We assume the WLAN under study 

is composed of fixed number of heterogeneous stations (𝑛𝑖). The stations are 

grouped into 𝑖 (1 ≤ 𝑖 ≤ 𝐺) groups. Each group (𝑔𝑖) represents stations with similar 

type of generating traffics. The stations only transmit when their transmission 

queues are non-empty; therefore the per-station transmission probability 𝜏𝑖 is 

calculated by weighting the saturation transmission probability with the probability 

of the non-empty transmission queue:  

𝜏𝑖 = (1 − 𝑃𝑖0)𝜏𝑖
′      (5.1) 

where 𝑃𝑖0 is the probability that the transmission queue of the station is empty. Eq. 

(5.1) is calculated with the assumption of no post backoff as stated in [24]. 𝜏𝑖
′ is the 

saturation transmission probability given as [160]: 

𝜏𝑖
′ =

2(1−2𝑃𝑖)(1−𝑃𝑖)

(1−2𝑃𝑖)(1−𝑃𝑖
𝑚+1)+(1−𝑃𝑖)𝑊(1−(2𝑃𝑖)𝑚′+1)+𝑊2𝑚′

𝑃𝑖
𝑚′+1(1−2𝑃𝑖)(1−𝑃𝑖)𝑚−𝑚′     (5.2) 
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In Eq. (5.2), 𝑊 is the minimum contention window size, 𝑚 is the maximum backoff 

stage (i.e. retry limit) and 𝑚′denotes the maximum number of times that 𝑊 can be 

doubled. 𝑃𝑖 is the conditional collision probability and is equal to the probability that 

at least one of the remaining stations transmits in a given time slot: 

𝑃𝑖 = 1 − (1 − 𝜏𝑖)𝑛𝑖−1 ∏ (1 − 𝜏𝑟)𝑛𝑟
𝑟≠𝑖    𝑓𝑜𝑟  𝑟 = 1, … , 𝐺   (5.3) 

Eq. (5.1) and Eq. (5.3) are two non-linear equations that can be solved numerically 

for different values of 𝜏𝑖 and 𝑃𝑖. 

The mean service time is the summation of the average channel access delay, 

𝐸[𝐴𝑖], and average transmission delay, 𝑇𝑠, calculated as 

𝐸[𝑆𝑖] = 𝐸[𝐴𝑖] + 𝑇𝑠      (5.4) 

𝐸[𝐴𝑖], is the time interval from the instant the frame reaches the head of its 

transmission queue and starts contending for the channel until the time it wins the 

contention and is ready for transmission. 𝑇𝑠, is the time interval that the frame is 

successfully transmitted, with 𝑖 denoting the transmission from a station in group 𝑖. 

Assuming that the frame is successfully transmitted after experiencing 𝑗 (𝑗 ≥ 0) 

collisions, its channel access delay would equal to the delay caused by 𝑗 

unsuccessful transmissions and the (𝑗 + 1) back off stages, and can be calculated 

as the following for each of the groups: 

𝐸[𝐴𝑖] = 𝑇𝑐𝜑𝑖 + σ𝑖
′𝛿𝑖      (5.5) 

where 𝜎𝑖
′ is the average length of a time slot and is individually calculated at 

different stages. 𝑇𝑐 is the collision time, 𝜑𝑖 is the average number of collisions 
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before a successful transmission from a station, and 𝛿𝑖 represents the average 

number of time slots the station defers during backoff stages: 

𝜑𝑖  = ∑
𝑗 𝑃𝑗

𝑖 (1−𝑃𝑖)

(1−𝑃𝑖
𝑚+1)

𝑚
𝑗=0              𝛿𝑖 = ∑ ∑

𝑊𝑣−1

2

 𝑃𝑗
𝑖 (1−𝑃𝑖)

(1−𝑃𝑖
𝑚+1)

𝑗
𝑣=0

𝑚
𝑗=0    (5.6) 

where 𝑃𝑗
𝑖 is the probability that the frame experiences 𝑗 (0 ≤ 𝑗 ≤ 𝑚) collisions, and 

(
𝑊𝑣−1

2
) denotes the mean of the backoff counters generated in the 𝑣-th (0 ≤ 𝑣 ≤ 𝑗) 

backoff stage. Assume that 𝑃𝑡𝑟𝑖 represents the probability that at least one of the 

remaining stations transmits in a given time slot when a station in group 𝑖 is in the 

backoff procedure. When a station in group 𝑖 transmits, the value of 𝑃𝑡𝑟𝑖 would be 

equal to the value of 𝑃𝑖 which is given in Eq. (5.3). 𝑃𝑠𝑖
𝑟  is the probability that a 

station in group 𝑟 (1 ≤ 𝑟 ≤ 𝐺) successfully transmits on the channel, when the 

station in group 𝑖 is in the backoff procedure: 

𝑃𝑠𝑖
𝑟 = 𝜏𝑟(1 − 𝜏𝑟)𝑛𝑟−1(1 − 𝜏𝑖)

𝑛𝑖−1 ∏ (1 − 𝜏𝑔)
𝑛𝑔

𝑔≠𝑟,𝑖          1 ≤ 𝑟 ≤ 𝐺, 1 ≤ 𝑔 ≤ 𝐺 (5.7) 

When the station is in backoff, the size of the time slot is obtained by considering 

the fact that the channel is idle with probability:  

𝑃𝑖𝑑𝑙𝑖 = (1 − 𝑃𝑡𝑟𝑖)      (5.8) 

And the transmission is successful with probability ∑ 𝑃𝑠𝑖
𝑟𝐺

𝑟=1 . A collision occurs with 

probability (𝑃𝑡𝑟𝑖 −  ∑ 𝑃𝑠𝑖
𝑟𝐺

𝑟=1 ). Therefore the value of 𝜎𝑖
′ is calculated as follows, 

where 𝜎 is the duration of an empty physical time slot as mentioned in [3]: 

σ𝑖
′ = (1 − 𝑃𝑡𝑟𝑖)𝜎 + ∑ 𝑃𝑠𝑖

𝑟𝐺
𝑟=1 𝑇𝑠 + (𝑃𝑡𝑟𝑖 − ∑ 𝑃𝑠𝑖

𝑟𝐺
𝑟=1 )𝑇𝑐  (5.9) 
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In the above formula, 𝑇𝑠 is the average time for successful transmission, and 𝑇𝑐 is 

the average time the channel is sensed busy by each station during a collision. The 

calculations for 𝑇𝑠 and 𝑇𝑐 are as follows [8]: 

𝑇𝑠 = 𝑇𝐻 + 𝑇𝐿 + 𝑆𝐼𝐹𝑆 + 2𝛥 + 𝐴𝐶𝐾 + 𝐷𝐼𝐹𝑆     

𝑇𝑐 = 𝑇𝐻 + 𝑇𝐿 + 𝐷𝐼𝐹𝑆 + 𝛥     (5.10) 

where 𝑇𝐻 is the average time required to transmit the packet header, 𝛥 is the 

propagation delay and 𝑇𝐿 is the average time required to transmit the longest 

packet payload. 

 

5.2.2. Queueing Analysis of Stations 

In order to develop a model for WLAN that has heterogeneous stations generating 

different types of traffic as well as a bursty multimedia traffic, the stations in some 

groups are modelled as a 𝐵𝑀𝐴𝑃/𝑀/1/𝑁 queuing system [71], and in other 

remaining groups the stations are modelled as 𝑀/𝐺/1/𝑁 queueing systems. The 

idea is the same as in any queueing model; when a frame reaches the head of the 

transmission queue, the server becomes busy and as soon as a frame is 

acknowledged by the destination following a successful transmission, the server 

becomes free. The service time is dependent on the size of the frame transmitted 

and in this paper is modelled by an exponential distribution function with mean 

𝐸[𝑆𝑖] where 1 ≤ 𝑖 ≤ 𝐺. Thus, the service rate, 𝜇𝑖, for each of the stations within a 

group can be calculated as: 𝜇𝑖 = 1/𝐸[𝑆𝑖].  
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In the following the two main traffic models used in the paper are presented along 

with the definition of the queueing systems. 

 

1) BMAP Queueing Analysis of Stations 

For the group of stations generating traffic consistent with high definition video 

traffic, a BMAP composed of a three-state Markov Chain with maximum possible 

batch size of three is used. The maximum batch size allows us to model three 

different packet sizes for every video traffic generated synthetically. As regards to 

the practical size limits and for ease of modelling and simulation, the maximum 

batch size and number of the states of the underlying Markov Chain are kept to 

three in this model. Batches of maximum 3 frames at this stage will generate a 

good result to contemplate on. Figure 5.1 represents the 3-state CTMC of the 

model with maximum batch size of 3, and Figure 5.2 illustrates the state transition 

diagram of the BMAP/M/1/N queue assuming where the maximum buffer size of 

each station is 𝑁 (𝑁 = 50), with the maximum batch size 3.  

 

Figure 5.1: Three-state CTMC underlying BMAP with batch size three 
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State (𝜂, 𝑠), where (𝑠 = 0, … , 𝑁) and (𝜂 = 0,1,2), represent the case that there are 𝑠 

frames in the queuing system and the BMAP characterizing the traffic of the station 

is at state 𝜂. The BMAP is characterized based on the states and the batch size of 

the arrival process. If the batch size is one, meaning that only one frame arrives at 

the station at one time, then, the transmission rate from state (𝜂, 𝑠) to (𝜂, 𝑠 + 1) in 

the CTMC would be determined by the respective value from the matrix of 𝐷1(𝜂, 𝜂), 

considering that the arrival rate of the generated frame stays the same (the CTMC 

is still at the same state). For batch sizes greater than 1, the transmission rate from 

state (𝜂, 𝑠) to (𝜂, 𝑠 + 𝑘), would be determined by 𝐷𝑘(𝜂, 𝜂) for (𝑘 > 1), again with the 

arrival rate staying the same as before. However if there is a transition from state 𝜂 

to any other state, e.g. 𝜂 + 1, with arrivals of batch size of 𝑘, then the transmission 

rate would be determined by 𝐷𝑘(𝜂, 𝜂 + 1). The transition rate out of state 𝜂, e.g. 

from (𝜂, 𝑠) to (𝜂, 𝑠 − 1), would equal to the service rate 𝜇𝑖. Whereas the transition 

rate from state (𝜂, 𝑠) to (𝜂′, 𝑠), where 𝜂′ = (0,1,2) and 𝜂′ ≠ 𝜂, would have to be 

determined by the 𝐷0 (𝜂, 𝜂′ ) matrix considering there is no arrival at the time of 

transition, or by 𝐷𝑘  (𝜂, 𝜂′ ) for (𝑘 > 0) if there is any arrival during the transition 

time. 

Following the above analysis, the transition rate matrix, 𝐺, of the underlying CTMC 

of Figure 5.2 can be obtained. The same method can be used for obtaining the 

transition rate matrix of the superposition of two state BMAPs with maximum batch 

size of one to model the voice traffics. 
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Figure 5.2: State transition diagram of the BMAP/M/1/N (N=50) queue 

To calculate the steady state probability vector 𝑃 = (𝑃𝑖𝑠,𝜂 , 𝑠 = 0,1, . . . , 𝑁, 𝜂 =

0,1,2) = (𝑃0, 𝑃1, … , 𝑃𝑁) of the Markov Chain, the transition rate matrix G and the 

following equations can be used:  

𝑃𝐺 = 0   𝑎𝑛𝑑   𝑃𝑒 = 1     (5.11) 

where 𝑃𝑠 =  (𝑃𝑖𝑠,0,  𝑃𝑖𝑠,1,  𝑃𝑖𝑠,2),   0 ≤  𝑠 ≤  𝑁. By solving the above equation,  𝑃𝑖0, the 

probability that the transmission queue of a station in group 𝑖 is empty can be 

obtained. 

The same analysis stands for the stations generating On-Off voice traffic using 

superposition of 𝑀 two-state BMAPs with a maximum batch size of one. Figure 5.3 

illustrates the underlying CTMC of a two state BMAP with maximum batch size of 

used for modelling the On-Off voice traffics. 
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Figure 5.3: Two-state CTMC underlying BMAP with batch size one 

 

2) Poisson Queueing Analysis of Stations 

The transmission queue of the stations with non-bursty Poisson traffic (i.e. 

background data) is modelled as a 𝑀/𝐺/1/𝑁 queuing system, where 𝑁 represents 

the buffer size. 
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Figure 5.4: State transition diagram of M/G/1/N queue. 

 

Figure 5.4 shows the state-transition-rate diagram of the queuing system for the 

stations modelled using the M/G/1/N queueing system. The states on the diagram 

denote the numbers of frames in the system. Transition rate from state 𝑠 to state 

(𝑠 +  1), (0 ≤ 𝑠 ≤  𝑁 −  1), is equal to the arrival rate λ of the Poisson process. 𝜇 

represents the transition rate out of state 𝑠 to state (𝑠 −  𝐾), (𝐾 ≤  𝑠 ≤ 𝑁). This 

means that the transmission of the frame from a station completes with a mean 

serving time of 𝜇. The change from state 𝑠 to 0, (1 ≤ 𝑠 ≤ 𝐾 − 1), indicates that all 𝑠 

frames in the system are transmitted and the transition queue of the station is 



160 
 

empty, hence the unsaturated condition. Again, as before the transition rate matrix, 

𝐺, of the Markov chain can be obtained from the state transition diagram shown in 

Figure 5.4. As in BMAP/M/1/N, the steady-state probability vector, 𝑃 =  (𝑃𝑖𝑠, 𝑠 =

 0, 1, . . . , 𝑁) of the Markov chain should satisfy Eq. (5.11), from which the probability 

that the transmission queue of a station in group 𝑖 is empty can be obtained,  𝑃𝑖0. 

 

5.2.3. Performance Measures 

Assume 𝜋𝑠𝑖 denotes the steady-state probability of 𝑠 frames being in the queuing 

system of a station in group 𝑖, which can be calculated as: 

𝜋𝑠𝑖 = 𝑃𝑠𝑒       𝑓𝑜𝑟   0 ≤ 𝑠 ≤ 𝑁    (5.12) 

The probability that the transmission queue of the station in group 𝑖 is empty, 𝑃𝑖0, 

can be calculated by 𝜋0𝑖. Assume 𝜋𝑠𝑖
′  represents the steady-state probability of 𝑠 

frames being in the queuing system of a station in group 𝑖, when a frame arrives. In 

the case of BMAP traffic, 𝜋𝑠𝑖
′  can be written as: 

𝜋𝑠𝑖
′ =

𝑃𝑠𝛬𝑒

∑ 𝑃𝑠𝛬𝑒𝑁
𝑠=0

,     𝑓𝑜𝑟   0 ≤ 𝑠 ≤ 𝑁    (5.13) 

where 𝛬, for stations modelled using BMAP is a diagonal matrix containing the 

arrival rates of each state of the underlying CTMC. The values of the 𝛬 matrix for 

BMAP can be gained from the absolute values of the diagonal elements of the 𝐷0 

matrix. For the stations where the traffic is modelled using the Poisson Process, 𝜋𝑠𝑖
′  

would be equivalent to 𝜋𝑠𝑖. 
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The loss probability, which is shown by 𝑃𝑏𝑖, can be gained from 𝜋𝑁𝑖
′ . With 𝐸[𝑃] 

being the frame payload size and 𝜆𝑖 being the fundamental traffic arrival rate of the 

station in group 𝑖, the throughput, 𝑇𝐻𝑖, of the stations in group 𝑖 can be computed 

by: 

𝑇𝐻𝑖 = 𝜆𝑖𝐸[𝑃](1 − 𝑃𝑏𝑖)     (5.14) 

Using the Little’s Law, the average end-to-end delay of a frame being transmitted 

from a source to a destination, 𝐸[𝐷𝑖], can be calculated as: 

𝐸[𝐷𝑖] =
𝐸[𝑁𝑖]

𝜆𝑖(1−𝑃𝑏𝑖)
      (5.15) 

The end-to-end delay is the time interval from the instant that a frame enters the 

transmission queue of the source station, to the instant that the frame is 

acknowledged after successful transmission by the destination station. 𝐸[𝑁𝑖] is the 

average number of frames in the queuing system of the station in group 𝑖, which 

can be computed as: 

𝐸[𝑁𝑖] = ∑ 𝑠𝜋𝑠𝑖
𝑁
𝑠=1       (5.16) 

 

5.3. Model Validation and Performance Evaluation 

The accuracy of the developed analytical model has been validated through 

extensive simulations using the NS2 simulation environment. The newly developed 

traffic generators are used in NS2 to accommodate the Batch Markovian Arrival 

Processes for generation of bursty video and voice traffics.  
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For the flexibility and scalability of the simulation experiments and the analytical 

model, real-world multimedia applications are adopted using the Expectation-

Maximization algorithm presented in [102] to calculate the parameters. The data 

trace used to generate the required parameters of the video traffic is obtained from 

the high quality measurement of the video stream for the film “Tears of Steel”, 

encoded in H.265/HEVC codec [159]. Using the data trace and the EM algorithm 

[102], parameters for a three-state BMAP with maximum batch size of three are 

estimated. The estimated infinitesimal generator matrix of the three-state BMAP 

with batch size of maximum three, 𝑄, and matrix 𝐷0 are as follows: 

𝐷0 =

−𝜆1 0.01 0.03
0.05 −𝜆2 0.08
0.17 0.20 −𝜆3

               𝑄 =
−0.17 0.07 0.10
0.34 −0.7 0.36
0.61 0.7 −1.33

  (5.17) 

where λ1 = 0.7 ∗ λi and λ2 = 0.2 ∗ λi and λ3 = 0.1 ∗ λi, with λi being the overall 

traffic load of the station in group 𝑖.  

For modelling the voice traffic, high quality measurements of the G.711 codec [76, 

189, 190] is used to obtain the parameters. G.711 has a 64kbps bit rate with 

packetization intervals of 60ms [189]. This results in the rate of 16.67 

packetization/s with a payload size of 64,000/(16.67 × 8)  =  480 Bytes. When 

modelling G.711 voice sources as an On-Off traffic, the On and Off will be 

exponentially distributed with mean of 352 𝑚𝑠 and 650 𝑚𝑠, respectively [19]. The 

parameters for modelling the superposition of multiple On-Off voice sources using 

a two-state BMAP can be obtained using Eqs. (2.23) to (2.26). 

Simulation experiments are executed in two scenarios. The first scenario, Scenario 

1, concentrates on the effect of network size and heterogeneous traffic sources on 
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performance measure of WLANs, and in a way is a validation of the developed 

analytical model. The second scenario, Scenario 2, studies the effect of traffic load 

and heterogeneous traffic sources. In Scenario 2, the overall traffic load of the 

stations varies over the course of simulation. To transfer the effect of traffic load 

change, in the models using BMAP, the arrival rates of the 𝐷0 matrix are varied in 

accordance to the overall load change of each station. Also, based on the overall 

load of the stations within the model, the number of voice sources super-positioned 

to generate the On-Off voice traffic dynamically changes so that the overall load of 

all the stations are kept the same.  

 

5.3.1. Simulation Scenario 

The developed model is simulated within a Basic Service Set (BSS) of WLANs 

where 𝑛 (𝑛 = 12) static stations are distributed within a rectangular 150𝑚 ×  150𝑚 

grid, and are classified into three groups with identical number of stations, 4 

stations in each group. Each of the groups generates and models a unique network 

traffic of background data, voice or video. Video traffics generated by a 3-state 

BMAP with maximum batch size of three, voice generated by superposition of 𝑀 

two-state BMAP with maximum batch size of one, and data traffic generated by the 

Poisson Process are injected into the MAC buffer of the stations in groups 1,2 and 

3, respectively. Each station generates and transmits traffic to its paired stations. 

The accuracy of the analytical model is validated under various working conditions 

which show consistent performance results. 
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In the simulation scenario, the stations are equipped with the 802.11b physical 

layer and ideal wireless channel conditions are assumed. The buffer size of all 

stations is configured to be maximum 𝑁 = 50 frames and the size of all data frame 

payload is set to be 480 Bytes to match the traffic settings of G.711 voice data 

traces. The remaining simulation settings of the stations and the WLAN are 

summarized in Table 5.1. Each simulation is executed for 600 seconds of NS2 

simulation time, which is sufficiently long to gain a stable simulation and reliable 

performance results.  

 

𝐶𝑊𝑚𝑖𝑛 32 Retry limit (𝑚) 7 

𝐶𝑊𝑚𝑎𝑥 1024 Basic Data 

Rate 

1 Mbps 

Slot time 20 μs Channel Data 

Rate 

11 Mbps 

DIFS 50 μs Propagation 

delay 

2 μs 

SIFS 10 μs ACK Frame 

Payload 

112 bits 

MAC hdr 224 bits PHY Header 192 bits 

Table 5.1: Parameters used in the performance analysis 

5.3.2. Performance Evaluation 

 Scenario 1: Effect of Network Size on Heterogeneous WLANs 

In this scenario the model and simulation are executed on varying network size, 

while the load of the stations is kept at 350𝐾𝑏𝑝𝑠 at all times. In each run the 

number of stations defined for the WLAN are increased which in turn increases the 

number of stations forming each of the traffic groups. Figures 5.5 to 5.7 illustrate 

the results gained for throughout, end-to-end delay and loss probability of each of 

the traffic groups within the WLAN. 



165 
 

Figure 5.5 shows that the throughput of stations with bursty video traffic is slightly 

higher than the other two groups as the network size is very small and each group 

has only two stations. This is logical in the sense that when the network is sparse, 

all generated traffic will be transmitted to destinations successfully. With BMAP 

generating highly bursty traffic with higher frame sizes, the throughput of the nodes 

generating video traffic is higher than the other groups. However, as soon as the 

network size starts to grow beyond 6 nodes and the network becomes busy, the 

throughput of the nodes generating video traffic starts to deteriorate and decreases 

to a lower value compared to the background data and voice. This condition 

continues to stay the same until the network size reaches around 26 stations. At 

this stage increase in the number of stations results in the saturation of the 

network, and the network reaches its capacity when the number of stations 

reaches 26. From this point onwards, the throughput of all three groups diverts 

towards a fixed rate of about 0.1 𝑀𝑏𝑝𝑠.  

The end-to-end delay of the stations within the video traffic group, depicted in 

Figure 5.6, is slightly higher than the data and voice groups until the network size 

reaches around 12 stations. From network size of 12 and onwards, the end-to-end 

delay of the stations in all three groups stays very close and increases at a steady 

pace. There is a slight difference between the simulations and analytical which 

could be the result of network saturation. However in general the match between 

the results gained from simulation and analytical model is acceptable for future 

analysis.  

The loss of the group modelling the video traffic is higher than the other two groups 

for nearly all network sizes, shown in Figure 5.7. This is logical as BMAP generates 
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batches of data frames at exponentially distributed times and as a results, the loss 

probability of stations having their traffics modelled via BMAP would be higher than 

the other stations. However as the network size grows beyond 30 stations, the 

network becomes saturated and, as a result, most generated frames are dropped. 

Due to this fact, the loss probabilities of all three groups of traffics reach the same 

rate of about 80%. 

Overall the results clearly indicate the fact that burstiness and heterogeneity of 

network traffic has a higher impact when the network size is smalle or moderate. 

As the network size grows and the number of stations increases, the network 

reaches a saturation point where all traffic types result in similar network 

performance measures. 

 

Figure 5.5: Comparison of the Throughput between analytical results and simulation of 

WLANs with heterogeneous stations under different network size. 
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Figure 5.6: Comparison of End-to-end delay between analytical results and simulation of 

WLANs with heterogeneous stations under different network size. 

 

 

Figure 5.7: Comparison of the Frame Loss Probability between analytical results and 

simulation of WLANs with heterogeneous stations under different network size. 

 

 Scenario2: Comparison Between Heterogeneous and Homogeneous 

Sources 

To investigate the impact of heterogeneous bursty traffic on the performance of 

WLANs, in this scenario a comparison is carried out between WLANs having 
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heterogeneous traffic sources and homogeneous traffic sources. The comparison 

is executed on throughput, end-to-end delay and frame loss probability.  

In WLANs with homogeneous traffic sources, all stations generate traffics using 

either the Poisson Process, superposition of On-Off voice sources, or bursty video 

traffic with the same BMAP settings of that in the heterogeneous model. 

The performance results illustrated in Figures 5.8 to 5.10, reveal the areas where 

bursty heterogeneous traffics significantly impact the performance of WLANs. 

Overall, when the network operates at low traffic loads (less than 0.2 𝑀𝑏𝑝𝑠) the 

QoS performance measures of all stations under heterogeneous traffic is close to 

those operating under homogeneous traffics. This is because of the low collision 

probability during lower traffic loads, where loss probability and delay are almost 

zero resulting in the throughput to be very close to the traffic load. However, as the 

traffic load increases the differences between the QoS performance measures of 

stations within different traffic groups starts to increase in comparison to stations in 

homogeneous networks.  

 

 

Figure 5.8: Comparison of the Throughput between analytical results and simulation of 

WLANs with heterogeneous and homogeneous stations. 
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Figure 5.9: Comparison of the Frame Loss Probability between analytical results and 

simulation of WLANs with heterogeneous and homogeneous stations. 

 

 

Figure 5.10: Comparison of the End-to-end delay between analytical results and 

simulation of WLANs with heterogeneous and homogeneous stations. 

 

It is evident from Figure 5.8 that the overall throughput of the stations in all groups 

of traffic type degrades in a WLAN with heterogeneous traffic sources as soon as 

the traffic load surpasses 0.2 𝑀𝑏𝑝𝑠 and the collisions increase. With BMAP 

generating bursty traffics with variable frame sizes, it sufferes the most degradation 

in throughput than the other traffic sources. This effect is also visible in the frame 
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loss probability shown in Figure 5.9. From the figure it is clear that the stations 

modelled using BMAP, when in a heterogeneous setting, lose more data due to 

their higher rate and frame size variation which generates a more bursty traffic 

compared to On-Off sources or the background traffic.  

From Figure 5.10 it is evident that overall the end-to-end delay of the frames 

transmitted through the WLAN increases when the network is composed of 

heterogeneous stations compared to homogeneous networks. Again, the end-to-

end delay of the frames generated via the BMAP sources has a much higher 

increase due to the bursty nature of the traffic generated.  

 

5.4. Summary 

This chapter has proposed a comprehensive analytical model for 802.11-based 

WLANs in the presence of unsaturated heterogeneous stations with bursty BMAP 

and non-bursty Poisson traffics. To obtain the queueing dynamics, the 

transmission queue at each station generating multimedia traffic has been 

modelled as a BMAP/M/1/N queueing system, while the stations generating 

background data have been modelled as M/G/1/N queueing systems. Important 

QoS performance measures in terms of throughput, end-to-end delay and frame 

loss probability have been calculated. To validate the accuracy of the proposed 

analytical model, extensive simulations have been carried out using NS2 

simulation experiments. The parameters used for the traffic models have been 

obtained from accurate measurements of real-world multimedia applications 

including the G.711 codec voice sources and encoded H.265 video streams.  
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The analysis of the results clearly demonstrates the importance of adopting 

heterogeneous traffic sources for accurate performance evaluation of the MAC 

layer of 802.11 WLANs in the presence of multimedia applications. The developed 

model could be the basis of deeper analysis on future wireless networks where 

multiple traffic classes with varying QoS requirements exist in highly dense 

WLANs. 
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Chapter 6: 

Conclusions and Future Work 

 

Over the past decade, we have witnessed a surge in the development of wireless 

communication and technologies. Explosive growth in the number of wireless 

devices such as smartphones, PCs, personal digital assistants and home 

entertainment systems, along with the rapid formation of advanced multimedia 

applications have resulted in a revolutionary deployment of the wireless 

technologies. With all the enhancements taken place on the 802.11 standard, the 

Medium Access Control mechanism, responsible for wireless medium access 

control and data transmission has been left almost untouched. Therefore, with 

multimedia and in particular video traffic exhibiting high burstiness and correlation 

properties over a wide range of timescales, this thesis focuses on deeper and more 

accurate performance evaluation methodologies required to capture and analyze 

QoS performance of the MAC protocol in WLANs which integrate heterogeneous 

sources of multimedia traffics.  

This chapter provides a summary of the works reported in this thesis as well as 

introducing some future research directions that can stem from the developed 

analytical models presented in the research. 
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6.1. Conclusions 

This thesis has presented new analytical tools for performance analysis and 

enhancement of wireless MAC protocols under bursty and correlated multimedia 

traffic. Throughout the thesis, the accuracy of the developed models have been 

validated through extensive simulation experiments developed using the NS2 

simulator. The proposed analytical models have been used to investigate important 

QoS performance measures of 802.11 MAC protocols under bursty and correlated 

traffics. The major achievements in this research are summarized as follows: 

 To develop a reliable foundation that formed the basis of later analysis and 

studies, new traffic generators were developed and thoroughly tested in 

Chapter 3 for multi-state Batch Markovian Arrival Process with any maximum 

batch size and multi-state MMPP. The traffic generators were designed and 

implemented in C++ programming language. To test and validate the 

developed traffic generators, they were put into test in BMAP/M/1 and 

MMPP/M/1 queues. The BMAP/M/1 queue was tested under various 

conditions to find the effects of different settings on the performance of the 

queue, such as: 

 Effect of different values of coefficient of correlation 

 Effect of the number of states of the underlying Markov chain  

 And effect of different batch sizes  

Since previously developed models and simulators of 2-state MMPP were 

extensively used in literature, the developed m-state MMPP/M/1 queue was 
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used as a reliable evaluation tool. This was due to the fact that MMPP is a 

subclass of Batch Markovian Arrival Process. 

 The newly developed traffic generators of Chapter 3 were put in to use to 

develop a new analytical model for performance evaluation of the MAC 

protocol in the IEEE 802.11 standard under unsaturated traffic loads and finite 

buffer capacity. The QoS performance metrics including throughput, end-to-

end delay, frame loss probability and energy consumption of the analytical 

model were derived in Chapter 4. To validate the results of the analytical 

model, the BMAP and m-state MMPP where implemented in to NS2 network 

simulator using TCL and C++ programming. Using the simulator and the 

analytical model, a thorough investigation into the impact of multiple settings 

on the QoS performance of WLANs were executed: 

 A comprehensive comparison was carried out between the effect of 

traffics generated using a 3-sate BMAP, 3-state MMPP and Poisson 

Process on the performance of WLANs.  

 Effect of buffer size was investigated with stations of WLAN generating 

traffic using a 3-state BMAP with maximum batch size of three. 

 Effect of traffic burstiness was investigated on the WLANs through 

different maximum batch sizes of BMAP: 3, 5 and 10. 

 And finally the effect of network size was investigated on WLANs with 

stations generating bursty traffic using a three-state BMAP with maximum 

batch sizes of three, four, five and ten. 
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 In Chapter 5 a new analytical model was developed for the MAC DCF protocol 

in unsaturated WLANs with heterogeneous traffic sources using bursty BMAP 

and non-bursty Poisson process to model multimedia applications. Again the 

results gained from the analytical model for throughput, end-to-end delay and 

frame loss probability were extensively validated using simulation experiments 

in NS2 subject to the traffic parameters obtained from the accurate 

measurements of the real-world multimedia voice and video sources. For this 

model: 

 The impacts of traffic load was investigated when background data was 

modelled by non-bursty Poisson Process, Voice traffic was modelled 

using a superposition of two-state BMAPs with maximum batch sizes of 

one, and the video traffic was modeled using a three-state BMAP with 

maximum batch size of three.  

 The effect of network size on the performance of the 802.11 MAC was 

studied when the WLAN was composed of heterogeneous and bursty 

traffic sources.  

The performance results have highlighted the importance of taking into account the 

heterogeneous traffic for the accurate evaluation and design of the MAC protocol in 

wireless multimedia networks. 

 

6.2. Future Work 

The thesis mainly investigates the QoS performance of MAC protocols in WLANs 

with multimedia applications. Although the work has emphasized on the main 
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research objectives, the following future works can be suggested to extend this 

research into accommodating emerging wireless networks and more general 

working scenarios. 

 

 Device-to-Device Communications over Wi-Fi Direct 

Advancements in cellular communication systems have resulted in the emergence 

of Device-to-Device (D2D) technology for the purpose of significantly improving the 

performance of cellular systems. D2D enables devices of proximity to directly 

communicate with each other, therefore mitigating the system overhead while 

increasing the spectrum utilization through bypassing cellular Base Stations (BSs) 

or Access Points (APs) [191, 192]. D2D technology facilitates mobile users with 

instant information sharing (e.g. pictures and videos) even in areas without cellular 

coverage or APs. With the emergence of the so called mobile ad-hoc clouds as a 

result of D2D technology [193], many open challenges still exist in the efficiency of 

the design and deployment of D2D connections over wireless technology. To this 

end using the appropriate traffic processes to model the data exchanged between 

the digital devices could result in increased accuracy and efficiency of future 

designs.  

 

 Traffic offloading and resource sharing  

Increase in mobile data traffic has placed immense pressure on capacity 

improvement of heterogeneous networks especially cellular networks. To alleviate 

this pressure, new techniques of traffic offloading and resource sharing have been 
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proposed in literature such as massive multiple-input multiple-output (MIMO), 

heterogeneous Dense WiFis, direct device-to-device communications, etc. In spite 

of these cutting-edge techniques, the limited licensed spectrum is still the principal 

bottleneck for capacity improvement. To alleviate the existing problems, Wi-Fi 

offloading is envisioned as a promising solution to utilize the various benefits of Wi-

Fi and cellular networks together via the migration of traffic from cellular to Wi-Fi 

networks. Even though traffic offloading uses the unlicensed bands for delivering 

cellular data traffic [194-197], due to the existence of the DCF protocol in the MAC 

layer, guaranteeing the QoS of cellular traffic is a challenging issue. Moreover, the 

type and volume of the offloaded traffic plays a pivotal role in the efficiency of this 

process; therefore an accurate process should be designed that avoids over 

saturation and excessive packet collisions within the Wi-Fi network. For this 

purpose, accurate analytical models are required to model the miscellaneous types 

of traffics generated and offloaded onto Wi-Fi in order to increase the efficiency of 

the designs. 

 

 Software-Defined Networking: 

Software Defined Networking (SDN) is an emerging architecture with promising 

properties for the next-generation Internet [198-200]. SDN decouples the control 

plane, responsible for making network forwarding decisions, from the data plane, 

responsible for data forwarding. This decoupling enables more centralized control 

where coordinated decisions directly guide the network to desired operating 

conditions. The unprecedented network programmability provided by SDN provides 

the grounds for handling the explosive growth of data generated by smart mobile 
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devices and the pervasiveness of content-rich multimedia applications. However to 

develop a realistic tractable analytical model that takes into account the real 

characteristics of traffics generated by multimedia applications, new processes 

such as BMAP should be taken into account to model the traffic transmitting 

through these networks.  
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