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Abstract 

Invasive fungal infections (IFIs) are a major issue in immunocompromised 

humans, with Aspergillus fumigatus being the second most common cause of IFI 

after Candida species. Due to the rising numbers of solid organ transplant and 

neutropenic patients, invasive pulmonary aspergillosis (IPA) is a serious concern 

with mortality rates reaching 90% in certain patient groups. Rapid and accurate 

diagnosis is essential to improve patient prognosis by allowing early initiation of 

the correct antifungal treatment. At present, diagnosis of IPA is problematic, with 

currently available tests relying on pan-fungal detection of the fungal cell wall 

component β-D-glucan or on detection of Aspergillus galactomannan. However, 

these biomarker tests have inherent limitations, with reports of false-positivity and 

lack of sensitivity and specificity. Therefore there is a need for an alternative 

diagnostic assay that can act as adjunct test to the rapid point-of-care lateral-flow 

assay previously developed for aspergillosis detection which incorporates the 

Aspergillus-specific IgG3 monoclonal antibody (mAb) JF5. This paper describes 

the characterisation of a newly developed murine mAb ED1, an IgG1, that binds 

to the epitope β1-5-galactofuranose on the extracellular galactomannoprotein 

antigen of Aspergillus fumigatus. Results show that ED1 can be used in 

combination with JF5 in a DAS-ELISA immunoassay format to detect IPA in a 

guinea pig model of disease. The work demonstrates that the laboratory-based 

DAS-ELISA can be used alongside the LFD to detect the diagnostic 

galactomannoprotein antigen in serum samples, providing confirmatory tests of 

invasive infection.  

 

Keywords 

Invasive aspergillosis, Aspergillus, diagnosis, monoclonal antibody 

 

Abbreviations 

mAb, monoclonal antibody; Ig, immunoglobulin; IPA, invasive pulmonary 

aspergillosis; galf, β1-5-galctofuranose; BALf, bronchoalveolar lavage fluid; GM, 

galactomannan; BDG,’ β-D-glucan; LFD, lateral-flow device; PCR, polymerase 

chain reaction; ELISA, enzyme-linked-immunosorbent assay; PTA, plate-

trapped-antigen; DAS, double-antibody-sandwich; C, competition; NPV, negative 
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predictive value; PBS, phosphate buffered saline; BSA, bovine serum albumin; 

PBSA, PBS containing BSA; PDA, potato dextrose agar; SDA, Sabouraud 

dextrose agar; TCS, tissue culture supernatant. 

 

Declaration 

The contents of this document are entirely the work of the author, Grace Megan 

Howells unless otherwise stated and referenced. 

 

 

Introduction 

Aspergillus fumigatus and diagnosis of invasive pulmonary aspergillosis 

Aspergillus fumigatus, a ubiquitous saprotrophic mould (Latgé 1999), is the 

second most common cause of invasive fungal infections in 

immunocompromised patients after the commensal yeast Candida (Pappas et al. 

2010). In the immunocompetent, air-borne spores of the fungus are destroyed by 

phagocytic cells (alveolar macrophages) of the innate immune system (Latgé 

1999), but in individuals with impaired immunity, the fungus is able to evade 

destruction and the spores germinate to form invasive hyphae (Kwon-Chung and 

Sugui 2013) capable of causing a range of disseminated infections (Segal 2009) 

depending on the host’s immune status (Stergiopoulou et al. 2007).  

Invasive pulmonary aspergillosis (IPA), a disseminated infection of which 90% of 

cases are caused by A. fumigatus (Denning 1998; Thompson and Patterson 

2008), is one of the leading causes of death in the immunocompromised such as 

neutropenic, haematological malignancy and hematopoietic stem cell transplant 

patients, with mortality rates that range between 30 and 95% depending on the 

nature of the underlying impairment (Brown et al. 2012; Patterson et al. 2000). 

The number of cases of IPA has increased in recent years mainly due to rising 

numbers of patients at risk because of medical intervention, for example 

aggressive anti-cancer treatment or hematopoietic stem cell or solid organ 

transplant (Latgé 1999; Brakhage and Langfelder 2002; Kontoyiannis and Bodey 

2002). Therefore, rapid diagnosis of Aspergillus infections is vital, especially 

since studies have shown that earlier diagnosis of IPA leads to better patient 

prognosis (Caillot et al. 2001; Michallet and Ito 2009). Early treatment with 
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antifungal drugs improves patient survival to potentially 80% or greater (Upton et 

al. 2007, Shannon et al. 2010).  

Despite this, diagnosis of IPA remains a significant challenge. There is currently 

no single gold standard method of detection, so identification relies on a 

combination of factors including patient history, clinical symptoms, mycological 

culture, radiology and antigen testing. Diagnostic procedures such as culture and 

conventional imaging using computed tomography lack sensitivity (Yeo and 

Wong 2002) and specificity and may not be achievable due to the invasiveness 

of the procedures and the nature of the infection (Denning 2000). Many 

filamentous fungi have similar hyphal morphologies (Guarner and Brandt 2011), 

thereby making them difficult to identify simply by microscopy and to then treat 

accordingly. Thus a move has been made towards detection using biomarkers 

that are characteristic of fungal infections, such as Aspergillus galactomannan 

(GM) and the fungal cell wall component (1-3)-β-D glucan (BDG). Tests that 

detect these two biomarkers are included in the revised 2008 European 

Organization for Research and Treatment of Cancer/Invasive Fungal Infections 

Cooperative Group, National Institute of Allergy and Infectious Diseases Mycoses 

Study Group (EORTC/MSG) guidelines for diagnosis of IPA (De Pauw et al. 

2008). At present, nucleic acid-based detection systems are not included in the 

guidelines due to the lack of assay standardisation (De Pauw et al. 2008; 

Bretagne 2010), despite polymerase chain reaction (PCR) having high sensitivity 

and specificity according to a number of studies (Einsele and Loeffler 2008, 

Florent et al. 2006, Kami et al. 2001). 

(1-3)-β-D glucan is a cell wall component of many pathogenic fungi excluding 

Cryptococcal and Mucoralean species that lack the sugar in their cell walls (Marty 

and Koo 2009). The Fungitell test, designed to detect BDG using the Limulus test 

(Hope et al. 2005), is pan-fungal and thus non-specific, and is unable to 

discriminate between different genera or species of infectious fungi; a main 

limitation when wanting to diagnose and treat IPA specifically. Notwithstanding 

this limitation, studies have shown the test to be highly sensitive and to have an 

excellent negative predictive value (NPV) (Pazos et al. 2005; Vlieger et al. 2011), 

although this does vary depending on patient’s clinical status (Alexander et al. 

2010). Due to its high NPV, the BDG Fungitell test could be combined with other 

methods of detection to improve the accuracy of IPA diagnosis, but insufficient 
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studies have been conducted to determine whether adjunct tests might improve 

its specificity for this disease.  

In comparison to (1-3)-β-D glucan, galactomannan detection has been shown to 

be specific and sensitive for IPA detection depending on the patient group being 

diagnosed and the sample type and threshold used for assay positivity (Maertens 

et al. 2007a; Maertens et al. 2007b). Serial screening using the Bio-Rad Platelia 

GM ELISA has been used to guide antifungal therapy (Maertens et al. 2005; 

Segal et al. 2007). GM is released by Aspergillus fumigatus from the cell wall 

during angioinvasion and is detectable in serum. In clinical settings there is great 

variability in the way the test is used (Pfeiffer et al. 2006), and there are some 

considerable drawbacks (Verweij and Mennink-Kersten 2006). The GM ELISA is 

associated with a high number of false positives due to cross-reaction with 

species such as Histoplasma and Penicillium (Tortorano et al. 2012), and use of 

β-lactam antibiotics (Boonsarngsuk et al. 2010), demonstrating a need for 

alternative diagnostic tests especially when mixed cultures are present, or during 

treatment with antimicrobial agents.  

Another important consideration is the type of sample used for diagnosis. 

Aspergillus GM has been detected in urine, serum and bronchoalveolar lavage 

fluid (BALf) (Klont et al. 2004) using different immunoassay formats to varying 

effect depending on the type of test used, the immunocompromised nature of the 

patient, the absorbance threshold used for test positivity and if the patient is on 

prophylactic antifungals. Data on the performance of GM detection in urine 

samples is limited and, although some studies have suggested that it may be a 

good screen for IPA in humans (Dupont et al. 1987), it suffers from variation of 

GM levels due to dilution within the urine. A recent study has suggested that 

taking into account the dilution factor increases the utility of the GM test in urine 

(Reischies et al. 2016), however further work is required to understand how this 

can be transferred to other patient groups.  

In contrast, a number of studies across a range of immunocompromised patient 

groups have demonstrated that BALf testing for GM allows for highly sensitive 

immunoassays, potentially more so than serum-based immuno-detection 

(Meersseman et al. 2008, Guo et al. 2010). However the procedure for collecting 

BALf samples is highly invasive and so this may not be suitable for certain patient 
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types. Therefore, serum is a more preferable sample for GM testing in patients 

where invasive procedures such as bronchoscopy are not suitable, with BALf 

samples used where possible. Studies have shown that serum testing for GM has 

varying levels of sensitivity and specificity depending on the detection threshold 

used and the patient type (Maertens et al. 2007a; Maertens et al. 2007b; 

Herbrecht et al. 2002). Nevertheless, serum GM levels have also been shown to 

correlate well with fungal burden in animal models of IPA, suggesting its 

applicability for human disease detection. 

The main limitations of the diagnostic methods described here are that they are 

time-consuming and require diagnostic laboratory facilities. This can ultimately 

delay diagnosis and treatment especially in resourced-limited settings where 

hospital laboratories are not suitably equipped. To overcome these limitations, a 

non-invasive point-of-care immunodiagnostic test (lateral-flow device (LFD), a 

product of the University of Exeter spin-out company ISCA Diagnostics) that 

detects an Aspergillus diagnostic antigen using the monoclonal (mAb) IgG3 

antibody JF5 has been developed (Thornton 2008a). Lateral-flow devices have 

been used previously to great effect for simple, rapid diagnosis of bacteria, 

viruses and toxins (Ngom et al. 2010, Kappe and Schulze-Berge 1993) and also 

in the diagnosis of other fungal infections (Thornton 2008b), and rely on the same 

technology as the Unilever home pregnancy test.  

The JF5 mAb has been shown to bind to the epitope galactofuranose (Galf) 

present in an N-linked galactomannoprotein antigen in the Aspergillus hyphal cell 

wall. Galf is a ringed form of galactose that is found ubiquitously in Aspergillus 

sp. and also is an essential component of many pathogenic fungal cell walls (Barr 

et al. 1984, Vaishnav et al. 1998). In the Aspergillus cell wall Galf is present in 

both the alkali soluble and alkali insoluble fractions of the galactomannan (Latge, 

2009). However, it is also present in lipophosphogalactomannan and GIPCs that 

are anchored to the membrane, and can also be found at N-glycan ends of many 

glycoproteins. The frequency of Galf-containing molecules in Aspergillus 

alongside the ubiquity of many other fungal pathogens makes the specificity of 

galactomannan testing tricky. However several studies have shown the sensitivity 

and specificity of the JF5 LFD to be comparable with other assays with both BALf 

and serum samples (Wiederhold et al. 2013; Willinger et al. 2014; Johnson et al. 

2015; Hoenigl et al. 2012; Miceli et al. 2015), with the added benefits of minimal 
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processing and decreased assay time (10-15 minutes), demonstrating that it can 

speed up diagnosis and is suitable for monitoring immunocompromised patients 

at risk of infection. More work is required to further understand the clinical utility 

of the Aspergillus LFD, but it is clear there is a need for a simple non-invasive 

point-of-care test within the field of IPA diagnostics, of which the LFD has 

enormous potential for translation to the clinical setting.  

Objectives of this work 

The objective of this work was to characterise an IgG1 mAb (ED1) 

complementary to the IgG3 mAb JF5, firstly stabilising the ED1 hybridoma cell 

line and then determining whether it could be used in combination with JF5 to 

develop an Enzyme-Linked Immunosorbent Assay (ELISA) complementary to the 

LFD, for the specific and sensitive diagnosis of IPA. In doing so, I set out to 

determine the nature of the epitope bound by ED1 by using A. fumigatus mutants 

deficient in UDP-galactopyranose mutase, a key enzyme involved in the 

biosynthesis of galactofuranose containing glycoconjugates of A. fumigatus 

(Komachi et al. 2013; Latgé 2009; Schmalhorst et al. 2008). Results show that 

ED1 binds to the antigenic determinant 1,5-galactofuranose (Galf) present in the 

diagnostic Aspergillus mannoprotein antigen, and that it can be used successfully 

in a Double-Antibody-Sandwich-ELISA with the IgG3 antibody to detect the 

diagnostic biomarker in serum from a guinea pig model of IPA. This work 

demonstrates the utility of the IgG1 mAb ED1 in the development of adjunct tests 

to complement the JF5 LFD.  

 

Materials and Methods 

Ethics statement 

All animal work described in this study was conducted under a UK Home Office 

Project License, and was reviewed by the institution’s Animal Welfare Ethical 

Review Board (AWERB) for approval. The work was carried out in accordance 

with The Animals (Scientific Procedures) Act 1986 Directive 2010/63/EU, and 

followed all the Codes of Practice which reinforce this law, including all elements 

of housing, care, and euthanasia of the animals. 
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Fungal culture 

Fungal cultures were routinely grown on plates and slopes of potato dextrose 

agar (PDA: Potato Dextrose Broth (PDB: P6685; Sigma), agar 20gL-1) and 

Sabouraud Dextrose Agar (SDA: Sabouraud Dextrose Broth (SDB: S3306; 

Sigma), agar 20gL-1), and cultured at 26°C under a 16hour fluorescent light 

regime. Mutant strains were also grown on Malt Extract Agar (MEA; Malt Extract 

(ME: 70167; Sigma), agar 20gL-1) or grown in liquid shake cultures of ME, at 

60rpm and 30°C. All media was autoclaved at 121°C for 15 minutes before use.  

 

Production of monoclonal antibody ED1 and sensitivity testing  

The IgG1-producing hybridoma cell line ED1 developed previously by Dr C.R. 

Thornton, was stabilised by repeated sub-cloning in tissue culture medium (TCM; 

10% (v/v) Foetal Bovine Serum (FBS: FSC-SA; Labtech), 1% (v/v) 200mM L-

Glutamine (G7513; Sigma), 0.1% (v/v) penicillin/streptomycin solution (P/S; 60gL-

1 Penicillin G (P3032; Sigma), 100gL-1 Streptomycin (S9137; Sigma), 90% (v/v) 

RPMI-1640 (R0883; Sigma)) at 37°C and 5% CO2. Cells were plated out at a 

dilution of 1 cell/well and screened via Enzyme-Linked Immunosorbent Assay 

(ELISA). Only wells with both a positive absorbance value and containing a single 

compact colony were taken forward to eliminate any non-producers present 

within the cell line. To then ensure monoclonality, cells were sub-cloned by 

limiting dilution according to the procedure outlined previously (Thornton 2001). 

Antibody in tissue culture supernatants (TCS) was then tested for Aspergillus 

antigen recognition in Enzyme-Linked Immunosorbent Assay (ELISA) by using 

microtitre plates coated with Aspergillus mannoprotein antigen (Rolle et al. 2016). 

After five rounds of limiting dilution, the stable cell line ED1p.EC95 was generated 

and cells were stored long-term in liquid N2 by using the freezing process outlined 

elsewhere (Thornton 2001). 

 

Enzyme Linked Immunosorbent Assay (ELISA) 

The mannoprotein antigen, a product of the University of Exeter spin-out 

company ISCA Diagnostics and supplied by Dr C.R. Thornton, was dissolved in 

phosphate buffered saline (PBS: 0.8% NaCl; 0.02% KCl; 0.115% Na2HPO4; 

0.02% KH2PO4; pH7.2) at 1mg/ml and 50µl volumes were used to coat the wells 

of Maxisorp microtiter plates (442404; Nunc), which were incubated in a sealed 
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plastic bag at 4°C for 16 hours. Wells were then washed 3 times with PBST (PBS 

containing 0.05% (v/v) Tween-20), once with PBS and once with dH2O each for 

a minimum of 5 minutes before being air-dried in a laminar flow hood and stored 

for long-term use in sealed plastic bags at 4°C.On use, plates were blocked with 

150µl/well PBSA (PBS containing 1% (w/v) bovine serum albumin (BSA:  A7906 

Sigma)) for 15 minutes and then rinsed once with PBS. Each well was then 

incubated with 50µl of mAb TCS or TCM for control wells for an hour then washed 

three times with PBST before incubation with 50µl of goat anti-mouse polyvalent 

(immunoglobulin classes IgG, IgA and IgM) peroxidase conjugate (A-0412; 

Sigma Chemical Company, Poole, United Kingdom) diluted 1 in 1000 in PBST 

for a further hour. After washing three times with PBST and once with PBS, plates 

were incubated with tetramethyl benzidine solution (TMB substrate: 5ml H2O, 5ml 

0.2M NaOAc, 195µl 0.2M citric acid, 5µl of 30% (v/v) H2O2, 100µl of a stock 

solution (10mg/ml DMSO) of 3,3’,5,5’-tetramethyl benzidine (T-2885; Sigma)) for 

30 minutes to visualise bound antibody. The reaction was then stopped with 50µl 

3M H2SO4 per well and absorbance read at 450nm using a microtitre plate reader 

(Tecan GENios, Tecan Austria GmbH). All incubation steps were carried out in a 

sealed plastic bag at 23°C, and washes were a minimum of 5 minutes each. 

 

Specificity Screening of ED1 and JF5 antibodies 

Tissue culture supernatants containing mAb ED1 or mAb JF5 were tested for 

specificity against a variety of clinically relevant moulds and yeasts pathogenic to 

humans. Fungal cultures were grown on plates and slopes of PDA as described 

above. PBS surface washings of fungal slopes were generated according to the 

procedure outlined previously (Thornton 2001). In brief, 2 days after inoculation 

of the slope to ensure active growth 3ml sterile MQ water was used to wash off 

fungal spores and the liquid collected and centrifuged at 15000rpm for 5 minutes 

to separate the soluble antigen from the fungal cells. The supernatants were then 

further diluted 1 in 10 (v:v) in PBS. Soluble antigens were then immobilised to 

microtitre plates at 50µl per well, with PBS used as a negative control and 

Aspergillus mannoprotein antigen diluted 1 in 1000 in PBS as a positive control. 

Plates were subsequently incubated, washed and tested via PTA-ELISA with 

ED1 and JF5 as the primary antibodies and TCM as a control as described above. 

The threshold for detection was determined from control means (3xTCM abs) 
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which were consistently in the range of 0.05-0.10, therefore values >0.10 were 

considered a positive reaction. 

 

Table 1. Details of fungi used in this study. 

a. CBS; Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands. SK; S. Krappman, Institute of 

Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August University, 

Gottingen, Germany. IMI; International Mycological Institute, Egham, England. FGSC; Fungal Genetics 

Stock Centre, University of Missouri, Kansas City. CRT; C.R.Thornton, University of Exeter, UK. SB; 

S.Bates, University of Exeter, UK. GD; Genna Davies, University of Exeter, UK.  

 

 

 

Organism Isolate number Sourcea 

Aspergillus fumigatus WT AF293 SK 

Aspergillus fumigatus ∆glfA::hph4.4 4.4 GD 

Aspergillus fumigatus ∆glfA::hph7.4 7.4 GD 

Aspergillus ficuum 555.65 CBS 

Aspergillus flavus 91856iii IMI 

Aspergillus nidulans A4 FGSC 

Aspergillus restrictus  116.5 CBS 

Aspergillus terreus var. terreus 601.65 CBS 

Aspergillus wentii 121.32 CBS 

Candida albicans SC5314 SB 

Candida albicans  NGY152 CBS 

Candida glabrata 4962 CBS 

Candida tropicalis var. tropicalis 1920 CBS 

Cryptococcus neoformans var. 
neoformans 

7779 CBS 

Filobasidiella bacillospora 10865 CBS 

Fusarium oxysporum f.sp. lycopersici 167.30 CBS 

Fusarium solani 224.34 CBS 

Geotricum candidum 115.25 CBS 

Lichtheimia corymbifera TJAFJ713070 CRT 

Neosartorya fischeri var. fischeri 681.71 CBS 

Penicillium cyclopium 132.14 CBS 

Penicillium islandicum 338.48 CBS 

Rhizopus oryzae 112.09 CBS 

Rhizopus stolonifer var. stolonifer 389.95 CBS 

Rhodotorula sloofiae Alo-1 CRT 

Scedosporium apiospermum 117407 CBS 

Scedosporium prolificans 467.74 CBS 

Trichosporon asahii var. asahii 7632 CBS 

Verticillium dahlia 178.66 CBS 
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SDS Page and Western blotting 

For sodium-dodecyl-sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), 

Aspergillus antigen dissolved in sterile Milli-Q water (MQ-H2O) was diluted to 

0.5µg/ml in Laemmli buffer (Laemmli, 1970), and then denatured at 100°C for 10 

minutes. Proteins were separated on 4-20% gradient polyacrylamide gels at 

165V with pre-stained molecular weight ladder (Bio-Rad Laboratories Limited, 

Hemel Hempstead, UK) for determination of molecular weights. For western 

blotting, proteins were then transferred electrophoretically onto an activated 

PVDF membrane for 2 hours at 75V. The membrane was blocked for 16 hours at 

4°C with shaking at 15rpm in 1% PBSA, then incubated with mAb JF5 or ED1 

TCS diluted 1:2 in 0.5% PBSA solution for 2 hours. The membrane was washed 

three times in PBS and then incubated with goat anti-mouse IgG (whole 

molecule) alkaline phosphatase conjugate (A3562; Sigma) diluted 1 in 15,000 in 

0.5% PBSA for a further hour. After washing three times in PBS and once in 

PBST the membrane was equilibrated in APSB buffer (Thornton, 2008a) for 2 

minutes, and the reaction visualised with APSB substrate solution for 30 minutes 

before being stopped with dH2O and dried and stored in between sheets of 

Whatman filter paper. All incubation steps were carried out at 23°C and 15rpm 

shaking, and each wash was for a minimum of 5 minutes. 

 

Epitope Characterisation by heat, chemical and enzymatic modification 

Heat Treatment Solubilised Aspergillus antigen at a concentration of 1mg/ml 

PBS was tested for heat stability by boiling at 100°C in a water bath. At 10 minute 

intervals, samples were removed and the antigen immobilised to microtitre plates 

at a volume of 50µl per well. Non-heat treated Aspergillus antigen solution was 

used at time point 0 as a control. Plates were then incubated overnight, washed 

and tested via PTA-ELISA as described. 

Periodate treatment Microtitre plates coated with Aspergillus antigen were 

incubated with either 50µl of sodium acetate buffer (37% NaOAc (6.8gL-1 

CH3COONa.3H2O), 63% HOAc (3gL-1 HOAc), pH 4.5) as a control or sodium m-

periodate solution (20 mM NaIO4 in 50 mM sodium acetate buffer, pH4.5) for 20, 

4, 3, 2, 1 or 0hr at 4°C in a sealed plastic bag. Plates were then washed and 

assayed by PTA-ELISA. 

Protease treatment Microtitre plates coated with Aspergillus antigen were 

incubated with 50µl of trypsin solution (T7169 tablets in MQ-H2O at a 1mg/ml 
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concentration) and MQ-H2O as a control or 50µl of pronase solution (0.9mg 

protease Type XIV from S. griseus P5147 in 10ml PBS) and PBS as control. 

Plates were then incubated at either 37°C or 4°C for four hours in sealed plastic 

bags and then washed three times in PBST for 5 minutes before being tested via 

PTA-ELISA.  

 

Dot blot assay of chemical modification of epitope 

20 µl Aspergillus antigen diluted to 1mg/ml in Milli-Q water was spotted onto 

activated PVDF membranes and air-dried. The membranes were then treated 

with 2ml of proteases (as before) and the respective controls for 4 hours at 37ºC 

before being washed 3 times in PBS. The membranes were then blocked in 1% 

in PBSA at 15rpm, 4ºC for 16 hours, then incubated with the respective mAbs 

diluted in PBSA; ED1 @ 1:2, mJF5 @ 1/1250 and hJF5 @ 1/2500 for 2 hours. 

After washing three times in PBS, the respective secondary antibodies were then 

incubated for 1 hour at 1/1000 (anti-mouse polyvalent for ED1 and mJF5, anti-

human polyvalent for hJF5). Finally, after washing with three times with PBS and 

once with PBST the membranes were developed using the Amersham ECL kit. 

All incubation steps unless stated were carried out at 23ºC and 15rpm shaking. 

Each was for a minimum of 5 minutes.  

 

Competition ELISA  

Carbohydrate binding To investigate the inhibition of mAb binding to the target 

mannoprotein antigen by sugars, mAbs JF5 and ED1 were first purified using 

Protein A purification (Pierce). Antibodies were then diluted into PBST solutions 

containing 400mM of D-(+)-galactose (G0624; Sigma) or D-(+)-mannose (3458; 

Lancaster) to give starting concentrations of 10g/ml (ED1) and 0.2µg/ml (JF5) 

purified antibody protein/ buffer. Plates coated with 1mg/ml Aspergillus antigen 

for mAb ED1 and 15µg/ml for mAb JF5 were then incubated with doubling 

dilutions of the antibodies in 400mM PBST sugar solutions for 1 hour, with the 

remaining steps of the C-ELISA conducted as described thereafter. Aspergillus 

antigen at 500µg/ml buffer was used as the positive control and PBST diluent 

only as the negative control. Working volumes were 50l per well.  

Overlapping epitopes To investigate whether the epitopes of JF5 and ED1 are 

overlapping mAb ED1, a fully humanised IgG1 version of mouse mAb JF5 

(hereafter referred to as hJF5) and mAb HG12 (an unrelated Scedosporium-
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specific mouse IgG1 mAb (Thornton, 2009)), each purified using Protein A, were 

used to block binding of Protein A-purified JF5 directly labelled with the enzyme 

horse radish peroxidase (HRP) at a molar ratio of 1:1 (Thornton, unpublished). 

The humanised antibody hJF5 has been shown previously to have a higher 

affinity than mouse JF5 for the target mannoprotein antigen and so was predicted 

to block binding of the JF5-HRP conjugate. For this reason it was used as a 

positive control, while the unrelated mAb, HG12 acted as a negative control. An 

additional negative control consisted of PBST diluent buffer only. A 1 in 2000 

dilution of the JF5-HRP conjugate (equivalent to 0.5g antibody protein/ml) was 

prepared in PBST containing 10g/ml of Protein A-purified mAb (ED1, hJF5 or 

HG12) and then double diluted into 10g/ml PBST solutions of the respective 

antibodies in the wells of microtitre plates coated with Aspergillus mannoprotein 

antigen at 1mg/ml. The mixtures were incubated for 1 hour, and the remaining 

steps of the C-ELISA performed as described thereafter. Working volumes were 

50l per well. 

 

Production of Aspergillus fumigatus mutants 

Targeted replacement of the A. fumigatus UDP-galactopyranose mutase-

encoding gene glfA, with the hygromycin B phosphotransferase-encoding gene 

(hph), was performed using the split marker recombination method (Catlett et al., 

2003; Kershaw & Talbot, 2009; Thornton et al., 2015) and was carried out by G. 

Davies. The glfA gene and flanking sequences were obtained from the 

Aspergillus Genome Database (AspGD, http://www.aspergillusgenome.org/) and 

used to design primers. Primer pairs glf50.1F/glf50.1R and glf30.1F/glf30.1R 

were used to amplify the 5’ (LF, 1.0-kb) and 3’ (RF, 1.0-kb) flanking regions of 

the glfA gene, respectively, from A. fumigatus Af293 genomic DNA. 

Simultaneously, split hph templates were amplified to create the 5’ amplicon (HY, 

1.2-kb) using primers HY split/M13F and 3’ amplicon (YG, 0.8-kb) using primers 

YG split/M13R. Fusion PCR resulted in two products; LFHY (2.1-kb) and RFYG 

(1.8-kb), using primer pairs glf50.4F/HY split and glf30.1R/nested YG split, 

respectively. The amplicons were gel-purified and transformed into protoplasts of 

Af293, replacing glfA with the assembled hph gene and conferring resistance to 

hygromycin B. Putative glfA::hph transformants were selected in the presence 



16 
 

of hygromycin B (600µg/mL) and gene replacement was confirmed by Southern 

blot (results not shown here). 

 

Aspergillus fumigatus mutants  

The two mutants strains of A. fumigatus (glfA::hph4.4 and glfA::hph7.4) 

generated as described above, were grown on SDA slopes as described 

previously. Spores of the mutants and the A. fumigatus wild-type strain AF293 

were prepared in sterile MQ-H2O and were used at a final concentration of 104 

spores/ml, to inoculate 100ml sterile MEB liquid medium. Cultures were 

incubated as shake cultures at 60rpm and 30°C. Every 24 hours 3 replicate flasks 

were harvested by filtration of the contents through sterile Miracloth 

(Calbiochem). The mycelium was dried at 80°C for 48 hours and dry weights 

determined. The culture filtrate was used to coat the wells of a microtitre plate 

and PTA-ELISA conducted as described. For western blotting, filtrates were 

diluted 1:1 (v/v) in Laemmli buffer and denatured by heating at 100°C before 

SDS-PAGE and western blot processing as described. Antibody binding was 

determined by using the Amersham ECL Western Blot analysis kit and read on 

the Syngene G:box using the GeneSys programme.  

 

Immunofluorescence 

Spores of A. fumigatus AF293 and the mutant strains glfA::hph4.4 and 

glfA::hph7.4, were suspended in MQ-H2O containing 1% (w/v) D-glucose and 

200l volumes placed on the surface of sterile glass slides. The slides were 

incubated in a moistened chamber at 37oC to stimulate spore germination and 

the germlings fixed to the slides according to the method outlined in Thornton 

(2001). The fixed samples were then incubated with ED1 TCS or TCM only as 

the negative control for 1 hour before being washed 3 times in PBS. Goat anti-

mouse polyvalent FITC conjugate (F1010; Sigma) diluted 1 in 40 in PBS was then 

applied and the slides incubated in the dark for 30 minutes. Slides were given 3 

PBS washes and then coated in a glycerol-PBS mounting medium (Fluoromount 

F4680; Sigma) before being covered with a coverslip. All washes were for a 

minimum of 5 minutes whilst rocking at 15 rpm and incubation was carried out in 

a humid environment at 23oC. Slides were kept in the dark at 4°C before being 

imaged using an Olympus IX81epifluroescence microscope. 
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Double-Antibody-Sandwich ELISA of serum and BAL 

Wells of microtitre plates were incubated with Protein A-purified ED1 at 20µg/ml 

PBS overnight at 4oC and, after washing and air-drying, were blocked for 15 

minutes with 150µl of PBS containing 1% BSA and then washed once with PBS 

prior to DAS-ELISA. Human AB male serum (Labtech) spiked with Aspergillus 

mannoprotein antigen, or serum or bAL from a guinea pig model of IPA 

(Wiederhold et al. 2009; Wiederhold et al. 2013), were heat treated at 100°C for 

3 minutes with Aspergillus sample buffer (PBS containing 0.5% (w/v) 

ethylenediaminetetraacetic acid (EDTA; D/0700/53, Fisher Scientific), pH6.1), 

before centrifugation at 13,000 rpm for 5 minutes. The clear supernatant was 

removed and 50l volumes transferred to the ED1 coated plates for incubation 

for 2 hours at 23oC in a sealed plastic bag. The wells were then washed three 

times with PBST and subsequently incubated with JF5-HRP conjugate at 32µg/ml 

in PBST for 1 hour. After washing three times with PBST and once with PBS, 

bound antibody was visualised with TMB for 30 minutes as described. All washing 

steps lasted for a minimum of 5 minutes. Guinea pig sera and BAL were tested 

in a blind study to prevent biased interpretation of DAS-ELISA results; results for 

GM, -D-glucan and LFDs tests were withheld until results for the DAS-ELISA 

samples has been obtained and samples designated as positive or negative for 

the target antigen using a threshold absorbance value for test positivity. Un-

spiked human serum or serum or BAL from control (uninfected) guinea pigs 

consistently gave absorbance values in DAS-ELISA below 0.225, and so this 

absorbance value was used as the threshold for assay positivity. 

 

Data Analysis 

The difference in means was tested by one-way variance analysis (ANOVA) and 

statistical significance determined by Tukey-Kramer post-hoc test with a 

Bonferroni Correction.  
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Results 

Stabilisation of the ED1 cell line 

The ED1 cell line was stabilised through five rounds of sub-cloning by limiting 

dilution. Due to the high proportion of non-producing cells that were outcompeting 

the antibody-producing hybridomas it was necessary to initially plate cells out at 

a very low dilution. Only true hybridomas were taken forward and then re-cloned 

for monoclonality, resulting in ED1p.EC95. This sub-clone was then used in all 

further experiments to characterise the ED1 mAb. 

 

Specificities of mAbs ED1 and JF5 Monoclonal antibodies JF5 and ED1 were 

tested in PTA-ELISA for specificity against a range of clinically relevant moulds 

and yeasts pathogenic to humans (Table 1). Both antibodies reacted strongly with 

Aspergillus species, with the exception of Aspergillus wentii, and with the sexual 

stage of A. fumigatus, Neosartorya fischeri var. fischeri (Fig. 1), showing the 

mAbs to be genus-specific. Both mAbs also cross-reacted strongly with 

Penicillium cyclopium, as has been reported for mAb JF5 previously (Thornton 

2008a), but did not react with the other Penicillium species tested. Neither JF5 or 

ED1 cross-reacted with a range of unrelated fungi including Candida albicans, 

Cryptococcus neoformans and Fusarium solani. 

 

Western blotting of the ED1 and JF5 antigens 

Both mAb JF5 and mAb ED1 gave similar binding patterns in western blots of the 

Aspergillus mannoprotein antigen (Fig. 2A), with characteristic smearing in the 

molecular weight range 50 to >200kDa. This pattern of binding is consistent with 

previous studies of JF5 (Thornton, 2008), and with mAbs which bind to other 

glycosylated antigens of A. fumigatus (Stynen et al. 1992). 
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Figure 1 ELISA absorbance values for specificity screening of mAbs ED1 and JF5 
against clinically relevant moulds and yeasts. ELISA absorbance values at 450nm against 

surface washings containing antigens from clinically relevant moulds and yeasts show that both 
ED1 and JF5 are highly sensitive and also specific to Aspergillus species with the exception of 
recognition of N. fischeri var. fischeri, a related mould and P. cyclopium, which has been previously 
reported. Wells were coated with 50µl surface washing from slopes inoculated 72 hours previously. 
Bars represent the mean value of three repeats ± standard error. The red line indicates the 
threshold value of the ELISA for detection of antigen of 0.1. 
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Characterisation of epitope by heat, periodate and protease treatment 

The Aspergillus fumigatus antigen was modified by heat (Fig. 2B), enzymatic 

digestion (Fig. 2C) and chemical degradation (Fig. 2D and E) to investigate the 

nature of the epitopes bound by mAbs JF5 and ED1. A reduction in binding of an 

antibody to a heat-treated antigen would indicate that its epitope is heat labile. 

Neither of the antibodies showed significant decreases in PTA-ELISA 

absorbance values over 60 minutes of heating (Fig. 2B), showing that their 

epitopes are heat stable. Reductions in mAb binding following treatment with 

pronase shows that its epitope consists of protein, while reductions with trypsin 

indicate a protein epitope containing positively charged lysine and arginine side 

chains.  Binding of both mAbs was unaffected by both proteases in an ELISA 

format (Table 2), suggesting that neither ED1 or JF5 bind to protein epitopes. 

However, in a dot-blot assay ED1 and both mouse and humanised versions of 

JF5 showed significant reductions in binding after treatment with both pronase 

and trypsin compared with controls (Fig. 2E). Reductions in mAb binding following 

chemical digestion of an antigen with periodate shows that its epitope is 

carbohydrate and contains vicinal hydroxyl groups. The binding of both 

antibodies was unaffected by periodate (Figs. 2C and 2D). Taken together, these 

results, and those of the western blots, indicate that both mAbs bind to heat 

stable, periodate-insensitive carbohydrate epitopes on the mannoprotein antigen.  

 

 

 

 

 

 

 

 

 

Table 2 ELISA absorbance values for protease treatment of antigen ± standard error.  
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Figure 2 Characterisation of epitope by heat, enzymatically and chemically.  
(A) Western immunoblot with mAbs JF5 (lane 2) and ED1 (lane 3) against purified A. fumigatus 
mannoprotein at 0.5µg/ml under denaturing conditions. Wells were loaded with 40µl sample, and 
both mAbs show the characteristic glycoprotein smear. Mr (lane1) is broad range molecular weight 
markers. (B) ELISA absorbance values at 450nm to test for stability of the purified A. fumigatus 
antigen when boiled at 100ºC for up to 60 minutes. Samples were then immobilised immediately to 
a microtitre plate and then tested against mAbs JF5 (dark grey) and ED1 (light grey), which show 
no significant difference over time. (C,D) ELISA absorbance values at 450nm for purified Aspergillus 
fumigatus antigen immobilised to wells and treated with periodate (dark grey) or acetate only (light 
grey) at 4ºC over a 20hour period. The wells were then assayed with the mAbs JF5 (C) and ED1 
(D) showing no significant different. All bars represent the mean value of three repeats ± standard 
error. Significance tested by ANOVA and Tukey-Kramer post-hoc test. (E) Aspergillus antigen 
dotted onto PDVF membrane was treated with Trypsin, Pronase or respective controls and then 
tested for recognition by mAbs ED1, mouse JF5 (mJF5) or humanised form (hJF5). Recognition 
was visualised using chemiluminescence. 
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Competition for antigen binding of mAbs with carbohydrates 

Monoclonal antibodies ED1 and JF5 were assayed by competition ELISA (C-

ELISA) to determine whether the sugars D-galactose and D-mannose at 400mM 

blocked their binding to the Aspergillus mannoprotein antigen (Fig. 3A). Both 

sugars reduced JF5 binding to the immobilised antigen in the C-ELISA, when 

compared to the negative control (PBST diluent only). However, the reduction 

was more pronounced with D-galactose. The Aspergillus mannoprotein antigen 

completely eliminated binding. In contrast, neither sugar had a significant effect 

on binding of ED1 to the antigen, but its binding was significantly reduced by the 

mannoprotein antigen.  

 

Competition for antigen binding between mAbs 

 A competition ELISA (C-ELISA) was conducted with mAbs ED1, hJF5 and HG12 

and PBST only to determine whether ED1 and JF5 share similar epitopes. The 

antibodies were used to compete with mouse JF5 directly conjugated to the 

enzyme horseradish peroxidase (JF5-HRP). HG12 is a mouse IgG1 mAb specific 

to the unrelated human pathogenic fungus Scedosporium which, along with 

PBST, acted as a negative control in the experiments. Antibody hJF5 is a fully 

humanised version of mouse JF5 and has been shown previously to have a 

higher affinity for the target mannoprotein antigen than mouse JF5. It therefore 

acted as a positive control in the C-ELISA. Results of the C-ELISA (Fig. 3B) show 

that mAb ED1 does not significantly reduce binding of the JF5-HRP conjugate in 

ELISA with absorbance values across conjugate dilution similar to those with 

HG12 and hJF5. However, ELISA absorbance values were significantly reduced 

by the higher affinity antibody hJF5. These results show that mAb ED1 and JF5, 

which bind to the same mannoprotein antigen, either do not share the same 

epitope, or that sufficient numbers of epitopes exist to prevent saturation of 

antibody binding.   
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Characterisation of epitope by using Aspergillus fumigatus mutants 

Two mutants - glfA::hph4.4 and glfA::hph7.4 – that are both deficient in UDP-

galactopyranose mutase, a key enzyme involved in the biosynthesis of 

galactofuranose containing glycoconjugates in A. fumigatus, and the wild-type A. 

fumigatus strain AF293, were grown for 4 days in liquid cultures to allow for 

production of extracellular mannoprotein. The culture supernatants containing the 

extracellular antigens were then tested by PTA-ELISA for antigen recognition by 

mAb ED1 (Fig. 4A). Neither 4.4 or 7.4 supernatants were recognised and bound 

Figure 3 Characterisation of epitope by competition ELISAs for antigen binding. 
(A) ELISA absorbance values at 450nm of competition for Aspergillus mannoprotein antigen 
immobilised in microtitre wells. Purified JF5 and ED1 were tested for blocking of binding to the 
antigen with 400mM D-mannose and D-galactose at starting solutions of 0.2µg/ml and 10µg/ml 
respectively. Aspergillus antigen at 500µg/ml was used as a positive and PBST diluent as a 
negative. (B) ELISA absorbance values at 450nm of blocking of binding to the immobilised 
Aspergillus antigen of the purified JF5-HRP conjugate at a starting concentration of 0.5µg 
antibody protein/ml by protein A purified mAbs ED1, hJF5 and HG12 (a Scedosporium specific 
IgG1) solutions at 10µg/ml.  Bars represent the mean value of three repeats ± standard error. 
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by ED1, as can be seen in the baseline absorbance values across the 4 days. In 

comparison, the WT strain’s supernatant containing the produced mannoprotein 

was recognised by ED1, with the signal peaking at Day 3. Using the same culture 

fluids, a western blot was performed that showed results similar to the ELISA, 

confirming lack of binding of ED1 to the two enzyme-deficient mutants (Fig. 4B). 

Immunofluorescence studies using germinated conidia of the mutant and wild-

type strains, showed lack of binding of ED1 to the outer cell wall of the mutant 

cells (Fig. 4C-F) compared with the WT (4G,H,K). It is interesting to note that ED1 

binds only to the germinated hyphae and not to the spore itself, as can be seen 

in (4K) through the lack of fluorescence around the spore. Taken together, these 

results indicate that ED1 binds to the antigenic determinant galactofuranose 

(Galf) present in the diagnostic Aspergillus mannoprotein antigen, and that this is 

only produced by the germinated hyphae of the Aspergillus WT.  
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Guinea Pig serum and BAL sampling 

Monoclonal antibody ED1 was used in combination with JF5 in a DAS-ELISA 

format to determine whether the two antibodies were compatible for diagnostic 

antigen detection in serum and BAL samples from a guinea pig model of invasive 

pulmonary aspergillosis (Wiederhold et al. 2009; Wiederhold et al. 2013). The 

samples used had previously been characterised for fungal -D-glucan and 

Aspergillus galactomannan by using commercial Fungitell and Platelia tests 

respectively, and also with the Aspergillus lateral-flow device (Wiederhold et al., 

2008 and 2013). The accuracy of the ED1-JF5 DAS-ELISA was first shown to be 

able to detect the target antigen by spiking human serum with purified A. 

fumigatus mannoprotein antigen (Thornton, 2008a) at a concentration of 1mg/ml. 

The DAS-ELISA showed strong recognition of the antigen with a mean 

absorbance of 1.0495± 0.0208, compared to 0.0120±0.002 for un-spiked control 

serum. In tests of guinea pig serum and BAL samples there was good 

concordance between the DAS-ELISA and the three other tests (Table 3). The 

results show that ED1 and JF5, when used in combination, can be used to 

accurately detect the diagnostic antigen present in serum and in BAL samples 

and therefore in detecting IPA in this animal model of infection. As has been 

reported previously (Wiederhold et al. 2013), the β-glucan, GM and LFD assays 

gave false positive test results (likely due to contamination), with serum samples 

from three of the Day 5 and Day 7 control animals (samples 32, 44 and 45). The 

DAS-ELISA was also positive with these 3 samples.  

 

 

 

Figure 4 Characterisation of antigen using Aspergillus mutants. Previously generated 

mutants in UDP-galactopyranose mutase (4.4 and 7.4) and WT strains of Aspergillus fumigatus were 
tested by ELISA (A), western blot (B) and immunofluorescence (C-K). (A) ELISA absorbance values show 
a significant difference between the mutant strains and WT. Bars represent the mean value of three 
repeats ± standard error. (B) Western blot of WT (lane 2), 4.4 (lane 3) and 7.4 (lane 4) strains show the 
mutants have no protein bands, whereas WT has the characteristic protein smear.  (C-J) 
Photomicrographs of A. fumigatus germinated spore strains 4.4 (C,D), 7.4 (E, F) and WT (G, H) 
immunostained with ED1 (C-H) or TCM as a control (I,J). (C, E, G and I) Brightfield views of germinated 
Aspergillus spores. (D, F, H and J) Same field of view but under epifluorescence. (K) is a zoomed in view 
of the WT spore (1 arrow) and part of the germinated hyphae (2 arrows) highlighting the difference in 
fluorescence.  
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Table 3. Results of guinea pig serum tests using the ED1-JF5 DAS-ELISA, and comparison with β-
glucan (BG), galactomannan (GM) and Lateral Flow Device (LFD) tests. The threshold absorbance 
values for GM and DAS-ELISA test positivities are 0.225 and 0.5 respectively. The threshold value for 
β-glucan test positivity is 0.5. The LFD test results are recorded as negative (-), weakly positive (+),  
moderately positive (++) and strongly positive (+++).     
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Table 4. Results of guinea pig BAL tests using the ED1-JF5 DAS-ELISA, and comparison with β-
glucan (BG), galactomannan (GM) and Lateral Flow Device (LFD) tests. The threshold absorbance 
values for GM and DAS-ELISA test positivities are 0.225 and 0.5 respectively. The threshold value for 
β-glucan test positivity is 0.5. The LFD test results are recorded as negative (-), weakly positive (+),  
moderately positive (++) and strongly positive (+++).     
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Discussion 

In this report, I describe the characterisation of an IgG1 monoclonal antibody 

ED1, a mAb with similar binding characteristics to the IgG3 mAb JF5 used in the 

Aspergillus lateral-flow device (LFD) (Thornton, 2008a), and show that it similarly 

recognises the galactofuranose (Galf) epitope present in the diagnostic 

Aspergillus mannoprotein antigen. Although both mAbs appear to recognise the 

same epitope on the Aspergillus antigen, I have shown that ED1 and JF5 can be 

used in combination, in a double-antibody-sandwich ELISA (DAS-ELISA) format, 

to successfully detect invasive pulmonary aspergillosis in a guinea pig infection 

model when used with serum samples. This demonstrates the utility of mAb ED1 

as a diagnostic antibody for disease detection. 

Specificity tests show that mAb ED1 reacts strongly with antigens from species 

in the genus Aspergillus and also with the closely related fungus Neosartorya 

fischeri var. fischeri, the teleomorph or sexual stage of Aspergillus fischeri. The 

exception is Aspergillus wentii, a species which JF5 has been previously shown 

to also not recognise (Thornton 2008a). These results suggest that A. wentii lacks 

the Galf epitope which both mAbs recognise and that the JF5-ED1 DAS-ELISA 

would not be able to detect an infection by A. wentii. Currently this is not a major 

concern since 90% of invasive aspergillosis infections are caused by A. fumigatus 

(Thompson and Patterson 2008). Nevertheless, A. wentii is emerging as an 

opportunistic pathogen of immunocompromised patients (Halsey et al. 2011), and 

so if the DAS-ELISA were to be used in the clinical setting, lack of A. wentii 

detection would need to be noted.  

ED1 was shown to cross-react with Penicillium cyclopium as has been reported 

before for JF5 (Thornton 2008a), but did not recognise P. islandicum. This is 

unsurprising, since a number of studies have shown that mAbs generated against 

species within the genus Aspergillus also cross-react with certain members of the 

Penicillium genus due to similarities between epitopes (Schmechel et al. 2005). 

These studies have also shown that Aspergillus mAbs do not recognise members 

of the Penicillium sub-genus Biverticillium, of which P. islandicum belongs. 

Further extensive studies of ED1 reactivities with members of the Penicillium 

genus should be undertaken, in line with the cross-reactivity studies conducted 

previously with mAb JF5 (Thornton 2008a). However, cross-reactivity of ED1 with 

Penicillium species is unlikely to be of concern, since Penicillium species are not 
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indicated in invasive diseases of humans (Walsh and Groll 1999, Lyratzopoulos 

et al. 2002).  

Unlike the anti-galactomannan (GM) rat mAb, EB-A2, used in the Bio-Rad Platelia 

DAS-ELISA test for human IPA detection, ED1 has been shown to not cross-

react with several clinically relevant yeasts and moulds including Cryptococcus, 

Fusarium, Geotrichum and Candida species (Tortorano et al. 2012, Giacchino et 

al. 2006, Kappe and Schulze-Berge 1993), which have been identified as 

possible causes of false-positive results with the commercial GM DAS-ELISA. 

Therefore, both ED1, and JF5 (Thornton 2008a), have been shown to have 

greater specificity than EB-A2 and, when used in combination in a DAS-ELISA, 

could provide improved assay specificity, by reducing false positive detection of 

non-target pathogens.  

The antigen characterisation work conducted here shows that the epitope bound 

by ED1 is insensitive to heat treatment and periodate oxidation thus indicating 

that the epitope is a heat-stable carbohydrate moiety that lacks vicinal hydroxyl 

groups. However, there are contrasting results shown here on the effect 

proteolytic treatment has on the binding of ED1 to the Aspergillus antigen. In the 

format of an ELISA there appears to be no effect on binding after treatment with 

both pronase or trypsin, however the same assay in a dot blot form shows 

significant reduction in binding of the antigen by ED1 and also of binding by both 

mouse and human forms of JF5. It is possible that the difference seen in mAb 

binding to the antigen after protease treatment between the ELISA and dot blot 

formats may be due to how the epitope is presented. Immobilisation to different 

surfaces, for example plastic microtitre well versus PVDF membrane, may cause 

the globular antigen to display the epitope in different ways, thus potentially 

shielding it from treatment with proteases. Previous ELISA studies with JF5 

support the findings of the dot blot (Thornton, 2008a), with the JF5 epitope shown 

previously to be present on N-linked mannoprotein antigens within the Aspergillus 

hyphal cell wall, and which are secreted extracellularly during active growth of the 

fungus (Thornton 2008a).  

Work undertaken here using A. fumigatus mutants deficient in the enzyme UDP-

galactopyranose mutase, a key enzyme involved in the biosynthesis of 

galactofuranose containing glycoconjugates in A. fumigatus (Komachi et al. 2013; 
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Latgé 2009; Schmalhorst et al. 2008), has shown that ED1 recognises the epitope 

β(1,5)-galactofuranose (Galf), the epitope that JF5 has previously been shown to 

bind to (Thornton, 2008a). The WT immunofluorescence studies show that the 

galactofuranose recognised by ED1 and JF5 (unpublished data not shown here) 

is produced only by the germinated hyphae and not by the spore itself. This is 

unsurprising as Galf production is associated with active growth, and has 

previously been shown to associate with the hyphal apex (Thornton, 2008). 

The epitope Galf is, as discussed earlier, present in GM, an abundant component 

of the A. fumigatus cell wall (Bernard and Latgé 2001), with structural studies 

showing one component be composed of β1,5-galactofuranose (Galf) side 

chains, branching from a core mannan structure (Latgé et al. 1994). It is to these 

external Galf chains that mAbs ED1 and JF5, and also EB-A2, appear to bind. In 

addition, EB-A2 has been shown, under certain conditions, to recognise 

Galf(1,2)Man (Latgé 2009). It is unclear at present whether ED1 and JF5 also 

bind to this structure, and further work is needed to elucidate this. The lack of 

recognition by either mAb to Fusarium species, which also contain galactofuran 

molecules, indicates that neither JF5 or ED1 recognise internal Galf molecules, 

as galactofuranosides are not located at terminal positions within this species 

(Miyazaki and Naoi 1975).  

The Galf motif is ubiquitous in nature, and is released during tissue invasion and 

growth of A. fumigatus (Latgé 2009) and other fungal pathogens of humans 

including Histoplasma and Cryptococcus (Barr et al. 1984, Vaishnav et al. 

1998). Here we show that galactofuranose is secreted during active growth of 

hyphae, as WT ELISA values show a peak in absorbance at day 3 which 

coincided with quiescence of the fungus thereafter. Biosynthesis of Galf is 

catalysed by UDP-galactopyranose mutase (UGM), a highly conserved enzyme 

in lower eukaryotes but which is not present in mammals, making it an attractive 

anti-fungal drug target (Pederson and Turco 2003). In addition, the absence of 

the epitope Galf in human sugar molecules makes it an ideal candidate for 

detection of Aspergillus lung infections using in vitro diagnostic tests and 

molecular imaging in vivo. Recently, Rolle and co-workers (2016) used mAb JF5 

in immuno-positron emission tomography magnetic resonance imaging 

(immuno-PET/MRI) to visualise lung infections by A. fumigatus in vivo.  The 

imaging procedure is highly specific, allowing repeated imaging of A. fumigatus 
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lung infections and differentiation of IPA from pulmonary inflammation and from 

infections caused by bacteria.  

As shown here, mutation of the enzyme UGM eliminates Galf production 

demonstrated by loss of recognition by ED1 and JF5 of the extracellular and cell-

wall-bound antigens in ELISA, western blotting and immunofluorescence studies. 

However, this loss in A. fumigatus is non-lethal, unlike in Mycobacterium 

smegmatis (Pan et al. 2001), due to the position of the moiety at the terminal 

ends of Galf-containing molecules in the fungus. Studies have shown that UGM, 

while non-essential, is required for normal cell wall structure/function, since 

deletion of the UGM-encoding gene in Aspergillus nidulans causes aberrant 

hyphal morphology (El-Ganiny et al. 2008) and, in A. fumigatus, causes thinner 

cell walls, increased susceptibility to drugs, and attenuated virulence 

(Schmalhorst et al. 2008). The importance of Galf as a target epitope for 

diagnosis of IPA and its function in the Aspergillus cell wall, warrants further 

investigation, furthering our understanding of A. fumigatus cell wall recognition by 

antibodies and providing opportunities for novel treatments for IPA.  

The JF5-ED1 DAS-ELISA developed here was accurate in diagnosing IPA in a 

blind study of serum and BAL samples derived from a guinea pig model of the 

disease Wiederhold et al. 2009; Wiederhold et al. 2013). There was good 

concordance between the DAS-ELISA test results and those obtained using 

commercial GM and -D-glucan tests and the Aspergillus LFD. That all four of 

the assays gave positive results for three of the control sera in the sera studies, 

suggest that these samples were contaminated. False positives due to cross-

reactivity with other species of fungi (Tortorano et al. 2012), antibiotics 

(Boonsarngsuk et al. 2010) or food (Ansorg et al. 1997) are not unusual for the 

GM and β-glucan  tests, but interference from these are unlikely in this case since 

the guinea infection model was conducted under controlled, sterile conditions. 

While the DAS-ELISA test results show good promise, further extensive testing 

of human serum samples is needed to establish the clinical accuracy (specificity 

and sensitivity) of the test for diagnosing IPA in humans. Such tests should 

conform with EORTC diagnostic criteria for invasive fungal disease detection (De 

Pauw et al. 2008). 

 



32 
 

Conclusions and Future Work 

The murine IgG1 monoclonal antibody ED1 characterised in this study was 

shown to bind to the antigenic determinant β1,5-galactofuranose (Galf) present 

in A. fumigatus galactomannan. Despite also recognising the same epitope as 

JF5, the IgG3 mAb used in the Aspergillus lateral flow device, I have shown that 

ED1 can successfully be incorporated into a double-antibody-sandwich ELISA for 

diagnostic biomarker detection in serum. Specificity tests show that ED1 is highly 

specific, recognising clinically important Aspergillus species including A. 

fumigatus, the main cause of invasive pulmonary aspergillosis in humans. It was 

shown to not react with a number of unrelated, clinically-relevant, moulds, yeasts 

and yeast-like fungi including Fusarium and Cryptococcus, which cross-react with 

the commercial Platelia GM EIA, the in vitro diagnostic test currently used for 

human disease detection. Results presented here suggest that ED1 and JF5, 

when used in combination, might enable the development of a DAS-ELISA with 

improved diagnostic accuracy than currently available methods. Extensive testing 

of the ED1-JF5 DAS-ELISA with human serum and BALf samples is needed to 

establish the clinical validity of the assay for diagnosing IPA in 

immunocompromised patients.   
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