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ABSTRACT

The genesis of polygonal faults is an intriguing diagenetic phenomenon. This

study discusses their origin in carbonate mudstones together with other associ-

ated diagenetic features. In the eastern Danish Basin, at the fringe of the Baltic

Sea, the Stevns peninsula offers a unique opportunity to study the early diagen-

esis of Upper Cretaceous Chalk deposits, buried between 500 m and 1400 m.

This paper combines data from onshore and offshore high-resolution seismic

reflection profiles, a fully cored borehole with high-resolution wireline logs and

quarry and coastal cliff outcrops to study early diagenetic features at different

scales. Chalk is affected by an extensive polygonal fault system that is detected

in onshore and offshore seismic data. Outcrop and core data provide a better

understanding of the distribution of contraction-related features like deforma-

tion bands (hairline fractures), stylolites and fluid escape structures. An original

model of genetic relationships between these different diagenetic processes is

documented for Chalk. The spatial relationships between stylolites and fractures

suggest that pressure-solution processes triggered shear failure that initiated the

polygonal fault systems. The early diagenetic processes affect the reservoir prop-

erties of Chalk by creating compartments and vertical connections. Taking these

features into account will allow for a more detailed understanding of early dia-

genesis and better models for exploiting drinking water or hydrocarbons hosted

in Chalk.

INTRODUCTION

Chalk is a singular material consisting principally of an

accumulation of micron-sized calcareous nannofossil

grains. It is similar to both fine-grained siliciclastic sedi-

ments and carbonate bio-accumulations and mechanisms

common to both realms can be invoked during early dia-

genesis (Cartwright et al., 2003; Hibsch et al., 2003; Fabri-

cius & Borre, 2007; Goulty, 2008; Gaviglio et al., 2009;

Wennberg et al., 2013). This paper aimed to provide new

insights into the first phases of Chalk diagenesis by

untangling the complex relationship between centimetre

to metre-scale observations made on a fully cored bore-

hole with high-resolution wireline logs, on quarry expo-

sures and on coastal cliff outcrops of the Stevns peninsula

(Denmark), and 100 m-scale observations from onshore

and offshore high-resolution seismic reflection profiles in

the same area.

For this study, the focus is on Chalk from the eastern

Danish Basin which reputedly underwent very shallow

burial preceding its modern exposure on the Stevns

peninsula (Fig. 1; Nielsen et al., 2011). Previous studies

of the area have documented the stratigraphy, deposi-

tional facies, porosity variations with depth and the asso-

ciated seismic velocities (Frykman, 2001; Lykke-Andersen

& Surlyk, 2004; Stemmerik et al., 2006; Surlyk et al.,

2006, 2013; Anderskouv et al., 2007; Esmerode et al.,

2007; Nielsen et al., 2011). These studies allow the seismic

response of the Chalk to be assessed according to strati-

graphic variations and compositional changes, and in par-

ticular, the impact on porosity and seismic velocities

(Nielsen et al., 2011). Porosity loss, measured directly on

core plugs or indirectly with borehole geophysics and

seismic refraction data, increases with both burial depth

and clay content (Japsen, 2000; Nielsen et al., 2011).

According to Wennberg et al. (2013), local porosity loss
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also occurs within Chalk deformation bands (hairline

fractures). These deformation bands are compaction fea-

tures corresponding to jointing and local pore-space col-

lapse.

Depending on the methods used, burial depths between

500 m and 750 m have been estimated for the Stevns area

based on seismic velocities of Chalk (Japsen & Bidstrup,

1999; Japsen, 2000; Nielsen et al., 2011). The 750 m esti-

mate in Japsen (2000) is based on an extensive data set

from Danish offshore and onshore areas showing a direct

link between seismic velocity and porosity of Chalk, and

assuming a linear porosity reduction during burial. The

500 m estimate in Nielsen et al. (2011) is based on the

recognition of three discrete steps with increasing velocity

at ca 100 m, 300 m and 600 m most likely linked to sig-

nificant diagenetic boundaries and thus implying a step-

wise transformation of Chalk.

Polygonal fault systems are regionally extensive normal

faults restricted to a specific stratigraphic interval (Cart-

wright, 2011 and reference therein). The origin of these

faults is known to be diagenetic and disconnected from

tectonic processes (Henriet et al., 1991), except in one

documented case (anticline formation, Petracchini et al.,

2015). Several genetic processes have been discussed in

the literature and an extensive review can be found in

Cartwright (2011). The latest and most accepted model

invokes an overall contraction (in opposition to

loading-related strain) of the host-rock, where focused

grain dissolution weakens high porosity fine-grained sedi-

ments and generates shear failure which then propagates

into slip and the formation of a fault plane (Shin et al.,

2008). The model of Shin et al. (2008) was numerically

and experimentally conducted and upscaled and com-

pared with 3D seismic data (Shin et al., 2010). Such

numerical models have only considered sedimentary rocks

dominated by siliciclastic rock dissolution. As docu-

mented in this study, however, polygonal fault systems

also affect carbonate mudstones and have been docu-

mented in multiple basins and settings (Cartwright et al.,

2003; Hibsch et al., 2003; Hansen et al., 2004; Cartwright,

2011; Sandrin et al., 2012; Tewksbury et al., 2014).

In this study, seismic reflection profiles were used to

describe faults. By combining the seismic interpretation

with studies of diagenetic features like hairline fractures,

stylolites and flint found in the Stevns-2 core as well as in

outcrop, the links between early diagenetic transforma-

tions are explored at different scales (Fig. 1). For the first

time, it is possible to link polygonal fault systems and

deformation bands to the occurrence of stylolites. By

including data from a Chalk succession and diagenetic

suite, the observations may help to consolidate the real-

ization of a common theory for the formation of polygo-

nal fault systems by grain dissolution during early

diagenesis (Shin et al., 2008, 2010; Cartwright, 2011).

A B

Fig. 1. Location map of the study area. (A) Main faults affecting the top Zechstein, modified from Graversen (2009). The dotted area is the

Sorgenfrei-Tornquist zone, the suture where inversion occurs during the Maastrichtian. The Møns Fault is also inverted during that time (this

study). CPH = Copenhagen, F. = Fault. Projection UTM 32, coastline from GSHHS database. (B) Location of the seismic lines and wells. Assuming

the upper part of the Late Cretaceous in the Stevns peninsula has not been tectonically deformed, one horizon close to the Campanian–

Maastrichtian boundary has been picked to represent the palaeo-sea floor depth. The horizon represents the slope of the Late Cretaceous ramp,

each dotted line is separated by ca 15 m.
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GEOLOGICAL SETTING

The Stevns peninsula is located at the transition between

the eastern edge of the Danish Basin and the western edge

of the Baltic Sea (Fig. 1). Below the Stevns peninsula, a

full Mesozoic sedimentary succession is supposedly pre-

sent (from the Triassic to the Early Paleogene; Erlstr€om

et al., 1997). Broadly, the Mesozoic and Cenozoic sedi-

mentary rocks draw a large wedge, opening towards the

west in the Central Graben (North Sea) and pinching out

in the study area constituting the eastern edge of the sub-

siding intracratonic area (Lassen & Thybo, 2012). East-

ward and southward, the basin progressively deepens

again into the Polish Trough and the Sorgenfrei-Torn-

quist zone (Graversen, 2004; Lassen & Thybo, 2012;

Sopher & Juhlin, 2013).

The sedimentary rocks are deformed in narrow zones

along WNW-ESE-trending tectonic lineaments, the Rin-

købing-Fyn High in the south and the Tornquist suture

in the north (Lassen & Thybo, 2012). Additionally,

important NNW-SSE oriented tectonic lineaments, some

apparently inverted during the Maastrichtian, have been

identified in our data set (Møns Fault; Fig. 1; Graversen,

2009). The latter lineaments have not been previously

studied individually. They are parallel to structures char-

acterizing the area such as the Sorgenfrei-Tornquist zone

and the Carlsberg Fault, and consequently are believed

to have similar, mainly strike-slip, motions (Rosenbom

& Jakobsen, 2005; Graversen, 2009). These structures

have been active since at least the Palaeozoic and still

generate earthquakes (Graversen, 2009; GEUS, 2015;

Kammann et al., 2016). Despite the presence of these

large tectonic structures in the offshore areas east of the

Stevns peninsula, the coastal cliff of the Stevns peninsula

is without major fault or internal offsets within strata

and the upper Maastrichtian – lower Danian sedimen-

tary rocks are subhorizontal (Surlyk et al., 2006). Analy-

sis of the outcrops highlights the dominance of recent

fractures and subhorizontal joints associated with relax-

ation after ice sheet unloading combined with the local

stress field, resulting from the deglaciation of the area

(11 to 20 ka; Frykman, 2001; Rosenbom & Jakobsen,

2005). The sediments formerly covering Chalk have been

removed after the area was exhumed (Japsen et al.,

2007; Nielsen et al., 2011).

This study mainly focuses on the Campanian and

Maastrichtian Chalk which has been cored in the Stevns-1

and Stevns-2 boreholes (Figs 1 and 2; Stemmerik et al.,

2006). The overall stratigraphy and depositional evolution

of the cored succession is presented by Surlyk et al.

(2013) and a detailed description of the Stevns-2 core is

given by Boussaha et al. (2016). The Stevns-2 core con-

sists of a lower, ca 100 m thick interval of marl-Chalk

alternations of Campanian – earliest Maastrichtian age

overlain by 70 m of pure white Chalk and 170 m of

Chalk with flint bands (Fig. 2C). At the top of the Maas-

trichtian, bryozoans become more abundant and the flint

bands undulate, highlighting the presence of mounds and

Chalk waves forming in response to contour currents

(Anderskouv et al., 2007). The Maastrichtian is locally

terminated by the famous Iridium-rich clay layer charac-

terizing the boundary between the Mesozoic and the

Cenozoic although, like in the Stevns-2 core, this may be

locally eroded (Surlyk et al., 2006; Boussaha et al., 2016).

The last few metres of the Stevns succession are formed

by spectacular bryozoan mounds of Danian age (Fig. 2;

Bjerager & Surlyk, 2007; Boussaha et al., 2016).

Stylolites have formed through the succession, and car-

bonate remobilization is observed in some fractures

(Fig. 2; Rasmussen & Surlyk, 2012; Surlyk et al., 2013). In

the Stevns-1 core, suboptimal preservation of the calcare-

ous nannofossils forming Chalk has been related to partial

dissolution caused by fluid migration (Thibault et al.,

2012). Such fluid flow within Chalk has also been inter-

preted as being the cause of brecciation in the Stevns-1

well (Rasmussen & Surlyk, 2012). Although these indica-

tors of chemical and mechanical compaction have been

studied (Fabricius & Borre, 2007; Fabricius et al., 2010),

relatively little has yet been done to understand their

implications for the structural architecture of eastern

Denmark Chalk at the regional scale.

Data collection and reporting

This study is based on analyses of seismic reflection pro-

files, well logs, core and outcrop data (Fig. 1). The seis-

mic sections are high-resolution onshore and offshore

data imaging the area of the Stevns peninsula (Fig. 1).

The onshore seismic data have a central frequency of

85 Hz. The bin spacing is 2�5 m, and the sampling of the

800 ms (ca 1�2 km) long record is done every millisec-

ond. Locally, some acquisition problems disturbed the

record (strong winds). In consequence, the stratigraphic

patterns are not properly resolved in the east–west sec-

tions as well as certain parts of the north–south sections

of the onshore survey.

The offshore data have a central frequency of 80 Hz,

the bin spacing is 10 m, the traces are 2 s TWT long and

sampled every millisecond (Lykke-Andersen & Surlyk,

2004). Ties with the wells Stevns-1 and Stevns-2 are per-

formed using velocities from seismic refraction data, cor-

rected with wireline logs of density and sonic (Nielsen

et al., 2011; Figs 1 and 2). The theoretical vertical resolu-

tion of the reflection seismic data using the mean velocity

of the studied interval is ca 8 m (¼ of the wavelength,

2�6 km s�1; Nielsen et al., 2011).
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In the offshore data, a dip-steering median filter has

been applied on the lines to favour continuous reflective

events along the structural dip but preserving edges (de-

tails of the technique in Torvela et al., 2013; www.opend-

tect.org). After careful picking and filtering, the overall

quality of the image is locally good to very good for

stratigraphic analysis (Fig. 3). In order to image subtle

fracture patterns with small offsets and reflectivity lows in

the onshore data, a fault enhancement filter has been used

(www.opendtect.org). It is a combination of a (i) dip-

steered median filter and a (ii) dip-steered diffusion filter.

Broadly, when evaluating data in a dip-steered ellipsoid, if

the similarity is high, filter (i) is applied, raising the con-

tinuity; whereas if the similarity is low (near a fault), filter

(ii) is applied, making a sharp fault break. In order to

compare the seismic imaging and the core observations, a

linear velocity function is applied to project the well data

and convert times measured on the profiles to depth. The

function is extracted from the refraction study of Nielsen

et al. (2011) and corresponds to a starting velocity of

2200 m s�1 with an acceleration of 1000 m s�2. The first

50 ms of the onshore seismic profiles contain very intri-

cate reflections which seem to cross-cut and are not pre-

sent in the lower resolution offshore line. Potential

Quaternary incisions/deformations or undetermined arte-

facts might be the cause of this architecture and the inter-

val is consequently not considered in the final models.

Similarly, the presence of sea-bed multiples and multiples

of the quaternary sediments overprint the signal offshore

and make it difficult to interpret the first 100 ms of the

profiles (Fig. 3). A standard seismic stratigraphic tech-

nique based on reflection terminations has been applied

to visualize seismic sequences in the profiles (Figs 3 and

4). The sequences are constructed based on onlaps onto

horizons that truncate the underlying reflections. These

horizons highlight the base of seismic sequences within

Chalk (alternating colours in Figs 3 and 4). In addition,

in order to characterize throw distribution patterns, 125

Fig. 2. Petrophysical (A), structural (B) and sedimentological (C) data from the Stevns-2 core. In C, the facies scale is modified from Boussaha

et al. (2016) with: m = marls, M = mudstones, F = flint, mW = micro-wackestones, W = wackestones, Cgl = Conglomerate, P = packstones. The

patterns used in the sedimentary log follow this scale. The sudden rise below a clay-rich interval (grey interval, Rørdal Member) in stylolites is

attributed to critical burial depth reached (1 km) and local compartmentalization. Deformation bands (hairlines) may be disappearing with stylolite

formation. The drop in density (black arrow) is considered to be the result of the local dissolution of carbonates. Colour codes in C correspond to

the colour used in the cross-plots of Fig. 6. [Colour figure can be viewed at wileyonlinelibrary.com]
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fault segments have been measured in the offshore seismic

profiles (Fig. 5). These measures are standard for blind-

fault analysis with their apparent dips (Fig. 5A), the ratio

between the maximum throw and the height (Fig. 5B;

Baudon & Cartwright, 2008; Shin et al., 2010; Cartwright,

2011). The throw measured on individual offset reflec-

tions as well as the location of maximum observed throw

have been plotted against normalized fault plane intersec-

tion (with the seismic profile; Fig. 5C). To compensate

for the lack of 3D data, Gaussian kernel density estima-

tions are calculated for the values repartition of the ratio

between fault height and the maximum throw as well as

the throw repartition against the normalized fault plane

intersection, giving a statistical vision of the measure-

ments as if they were continuously sampled (colour map-

ping in Fig. 5). Since the seismic profiles form a

suborthogonal grid and because apparent dip angles have

a large variability, the seismic grid can be considered as

intersected by faults with a large variability of strikes

(producing various apparent dip angles). Therefore, the

obtained density functions are considered representative

of the probability of occurrences in 3D.

The Stevns-1 and -2 boreholes are entirely cored with

excellent recovery (>98%; Stemmerik et al., 2006). A suite

of geophysical measurements have been logged in the

boreholes (spectral gamma ray, neutron density, sonic)

and on the core (gamma ray, density). During investiga-

tions of the Stevns-2 core particular attention was given

to the quantification of structural and diagenetic features

and the abundance (i.e. count of occurrence per 1 m

interval) of stylolites, marl layers, fractures and joints (de-

formation bands) has been precisely mapped (Fig. 2).

This allows precise correlation of petrophysical data with

core-based observations of density of structural and dia-

genetic features (Figs 2 and 6).

Field work in the Sigerslev Chalk quarry and the nearby

coastal sections (Fig. 1) focussed on structural observa-

tions and mapping of flint (Supplementary material 1).

Since flint bands mostly nucleate very close to the sea-

bed, they mimic the palaeo-sea floor and are the only

markers which allow for approximation of the sedimen-

tary architecture in pure Chalk successions (Surlyk et al.,

2006; Anderskouv et al., 2007; Madsen & Stemmerik,

2010). In addition, in the otherwise homogeneous Chalk

of the study area flint has precipitated in faults and 16

segments exhibiting this have been measured and mapped

(Fig. 7). Delineation of the structures in Fig. 8 is made by

drawing the flint nodules on a high-resolution panoramic

photograph stitched using Hugin software and Panini

projections to reduce parallax distortions (http://hugin.-

sourceforge.net/; Supplementary material 1). However,

since the picture is taken from the bottom of the quarry

Fig. 3. Details of features and how they were measured from offshore seismic reflection data at a 1 : 1 scale. (A) Example of a section through

the Møns Fault (location in Fig. 1) showing its extent across the whole imaged sedimentary succession. Note its complex history with extension at

base, followed by inversion and formation of a broad anticline affecting the depositional sequences (marked by the alternating colours). The fault

forms a cluster which draws diamond shapes. (B) Example of strata-bound faults (polygonal faults). This figure illustrates the geometric

characteristics of the faults (high angle, strata bound), their composite nature and the way the throw and the height are measured. [Colour

figure can be viewed at wileyonlinelibrary.com]

158 ª 2016 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists.

158 J. Moreau et al.



wall, the top of the image remains distorted, and horizon-

tal beds appear convex upward.

Data presentation and interpretation

Seismic observations

The seismic data vary in quality throughout the study

area but the stratigraphy can be interpreted and the main

reflections can be correlated between offshore and

onshore lines (Lykke-Andersen & Surlyk, 2004; Esmerode

et al., 2007). However, due to lack of a proper tie, all age

attributions older than the upper Campanian should be

considered with caution.

Based on the drilled Maastrichtian sedimentary rocks,

the seismic reflection pattern on the high-resolution

onshore profiles can tentatively be correlated with the

broad facies subdivision identified in the nearby Stevns-1

and Stevns-2 cores. There are two end-members in the

reflection patterns attributed to (i) high energy (rela-

tively) reflections that are continuous on all seismic pro-

files and (ii) low reflectivity, chaotic to disrupted

reflections (Figs 3, 4 and 9). Onshore, the patterns are

correlated with the borehole data and correspond to (i)

marl-Chalk alternations and (ii) the ‘white Chalk’, which

is a very pure mud-sized Chalk (Figs 3, 4 and 9). The

picked reflections show numerous disruptions in the form

of low- to high-angle, transparent and continuous seg-

ments from 10 to 100 ms in height (Figs 3, 4 and 9). The

segments are completely nonreflective, highlighting frac-

tures that are organized in clusters (e.g. Fig. 9). The
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Fig. 4. Seismic interpretation of line Dana 00-26 offshore Stevns peninsula, location in Fig. 1. Blue lines represent the sea-bed multiples with the

water–air interface. Green lines are multiples made by the reflection between the quaternary – Chalk and the sea-bed – Chalk interfaces. Thick

quaternary sequences are generating push down artefacts locally. The colours are the main seismic sequences observed. The basal sequence

probably starts in the Turonian, just above the most pronounced seismic event, marking the base of Chalk deposition in the area (Lykke-Andersen

& Surlyk, 2004). The yellow sequence shows Upper Campanian deposition which in the Stevns-2 well corresponds to marl-Chalk alternations. The

grey shadings are potential pock mark conduit sections. By comparison with the local stratigraphy some could be traced to the base of the

Cretaceous (Erlstr€om et al., 1997). The top of the section has not been interpreted because of the predominance of the multiples over the direct

reflections. [Colour figure can be viewed at wileyonlinelibrary.com]
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Fig. 5. Geometric characteristics of the 125 measured strata-bound faults. (A) Apparent dip of the fault segments on the seismic profiles. (B)

Maximum displacement (throw) versus fault height and the density function of the data point probability of occurrence. The ratio between the

two values is very high and indicates probably a high degree of lateral connectivity with other polygonal faults (Shin et al., 2010). (C) The density

function in colour shows the distribution of measured throws against the normalized fault height. 0 is at the centre of the faults, 0�5 the lower

tip and �0�5 the upper tip. The histogram in the background indicates the position of maximum throws on the normalized fault planes (in

count). Both distributions are slightly skewed towards the lower parts, but very mildly. Overall the throws seem equally distributed with a M-type

distribution (Baudon & Cartwright, 2008). [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 6. Cross-plot of Chalk characteristics and features versus sonic velocity in the Stevns-2 well. Colours represent the main Chalk facies from

core analysis (cf. Fig. 2). Sonic velocities are from wireline logging. (A) Cross-plot between sonic velocity versus the number of stylolites per

metres counted on the core. The plot shows no clear correlation between the amount of (diagenetic) pressure-solution and the sonic velocity. (B)

Plot of the sonic velocities against density. The diagram shows a clear trend, however, except when the Chalk contains marls, distinction between

the main Chalk facies is not possible based on these two standard wireline tools. (C) Plot of the sonic velocities versus the natural radioactivity

wireline log. No clear trend between the clay content and the velocity can be evidenced here.
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highly reflective events (marl-Chalk alternations) have

very few disruptions but larger offsets reaching ca 60 m

(ca 20 ms; Figs 3, 4, 5 and 9). The weakly reflective parts

(white Chalk) contain most of the clusters, but contain

subtle fault throws (Figs 3, 4 and 9). The faults have an

apparent dip distribution which has almost a Gaussian

distribution with a mean and a median of ca 55° and a

standard deviation of 16° (Fig. 5A). The ratio of the fault

heights against their observed maximum throw is

0�13 � 0�09 (Fig. 5B). The throw distribution along the

faults is typical M-type (trapezoid-shape) with no clear

asymmetry with depth (Fig. 5C; Muraoka & Kamata,

1983; Baudon & Cartwright, 2008). Maximum throws are

not necessarily centred on the fault planes and seem more

common in the lower part of the faults (histogram,

Fig. 5C). The throw distribution is relatively smooth with

small throws close to the tip of the faults and relatively

constant throws in the main part of the faults (local aver-

ages ranging from 5 to 7 m; Fig. 5C). Throws seem to be

only slightly larger in the lower half of the faults, making

their distribution slightly skewed at the bottom (Fig. 5C).

A large part of the clusters have their faults terminating

on the relatively strong reflective events without offsetting

them (Figs 3B, 4 and 9). On the contrary, some of the

clusters have a continuous vertical extension through the

whole sedimentary succession and form regional linea-

ments routed deep below the Chalk Group and imaged in

several adjacent profiles (Figs 3A, 4 and 9). The latter

clusters have typical diamond-shaped sections (Figs 3A

and 4). One cluster shows a complex history during

Chalk deposition with a normal throw at the base fol-

lowed by inversion of the structure and creation of an

anticline (fault propagation fold; Figs 3A and 4). Verti-

cally stacked depressions are observed, some of them as

deep as the Lower Cretaceous (grey, Figs 3A and 4).

Borehole observations

The wireline log data show an increase in sonic velocity

with depth and a corresponding increase in density

Fig. 7. Stereonet projection of the exposed fault planes marked by flint bands. No preferential orientation is distinguished on these 16 measured

planes. [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 8. Relationship between hairlines, stylolites and carbonate seams.

The core picture is taken from the Stevns-2 core at 183 m MD. It

shows that the stylolites are genetically associated with the hairline

fractures. Here, the progressive normal throw is followed by several

subtle re-equilibration of the stylolite profile which tries to stay

perpendicular to the main stress vectors while the footwall of the

fracture rotates (shaded area illustrates the rotation). The carbonate

seams start directly under the stylolites and fill the space surrounding

the underlying fractures, illustrating the downward carbonate mass

transfer associated with the pressure-solution phenomenon. Note that

the core is not slabbed, so the surface here is half a cylinder and

distortion of the perspective occurs on the side of the picture.
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(equals decrease in porosity) confirming the link between

seismic velocity and porosity of the Chalk suggested by

Japsen (2000; Figs 2B and 3A). However, the increase in

sonic velocity is stepwise – as is the increase in density –
with major jumps at 75 m MD and 240 m MD (Mea-

sured Depth; Fig. 2A). The vertical evolution of the mea-

sured velocities indicates a partitioning of the section in

three intervals (A, B and C). Interval A is defined by

acceleration with depth until 120 m MD (Fig. 2A).

Within Interval A, the velocity is very variable with

�200 m s�1 high-frequency variations. The base of Inter-

val A is formed by the Rørdal Member, a marly Chalk

unit, whereas the top is essentially composed of Chalk

with occasional flint bands (Fig. 2). Interval B comprises

white Chalk and Chalk with flint layers between 120 m

and to 240 m MD (Fig. 2). In this interval, the velocity is

stable around 2700 � 100 m s�1. Density shows a conse-

quent drop in the first 10 m at the top of Interval B (di-

rectly below the Rørdal Mb.; black arrow, Fig. 2A). The

interval below 240 m MD forms Interval C and is charac-

terized by higher velocities and densities and by very

high-frequency variations (ca 3000 � 200 m s�1 and

+0�2 g cm�3; Fig. 2A). Interval C is composed of

interbedded marls and Chalk Boussaha et al. (2016).

Diagenetic compaction features, consisting mainly of

stylolites and deformation bands, have been quantified.

Stylolites have classical saw-teeth structures with stylus-

shaped teeth reaching maximum amplitudes of a couple

A B C

Fig. 9. Seismic interpretation of the line 2 onshore Stevns peninsula, location in Fig. 1. Notice the abundance of small faults between the low

reflectivity intervals (e.g. base Maastrichtian) compared to the high reflectivity intervals (e.g. upper Campanian). The high reflectivity layers show

drag folds and conical patterns of fault clusters. [Colour figure can be viewed at wileyonlinelibrary.com]
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of centimetres. They resemble those described by Lind

(1993) from ODP leg 130 where the dark colour is proba-

bly due to the accumulation of insoluble material (Fig. 8).

The deformation bands, also called ‘hairline fractures’ in

the literature, are also typical of Chalk (Wennberg et al.,

2013 and references therein). In the Stevns-2 core, the

individual deformation bands are extremely thin and

barely visible with the naked eye (consequently probably

in the order of 0�1 mm in width; Fig. 8). They can extend

over a few millimetres to 10 cm in height (Fig. 8). Some

organize in swarms of coalescent parallel fractures making

them more visible (Fig. 8), and can also present syn-

thetic/antithetic organizations (Fig. 8). Some of the

swarms are surrounded by a diffuse area of darker Chalk

attributed to carbonate reprecipitation (carbonate seams,

dotted area in Fig. 10). Detailed core observations have

been used to understand the geometrical relationships

between stylolites, hairlines and carbonate seams (Fig. 8).

The hairline fractures (F1; Fig. 8) have a normal throw,

offsetting a first generation of stylolites (S0; Fig. 8). A sec-

ond generation of stylolites (S1) is in today’s ‘horizontal’

position and is developed within the footwall of the frac-

ture plane (Fig. 8). S0 and S1 merge at different angles,

S0 being tilted due to the fracture’s normal throw.

Downward, the pressure-solution structures (stylolites)

and the darker Chalk along the hairline fractures indicates

the presence of carbonate seams (Fig. 8). There are no

seams above the solution structures, they only appear

impregnating the fractures downward of the stylolites

(Fig. 8).

The quantification of structural and diagenetic features

exhibited by the core show that hairline fractures are gen-

erally less abundant with depth and have a local mini-

mum at the base of Interval A (Fig. 2B). Interval B (from

120 to 240 m) contains two parts with many fractures

that are separated by an interval with very few fractures

at 175 m MD (Fig. 2B). This lower fracture density inter-

val corresponds to Chalk with flint/white Chalk transition

(black to green; Fig. 2B and C). There is a noticeable

drop in the density of deformation bands in Interval C.

The trend of stylolite density with depth contrasts with

the distribution of hairline fractures, showing a stepwise

overall increase in concentration (Fig. 2B). The stylolite con-

centration in the uppermost 10 m of the core is higher than

in the rest of Interval A (Fig. 2B). The stylolite density

increases rapidly at 120 m and shows an overall increase

down to 175 m (Fig. 2B). There is a clear distinction

between Chalk with flint from 120 to 175 m (more

Fig. 10. Interpretation of panoramic pictures taken in the Sigerslev Quarry illustrating the relationship between polygonal faults and fluid

expulsion conduits terminating in a pockmark (Fig. 1). All the flint nodules of this quarry face have been drawn in red. Original picture is in the

Supplementary material 1. Flint bands showing the regular stratigraphy are in yellow. Areas where paramoudra-like flint structures (green) are

present and showing gaps in the (stratigraphic) flint bands are considered as former fluid conduits (blue-grey). Steeply dipping, elongated flint

nodules (Fig. 11A and B) and drag folds in flint bed indicate the presence of faults (polygonal, in black). The constructive part of the pockmark

spreading out laterally is highlighted by the pink prograding flint bands. The depression of the pockmark is marked by a thick flint band (in

turquoise). The filling of the pockmark is highlighted in orange. The filling of the pockmark and the main conduit have a slightly darker colour on

the quarry wall (Supplementary material 1). [Colour figure can be viewed at wileyonlinelibrary.com]
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stylolites) and pure white Chalk from 175 to 240 m (less sty-

lolites, Fig. 2B and C). The bottom of the core (>240 m

MD) has a variable density of stylolites with around 15 per

metre.

Cross-plotting sonic velocities and density shows a

good correlation and a clear separation between marls

and purer Chalk (Fig. 6B). The cross-plot between stylo-

lite density and sonic velocity in Fig. 6A shows that there

is no correlation between these two parameters. This lack

of relationship is also well illustrated in the interval from

120 to 240 m in Fig. 2 where the almost stable density

and sonic velocity of Chalk (Fig. 2A) contrasts with the

pronounced variations in stylolite density (Fig. 2B). The

relationship between the sonic velocity and the natural

radioactivity, which should represent the clay content, is

also poorly developed (Fig. 9C). Overall, except when

Chalk contains a high concentration of marl (deep blue

Fig. 6), Chalk facies do not show any trend or correlation

with the number of stylolites (i.e. intensity of diagenesis)

or clay content (detrital input; Fig. 6).

Field observations

Chalk exposed in Sigerslev Quarry and the adjacent

coastal cliffs shows spectacular palaeo-sea-bed topogra-

phies mimicked by undulating flint bands within Chalk

(Anderskouv et al., 2007). Locally, the flint bands are

cross-cut at a high angle by flint aligned within planes

which locally offset the strata (Figs 10 and 11). The

stratigraphic flint bands are locally absent along these

planes which occasionally exhibit small drag folds in

their immediate vicinity (Fig. 10). The subvertical zones

lacking stratiform flint bands (blue-grey in Fig. 10) con-

tain cylindrical hollow flints resembling Batichnus para-

moudrae (green in Fig. 10; Bromley et al., 1975). Most

of the subvertical zones end at a level marked by a par-

ticularly thick flint band (turquoise in Fig. 10). This

thick band is topped by an interval containing low-angle

dipping flint bands (pink in Fig. 10). The pink interval

depicted in Fig. 10 seems to be constructive and grows

laterally away from the biggest subvertical zone (small

progradations; Fig. 8). The thick flint band delineates

the base of a specific infill which is slightly greyish in

colour (in orange and onlapping on the thick turquoise

flint band in Fig. 8; supplementary material 1). The flint

bands cross-cut the stratigraphy at high angles highlight-

ing planes that are rarely continuously visible over more

than 2 m (Fig. 11A). The planes themselves are compos-

ite and show different orientations of segments

(Fig. 11B). They are difficult to measure and access, so

no statistical measurement could be done but it seems

that the structures have no clear preferred orientation

(Fig. 7).

At the bottom of the quarry another important struc-

ture intersects the stratigraphy: a 10 cm thick cluster of

stylolites can be followed continuously on the quarry

walls (Fig. 11C and D). This first (in burial depth) con-

tinuous stylolite is located just below the structures

observed in Fig. 10. Other stylolites which are discontinu-

ous and not subparallel to the stratigraphy are observed

at the top of the quarry (Fig. 11E).

Careful observations and cleaning of the quarry wall

highlight numerous fractures and deformation structures

(Fig. 11F, G, and H). Subhorizontal decollement planes

have been observed, separating intervals with differential

horizontal motion (Fig. 11F). Hairline fractures are

observed all over the exposures as long as Chalk has

enough colour contrast and markers to show the offsets

(Fig. 11G and H). Fractures organized in conical sets are

observed with kinematic indicators showing important

volume changes (Fig. 11G). Small faults in the prolonga-

tion of the flint bands signify normal throws but also

folding in the vicinity of the fault (Fig. 11H). Both of

these features underline the importance of contractional

volume changes (Fig. 11H).

DISCUSSION

The seismic data show the presence of two types of faults.

Regionally extensive fault clusters affecting the whole

imaged succession, being subparallel to the Sorgenfrei-

Tornquist and the Carlsberg fault zones, are considered to

be similar strike-slip lineaments (e.g. at 15 000 and

30 000 m in Fig. 4). The presence of an anticline and the

differential sedimentation associated with it indicate an

originally normal throw followed by inversion during

Campanian times (Fig. 4). It is assumed that the regional

fault system is not associated with the diagenesis of Chalk

and follows the general history of the North Sea Basin

(Erlstr€om et al., 1997; Japsen et al., 2007; Sopher & Juh-

lin, 2013), and its analysis is considered out of the scope

of this study.

Insights from strata-bound fault geometries
on seismic data

Strata-bound faults (Figs 4 and 9), characteristic of polyg-

onal fault systems (Cartwright et al., 2003), are the sec-

ond type encountered. The throw distribution analysis

shows that fault geometry is very similar to other polygo-

nal fault systems or more broadly to blind faults (Baudon

& Cartwright, 2008). The dips of most measured faults

range from 40° to 70° (Fig. 5A). This dip range is slightly

less steep than faults forming close to the sea-bed (50° to

80°) but still much steeper than the faults forming at

depth (20 to 50°; Cartwright, 2011). Knowing that Chalk
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Fig. 11. Small-scale diagenetic features at the Sigerslev Quarry and surroundings. (A) 2 m long flint band within a polygonal fault at the coastal

cliff. (B) Flint precipitation within a polygonal fault. Notice the discontinuity of the nodules and the absence of internal fractures. Scale in cm. (C)

Close up view of the cluster of continuous stylolites situated at the very bottom of the quarry. Scale in cm. (D) Panoramic view of the first

continuous stylolites. Note that they are not parallel with the flint bands (original stratigraphy). (E) Small-scale stylolite from the upper part of the

quarry. (F) Decollement plane between two intervals with small subhorizontal offset in the deepest part of the quarry. (G) Hairline fractures

organized in conical shape illustrating the contraction of the sediment. Scale in cm. (H) Normal fault within Chalk. The footwall is contracted at

the contact with the fault. [Colour figure can be viewed at wileyonlinelibrary.com]
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succession has probably reached burial depths of ca

500 m in the study area (Nielsen et al., 2011), it can be

assumed that compactional flattening with burial has

made the dips shallower than their original formation

geometry (Cartwright, 2011; Nielsen et al., 2011). There-

fore, it is possible to conclude that the faults were origi-

nally steeper, formed close to the sea-bed and were

consecutively flattened by compaction. Since the maxi-

mum displacement of polygonal faults crudely scales with

the fault height, this ratio is established to compare with

other systems by plotting the maximum throw versus the

height of individual faults (Fig. 5B; Shin et al., 2010;

Cartwright, 2011). The measured faults have a very large

ratio of fault height to maximum throw of 0�128 � 0�089
which is significantly higher than the standard ratio for

polygonal faults of 0�045 � 0�016 (Shin et al., 2010).

Since listric geometries associated with a weak basal layer

are lacking, the faults probably have a high degree of lat-

eral intersection (Shin et al., 2010). The throw distribu-

tion along normalized distance on the fault planes is an

indicator of fault displacement (Fig. 5C; Baudon & Cart-

wright, 2008; Cartwright, 2011). The displacement gradi-

ent starts abruptly from the tip of the faults, is broadly

smooth in the central part and slightly more accentuated

in the lower half of the faults, and in this sense similar to

other studied polygonal fault systems (Fig. 5C; Cart-

wright, 2011). The M-type displacement pattern charac-

terizes blind-faults and is found in polygonal fault

systems (Baudon & Cartwright, 2008; Shin et al., 2010;

Cartwright, 2011). The maximum displacement occurs

more frequently at the base of the faults; however, it

seems to be highly variable (Fig. 5C). This is interpreted

as being driven by heterogeneity of the mechanical prop-

erties in the sediment pile and a complex growth history

(Baudon & Cartwright, 2008). The finite heterogeneous

vertical displacement is most probably the result of sev-

eral ‘simultaneous’ fault nucleations at different strati-

graphic levels that link together vertically and also

laterally since the faults have a high degree of intersection

(large throw to height ratio). Lateral hard links between

polygonal faults will limit their propagations and might

be responsible for some large differences between the

observed lateral displacement in Fig. 5C (Lonergan et al.,

1998). Therefore, it can be suggested that the largest dis-

placements are close to the nucleation points of the faults,

where the shear failure occurred. Polygonal faults are

interpreted as being associated with contraction of the

sediments during burial. Their initiation can be very early

in the diagenetic sequence since some are considered

active today at the sea-bed (Cartwright et al., 2003;

Goulty, 2008). The strata-bound faults are best developed

in intervals, which – from correlation to the Stevns bore-

holes – are known to consist of relatively pure Chalk. In

contrast, faulting is rare in intervals composed of Chalk

containing marl layers (Fig. 4). The contrasting intensity

of faulting in these two rock types indicates different dia-

genetic response during burial as discussed further below.

This intense faulting in the white Chalk facies may be the

reason for its poor reflectivity, the seismic waves being

scattered by subvertical fault planes.

Relationships between faults, fractures,
stylolites and fluid flows

Strata-bound faults are also observed in outcrop (Figs 10

and 11). Measurement of the faults in the field did not

reveal a preferred orientation (Fig. 7). Observations of the

Chalk of the eastern Danish Basin at all scales, from core

and field observations to seismic profiles, highlight the

link between the different diagenetic features and illus-

trate the transformation of the Chalk during its early bur-

ial history. Four main controls on the diagenesis can be

observed: faults, fractures, stylolites and fluid escape

structures.

The faults contain flint which indicates that they were

associated with migration of the silica-loaded fluids and

therefore formed at relatively shallow depths before opal-

CT was transformed to a-quartz (Hibsch et al., 2003;

Madsen & Stemmerik, 2010).

The hairline fractures observed in cores and outcrop

are similar to the deformation bands described by Wenn-

berg et al. (2013). Deformation bands are joints in the

Chalk which correspond to local pore-space collapse and

are associated with the progressive burial of the sediment

(Wennberg et al., 2013). Surprisingly, they reduce in fre-

quency with depth and drop considerably in abundance

as stylolites become prominent (Fig. 2). This could indi-

cate that there is a genetic link between hairline fractures

and stylolites and that the joints are precursors to the sty-

lolites. When the joints form, the pore space collapses

between Chalk grains. Such collapses increase the contact

area between the associated grains, facilitating the later

pressure-solution processes associated with stylolite for-

mation. While progressing through Chalk, the stylolites

assimilate and dissolve the joints so that the higher the

number of stylolites observed, the less precursory joints

have been preserved (Fig. 2). The link between fractures

and stylolites is illustrated in Fig. 8 where there is a dis-

crepancy between the orientation of the fractures (joints)

above and below the stylolite. Since it is improbable that

stylolites accommodated horizontal displacement, the

joints can be considered to be originally organized in a

coherent synthetic-antithetic compactional configuration.

Only the activity of the stylolite has modified the vol-

umes, dissolving Chalk downward to obtain the observed

structural discrepancy above and below the stylolite
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(Fig. 8). In addition, the presence of subhorizontal S1

and tilted S0 stylolites along a fracture indicates that the

fracture developed in conjunction with S0 (Fig. 8). S0

was originally horizontal and formed perpendicular to the

main stress, the lithostatic pressure (vertical). Since the

footwall of the fractures became tilted (including S0), the

stylolites were not in equilibrium with the main stress,

causing a new generation of horizontal stylolites (S1) to

form. The rotation of the palaeo-stress indicator (stylo-

lite) is seen as the result of the time-transgressive forma-

tion of stylolites in contracting sediment.

The compaction of the solid parts of Chalk and the

increasing stylolitization during burial do not result in

cementation of the sediment, indicating that the carbon-

ate enriched solutions and the pore water were able to

move. In a closed system, the density should rise because

pore-space progressively disappears and the dissolved car-

bonate will re-precipitate as cement. Open-system carbon-

ate mass-transfers match the observations better. This is

supported by the absence of correlation between stylolite

abundance and density of Chalk in the interval from 120

to 240 m (Figs 2 and 6). It is assumed that the pore

water and the carbonate-rich fluids expressed during the

formation of stylolites, built up pressure in the sediment

which was then released by venting at a given threshold.

This was not a continuous process and was most proba-

bly focussed over specific stratigraphic intervals. The dif-

ference in fault activity between pure Chalk intervals and

intervals of interbedded Chalk and marl, together with

the pronounced stepwise velocity jumps across these

facies transitions, indicate that primary facies had a major

influence on diagenesis and resulting variations in fluid

pressures during early burial. However, the localization of

these intervals is not completely resolved in our data set.

Discrete zones characterized by variable preservation of

the calcareous nannofossil assemblages have been

observed in the Stevns-1 core (Thibault et al., 2012), and

may be candidates for localized fluid flow zones.

The significance of cold seeps

In outcrop, evidence of venting is seen as subvertical con-

duits and strata-bound faults capped by a thick layer of

flint (Fig. 10). The flint most likely was precipitated close

to the sea floor at a stable redox boundary (Madsen &

Stemmerik, 2010), and judging from the flint band orien-

tations above and below, it formed at a time of shifting

depositional conditions (Fig. 10; Supplementary material

1). Based on the architectural data, it is proposed that the

plumbing system is likely to have been via cold seep. Cold

seeps or so-called pockmarks are structures commonly

observed in seismic images in association with polygonal

fault systems (Fig. 10; Cartwright et al., 2003; Gay et al.,

2006) or exceptionally preserved in desert exposures

(Tewksbury et al., 2014). The conduits may be the results

of fluid expulsions which locally promote the formation

of flint in the form of paramoudra-like structures (the

vertically stacked hollow flint cylinders; Fig. 10). Polygo-

nal faults generally help drain fluids from depth to the

sea-bed (Gay et al., 2006; Tewksbury et al., 2014). Most

of the conduits stop within depressions or polygonal

faults (Fig. 8). This indicates that the polygonal faults

have reached the sea-bed and may have promoted the

drainage of fluids through the low permeability Chalk.

Similar-sized vertically superimposed depressions are

observed on the seismic profiles and are interpreted as

being fluid escape structures associated with cold seeps

(Figs 3 and 4). The formation of such pockmarks may be

quite common in Chalk although not easily observed in

the field. Some examples of strata-bound/polygonal faults

as well as pockmarks have been documented in seismic

data of the North Sea and other basins with thick Chalk

accumulations (Gemmer et al., 2002; Hansen et al., 2004;

van Gent et al., 2010; Sandrin et al., 2012) and once in

the field (Tewksbury et al., 2014). In addition, igneous

intrusions and ash layers are documented within the

Upper Cretaceous of the nearby Scania area as well as in

the Kattegat (Norling & Bergstr€om, 1987; Ziegler, 1987).

While cooling down, a volcanic intrusion at depth could

also be a potential source of fluids which would have flo-

wed upward through the upper Cretaceous sediments and

stimulated the formation of vents, diagenetic reactions

and polygonal fault networks (Planke et al., 2005; Gay

et al., 2012).

From contraction to shear failure

The data presented here indicate that the hairline frac-

tures are associated with volume change and contraction

of Chalk. Observation of millimetre-scale horizontal

movements additionally suggests separation in intervals

even at small scale (Fig. 11F, G, and H). These character-

istics are shared with polygonal fault systems (Cartwright

et al., 2003). It is therefore tempting to see deformation

bands and polygonal faults as the results of the same pro-

cesses of contraction of Chalk, just reflecting different

scales and locations. These deformation bands reflect a

more pervasive deformation than the polygonal faults.

Recently, it has been suggested that diagenetic dissolu-

tion of grains is the driving process for polygonal fault

system nucleation (Shin et al., 2010; Cartwright, 2011).

The sediments involved have low post-peak shear strength

(Shin et al., 2010). To achieve this process, the sediments

should have a high porosity and be very fine-grained

while undergoing mineral dissolution (Shin et al., 2010),

conditions which are met in the studied Chalk; the grain
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size being less than 20 lm, porosities between 35% and

50% (Frykman, 2001; Nielsen et al., 2011) and the pres-

ence of stylolites (pressure-solution structures) attesting

to mineral dissolution. In addition, numerical experi-

ments based on this dissolution/shear failure model pre-

dict displacement patterns which are strikingly similar to

our measured displacement (Fig. 5C; Shin et al., 2010).

Therefore, this process is considered the main trigger of

contraction-driven faults in the area.

Synthesis

Chalk, like other low permeability, high porosity and very

fine-grained sediments, undergoes intense diagenetic trans-

formations in the first stage of its burial history (Fig. 12;

Cartwright et al., 2003; Hibsch et al., 2003). A scenario for

these transformations can be established from coupled

observations of core material, outcrops and seismic profiles

in eastern Denmark. Pure white Chalk appears massive but

is pervasively disturbed by deformation bands during shal-

low burial (Fig. 12). At depth, the deformation bands will

progressively merge to become stylolites. The stylolites pro-

mote mass-transfers of the carbonates, trigger shear failure

and the formation of polygonal fault systems (Fig. 12). The

polygonal faults propagate to eventually reach the sea-bed,

allowing for drainage of overpressured pore water from

Chalk and eventually forming pockmarks (Fig. 12). All

these processes contribute to the shrinkage of Chalk and

can trigger positive feedback cycles. The initiation, tempo-

ral progression and termination of this phenomenon, how-

ever, are at present not understood.

As also emphasized by Hibsch et al. (2003), some faults

contain flint nodules, indicating that fluid migration

occurred before transformation of opal-CT to a-quartz
(Madsen & Stemmerik, 2010). The formation of flint

nodules is thought to be a relatively shallow and early

Fig. 12. Model of the positive feedback mechanisms associated with the early diagenesis of Chalk in the eastern Danish Basin. The zone of

precipitation of silicates forming the flint bands is not represented here since it has not been quantified and it is probably out of scale (few tens

of metres).
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diagenetic process although no quantitative estimation

has yet been provided for the Stevns peninsula setting

(Madsen & Stemmerik, 2010).

In modern Chalk, the formation of ‘large’ stylolites starts

at ca 830 m of burial, whereas the first ‘small’ stylolites

occur at 490 m (Lind, 1993). In Sigerslev Quarry, the first

large continuous stylolite occurs near the base of the

quarry, corresponding to a burial depth of ca 580 m, while

in Stevns-2 a sudden increase in stylolite concentration

occurs at 120 m MD corresponding to a burial depth of

620 m using data in Nielsen et al. (2011). It is therefore

tempting to assume that a burial depth of ca 600 m was

needed to trigger the formation of faults and their propaga-

tion in the Upper Cretaceous Chalk. This is somewhat shal-

lower than the depth at which modern large stylolites start

to form. However, the presence of compartments of differ-

ent permeability, the heterogeneity of Chalk itself as well as

potential fluid supply from deeper parts of the succession

may change the initial conditions of stylolite formation in

the study area compared to the present-day systems (Lind,

1993). If the estimate of 600 m overburden is applied,

nucleation of polygonal faults may have started in the deep-

est parts of the Chalk Group already during the late Cam-

panian, whereas a late Maastrichtian age is obtained if

800 m of overburden is used as a critical value. In both

cases the outlined venting system was in place during the

latest stages of Chalk deposition at Stevns (Fig. 12).

The integration of observations from different sources

and at different scales have helped to better understand

the timing and linking of the processes involved in the

transformation of oceanic ooze into Chalk. Better quanti-

tative estimates of the palaeo-burial depths and condi-

tions needed to achieve the observed diagenetic processes

could possibly be acquired using a high-resolution 3D

seismic data set from an area where Chalk has not been

buried more than 1 to 2 km. Another approach would be

to use numerical modelling to simulate the dynamics of

polygonal faulting in conditions similar to those of the

Late Cretaceous of the eastern Danish Basin in order to

better constrain the diagenetic sequence affecting Chalk.

The velocity layering of Chalk (Fig. 2; Nielsen et al.,

2011) indicates that the diagenetic transformations took

place at critical depths. This compares to studies of mod-

ern ooze from the Java Plateau where the first stylolites

occur at 490 m, large stylolites appear at 830 m and

cementation starts around 1100 m (Fabricius & Borre,

2007). Evidently, only the deepest parts of the Chalk

Group at Stevns have experienced overburdens of more

than 1100 m. Considering seismic velocities, Nielsen et al.

(2011) similarly suggested that an equivalent to the Java

Plateau 1100 m event could correspond to a velocity

jump identified ca 250 m below TD of Stevns-2 (at

600 m today’s depth). The rapid increase in velocity at ca

240 m and the associated decrease in porosity may be a

candidate for such a transformation of intensified dissolu-

tion and eventual nucleation of polygonal faults. Most

probably, the upper part of Chalk at Stevns had only been

affected by one generation of the contraction process

associated with the faults, whereas the deeper intervals

may have been subject to several generations of faults and

consequently, more intense compaction. Is the velocity

layering the result of multiple generations of polygonal

fault systems or does it represent a stepwise diagenetic

evolution of Chalk? This question could be elucidated

with a thorough study of deeper buried Chalk succes-

sions.

CONCLUSIONS

This study illustrates the diagenetic processes affecting

nannofossil ooze in the first kilometre of burial. The dia-

genetic reactions involve a first stage of pervasive contrac-

tion marked by the formation of deformation bands also

commonly called hairline fractures. This stage is followed

by the start of stylolite formation at ca 600 m of burial.

For the first time, it can be shown that Chalk behaves like

its fine-grained siliciclastic counterparts, and that grain

dissolution triggers the formation of polygonal faults. The

polygonal faults in the study area have a high degree of

lateral connection and form close to the surface. In addi-

tion to mimicking the sea-bed, flint bands are fossilized

vertical conduits of fluid escape and fault planes, in con-

nection with the polygonal fault system. Like in other

polygonal fault systems, the contraction of Chalk was

probably associated with cold seeps. Our detailed observa-

tions of the diagenetic structures in Chalk of the Stevns

Peninsula may have been overlooked elsewhere and

should be visible on other good Chalk exposures.

Chalk is a major reservoir for hydrocarbons and drink-

ing water in the North Sea and its coastal areas. Its reser-

voir properties are influenced by the diagenetic features

which are observed in the Stevns peninsula (pore-space

collapse, compartmentalization, vertical conduits). How-

ever, more quantitative data are needed to better con-

strain the diagenetic system. Therefore, illustrating the

complex interaction of diagenetic phenomena affecting

Chalk during burial is expected to stimulate more

research on this outstanding sedimentary system.

ACKNOWLEDGEMENTS

We acknowledge Kresten Anderskouv for his pre-review

work. Finn Surlyk is thanked for the stimulating discus-

sions on Chalk depositional system and its evolution in

Denmark. We would like to thank Lars Ole Boldreel for

giving access to the original seismic data repository. Lise

ª 2016 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists. 169

Early diagenetic evolution of Chalk 169



Boulicault is also thanked for her help during field acqui-

sition. We are grateful to Maersk Oil for having spon-

sored this research in the C-cubed project framework. We

thank J. Cartwright, C. Jackson, L. Lonergan and A. Gay

for their revision of a former version of the manuscript.

We also would like to thank J. D’Arcy for the English-

language proofing of the manuscript.

CONFLICT OF INTEREST

No conflict of interest declared.

References

Anderskouv, K., Damholt, T. and Surlyk, F. (2007) Late

Maastrichtian chalk mounds, Stevns Klint, Denmark –
combined physical and biogenic structures. Sed. Geol., 200,

57–72. doi:10.1016/j.sedgeo.2007.03.005.
Baudon, C. and Cartwright, J.A. (2008) 3D seismic

characterisation of an array of blind normal faults in the

Levant Basin, Eastern Mediterranean. J. Struct. Geol., 30,

746–760. doi:10.1016/j.jgs.2007.12.008.
Bjerager, M. and Surlyk, F. (2007) Danian Cool-Water

Bryozoan Mounds at Stevns Klint, Denmark – a new class

of non-cemented skeletal mounds. J. Sed. Res., 77, 634–660.

doi:10.2110/jsr.2007.064.

Boussaha, M., Thibault, N. and Stemmerik, L. (2016)

Integrated stratigraphy of the late Campanian –
Maastrichtian in the Danish Basin: revision of the Boreal

calcareous nannofossil zonation. Newsl. Stratigr., 49, 337–
360. doi:10.1127/nos/2016/0075.

Bromley, R.G., Schulz, M.-G. and Peake, N.B. (1975)

Paramoudras: Giant Flints, Long Burrows and the Early

Diagenesis of Chalks. Kommissionær Munksgaard,

København, 42 pp.

Cartwright, J. (2011) Diagenetically induced shear failure of

fine-grained sediments and the development of polygonal

fault systems. Mar. Pet. Geol., 28, 1593–1610. doi:10.1016/

j.marpetgeo.2011.06.004.

Cartwright, J., James, D. and Bolton, A. (2003) The genesis

of polygonal fault systems: a review. Geol. Soc. London. Spec.

Publ., 216, 223–243. doi:10.1144/GSL.SP.2003.216.01.15.

Erlstr€om, M., Thomas, S.A., Deeks, N. and Sivhed, U. (1997)

Structure and tectonic evolution of the Tornquist Zone and

adjacent sedimentary basins in Scania and the southern

Baltic Sea area. Tectonophysics, 271, 191–215.

Esmerode, E.V., Lykke-Andersen, H. and Surlyk, F. (2007)

Ridge and valley systems in the Upper Cretaceous chalk of

the Danish Basin: contourites in an epeiric sea. Geol. Soc.

London. Spec. Publ., 276, 265–282. doi:10.1144/

GSL.SP.2007.276.01.13.

Fabricius, I.L. and Borre, M.K. (2007) Stylolites, porosity,

depositional texture, and silicates in chalk facies sediments.

Ontong Java Plateau, Gorm and Tyra fields, North Sea.

Sedimentology, 54, 183–205. doi:10.1111/j.1365-
3091.2006.00828.x.

Fabricius, I.L., B€achle, G.T. and Eberli, G.P. (2010) Elastic

moduli of dry and water-saturated carbonates – effect of

depositional texture, porosity, and permeability. Geophysics,

75, 65–78. doi:10.1190/1.3374690.
Frykman, P. (2001) Spatial variability in petrophysical

properties in Upper Maastrichtian chalk outcrops at Stevns

Klint, Denmark. Mar. Petrol. Geol., 18, 1041–1062.

doi:10.1016/S0264-8172(01)00043-5.

Gaviglio, P., Bekri, S., Vandycke, S., Adler, P.M., Schroeder,

C., Bergerat, F., Darquennes, A. and Coulon, M. (2009)

Faulting and deformation in chalk. J. Struct. Geol., 31, 194–

207. doi:10.1016/j.jsg.2008.11.011.

Gay, A., Lopez, M., Cochonat, P., S�eranne, M., Levach�e, D.

and Sermondadaz, G. (2006) Isolated seafloor pockmarks

linked to BSRs, fluid chimneys, polygonal faults and stacked

Oligocene-Miocene turbiditic palaeochannels in the Lower

Congo Basin. Mar. Geol., 226, 25–40. doi:10.1016/

j.margeo.2005.09.018.

Gay, A., Mourgues, R., Berndt, C., Bureau, D., Planke, S.,

Laurent, D., Gautier, S., Lauer, C. and Loggia, D. (2012)

Anatomy of a fluid pipe in the Norway Basin: initiation,

propagation and 3D shape. Mar. Geol., 332–334, 75–88.
doi:10.1016/j.margeo.2012.08.010.

Gemmer, L., Huuse, M., Clausen, O.R. and Nielsen, S.B.

(2002) Mid-Palaeocene palaeogeography of the eastern

North Sea basin: integrating geological evidence and 3D

geodynamic modelling. Basin Res., 14, 329–346. doi:10.1046/

j.1365-2117.2002.00182.x.

van Gent, H., Back, S., Urai, J.L. and Kukla, P. (2010) Small-

scale faulting in the Upper Cretaceous of the Groningen

block (The Netherlands): 3D seismic interpretation, fault

plane analysis and regional paleostress. J. Struct. Geol., 32,

537–553. doi:10.1016/j.jsg.2010.03.003.

GEUS (2015) Tabel med fakta om registrerede danske

jordskælv. Registrerede jordskælv. Available at: http://

www.geus.dk/DK/nature-climate/natural-disasters/

seismology/Sider/seismo_reg-dk.aspx.

Goulty, N.R. (2008) Geomechanics of polygonal fault systems: a

review. Petrol. Geosci., 14, 389–397. doi:10.1144/1354-079308-781.
Graversen, O. (2004) Upper Triassic-Lower Cretaceous seismic

sequence stratigraphy and basin tectonics at Bornholm,

Denmark, Tornquist Zone, NW Europe. Mar. Pet. Geol., 21,

579–612. doi:10.1016/j.marpetgeo.2003.12.001.

Graversen, O. (2009) Structural analysis of superposed fault

systems of the Bornholm horst block, Tornquist Zone,

Denmark. Bull. Geol. Soc. Den., 57, 25–49.

Hansen, D.M., Shimeld, J.W., Williamson, M.A. and Lykke-

Andersen, H. (2004) Development of a major polygonal

fault system in Upper Cretaceous chalk and Cenozoic

mudrocks of the Sable Subbasin, Canadian Atlantic margin.

Mar. Pet. Geol., 21, 1205–1219. doi:10.1016/
j.marpetgeo.2004.07.004.

170 ª 2016 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists.

170 J. Moreau et al.



Henriet, J.P., De Batist, M.D. and Verschuren, M. (1991)

Early fracturing of Paleogene clays, southernmost North Sea:

relevance to mechanisms of primary hydrocarbon migration.

In: Generation, Accumulation and Production of Europe’s

Hydrocarbons (Ed. A.M. Spenser), Spec. Publ. Eur. Assoc.

Petrol. Geol., 1, 217–227.
Hibsch, C., Cartwright, J., Hansen, D.M., Gaviglio, P.,

Andre, G., Cushing, M., Bracq, P., Juignet, P., Benoit, P.

and Allouc, J. (2003) Normal faulting in chalk: tectonic

stresses vs. compaction-related polygonal faulting. Geol. Soc.

London. Spec. Publ., 216, 291–308. doi:10.1144/

GSL.SP.2003.216.01.19.

Japsen, P. (2000) Investigation of multi-phase erosion using

reconstructed shale trends based on sonic data. Sole Pit axis,

North Sea. Global Planet. Change, 24, 189–210. doi:10.1016/

S0921-8181(00)00008-4.

Japsen, P. and Bidstrup, T. (1999) Quantification of late

Cenozoic erosion in Denmark based on sonic data and

basin modelling. Bull. Geol. Soc. Den., 46, 79–99.

Japsen, P., Green, P.F., Nielsen, L.H., Rasmussen, E.S. and

Bidstrup, T. (2007) Mesozoic-Cenozoic exhumation events

in the eastern North Sea Basin: a multi-disciplinary study

based on palaeothermal, palaeoburial, stratigraphic and

seismic data. Basin Res., 19, 451–490. doi:10.1111/j.1365-
2117.2007.00329.x.

Kammann, J., H€ubscher, C., Boldreel, L.O. and Nielsen, L.

(2016) High-resolution shear-wave seismics across the

Carlsberg Fault zone south of Copenhagen – implications

for linking Mesozoic and late Pleistocene structures.

Tectonophysics, 682, 56–64. doi:10.1016/j.tecto.2016.05.043.
Lassen, A. and Thybo, H. (2012) Neoproterozoic and

Palaeozoic evolution of SW Scandinavia based on integrated

seismic interpretation. Precambr. Res., 204–205, 75–104.

doi:10.1016/j.precamres.2012.01.008.

Lind, I.L. (1993) Stylolites in chalk from Leg 130, Ontong Java

Plateau. In: Proceedings of the Ocean Drilling Program,

Scientific Results (Eds W. H. Berger, L. W. Kroenke, T. R.

Janecek, and W. V. Sliter), pp. 445–451. Ocean Drilling

Program, College Station, TX.

Lonergan, L., Cartwright, J. and Jolly, R. (1998) The

geometry of polygonal fault systems in Tertiary mudrocks of

the North Sea. J. Struct. Geol., 20, 529–548.

Lykke-Andersen, H. and Surlyk, F. (2004) The Cretaceous-

Palaeogene boundary at Stevns Klint, Denmark: inversion

tectonics or sea-floor topography? J. Geol. Soc. London, 161,

343–352. doi:10.1144/0016-764903-021.

Madsen, H.B. and Stemmerik, L. (2010) Diagenesis of Flint

and Porcellanite in the Maastrichtian Chalk at Stevns Klint,

Denmark. J. Sed. Res., 80, 578–588. doi:10.2110/jsr.2010.052.
Muraoka, F. and Kamata, H. (1983) Displacement distribution

along minor fault traces. J. Struct. Geol., 5, 483–495.
Nielsen, L., Boldreel, L.O., Hansen, T.M., Lykke-Andersen,

H., Stemmerik, L., Surlyk, F. and Thybo, H. (2011)

Integrated seismic analysis of the Chalk Group in eastern

Denmark – implications for estimates of maximum

palaeo-burial in southwest Scandinavia. Tectonophysics, 511,

14–26. doi:10.1016/j.tecto.2011.08.010.
Norling, E. and Bergstr€om, J. (1987) Mesozoic and Cenozoic

tectonic evolution of Scania, southern Sweden. In:

Compressional Intra-Plate Deformations in the Alpine

Foreland (Ed. P.A. Ziegler), Tectonophysics, 137, 7–19.

Petracchini, L., Antonellini, M., Billi, A. and Scrocca, D.

(2015) Syn-thrusting polygonal normal faults exposed in the

hinge of the Cingoli anticline, northern Apennine, Italy.

Front. Earth Sci., 3, 1–24.

Planke, S., Rasmussen, T., Rey, S.S. and Myklebust, R.

(2005) Seismic characteristics and distribution of volcanic

intrusions and hydrothermal vent complexes in the Vøring

and Møre basins. In: Petroleum Geology: North-West Europe

and Global Perspectives Proceedings of the 6th Petroleum

Geology Conference (Eds A.G. Dor�e and B.A. Vining), Geol.

Soc. London, 833–844.
Rasmussen, S.L. and Surlyk, F. (2012) Facies and ichnology of

an Upper Cretaceous chalk contourite drift complex, eastern

Denmark, and the validity of contourite facies models. J.

Geol. Soc., 169, 435–447. doi:10.1144/0016-76492011-136.
Rosenbom, A.E. and Jakobsen, P.R. (2005) Infrared

thermography and fracture analysis of preferential flow in

Chalk. Vadose Zone J., 4, 271–280. doi:10.2136/vzj2004.0074.

Sandrin, A., Fehmers, G., Printz, B., van Buchem, F., Uldall,

A. and Hoffmann, U. (2012) Polygonal Faulting in Chalk –

an example at the Tyra Field, Danish North Sea. EAGE,

Extended Abstracts, 74th EAGE Conference & Exhibition

incorporating SPE EUROPEC 2012, Copenhagen, Denmark,

4–7 June 2012.

Shin, H., Santamarina, J.C. and Cartwright, J.A. (2008)

Contraction-driven shear failure in compacting uncemented

sediments. Geology, 36, 931–935. doi:10.1130/G24951A4.
Shin, H., Santamarina, J.C. and Cartwright, J.A. (2010)

Displacement field in contraction-driven faults. J. Geophys.

Res., 115, 2156–2202. doi:10.1029/2009JB006572.

Sopher, D. and Juhlin, C. (2013) Processing and

interpretation of vintage 2D marine seismic data from the

outer Han€o Bay area, Baltic Sea. J. Appl. Geophys., 95, 1–15.

doi:10.1016/j.jappgeo.2013.04.011.

Stemmerik, L., Surlyk, F., Klitten, K., Rasmussen, S.L. and

Schovsbo, N.H. (2006) Shallow core drilling of the Upper

Cretaceous Chalk at Stevns Klint, Denmark. Geol. Surv.

Denmark Greenland Bull., 10, 13–16.
Surlyk, F., Damholt, T. and Bjerager, M. (2006) Stevns Klint,

Denmark: Uppermost Maastrichtian chalk, Cretaceous-

Tertiary boundary, and lower Danian bryozoan mound

complex. Bull. Geol. Soc. Den., 54, 1–48.
Surlyk, F., Rasmussen, S.L., Boussaha, M., Schiøler, P.,

Schovsbo, N.H., Sheldon, E., Stemmerik, L. and Thibault,

N. (2013) Upper Campanian-Maastrichtian holostratigraphy

of the eastern Danish Basin. Cretac. Res., 46, 232–256.
doi:10.1016/j.cretres.2013.08.006.

ª 2016 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists. 171

Early diagenetic evolution of Chalk 171



Tewksbury, B.J., Hogan, J.P., Kattenhorn, S.A., Mehrtens,

C.J. and Tarabees, E.A. (2014) Polygonal faults in chalk:

insights from extensive exposures of the Khoman

Formation, Western Desert, Egypt. Geology, 42, 479–482.

Thibault, N., Harlou, R., Schovsbo, N., Schiøler, P.,

Minoletti, F., Galbrun, B., Lauridsen, B.W., Sheldon, E.,

Stemmerik, L. and Surlyk, F. (2012) Upper

Campanian-Maastrichtian nannofossil biostratigraphy and

high-resolution carbon-isotope stratigraphy of the Danish

Basin: towards a standard d13C curve for the Boreal

Realm. Cretac. Res., 33, 72–90. doi:10.1016/

j.cretres.2011.09.001.

Torvela, T., Moreau, J., Butler, R.W.H., Korja, A. and

Heikkinen, P. (2013) The mode of deformation in the

orogenic mid-crust revealed by seismic attribute analysis.

Geochem. Geophys. Geosyst., 14, 1069–1086. doi:10.1002/
ggge.20050.

Wennberg, O.P., Casini, G., Jahanpanah, A., Lapponi, F.,

Ineson, J., Wall, B.G. and Gillespie, P. (2013) Deformation

bands in chalk, examples from the Shetland Group of the

Oseberg Field, North Sea, Norway. J. Struct. Geol., 56, 103–

117. doi:10.1016/j.jsg.2013.09.005.

Ziegler, P.A. (1987) Late Cretaceous and Cenozoic intra-plate

Deformations in the Alpine foreland – a geodynamic model.

In: Compressional Intra-Plate Deformations in the Alpine

Foreland (Ed. P.A. Ziegler), Tectonophysics, 137, 389–420.

Supporting Information

Additional Supporting Information may be found online

in the supporting information tab for this article:

Figure S1. Panoramic picture used to draw the flint nod-

ules of Fig. 9.

172 ª 2016 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists.

172 J. Moreau et al.


