
Author Queries
Journal: Journal of the Royal Society Interface

Manuscript: rsif20170036

As the publishing schedule is strict, please note that this might be the only stage at which you are able to thoroughly
review your paper.

Please pay special attention to author names, affiliations and contact details, and figures, tables and their captions.

The corresponding author must provide an ORCID ID if they haven’t done so already. If you or your co-authors have
an ORCID ID please supply this with your corrections. More information about ORCID can be found at http://orcid.
org/.

No changes can be made after publication.

SQ1 Your supplementary material will be published online alongside your article and on rs.figshare.com exactly as
the file(s) are provided. Therefore, please could you either confirm that your supplementary material is
correct, or – if you have any changes to make to these files – email these along with your proof corrections to
the journal inbox. Your ESM files are listed here for your convenience:

Supp1.tif

Supp2.jpg

Q1 Please check whether the edits made to the article title are okay.

Q2 Please check hierarchy of the headings.

Q3 Please provide the year for ‘G. T. Reels, personal communication’

Q4 Reference [17] has been repeated and hence the repeated version has been deleted. Please check.

Q5 Please update reference [45].

Q6 Please supply the page range in the reference [58].

Q7 Please note that the captions of figures 1–4 have been taken from the metadata.

http://orcid.org/
http://orcid.org/


1
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

ARTICLE IN PRESS
rsif.royalsocietypublishing.org
Research
Cite this article: Nixon MR, Orr AG, Vukusic

P. 2017 Covert linear polarization signatures

from brilliant white two-dimensional

disordered wing structures of the phoenix

damselfly. J. R. Soc. Interface 20170036.

http://dx.doi.org/10.1098/rsif.2017.0036
Received: 19 January 2017

Accepted: 8 May 2017
2

Subject Category:
Life Sciences – Physics interface

Subject Areas:
biophysics, biomaterials

Keywords:
structural colour, whiteness, polarization,

Pseudolestes mirabilis, Odonata
Authors for correspondence:
M. R. Nixon

e-mail: m.r.nixon@exeter.ac.uk

P. Vukusic

e-mail: p.vukusic@exeter.ac.uk
Electronic supplementary material is available

online at rs.figshare.com.
& 2017 The Author(s) Published by the Royal Society. All rights reserved.
rsif20170036—15/5/17—14:00–Copy Edited by: Not Me
Covert linear polarization signatures from
brilliant white two-dimensional
disordered wing structures of the phoenix
damselfly
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2Environmental Futures Centre, Griffith University, Nathan, Q4111, Australia

MRN, 0000-0002-6351-4223

The damselfly Pseudolestes mirabilis reflects brilliant white on the ventral side

of its hindwings and a copper-gold colour on the dorsal side. Unlike many

previous investigations of odonate wings, in which colour appearances arise

either from multilayer interference or wing-membrane pigmentation, the

whiteness on the wings of P. mirabilis results from light scattered by a

specialized arrangement of flattened waxy fibres and the copper-gold

colour is produced by pigment-based filtering of this light scatter. The

waxy fibres responsible for this optical signature effectively form a structure

that is disordered in two-dimensions and this also gives rise to distinct opti-

cal linear polarization. It is a structure that provides a mechanism enabling

P. mirabilis to display its bright wing colours efficiently for territorial signal-

ling, both passively while perched, in which the sunlit copper-gold

upperside is presented against a highly contrasting background of foliage,

and actively in territorial contests in which the white underside is also

presented. It also offers a template for biomimetic high-intensity broadband

reflectors that have a pronounced polarization signature.
1. Introduction
There are many examples of sub-micron-sized structures in

Q

nature that give rise

to reflected colour in both flora and fauna [1–7]. Often this results in bright, iri-

descent colour and a highly conspicuous appearance. In many cases, structural

colour has been linked to significant biological functions such as territorial and

courtship signalling [8,9], and to less conspicuous colouring for camouflage

[10,11]. Insects, in particular, are an especially diverse class, within which a

wide range of different mechanisms of colour-production have been elucidated

[4]. Various species of the butterfly genus Morpho exhibit a brilliant blue

appearance generated by the ‘Christmas-tree’ shaped ridge-lamellae on their

wing-scales [12–14]. Similarly, many species of Coleoptera reflect bright

colours from multi-layered structures in their elytra [15–17], some also display-

ing circular dichroism, leading to strongly circularly polarized coloured

reflections [18–21]. In several species of Lepidoptera natural, multi-domained

gyroid-type three-dimensional photonic crystals (PCs) have been found.

These give rise to the diffuse green regions of colour in such species as

Callophrys rubi [22] and Parides sesostris [23–25].

Colour-inducing structure also occurs in the wing membranes [15,26–31]

and bodies [32] of some species of Odonata. In all species thus far examined

the wing membranes exhibit bright iridescence arising from multilayer-type

interference. Moreover in various odonates low intensity white pruinescence

has been attributed to scattering of incident light by wax crystals secreted

by the epicuticle of the wing membrane or the body [28,33], but these cases

involve relatively simple structures and low levels of reflectance. By contrast,

Pseudolestes mirabilis (commonly known as the Phoenix damselfly), the subject
ntioned
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of this investigation, exhibits a significantly different photo-

nic structure from any previously reported in Odonata and

this structure creates brilliant whiteness. Structural white in

nature is normally achieved via the random scattering of inci-

dent light from disordered structures, such as the filamental

arrangement in Cyphochilus [34] and other species of beetle

[35,36]. Further examples of biological structures that pro-

duce a bright white appearance include the dense arrays of

pterin pigments in pierid butterflies [37,38], the disordered

arrangement of guanine crystals in the Latrodectus pallidus
spider [39] and the leucophore cells in the flexible skin of cut-

tlefish (Sepia officinalis) [40]. The P. mirabilis system differs

from all previous examples of structural whiteness in the

Animal Kingdom. To our knowledge, it is the first reported

example of an animal with a disordered two-dimensional

scattering structure.
 e
20170036
2. Methods

2.1. Materials
Specimens of Pseudolestes mirabilis Kirby 1900 (Insecta: Odonata:

Pseudolestidae), a taxonomically isolated stream dwelling

damselfly endemic to Hainan island, were collected in the

field, killed and fixed in acetone: 2 m# fully mature imagines;

Wuzhishan, Hainan Province, P.R. of China, 16-iv-2008,

collector unknown. Deposited in collection A.G. Orr, Caloundra,

Queensland, Australia.

2.1.1. Optical microscope imaging
Optical microscopy was carried out in dark-field epi-illumination

and trans-illumination using a Zeiss Axioscope 2 with objective

lenses providing a range of magnifications. Images were

captured using a Zeiss Axiocam MRc5 camera.

2.1.2. Scanning electron microscopy imaging
Scanning electron microscopy (SEM) images were acquired using

a Nova 600 NanoLab Dualbeam system. Samples were cut from

the wings of P. mirabilis, with a typical size of approximately

10 mm2. These were mounted on an SEM stub with electrically

conducting epoxy resin and sputter coated with approximately

5 nm AuPd then examined using an electron beam voltage of

10 kV, beam current of 7.5 pA and a working distance of 5 mm.

2.1.3. Focused ion beam milling
Focused ion beam (FIB) milling of regions through the P. mirabilis
photonic structure was achieved with the previously described

Nova 600 NanoLab Dual-beam system and the same sample pre-

pared for SEM imaging. A suitable region of the sample was

identified (namely an undamaged region of the fibre-structure)

using the electron beam and aligned so that the region to be

milled was perpendicular to the fibres. To mill the rectangular

section, a beam voltage of 30 kV and a beam current of 1 nA

was used at a working distance of 5 mm.

2.1.4. Reflection spectrometry
Reflection spectrometry was carried out with an Ocean Optics

ISP-50-8-R-GT integrating sphere (ISP). Light was incident from

a 1000 mm optical fibre connected to an Ocean Optics HPX-

2000 high-power Xenon light-source. After passing through a

pinhole and undergoing collimation by a lens, incident light

was polarized in either a parallel or perpendicular state. This

was then focused through an integrating sphere to a beam spot

with a diameter of approximately 1.5 mm coincident with the

sample (located at the far side of the ISP). The reflected scatter
rsif20170036—15/5/17—14:00–Copy Edited by: Not Mentioned
from the sample was captured by the ISP before being delivered

to an Ocean Optics USB2000þ high-resolution USB spectrometer

via a 1000 mm optical fibre. The measured reflectance was nor-

malized against the reflectance from an Ocean Optics WS-1

white reflectance standard.

2.1.5. Imaging scatterometry
Imaging scatterometry was undertaken using a standard proto-

col (details of which can be found in Stavenga et al. (2009) [41]

and Vukusic and Stavenga (2009) [42]). Narrow-angle (‘primary

beam’) illumination was used to illuminate a single-cell region of

wing-membrane and covering fibres. A wing piece was mounted

on a pulled glass pipette using a small amount of quick-setting

epoxy resin.

2.1.6. Finite-difference time-domain modelling
The electromagnetic response of the binary images of the struc-

ture’s cross-section (e.g. Figure 4) was computed with

Lumerical FDTD Solutions v. 8.12 (https://www.lumerical.

com/tcad-products/fdtd/). The structure at the two end-edges

of the binary images (to within less than 1 mm from the structure

edge) were marginally realigned so as to be identical to one

another, thus allowing a set of periodic boundary conditions to

be applied to the modelling unit cell with no discontinuities

across the unit cell structure’s edges. This effectively uses the

50 mm binary image as a unit cell, creating an infinitely repeating

structure in the plane (the x-axis, in conventional notation). Per-

fectly matched layer boundaries were applied to the top and

bottom of the simulation region to absorb radiation incident at

these locations. A plane-wave pulse of incident 400–700 nm elec-

tromagnetic radiation was introduced to the simulation and the

frequency-domain reflectance response was calculated from the

power transmitted across a boundary located above the incident

wave source. A value of 1.38 was used for the fibres’ refractive

index (based on values determined for effective refractive indices

of wax layers with rough surface in previous studies [29,31,43]).
3. Results
The hind-wings of mature male P. mirabilis have a highly-

visible bright-white patch on their ventral sides (figure 1a,b)

which is displayed to rival males during agonistic displays

contesting territory [44]. Examination of this region with an

optical microscope reveals that the white appearance orig-

inates from an epicuticular wax secretion formed from

flattened parallel fibres which are extruded from the faces

of the cross veins on either side of the wing cells, such that

they eventually meet in the middle of the cell and interknit

[45] (figure 1c). This wax is considered homologous with

that associated with diffuse white pruinescence occurring

widely in Odonata [46,47]. The dark-field image of the edge

of a white region in figure 1c shows that the secreted fibrous

structure diffusely scatters white light over a range of inci-

dent angles. Fractured edge-regions of the white area,

appear to also show that the structure has directionality,

namely, the small strands and fractured regions of the struc-

ture can be seen occupying a direction parallel to the axial

veins defining each wing-cell (in figure 1c).

Closer inspection of the white region using SEM reveals

that these strands comprise many individual, aligned fibres.

Figure 1d shows a macroscopic top-down view of fibres

across a wing cell, while figure 1e shows the fractured

edges of two layers of fibres. These fibres appear to extend

from the cross-veins located at the longitudinal edges of

https://www.lumerical.com/tcad-products/fdtd/
https://www.lumerical.com/tcad-products/fdtd/
https://www.lumerical.com/tcad-products/fdtd/


(a)

(c)

(d) (e)

(b)

Figure 1. Images of Q7the Pseudolestes mirabilis damselfly: (a) Photograph of two P. mirabilis males in agonistic display, courtesy of G. T. Reels (cropped version of
original image). (b) Images of the dorsal (left) and ventral (right) sides of an individual P. mirabilis hind-wing. (c) Dark-field epi-illumination optical microscope
image of a several-cell region of the ventral side of a P. mirabilis hind-wing at the edge of a fibre-covered wing-membrane region. (d ) An SEM image of an entire
wing-cell region, showing the extracellular fibre structure. (e) A higher-magnification SEM image of a naturally fractured region of fibres, showing the exposed
structure cross-section. Scale bars: (b) 5 mm; (c) 200 mm; (d ) 150 mm; and (e) 3 mm.
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individual wing cells (i.e. discrete regions of wing membrane

enclosed by veins). The SEM image in figure 1e shows a natu-

rally fractured edge of a strand of fibres. Here, irregular cross-

sections can be seen in the air pockets that are created in the

inter-fibre regions. These cross-sections show no discernible

order on length scales associated with optical scattering, as

determined by Fast Fourier Transform (FFT) analysis—see

electronic supplementary material, S1.

This controlled directionality of the fibre-structure confers

a distinct linear polarization signature to the wings, an optical

feature observable as a difference in reflectance between inci-

dent orthogonal linear polarizations as can be seen from the

measurements presented in figure 2. For the white wing

region on the ventral side of the P. mirabilis hind-wing,

figure 2c shows that the average measured reflectance

across visible wavelengths is 58% for light polarized with

its E-field vector parallel to the structure’s strands (referred

to here as parallel polarization), whereas for perpendicular

polarization this intensity is only 47%. This equates to an
rsif20170036—15/5/17—14:00–Copy Edited by: Not Mentioned
average degree of polarization of 0.1 across all visible wave-

lengths, where degree of polarization (P) is defined by the

equation:

P ¼
Rpara � Rperp

Rpara þ Rperp
ð3:1Þ

and Rpar and Rperp are the reflected intensity from light incident

in parallel and perpendicular polarization configurations,

respectively. The 0.1 degree of polarization for this system is

equivalent to a 19% proportional decrease in reflectance (i.e.

an absolute difference of 11%) for incident light with parallel

polarization compared to perpendicular polarization.

For both incident light polarizations the spectral reflec-

tance is relatively flat and ‘feature-free’, albeit with a slight

increase in intensity towards shorter wavelengths. The

measured reflectance from the white area equates to CIELab
a* values of 1.3 and 1.1, and b* values of 28.0, and 28.2

for parallel and perpendicular polarizations, respectively.

These scores correspond to very low levels of colour-
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Figure 2. (a) Optical microscope image of the ventral side of the Pseudolestes mirabilis hindwing (b) Scattergram of an individual P. mirabilis fibre-covered wing-
cell; the sample was mounted with the fibres aligned vertically. The red lines are added to show scattered angles of 58, 308, 508 and 908. (c) Integrating-sphere-
measured reflectance from the white region on the ventral side of a P. mirabilis hind-wing, for incident light with parallel polarization (blue lines) and Q7perpendicular
polarization (red line). The corresponding degree of polarization is shown by the black line. (d – f ) are equivalent measurements from the dorsal side of the same
region as used for (a – c). Scale bars in (a) and (d ) both 200 mm.
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saturation. This reflected scatter extends to approximately 708
in the plane perpendicular to the fibre direction as shown

in the scattergram image in figure 2b.

The brilliant copper-gold colour of the dorsal side of the

hindwings exhibits the same polarization characteristics as

the ventral (white) side (figure 2e). The intensity of the

copper-gold dorsal reflectance is, however, significantly

lower than that of the white ventral reflectance, especially

at shorter wavelengths (figure 2f ). The spectral shape of the

transmittance taken through the pigmented region of wing

fits closely to that associated with melanin [48] (figure 3).

This strongly suggests the copper-gold dorsal colour is pro-

duced by the spectral filtering of light travelling through

the wing membrane after first having been reflected from

the fibre-structure.
rsif20170036—15/5/17—14:01–Copy Edited by: Not Mentioned
To understand more clearly the reflection properties of the

fibrous structure we performed FIB-milling to obtain a large

cross-section through the fibres. We used an SEM image of

the section (figure 4a) to create a two-dimensional binary rep-

resentation, appropriately correcting for non-normal imaging

angles. This representation was used in a finite-difference

time-domain (FDTD) simulation of the structure’s optical

response to incident polarized light. Equivalent simulations

were also undertaken for fibre-structures with different filling

fractions, generated by digitally modifying the sizes of the

air-pocket regions in the binary image of the P. mirabilis photo-

nic structure, while keeping their positions, shapes and the

thickness of the entire structure, constant (figure 4b).

The FDTD-modelled original (P. mirabilis) and filling-

fraction-altered structures (figure 4) all show the same
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polarization-dependence of the reflectance as was measured

experimentally (figure 2). Additionally, the modelling shows

the reflectance depends strongly on the filling fraction. The fill-

ing fraction for optimal scattering leading to highest scattered

intensities was found to be 45% material. Using image analysis

software, the filling fraction of the actual P. mirabilis structure

was calculated, across the FIB-milled sample regions imaged,

to vary between 51% and 57% material.

In highly scattering systems scattering efficiency funda-

mentally depends on refractive index. To this end we also

investigated the effect of varying the constituent refractive

index of this structure by modelling its scattering of unpolar-

ized incident light where the refractive index of the P. mirabilis
system’s fibre material was varied from n ¼ 1.0–2.7; the com-

plimentary space, between the fibres, was air. Figure 4d shows

that higher refractive indices of the material give a stronger

average reflectance, up to 82% when the refractive index of

the fibre reaches 2.7 (i.e. close to that of rutile titanium dioxide,

a synthetic dielectric material commonly used in broadband

scattering systems). In addition, we also observe that the

optimum filling-fraction for higher refractive index fibres,

namely that which incurs the highest scattering efficiency, is

lower than it is for fibres comprising lower refractive index.

Interestingly, models of this system comprising a higher

refractive index contrast show a significantly reduced degree

of polarization (figure 4e).
4. Discussion
The damselfly P. mirabilis is endemic to Hainan Island, China,

and is the only known representative of its family, Pseudoles-
tidae, which is at present of uncertain affinity [49]. It frequents

small, clear, well-lit forest streams. Males perch with wings

held flat in an arrow-head posture on vegetation in sunspots

where males defend territories for breeding purposes [44].

The hindwings of both sexes are broad, short and falcate,

and are proportionally much shorter than the forewing

than in other odonates.

The brilliant white reflection from the wing-underside of

male P. mirabilis damselflies is used in signalling during
rsif20170036—15/5/17—14:01–Copy Edited by: Not Mentioned
territorial disputes, in which two protagonists face each other

in a protracted hovering display, from 10–20 cm apart

(figure 1a), which may last five minutes or more [44]. Generally

the short falcate hindwings bearing the reflective fibres are held

motionless and folded downward under the insect, with

occasional flaps in which the white underside is vividly dis-

played. The degree of white reflection varies with maturity

(the specimens analysed being fully mature), as in young

males the reflective fibres are less developed in both density

and extent, and are entirely absent in pre-reproductive teneral

specimens [45]. Therefore, the brightness and extent of the

underside white area may well serve as an indicator of a

male’s maturity and general fitness. In the hindwing the reflec-

tive wax is estimated to add about 20% to total wing mass in

mature specimens [45], which must increase the effort required

to flap the wings, as is suggested by studies on the flight

kinematics of Neurobasis chinensis (Linnaeus, 1758), another

species in which the hindwing is loaded [50,51], hence the

frequency and vigour with which the white patches are flashed

probably conveys further information on the fitness of the

displaying male. This information may also provide a basis

for female choice, as contests often occur in the presence of

potential mates Q(G. T. Reels, personal communication). The fila-

ments appear to be a secretion, rather than an outgrowth of the

epicuticle, as they shear off easily from the secretory face of the

veins. The standard model of the insect cuticle provides a ready

explanation for their origin. In all insects wax canals traverse

the epicuticle and secrete a surface deposit of wax [52]. In Odo-

nata secretion of wax on the body and wings is believed to be

often especially copious and to occur throughout life [43,46],

but the form this takes in P. mirabilis is unique [45].

The optical structure is also visible on the wing-

upperside, filtered through a tinted membrane to produce a

brilliant copper-gold effect. This is displayed when the

male is perched in its characteristic posture, typically hori-

zontally on a leaf in full sunlight with hindwings held flat

and swept back in an arrow-head shape (electronic sup-

plementary material, 2), and makes the insect passively

guarding its territory highly conspicuous, especially against

green vegetation (this is a human perception, but current

knowledge of odonate colour vision suggests it is likely to

be true also for P. mirabilis [53,54]). In this case the very

broad angle over which light is scattered from the underlying

optical structure allows the bright colour filtered through the

tinted wing membrane to be perceived by approaching

conspecifics from a large overhead solid angle and might

alternatively, discourage other males from attempting to set

up residence, or may attract females, although there is no

clear evidence of courtship behaviour [41]. The structure

must be produced at considerable material cost, and presum-

ably also encumbers the male considerably, hence it is surely

the result of strong selective pressure.

Several other examples of structural whiteness in nature

include photonic structures for which there are both fully

optimized and un-optimized examples [35]. Despite the fact

that the P. mirabilis photonic structure is not perfectly

optimized with respect to its filling fraction, it is still an

impressively efficient scattering medium. The reflectance

properties of P. mirabilis are similar to those measured from

several species of white beetle [35,36] whose reflective scatter-

ing efficiency compares favourably to paper (single-sheet,

80 gsm) and polystyrene. It was found that despite even the

thickest of the three beetle scales having a cross-section
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thickness of less than a tenth of a standard sheet of paper, the

enhanced scattering from the disordered inter-scale struc-

tures yielded similar optical properties. The measured

reflectance of P. mirabilis is comparable to that of the beetle

Lepidopta stigma, whereas in Cyphochilus species and

Calothyrza margaritifera, in which the optical scattering

structures are more fully optimized, the reflectance is

approximately 10% greater in intensity [35]. More recently,

these structures have been shown to possess the lowest trans-

port mean free path reported to date for low-refractive-index

systems [36].

This system may be the first example of a brilliant white

biological system that exhibits a discernible measured linear

polarization-dependent response. This type of polarization

signature is normally associated with more highly ordered

structures, such as two-dimensional photonic crystals [55].

In biological systems, this two-dimensional order has been

investigated in several species, the most common example

of which is the male peacock, whose well-known, bright

feather colours are produced by a system of two-dimensional

photonic crystal domains of melanin rods packed into its

feather barbules [56,57]. This also produces polarization-

dependent saturated colour reflectance. The colour of the

polychaete worm, Pherusa, is also known to arise from hexa-

gonally two-dimensional ordered and quasi-ordered

arrangements of cylindrical channels [58]; a similar structure

exists also in the sea mouse Aphrodita [59,60]. The structure

of the wax filaments comprising the white patches of

the P. mirabilis ventral hindwing surface, combined with a

separate absorbing filter on the upperside, represents an

efficient method to create two quite separate visual signals

from the same photonic structure. It is also a template for
rsif20170036—15/5/17—14:01–Copy Edited by: Not Mentioned
the design of a brilliant white system that possesses a linear

polarization signature. Polarization signatures and white

appearances are two optical properties normally not associ-

ated with one another. It is unclear, however, if differential

linear polarization scatter serves a biological function in

this species or is purely an incidental property of the

packed filament structure that evolved in response to selec-

tion for an intense white signal. The ‘arrowhead’ perching

posture (electronic supplementary material, 2) is unique

among extant Odonata, and may well be a response to opti-

mize the optical signal broadcast, given the differential

scatter along the wing axes. It is well known that odonates

can perceive polarized light [61,62] and perhaps even a

small contrast between the two wings may enhance the over-

all signal received. However, field tests are needed to

establish this hypothesis.
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