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ABSTRACT

The application of forecast ensembles to probabilistic weather prediction has spurred considerable interest

in their evaluation. Such ensembles are commonly interpreted as Monte Carlo ensembles meaning that the

ensemble members are perceived as random draws from a distribution. Under this interpretation, a reason-

able property to ask for is statistical consistency, which demands that the ensemble members and the veri-

fication behave like draws from the same distribution. A widely used technique to assess statistical consistency

of a historical dataset is the rank histogram, which uses as a criterion the number of times that the verification

falls between pairs of members of the ordered ensemble. Ensemble evaluation is rendered more specific by

stratification, which means that ensembles that satisfy a certain condition (e.g., a certain meteorological re-

gime) are evaluated separately. Fundamental relationships between Monte Carlo ensembles, their rank

histograms, and random sampling from the probability simplex according to the Dirichlet distribution are

pointed out. Furthermore, the possible benefits and complications of ensemble stratification are discussed.

The main conclusion is that a stratified Monte Carlo ensemble might appear inconsistent with the verification

even though the original (unstratified) ensemble is consistent. The apparent inconsistency is merely a result of

stratification. Stratified rank histograms are thus not necessarily flat. This result is demonstrated by perfect

ensemble simulations and supplemented by mathematical arguments. Possible methods to avoid or remove

artifacts that stratification induces in the rank histogram are suggested.

1. Introduction

A forecast ensemble (or simply ensemble) is a collec-

tion of runs of a dynamical model. Heterogeneity of

ensemble members is affected through different initial

conditions, different model parameters, or the ensemble

members can even be runs of different models for the

same process. In any case, what makes the collection of

runs an ensemble is their common target. That is, all

members of the ensemble verify at the same time and

are eventually compared to the same measurement: the

verification. Forecast ensembles convey not only a best

guess of the verification but also information about the

uncertainty of that best guess. This uncertainty is not a

physical property of the verification. It is rather the

manifestation of incomplete knowledge of the forecaster

about the initial state and the physics of the system. As a

consequence, different forecasters might have different

forecast uncertainties.

The forecaster’s uncertainty about the verification is

often conceptualized by a forecast distribution. The goal

of an ensemble forecasting system is to use the sensitivity

of the dynamical system to the imposed perturbations to

generate a number of samples from the forecast distri-

bution. However, the representation of the forecast dis-

tribution by the ensemble might be incorrect, that is, the

verification might not behave like a draw from the forecast

distribution that is estimated (or sampled) by the ensemble.
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In this case, the uncertainty information in the ensemble

is unwarranted, and thus its usefulness is limited.

If the forecast distribution is well reproduced by both

the numerical model and the imposed perturbations, the

ensemble members should be thought of as equally likely

scenarios for the verification. An ensemble whose mem-

bers are statistically indistinguishable from the verifica-

tion is called statistically consistent (Anderson 1996). In

a consistent ensemble, the rate at which the verification

falls between any two adjacent ensemble members should

be independent of the position of these ensemble mem-

bers in the ordered ensemble. In other words, given that

K ensemble members define K 1 1 possible intervals into

which the verification can fall, none of these intervals

should be preferred by the verification and each interval

should occur with an average relative frequency of 1/(K 1

1). A histogram of the number of times that the verifi-

cation falls into each interval in a historical dataset of

forecast–verification pairs should then be flat, up to ran-

dom fluctuations due to the finiteness of the number of

samples. Such rank histograms (Talagrand et al. 1997;

Hamill and Colucci 1997) are used to evaluate ensemble

forecasts. Flatness of the rank histogram, or uniformity of

the verification rank distribution, is considered a neces-

sary condition for ensemble consistency.

Some authors have made ensemble analyses more spe-

cific by means of ensemble stratification (Hamill and

Colucci 1998; Bröcker 2008). The complete historical

dataset of forecast–verification pairs was divided into

subsets in which certain criteria are satisfied by the en-

semble. Rank histograms constructed separately for each

subset are used to assess whether the model reproduces

the forecast distribution equally well (or badly) under the

respective criteria. In Hamill and Colucci (1997) and

Hamill and Colucci (1998), rank histograms of ensem-

bles stratified along the ensemble standard deviation and

along baroclinic instability (a function of the ensemble

mean) are presented. Rank histograms for those en-

sembles with particularly low and high standard de-

viation or baroclinic instability are shown separately.

Hamill (2001) advocates stratification along functions of

the ensemble. Bröcker (2008) stratifies along the esti-

mated ranked probability score of the ensemble, a func-

tion of the ensemble that correlates with the ensemble

standard deviation. Siegert et al. (2011) stratify along

the ensemble range and find that the ensemble range

contains information about the occurrence of outliers.

Further approaches to stratification in the literature

include stratification along the verification (Mullen and

Buizza 2002) and stratification along the current season

(Peel and Wilson 2008; Siegert et al. 2011). All au-

thors observe different rank histograms under different

strata.

The application of rank histograms to stratified ensem-

bles suggests that a flat rank histogram should be expected

if the original (unstratified) ensemble is consistent, even

though none of the authors cited above state this explic-

itly. In general, however, this assumption does not hold.

In Fig. 1, stratified rank histograms of a dataset of per-

fectly consistent ensemble–verification pairs are shown.

This plot readily demonstrates that stratification might

turn a consistent ensemble into several inconsistent ones.

To understand why that happens, consider as an example

stratification along the mean of a hypothetical tempera-

ture ensemble, as in the top panel of Fig. 1. There are two

effects that lead to variations in the ensemble mean: on

the one hand, the physics of the system lead to warm and

cold regimes under which ensembles have particularly high

and low mean values, respectively. On the other hand,

random sampling fluctuations cause the sample mean to be

either warmer or colder than the true mean. This latter

effect is purely random over the entirety of ensembles

drawn from their distributions. However, by stratification,

ensembles with an anomalously low sample mean are

separated from ensembles with an anomalously high sam-

ple mean. The random sampling error is turned into a sys-

tematic error by stratification. In the ensembles with an

anomalously low sample mean, the verification drawn from

the same distribution has an increased tendency to fall into

the higher ranks, and vice versa. The rank histograms of

these subsets of the original ensemble are then sloped.

The new contributions of the present study are a de-

tailed description of the effects of stratification on the

rank histogram, and the introduction of possible methods

to cope with these effects. To this end, ensemble fore-

casting is formalized in section 2. A connection between

forecast ensembles, the Dirichlet distribution, and sam-

pling from the probability simplex is established. In sec-

tion 3, the theory of ensemble stratification is reviewed.

In section 4, a perfect ensemble study is presented that

highlights the effects of stratification under different cri-

teria. In section 5, mathematical arguments based on the

preceding sections are provided in order to explain the

effects of stratification. Section 6 presents a statistical test

for ensemble consistency under stratification along cer-

tain criteria, and section 7 proposes methods to avoid

artifacts induced by stratification. Section 8 concludes

with a discussion and summary. Readers only interested

in a phenomenological description of the problem may

proceed to section 4 right away.

2. Monte Carlo ensembles and the probability
simplex

A forecast ensemble drawn randomly and indepen-

dently from a distribution can be thought of as arising in
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the following way. Denote the forecast distribution at

instance t as Ft(�), here taken as a cumulative distribu-

tion function (cdf). Then Ft(x) is equal to the forecast

probability concentrated in the interval (2‘, x] at time

instance t. It should be kept in mind that Ft generally

changes over time in forecasting problems because the

degree of uncertainty of the forecaster about the future

is different on different occasions. Consider further a

K-sample u 5 (u[1], . . . , u[K]) drawn uniformly and in-

dependently from the unit interval and ordered by in-

creasing magnitude—u[i] denotes the ith-order statistic.

Then an ordered K-member ensemble e drawn in-

dependently from Ft can be constructed by evaluating

the inverse of Ft at u:

e 5 fF21
t (u

[1]
), . . . , F21

t (u
[K]

)g (1)

5 (e
[1]

, . . . , e
[K]

). (2)

This transformation is a result of the fact that if x is

drawn from the cdf F(�), then the probability integral

transform (PIT) of x, F(x), is uniformly distributed on

the unit interval (Mood et al. 1974). We call ensembles

that are constructed in this way Monte Carlo ensembles

(MCEs). The ordering between the u[i] and e[i] is pre-

served by the PIT because Ft(�) is a monotonically in-

creasing function. In operational ensemble forecasting it

is usually assumed that ensemble members behave like

independent samples drawn from a forecast distribution.

That is, operational ensembles are usually interpreted as

MCEs.

An MCE is statistically consistent if the verification is

statistically indistinguishable from the ensemble mem-

bers (i.e., if it can be considered a random independent

draw from the forecast distribution). In other words,

under statistical consistency every ensemble member

can be considered an equally likely scenario for the

verification under the uncertainty of the forecaster.

Given an MCE, it is a relevant question to ask what

the probability is that the verification h will fall between

an adjacent pair of ensemble members e[i21] and e[i] for i 5

1, . . . , K 1 1, where we define e[0] 5 2‘ and e[K11] 5 1‘.

If we assume that the ensemble is statistically consistent,

then this probability is given by

 
FIG. 1. Patterns in the rank histogram that result from stratifi-

cation along different sample statistics. Abscissas indicate verifi-

cation ranks and ordinates indicate frequency of occurrence. Dark

(light hatched) bars correspond to the high (low) stratum. None of

these rank histograms can be considered flat, which has been

confirmed by a x2 test.
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qidPfh 2 (e
[i21]

, e
[i]] j e, Ftg (3)

5 Ft(e
[i]) 2 Ft(e

[i21]
) (4)

5 FtfF
21
t (u

[i])g 2 FtfF
21
t (u

[i21]
)g (5)

5 u
[i] 2 u

[i21]
. (6)

Hence, given the forecast distribution Ft, each MCE

defines a (K 1 1)-dimensional random vector given by

qd(q1, . . . , qK11) (7)

5 (u
[1]

, u
[2]

2 u
[1]

, . . . , u
[K]

2 u
[K21]

, 1 2 u
[K]

). (8)

The probability of the verification falling between en-

semble members e[i21] and e[i] is equal to qi. If the veri-

fication does indeed fall into this interval, we say that

it has rank i. For this reason, qi can be called the rank

probability.

The set of J-dimensional vectors whose elements

are nonnegative and sum to one is called the (J 2 1)-

dimensional probability simplex. It is a (J 2 1)-dimensional

surface embedded in J dimensions. Every vector q 5

(q1, . . . , qJ) that lies on the (J 2 1)-dimensional probability

simplex can be interpreted as a J-dimensional proba-

bility mass function (pmf), that is, a mutually exclusive

and collectively exhaustive probability assignment over

J categories. (The two-dimensional probability simplex

is visualized in Figs. 2 and A1.)

The joint density of the elements of the K-dimensional

vector u 5 (u[1], . . . , u[K]) is given by

pu[1],...,u[K]
(a1, . . . , aK) 5 K! 5 const, (9)

if 0 , a1 , � � �, aK , 1 and zero otherwise (Mood et al.

1974). The transformation given by Eq. (8), which maps

the vector u to the vector q (which is a pmf), is a linear

transformation. It follows that the joint density of the

elements of q is the same as that of the elements of u, up

to a constant (Mood et al. 1974). Thus, the joint density of

the elements of q is likewise uniform if q is an element of

the probability simplex, and zero otherwise. We conclude

that the (K 1 1)-dimensional rank probability vector q

given by Eq. (8) can be considered a random pmf, drawn

uniformly from the K-dimensional probability simplex.

The uniform distribution on the probability simplex is

part of a larger family known as the Dirichlet distribu-

tions (Frigyik et al. 2010) which we review in appendix

A. Uniform sampling from the simplex implies that the

K 1 1 parameters a 5 (a1, . . . , aK11) of the Dirichlet

distribution Dir(a) are constant and equal to one. That

is, for a random pmf q whose elements are defined by

a statistically consistent MCE as in Eq. (3), we have q ;

Dir(a) with a 5 (1, . . . , 1).

An important consequence of this Monte Carlo in-

terpretation of forecast ensembles is that the rank

probability is not a constant equal to 1/(K 1 1) even if

the ensemble is statistically consistent. Rather, it is

subject to fluctuations due to the random sampling of the

ensemble members. It is a random variable distributed

like the marginal of a Dirichlet distribution (i.e., a beta

distribution with parameters 1 and K; Frigyik et al. 2010).

Depending on the ensemble, certain verification ranks

become more or less likely at a given instance. It is merely

the expectation value of the qi that satisfies

E[qi] 5
1

K 1 1
, (10)

according to Eq. (A4).

An established method to evaluate forecast ensem-

bles is the verification rank histogram (Talagrand et al.

1997; Hamill and Colucci 1997), which is a histogram of

verification ranks in a historical dataset of ensemble

forecasts. The expected height of the ith histogram bar is

governed by the expectation of the corresponding rank

probability E[qi], which is given by 1/(K 1 1) for all i in

a consistent MCE. A flat histogram is usually taken as

a necessary condition for a consistent forecast ensemble.

In practice, rank histograms are often U shaped or sloped,

indicating lack of variability or unconditional bias of the

forecast ensemble, respectively (Hamill 2001). In view

of the considerations in the present section, a single

verification rank can be interpreted as a single draw

from a random (K 1 1)-dimensional pmf which, in turn,

was drawn from a Dirichlet distribution with parameters

a 5 (1, . . . , 1). The rank histogram is thus a summary of

N individual draws from random pmfs.

3. Ensemble stratification

In the following we focus on a practical domain, namely,

ensemble stratification (Bröcker 2008), in which the re-

sults presented so far are relevant. Ensemble stratifica-

tion amounts to imposing a certain stratification criterion

under which a historical dataset of ensemble forecasts is

partitioned. Stratification partitions the original ensem-

ble into two or more strata.

Ensemble stratification has the benefit of facilitating

more refined and flow-dependent consistency analyses

of a forecast ensemble. For example, a forecaster might

want to assess the consistency of his temperature ensem-

ble only under warm conditions. For this purpose he can

partition the ensembles into a warm and a cold stratum
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and analyze the warm stratum individually. Finding dif-

ferent systematic inconsistencies under different strata is

valuable from a diagnostic point of view because then

more specific corrections can be applied to the forecast.

The question is then how to identify ‘‘warm conditions,’’

or more generally, how to realize stratification. One pos-

sible group of stratification criteria are parameters of the

underlying forecast distribution, such as its mean or var-

iance. Such criteria are considered in Bröcker (2008). If

the forecast model indeed produces ensemble members

that are indistinguishable from the verification, rank his-

tograms of the individual strata should still be flat. This can

be seen by writing the forecast distribution as Fk(�) and

assuming for a moment that the verification is drawn from

a distribution Fu(�). Assume that the two distributions are

from the same family of distributions and that the differ-

ence between them as well as their time dependencies, if

any, are completely contained in the parameters u and k.

The distributions are supposed to be identical if and only if

u 5 k. If the verification h is a draw from Fu and the

members e[i] of the ensemble e are drawn from Fk, the

probability qi that the verification falls between an adja-

cent pair of ensemble members e[i21] and e[i] is given by

qi 5 Pfh 2 (e
[i21]

, e
[i]] j e, F

u
, F

k
g (11)

5 F
u
(e

[i]) 2 F
u
(e

[i21]
) (12)

5 F
u
fF21

k (u
[i])g 2 F

u
fF21

k (u
[i21]

)g. (13)

Assume k 2 K. Stratification amounts to defining a

function S(�):K / (1, . . . , M) that maps the parameter

k 2 K of the forecast distribution to one of M discrete

indices. The expected height of the bars in a rank histo-

gram is determined by the expectation of the rank proba-

bility qi. Under the mth stratum, that is when S(k) 5 m, this

expectation is

E[qi j S(k) 5 m] (14)

5 E[F
u
fF21

k (u
[i])g 2 F

u
fF21

k (u
[i21]

)g j S(k) 5 m].

(15)

If the ensemble is statistically consistent under the mth

stratum, then u 5 k " fk: S(k) 5 mg, and Eqs. (14)–(15)

are equal to

E[u
[i] 2 u

[i21]
j S(k) 5 m] 5

1

K 1 1
. (16)

Equation (16) shows that if the ensemble is statistically

consistent under the mth stratum, the expectation of qi

conditional on the stratification criterion is equal to the

expectation of u[i] 2 u[i21] conditional on the criterion.

Since the u[�] are uniformly distributed, they are in-

dependent of k and thus the expectation in Eq. (16) is

independent of conditioning on k. If, on the other hand,

S(u) 6¼ S(k) under some stratum m, Eq. (15) is not equal

to Eq. (16) for that stratum. Therefore E[qi j S(k) 5 m] is

indeed conditional on the stratification criterion and

thus not necessarily equal to 1/(K 1 1). The rank his-

togram under the mth stratum is then not flat.

If the number of instances in the historical dataset in

which the ensemble falls into the mth stratum is small

compared to the entirety of all instances, a systematic

deviance of E[qi j S(k) 5 m] might remain undetected by

a rank histogram that is constructed over all instances.

Considering only the respective subset of ensembles by

means of stratification increases the detectability of such

a systematic misrepresentation of the forecast distribution.

In practice though, there is a difficulty with this ap-

proach to stratification. The forecast distribution, along

whose parameters the ensemble is stratified, is usually

not available to the forecaster. In numerical weather

forecasting, the forecaster has the possibility to sample

from that distribution by running a number of simula-

tions; the distribution itself though is not available to

him in closed form. Hence, stratifying along a parameter of

the distribution might be infeasible in practice. But since

parameters of a distribution can be estimated from a ran-

dom sample drawn from that distribution, the forecaster

might instead stratify along estimates of these parameters

calculated from the ensemble. Alternatively, one could

stratify ensembles along functions of the ensemble mem-

bers in general. However, we will show in the following two

sections that such an approach leads to inconsistent strata.

4. Nonflat rank histograms due to stratification

In this section we consider stratification criteria that

are functions of the ensemble that is analyzed. Examples

for such criteria are parameter estimates of the underlying

distribution, such as the ensemble mean or variance. The

rank histograms of these strata are in general not flat, even

if the original unstratified ensemble is perfectly consistent.

To demonstrate this we present results of a perfect en-

semble simulation. More mathematical arguments fol-

low in section 5.

We produce a dataset of a consistent forecast en-

semble by the following procedure. 1) Two numbers m

and s are sampled randomly and uniformly from the in-

tervals [21, 1] and [1, 2], respectively, and taken as the

mean and standard deviation of a Gaussian distribution

p(x j m, s). 2) Then K 5 13 random samples are drawn

from this Gaussian p(x j m, s) and taken as ensemble

members. 3) Another independent draw from p(x j m, s)

is taken as the verification.
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The procedure in steps 1–3 is repeated N times, each

time with a different realization of m and s, which provides

a dataset of N ensemble–verification pairs. An ensemble

sampled in this manner is statistically consistent since

ensemble members and verification are drawn from the

same distribution p(x j m, s) at each instance. Ensemble

data with such statistical behavior can arise in a tem-

perature anomaly ensemble. The varying mean value of

the distribution models the predicted intensity of the

anomaly, and the varying standard deviation can be re-

garded as varying levels of forecast uncertainty.

After generating the dataset of ensemble–verification

pairs, the ensemble is stratified in the following way. Here

we take the ensemble standard deviation as the stratifi-

cation criterion. The ensemble standard deviation is cal-

culated for all N ensembles in the dataset. The empirical

average over all N ensemble standard deviations in the

dataset is calculated and taken as the threshold for strati-

fication into two strata. All those ensemble–verification

pairs in the dataset with an ensemble standard deviation

falling below the threshold are collected in the ‘‘low’’

stratum, and those instances where the ensemble has an

above-average ensemble standard deviation are put into

the ‘‘high’’ stratum. Finally, a rank histogram is constructed

for both strata separately.

Figure 1 shows rank histograms of such consistent

forecast ensembles stratified along various criteria. These

criteria are statistics calculated from the ensemble, in-

cluding the ensemble mean, ensemble standard deviation,

ensemble median (Q0.5, the 0.5 quantile), ensemble in-

terquartile range (IQR; Q0.75–Q0.25), and the total range

between largest and smallest ensemble member. We have

used a large value of N 5 2 3 105 in order to emphasize

the systematic effects of stratification.

Obviously, none of the rank histograms in Fig. 1 can

be considered flat. This has been confirmed by a x2 test

(Pearson 1900, see also section 5). The effect of stratifi-

cation along statistics of the ensemble members is rather

to produce inconsistent strata. For example, stratification

along the ensemble mean leads to sloped histograms

while stratification along the median leads to a pro-

nounced step between the central ranks. Note that the

sum of the dark and light bars in each plot of Fig. 1 al-

ways yields the same rank histogram, namely, that of the

original unstratified ensemble. This rank histogram can

be considered flat, which we have checked with a x2 test.

An intuitive explanation as to why stratified rank his-

tograms as the ones in Fig. 1 are not flat is as follows.

Consider the ensemble mean, for example. Even if the

ensemble is drawn from the same distribution at each

instance, the ensemble mean will not exactly equal the

true mean of the distribution; as a result of sampling

fluctuations, some ensembles will have a smaller mean,

and some will have a greater mean than the true distri-

bution mean. Stratification separates these two groups

from each other. In the ‘‘low mean’’ ensembles though,

the verification, if drawn from the same distribution, is

more likely to occupy a higher verification rank than in

the ‘‘high mean’’ ensembles, leading to a sloped rank his-

togram. In this case, stratification separates a consistent

ensemble into two strata of ensembles that underforecast

and overforecast, respectively. Similar qualitative expla-

nations can be given for the other stratification criteria

presented in Fig. 1.

We have conducted a large number of perfect en-

semble simulations using different stratification criteria

and different distributions. A point worth mentioning is

that the outer plateaus under stratification along range

and IQR need not be of equal height as is the case in

Fig. 1. If the distribution from which ensemble and veri-

fication are sampled is skewed, the heights of the outer

plateaus are different from each other. Furthermore, a

note on calculation of median and IQR might be in or-

der. In statistical packages, different methods exist

for approximating distribution quantiles from finite sam-

ples (Hyndman and Fan 1996). Some of these methods

use interpolation techniques that take a weighted aver-

age of two samples to approximate a single quantile.

Throughout this study we use a single ensemble member

to approximate a single quantile. While introducing a

certain bias into the quantile estimate, stratification along

a single ensemble member instead of a superposition of

several members significantly facilitates calculations as

will become evident in section 5. Last, we should recall

once again that such patterns do not emerge if the true

distribution parameters are used instead of their esti-

mates obtained from the consistent ensemble. This is so

because the expectations of the rank probabilities are

then independent of the stratification criterion, as was

shown in section 3.

5. A formal description of the effect of ensemble
stratification

To control and possibly correct for the behavior ob-

served in section 4, we describe the phenomenon in more

mathematical terms. We especially consider the case of

stratifying a consistent ensemble along a single ensem-

ble member as well as along the difference between two

ensemble members. We provide a complete description

of the rank histogram of an ensemble stratified along its

kth largest ensemble member.

Let e 5 (e[1], . . . , e[K]) denote a consistent forecast

ensemble, drawn from a cdf F(�), with members in

ascending order. Furthermore, let the stratification

criterion S(e):RK/f1, 2g be a function that maps the
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ensemble e into one of two groups. Note that the dis-

cussion is simplified by assuming that S is only a function

of the kth largest ensemble member e[k] [i.e., S(e) 5

S(e[k])]. We define a threshold ~t such that S(e[k]) 5 1 if

e[k] , ~t (low stratum) and S(e[k]) 5 2 otherwise (high

stratum). Imposing an upper bound on e[k] is equivalent

to imposing an upper bound on its PIT (see section 2)

F(e[k]) (i.e., on the mass of probability concentrated to

the left of e[k]). The PIT of e[k] is given by �k
j51q

j
, where

qi is the ith rank probability as defined in Eq. (3). Under

this setting, the height of the ith bar in the ensemble’s

rank histogram is governed by the expectation of the ith

element of the rank probability vector q, conditional on

the ensemble being in the mth stratum. Thus, in the low

stratum [where S(e[k]) 5 1] we have

E[qi j e[k]
, ~t] 5 E qij �

k

j51

qj , t

" #
, (17)

where t 5 F(~t).

An upper bound t on the sum over qj is clearly also an

upper bound t on each of the qj individually. Because

of this upper bound, those qj with j # k are on average

smaller than they would be without stratification. As

a result, the qj with j . k must be larger on average such

that the elements of E[q] still sum to one.

This situation is illustrated in Fig. 2 for the case of

dim(q) 5 3 (i.e., K 5 2) and an upper bound on the largest

ensemble member e[2]. Placing an upper bound on e[2] due

to stratification is equivalent to placing an upper bound

on the PIT of e[2], which is equal to q1 1 q2. The upper

bound on q1 and q2 limits the area on the two-dimensional

probability simplex from which samples can be drawn.

As a result, the expectation values of q1 and q2 become

smaller than they would be without stratification while

the conditional expectation of q3 becomes larger.

Next, consider stratification by placing an upper bound

on the difference e[k] 2 e[ j] between two ensemble mem-

bers, where k . j. This is the case if we stratify along the

IQR or ensemble range, for example. Constraining the

difference between two ensemble members amounts to

constraining the mass of probability concentrated be-

tween these two members. This upper bound on the

enclosed mass of probability �k
i5j11qi translates into an

upper bound on all the individual qi with i2 [ j 1 1, k]. As

a result, the bars in the rank histogram corresponding to

these indices will be lower than 1/(K 1 1). Accordingly

there are now two steps in the rank histogram, one at each

index corresponding to the ensemble members that enter

the stratification criterion. By applying the same reason-

ing to three or more ensemble members we speculate that

there should be a step in the rank histogram at every in-

dex whose corresponding member enters the criterion.

The above conclusions are in agreement with the rank

histograms of Fig. 1. Stratification along the median leads

to a single step in the middle of the rank histogram. For the

IQR and range, the criterion depends on two ensemble

members. In both histograms we observe steps in the re-

spective positions and plateaus in between the steps. If we

stratify along mean and standard deviation, all ensemble

members must be considered in order to calculate the

criterion. Hence, there is a step between every two histo-

gram bars, leading to a pattern without plateaus.

In appendix A we use the properties of the Dirichlet

distribution to prove in full generality that stratification

along the kth largest ensemble member yields the fol-

lowing steplike pattern:

E[qi j e[k]
, ~t] 5 c1 ,

1

K 1 1
"i # k, (18)

E[qi j e[k]
, ~t] 5 c2 .

1

K 1 1
"i . k, (19)

which fits exactly the median pattern in Fig. 1 under the low

stratum. The important insight is that under stratification

FIG. 2. The area defined by connecting the three big circles is the

two-dimensional probability simplex. Drawing consistent two-

member Monte Carlo ensembles can be interpreted as randomly

drawing points from this area. Placing an upper bound on the

second ensemble member is equivalent to placing upper bounds on

both q1 and q2. This constraint yields average values of q1 and q2

that are smaller than 1/3. Even though there is no lower bound

greater than zero on q3, the average value of q3 is larger than 1/3

when sampling only from the gray area as opposed to sampling

from the complete simplex.
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along a single ensemble member, the rank histogram will

have two plateaus of constant heights c1 and c2. The ex-

pected heights of the bars in each individual plateau are

exactly equal. Equations (18) and (19) provide the most

complete description of the effect of stratification along

the kth ensemble member if the forecast distribution is

unknown. The constants c1 and c2 can be known precisely

only if the forecast distribution is known at each instance.

By assuming that P(e
[k]

, ~t) 5 1/2 (i.e., by assuming

that the threshold ~t is chosen so as to partition the original

collection of ensembles into two strata of equal size), the

expected rank probability in the high stratum is given by

E[qi j e[k]
. ~t] 5

2

K 1 1
2 c1 .

1

K 1 1
"i # k, (20)

E[qi j e[k]
. ~t] 5

2

K 1 1
2 c2 ,

1

K 1 1
"i . k. (21)

This is the same as saying that the sum of rank histo-

grams of the strata have to add up to the rank histogram

of the original ensemble, whose expected height is given

by 1/(K 1 1).

6. Testing for ensemble consistency under
stratification

A forecaster who wants to assess the statistical consis-

tency of a forecast ensemble by stratifying along functions

of the ensemble members has to account for the emer-

gence of nonflat rank histograms even if the original en-

semble is perfectly consistent. In this section we present

a possible method to this end. We derive a x2 test for en-

semble consistency under a known stratification pattern.

Let us first recall a standard statistical test for unifor-

mity of the verification rank distribution. If a rank histo-

gram is constructed from a finite number of samples, the

bar heights are subject to random fluctuations and the

histogram is never completely flat. The significance of

deviations from flatness under such fluctuations can be

assessed by means of the Pearson x2 test (Pearson 1900).

Different tests for flatness of rank histograms exist (e.g.,

Elmore 2005; Bröcker 2008; Jolliffe and Primo 2008).

Consider the case where we have N forecast–verification

pairs of a K-member ensemble. The actually observed bar

heights of the corresponding rank histogram are denoted

by oj, where j 5 1, . . . , J, and J 5 K 1 1. The expected bar

heights under the null hypothesis of statistical consistency

are given byE[oj]eo* 5 N/J. Under the assumption that

the null hypothesis is true, the test statistic

X2 5 �
J

j51

(oj 2 o*)2

o*
(22)

has a x2 distribution with J 2 1 degrees of freedom. The

p value of X2 under this distribution can be used to con-

duct a hypothesis test at a certain confidence level. All

histograms in Fig. 1 yield p values that are essentially

equal to zero, indicating that uniformity of the verifica-

tion rank distribution can be rejected at very high confi-

dence levels. In contrast, the histogram that results from

summing the low- and high-stratum histograms yields a p

value of 0.26, thus substantiating statistical consistency of

the original ensemble.

We have concluded in section 4 that stratification

along functions of the ensemble alters the null hypothesis

of equal bar heights of the rank histogram. The shape of

the pattern that is introduced can be inferred if the

stratification criterion is known. We have concluded that,

if stratification is applied along the kth largest ensemble

member e[k] then the stratification pattern of the rank

histogram can be described by the J-dimensional vector:

c(u) 5 c0 1

�
u|{z}

k times

, 2
k

J 2 k
u|fflfflfflfflffl{zfflfflfflfflffl}

J2k times

�
, (23)

where c0 5 (1/J, . . . , 1/J) is the null hypothesis without

stratification, J 5 K 1 1 is the number of bars in the rank

histogram, and the second term of the rhs of Eq. (23) is a

vector whose elements sum to zero. The parameter u in-

dicates the strength of the pattern induced by stratification.

In appendix A we show that under such a pattern as

the new null hypothesis, a x2 test can be formulated.

Consider an observed rank histogram with the height of

the jth bar given by oj, that is rank j has occurred oj times.

We then further denote by N(m,n) 5 �n
j5m11oj, the num-

ber of instances at which the verification rank is in the

interval (m, n], and N 5 N(0,J), the total number of in-

stances. Then the test statistic:

22 N
(0,k)

log
N

(0,k)

Nk
1 N

(k,J)
log

N
(k,J)

N(J 2 k)
2 �

J

j51

oj log
oj

N

 !
,

(24)

has a x2 distribution with J 2 2 degrees of freedom if

the rank histogram really assumes the pattern given by

Eq. (23). The dependence on the unknown parameter

u is eliminated because the test makes use only of its

maximum-likelihood estimate obtained from the observed

rank histogram. This is the reason why the x2 distribu-

tion has only J 2 2 degrees of freedom. In appendix A

a second x2 test is given for the case when the rank his-

togram pattern has two steps (as in the case of stratifi-

cation along a function of two ensemble members, such as

the IQR or the range).
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Unfortunately, our reasoning cannot be extended to

cases where the stratification criterion depends on all

ensemble members, such as the ensemble mean or stan-

dard deviation, which have been employed in previous

studies (Hamill and Colucci 1997, 1998). We argue that

median and IQR, to which our theory applies, are suit-

able alternatives to the mean and standard deviation,

respectively.

The derivation of the test statistic given in Eq. (24)

makes use of the maximum-likelihood estimate of the

free parameter u of Eq. (23). This estimate is given by

û d
N

(0,k)

Nk
2

1

J
. (25)

The value of û under different perfect ensemble sce-

narios provides further insight. It indicates how strongly

the rank histogram of the ensemble is affected by a cer-

tain kind of stratification. The û approaches zero as the

rank histogram becomes flat. We consider sampling with

equal probability from two distinct Gaussian distribu-

tions. Let one distribution have zero mean and take the

mean m of the other distribution as a parameter. Both

distributions have unit variance. An ensemble forecast–

verification dataset is produced by sampling N 5 105

consistent ensembles randomly from each distribution.

The combined dataset is then stratified along the en-

semble median e[(K11)/2]. Depending on the ensemble

size K and the parameter m, stratification patterns with

different values of û are introduced.

We take Jû 2 [21, 1] as a measure of the strength of

the stratification pattern. In Fig. 3 we plot Jû for the

high- and low-median stratum and for different ensem-

ble sizes K as a function of m. One can observe that the

strength of the pattern decreases with increasing en-

semble size K: while the maximum value of Jû is close to

0.25 for K 5 11, it barely exceeds 0.1 if K 5 51. The Jû is

largest around m ’ 0 where the two distributions from

which the ensemble–verification pairs are sampled are

almost identical. For m 5 0 all fluctuations of the median

are caused by fluctuations due to the finiteness of the

ensemble. On the other hand, Jû approaches zero at

values of m 5 62, indicating that at these values, strat-

ification hardly induces any pattern.

7. Avoiding stratification patterns

In this section we present possible ways to avoid the

emergence of patterns under stratification altogether. First

of all let us recall the mechanism that leads to nonuniform

values of E[q]. From the discussion of section 5 we know

that it is the bound on some of the qi that is introduced

by thresholding certain ensemble members by ~t [see

Eq. (17)]. More specifically, it is F(~t), denoted by t, which

restricts the qi. If one can assure, according to Eq. (17),

that t is very close to 1 in the low stratum and very close to

0 in the high stratum, the patterns introduced by stratifi-

cation vanish because the lower and upper bounds on the

rank probabilities qi are then asymptotically equal to

0 and 1, respectively.

As an illustrative example consider the case where the

forecast distribution shows a regimelike behavior. Such

behavior is given for example for large values of m in the

scenario under which Fig. 3 was constructed. If the

median is collected from each of the N ensembles, dis-

tinct values of the median around 0 on the one hand, and

around m � 0 on the other hand will occur. If the

threshold that groups the instances into their strata is

set to m/2, the two distributions are well separated by

stratification. If the observed median is in the high

stratum, the ensemble is almost certainly sampled from

the Gaussian with positive mean. The cdf from which the

ensemble was drawn, evaluated at ~t 5 m/2 is close to

zero under this distribution. Thus, the lower bound on

FIG. 3. Ensemble–verification pairs are drawn with equal prob-

ability from either a standard Gaussian or a Gaussian with mean m

and variance 1. The collection of ensembles is subsequently strat-

ified into two strata along the ensemble median. The relative

strength of the pattern Eq. (23) [using k 5 (K 1 1)/2] is given by Jû.

It is plotted as a function of m. Under this pattern, the positive

values of Jû correspond to the high-median stratum and the neg-

ative ones to the low-median stratum. Gaussian curves have been

fitted as a guide to the eye. The strength of the pattern decreases if

the two distributions are well separated (i.e., for jmj . 2). Larger

ensembles are less sensitive to stratification patterns.
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the qi is likewise close to zero such that the sampling

area on the simplex will not be significantly diminished.

Similarly, the ensemble cdf evaluated at ~t in the low

stratum will be very close to one. The area from which

the vectors q are sampled then hardly differs from the

full probability simplex in either of the strata. If such

regimelike behavior of the strata can be assumed, strat-

ification does indeed lead to asymptotically flat rank

histograms under all strata. However, note that under

the same scenario, stratifying along the IQR, for ex-

ample, can still lead to artifacts since this quantity does

not behave regimelike.

From this discussion, it becomes apparent that strati-

fication should be physically justified. There should be

upfront evidence for well-separated strata. If the group-

ing of ensemble–verification pairs into the different strata

is influenced by statistical fluctuations because of the fi-

niteness of the ensemble, which is the case if m ’ 0 in the

above scenario, artifacts are likely to occur.

If it is not clear that stratification based on the en-

semble can clearly distinguish between truly different

regimes like in the example above, caution must be ex-

ercised. In a recent correspondence about conditional

exceedance probabilities (see Mason et al. 2007; Bröcker

et al. 2011; Mason et al. 2011), a similar effect as the one

elaborated in this paper was discussed. Mason et al.

(2011) propose a method to avoid artifacts that result

from conditioning a consistency analysis of a MCE on the

ensemble itself. They consider splitting the K-member

ensemble at each instance into two daughter ensembles,

by sampling randomly without replacement K/2 times

from the full ensemble. One daughter ensemble is ex-

clusively used to calculate the stratification criterion

(say a certain quantile of the ensemble or its spread) and

subsequently discarded. Only the second daughter en-

semble is then actually stratified, using the value of the

criterion obtained from the first daughter ensemble, and

subject to evaluation by, for example, the rank histo-

gram. This procedure renders the evaluated ensemble

independent from the calculation of the stratum. Con-

straints on the ensemble members as in Eq. (17) then

disappear and artifacts are avoided.

This method works not only if the stratified ensembles

are evaluated by means of rank histograms but for any

consistency and reliability analysis. The downside of this

approach is that the ensemble that is actually evaluated

is smaller and possibly contains less forecast informa-

tion than the original ensemble. The rank histogram

would only contain half the original number of bins and

important details might get blurred by this coarsening.

Notwithstanding the above, we consider such an ap-

proach a versatile alternative to the method presented in

section 6.

8. Discussion and conclusions

We have considered the effect of stratifying statisti-

cally consistent Monte Carlo ensembles (MCEs) along

functions of the ensemble. We focused mainly on the

special case of stratification along a single member of the

ordered ensemble. We concluded that ensembles that are

the result of stratifying a consistent MCE are themselves

not necessarily consistent, which leads to their rank his-

tograms not being flat. We have provided arguments

based on a perfect ensemble simulation study and based

on a mathematical formalization of MCEs. The latter

formalization has lead to a statistical test for the consis-

tency of stratified MCEs.

In section 2, the Dirichlet distribution was shown to be

of relevance to ensemble forecasts. In the example given

here, the resulting Dirichlet distribution turned out to be the

trivial version that amounts to uniform sampling. Notwith-

standing this, the properties of the Dirichlet distribution

were useful in obtaining rigorous results about the artifacts

introduced into the rank histogram due to stratification.

We expect the formalism developed in this article to be

relevant to further questions regarding forecast ensembles.

In section 3 we have discussed the possible benefits of

ensemble stratification. A possible direction of future re-

search would be considering not only rank histograms of

stratified ensembles but also skill scores, reliability dia-

grams, and ROC plots. We expect stratification to lead

to similar artifacts in such analyses.

The perfect ensemble simulations of section 4 are a

simple framework to test assumptions about forecast en-

sembles. We propose that new ensemble evaluation tech-

niques should be tested using such a perfect ensemble in

order to assure that the technique produces results under

the null hypothesis of a consistent ensemble that are in

agreement with what the forecaster expects. Ensemble

stratification provides an example where this is not nec-

essarily the case.

Section 5 provides a formal description of the effect of

ensemble stratification on the rank histogram. The rank

histogram pattern of a consistent MCE stratified along the

kth largest member could be derived rigorously. However,

we point out again that no rigorous derivations of the

stratification patterns were presented for the other criteria,

including the IQR and the range. However, we have ap-

plied the statistical test given by Eq. (C10) in many different

perfect ensemble simulations using different ensemble

sizes, different distributions from which ensembles and

verifications were drawn, and different criteria that in-

volve two members of the ordered ensemble. Based on

the fact that all these tests produced consistent results

and based on the handwaving arguments about such

strata in section 5 we hypothesize that stratification along
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the difference between the mth and kth largest ensemble

member indeed produces the pattern given by Eq. (C9).

An advantage of stratification along median, IQR and

range is that these criteria introduce highly artificial, step-

like patterns. For once, these patterns have been shown to

be better controllable in the x2 test than the smooth pat-

terns introduced by mean and standard deviation. On the

other hand, these patterns would probably not be observed

as a consequence of a real ensemble inconsistency, such as

underdispersiveness or bias, where more smooth patterns

would be expected. Thus, these quantile-based criteria are

both better controllable and better distinguishable from

patterns arising through genuine ensemble deficiencies.

Consequently, the proposed x2 test is also less likely to take

a true pattern as an artifact of stratification, thus failing to

detect this true inconsistency. We therefore strongly ad-

vocate stratification along the quantile-based criteria as

opposed to mean and standard deviation.

The stratification criteria presented and discussed in

this paper are not the only ones possible. Stratification

along season, along indices describing large-scale atmo-

spheric behavior (such as the ENSO index) or even along

the verification can in principle be applied. These criteria

are external to the ensemble (i.e., they do not depend on

the ensemble directly) in contrast to the criteria we con-

sidered in the present paper. However, caution must be

exercised nonetheless. Stratification along the verifica-

tion would very likely induce stratification patterns in a

consistent ensemble. If the verification is, say, in the larger-

than-average stratum, it is also more likely to occupy one

of the higher ranks in the forecast ensemble, thus leading

to a sloped rank histogram. Furthermore, the value of

stratification along the verification is questionable, since

the verification is not known at forecast time. Hence, no

ensemble correction could possibly be applied based on

knowledge about different ensemble deficiencies under

different strata of the verification. The current meteoro-

logical regime, for example, might be inferred from the

ensemble, and might thus not be entirely independent

from the ensemble either. For this reason, stratification

along the current regime might lead to stratification ar-

tifacts as well. We reserve a more detailed analysis of such

criteria for future studies.
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APPENDIX A

The Dirichlet Distribution

In this section we review the Dirichlet distribution

and list some of its properties which are relevant to the

discussions in this paper. The reader is referred to Frigyik

et al. (2010) for an excellent introduction to the Dirichlet

distribution and related processes. Introductory texts on

Bayesian analysis usually contain material on the Di-

richlet distribution (e.g., Bernardo and Smith 1994) be-

cause of its role as a conjugate prior for the multinomial

distribution.

A probability mass function (pmf) of length J defines a

discrete probability distribution over J categories. The

(J 2 1)-dimensional probability simplex is the set of J-

dimensional vectors whose elements are nonnegative

and sum to one. It is a (J 2 1)-dimensional surface em-

bedded in J dimensions. Every vector q 5 (q1, . . . , qJ)

that lies on the (J 2 1)-dimensional probability simplex

can be interpreted as a J-dimensional pmf.

The Dirichlet distribution is a distribution over the

probability simplex. It models randomly drawn pmfs. Let
~q 5 (q

1
, . . . , q

J21
) be a (J 2 1)-dimensional random vec-

tor that satisfies 0 , qj , 1 "j and �J21
j51 q

j
, 1. Further-

more, let a 5 (a1, . . . , aJ) be a J-dimensional vector

whose elements satisfy aj $ 0 " j. Then the J-dimensional

vector q 5 (q1, . . . , qJ21, 1 2 �J21
j51 qj) has a Dirichlet

distribution with parameters a if its probability density

is given by

p(q ja) 5 g P
J21

j51
q

a
j
21

j

0
@

1
A 12 �

J21

j51

qj

 !aJ 21

, (A1)

where

g 5

G �
J

j51

aj

 !

P
J

j51
G(aj)

, (A2)

and G(�) is the Gamma function. If q is distributed ac-

cording to Eq. (A1), we write q ; Dir(a). For the case

J 5 2, the Dirichlet distribution reduces to the beta

distribution with parameters a1 and a2.

A more convenient way to define the Dirichlet dis-

tribution is to set p(q j a) to zero if q does not lie on the

probability simplex and

p(q ja) 5 g P
J

j51
q

a
j
21

j (A3)

otherwise.

The parameters a determine the way in which the

points q are sampled from the probability simplex. The

case a 5 (1, . . . , 1) amounts to uniform sampling since

then p(q j a) 5 const. If aj 5 c "j with c , 1, points are
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sampled closer to the vertices of the simplex and if c . 1,

sampling is more concentrated in the center of the simplex.

Unequal aj lead to a noncentral distribution with unequal

expectation values of the q components (see Fig. A1).

If q ; Dir(a), the expectation of q is given by

E[q] 5
a

�
j

aj

(A4)

(Frigyik et al. 2010). That means that for any Dirichlet

distribution with parameters aj 5 const "j, the expec-

tation of qj is equal to 1/J. The marginal distribution of qj

is a beta distribution with parameters aj and �i6¼j
a

i

(Frigyik et al. 2010). If ai 5 aj, the components qi and qj

are exchangeable, that is, the joint density of qi and qj

satisfies

p...,q
i
,...,q

j
,...(. . . , u, . . . , y, . . . )

5 p...,q
i
,...,q

j
,...(. . . , y, . . . , u, . . . ), (A5)

which follows from the definition of the Dirichlet

density in Eq. (A3). Consider the vector Q 5

(�k
i51q

i
, q

k11
, . . . , q

J
). The aggregation property of the

Dirichlet distribution states that if q ; Dir(a1, . . . , aJ)

then (Frigyik et al. 2010)

Q ; Dir �
k

i51

ai, ak11, . . . , aJ

 !
. (A6)

APPENDIX B

Proof of the Step Pattern

Consider stratification along a single ensemble member

e[k]. Then in the low stratum the height of the jth bar of

the rank histogram is proportional to E[qj j e[k] , ~t]. Ap-

plying the PIT to the condition yields E[qj j�
k
i51qk , t],

where t # 1 is the ensemble cdf evaluated at ~t. Con-

sider the vector Q 5 (�k
i51qi, qk11, . . . , qJ). By the ag-

gregation property of the Dirichlet distribution we

have EQ 5 (k, 1; . . . , 1)/J. Conditioning Q1 , t yields

E[Q
1
jQ

1
, t] , k/J. Thus, since the elements of EQ

have to sum to one, at least one of the Qi.1 must be

 
FIG. A1. Examples of Dirichlet densities on the two-dimensional

probability simplex. Darker colors indicate higher densities. (top)

a 5 (1, 1, 1). The density is uniform over the simplex. (middle) a 5

(5, 5, 5). Sampling is more concentrated in the center of the sim-

plex. (bottom) a 5 (4, 4, 10). Values of q3 are sampled closer to

one, while q1 and q2 are sampled closer to zero.
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larger than 1/J. The Qi.1 are exchangeable because

the corresponding ai are equal. Exchangeability im-

plies that their expectations must be equal. We conclude

that E[Qi . 1 jQ1 , t] 5E[qi . k j e[k] , ~t] 5 const . 1/J.

From exchangeability it follows that E[qi#k j e[k] , ~t] 5

const , 1/J. The high stratum pattern can be inferred

from the following relation:

Eqi 5E[qi j e[k]
,~t]P(e

[k]
, ~t) 1E[qi j e[k]

. ~t]P(e
[k]

. ~t)

(B1)

5
1

2
(E[qi je[k]

, ~t] 1 E[qi je[k]
. ~t]), (B2)

where we assume that P(e
[k]

, ~t) 5P(e
[k]

. ~t) 5 1/2,

that is each stratum contains exactly one-half of all cases.

We conclude that the pattern in the high stratum is the

reversed version of the pattern derived for the low stra-

tum. If the expectation decreases in the low stratum, it has

to increase in the high stratum according to Eq. (B2).

APPENDIX C

Derivation of Eq. (24)

A theorem by Wilks (1938) makes a statement about the

asymptotic distribution of generalized likelihood ratios

(see also Mood et al. 1974). Assume two parameter spaces

Q and Q0 � Q whose elements parameterize candidate

distributions that have generated the data points y 5

(y1, . . . , yN). Let the codimension of Q0 in Q be equal to

a and let p(yt j u) be the likelihood of the tth data point,

given that the distribution is parameterized by u. If the

data y were indeed generated by a distribution param-

eterized by a u 2 Q0 then

22 log

sup
u2Q

0

P
N

t51
p(yt j u)

sup
u2Q

P
N

t51
p(yt j u)

; x2
a, (C1)

that is, the ratio between the maximized likelihoods of the

data in both parameter spaces, transformed by 22 log(�),
has a x2 distribution with a degrees of freedom in the limit

N / ‘.

In an unstratified, consistent K-member ensemble the

expectation of its J-dimensional rank distribution q0 is

given by

E[q0] 5
1

J
, . . . ,

1

J

� �
ec0, (C2)

which yields a flat rank histogram. Stratification along

a function of the ensemble members leads to a pattern

that we describe by a vector c(u), u2Q0, whose elements

sum to zero. The new expected rank distribution is given

by the following superposition:

E[q] 5 c0 1 c(u). (C3)

The elements of E[q] in Eq. (C3) sum to one because the

elements of c(u) sum to zero.

We apply the Wilks theorem [Eq. (C1)] to formulate a

hypothesis test for rank histograms that are the result of

such a process. Let the data point yt 5 j if verification rank

j occurs on the tth instance. Then we have for the height of

the jth bar of the rank histogram o
j
5 �N

t51I(y
t
5 j), where

I( � ) is the indicator function.

We take the (J 2 1)-dimensional probability simplex

as the parameter space Q, which contains all possible

pmfs E[q] (including the nonflat ones) that could have

lead to the observed rank histogram with bar heights oj.

The maximum likelihood parameter q 2Q for the data y

is given by qj 5 oj/N, which follows from setting the

derivative of the log-likelihood with respect to qj to zero

and solving for qj. The logarithm of the denominator of

Eq. (C1) is then given by

log sup
q2Q

P
N

t51
p(yt jq) 5 �

J

j51

oj log
oj

N
. (C4)

To illustrate the calculation of the numerator of Eq.

(C1), we return to the simple example of stratification

along the single ensemble member e[k]. From the dis-

cussion of section 5 and the proof of appendix A we know

that the ensuing pattern c(u) must have the form given by

Eq. (23). We denote the union of all possible c(u) as Q0.

Since every element of Q0 is a pmf, we have Q0 � Q.

Furthermore the dimension of Q0 is 1 since it is param-

eterized by a single parameter u. It follows that the co-

dimension of Q0 in Q is equal to J 2 2. The likelihood of

the tth datum yt as a function of u is given by

p(yt j u) 5
1

J
1 cy

t

(u). (C5)

Denote N(m,n) 5 �n
j5m11oj, the number of instances

where the verification rank yt 2 (m, n]. By setting the

derivative of the log-likelihood with respect to u to zero

and solving for u we obtain û, the maximum likelihood

estimator of u, which is given by

ûd argmax
u2Q

0

P
N

t51
p(yt j u) 5

N
(0,k)

Nk
2

1

J
. (C6)

Thus, we get for the logarithm of the numerator of Eq.

(C1):

1570 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



log sup
u2Q

0

P
N

t51
p(yt ju) 5N

(0,k)
log

N
(0,k)

Nk
1N

(k,J)
log

N
(k,J)

N(J 2 k)
.

(C7)

Substituting Eqs. (C4) and (C7) into Eq. (C1), the gen-

eralized likelihood ratio test reads

22 N
(0,k)

log
N

(0,k)

Nk
1 N

(k,J)
log

N
(k,J)

N(J 2 k)
2 �

J

j51

oj log
oj

N

 !

; x2
J22. (C8)

If the stratum is defined by the difference between two

ensemble members e[m] and e[k] (m . k), which is the

case in stratification along the range or IQR, we hy-

pothesize a pattern of the following form:

c(u1, u2, u3) 5 c0 1 ( u1|{z}
k times

, u2|{z}
m2k times

, u3|{z}
J2m times

). (C9)

Using similar arguments as in the proof of Eq. (C8)

one can show that such a pattern leads to the hypothesis

test:

22 N
(0,k)

log
N

(0,k)

Nk
1 N

(k,m)
log

N
(k,m)

N(m 2 k)
1 N

(m,J)
log

N
(m,J)

N(J 2 m)
2 �

J

j51

oj log
oj

N

 !
; x2

J23, (C10)

where the x2 distribution now has J 2 3 degrees of

freedom because Q0 is two-dimensional.

Note that the above theory does not apply when a

stratification criterion depends on all K ensemble mem-

bers. If this is the case, we would assume K steps in the

rank histogram, which requires K parameters to describe

the pattern. Thus, Q would be equal to Q0 and their co-

dimension is zero. The test in Eq. (C1) is then not defined.

REFERENCES

Anderson, J., 1996: A method for producing and evaluating prob-

abilistic forecasts from ensemble model integrations. J. Cli-

mate, 9, 1518–1530.

Bernardo, J., and A. Smith, 1994: Bayesian Theory. Wiley Series in

Probability and Mathematical Statistics, Wiley, 586 pp.
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