PHILOSOPHICAL TRANSACTIONS A

Ocean deoxygenation, the global phosphorus cycle, and the possibility of human-caused large-scale ocean anoxia

Journal:	Philosophical Transactions A
Manuscript ID	RSTA-2016-0318.R1
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Watson, Andrew; University of Exeter College of Life and Environmental Sciences Lenton, Timothy; University of Exeter, College of Life and Environmental Sciences Mills, Benjamin; University of Leeds, Schoold of Earth and Environment
Issue Code (this should have already been entered but please contact the Editorial Office if it is not present):	DM0916
Subject:	Biogeochemistry < EARTH SCIENCES, Oceanography < EARTH SCIENCES
Keywords:	oceanic anoxic events, global change, phosphate

http://mc.manuscriptcentral.com/issue-ptrsa

1	Ocean de-oxygenation, the global phosphorus cycle, and the possibility of human-
2	caused large-scale ocean anoxia.
3	
4	Andrew J Watson ¹ , Timothy M. Lenton ¹ , Benjamin J. W. Mills ²
5	1. Earth System Science group, College of Life and Environmental Sciences,
6	University of Exeter, Exeter EX4 4QE, UK
7	2. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
8	
9	Keywords: Oceanic anoxic events, biogeochemical cycles, global change, phosphate,
10	Redfield ratios
11	
12	Abstract
13	The major biogeochemical cycles which keep the present-day Earth habitable are
14	linked by a network of feedbacks which has led to a broadly stable chemical
15	composition of the oceans and atmosphere over hundreds of millions of years[1-3].
16	This includes the processes which control both the atmospheric and oceanic
17	concentrations of oxygen. However, one notable exception to the generally well-
18	behaved dynamics of this system is the propensity for episodes of ocean anoxia to
19	occur and to persist for $10^5 - 10^6$ years, these OAEs (Ocean Anoxic Events) being
20	particularly associated with warm "greenhouse" climates[4]. A powerful mechanism
21	responsible for past OAEs was an increase in phosphorus supply to the oceans leading
22	to higher ocean productivity and oxygen demand in subsurface water. This can be
23	amplified by positive feedbacks on the nutrient content of the ocean, with low oxygen
24	promoting further release of phosphorus from ocean sediments, leading to a
25	potentially self-sustaining condition of deoxygenation. We use a simple model for

phosphorus in the ocean to explore this feedback, and to evaluate the potential for humans to bring on global-scale anoxia by enhancing P supply to the oceans. While this is not an immediate global change concern, it is a future possibility on millennial and longer time scales, when considering both phosphate rock mining and increased chemical weathering due to climate change. Ocean de-oxygenation, once begun, may be self-sustaining and eventually could result in long-lasting and unpleasant consequences for the Earth's biosphere. Introduction The oxygen content of the ocean today is finely balanced. In the oxygen minimum

Fine oxygen content of the occan today is intery balanced. In the oxygen minimum
zones (OMZs), to be found in the pycnocline of every ocean basin, O₂ is depleted by
respiring organisms feeding on sinking biological material originating from
photosynthesis at the surface. In a few regions such as the Eastern Pacific and the
Northern Indian Ocean, which are far from deep water formation regions and where
surface productivity is high, the depletion is sufficient to completely or almost
completely de-oxygenate the water [5]. Over most of the ocean, the depletion is

Both models [6-9] and simple calculations (see below) suggest that a modest (e.g. $\sim 2x$) increase in the new production of the global ocean, or decrease by a similar factor in atmospheric oxygen, would be sufficient to drive much larger volumes of water towards anoxia. Once dissolved O₂ falls to a small percentage of surface values, denitrification -- bacterial reduction of nitrate -- begins to occur, as is seen today in a number of OMZs such as that of the Arabian Sea [10]. When the small reservoir of

nitrate is exhausted, microbial reduction of sulphate may begin and the waters become euxinic, with production of hydrogen sulphide. Though there are no regions of the open ocean today that exhibit permanently euxinic conditions, they are found in the Black Sea below 100m, and in restricted basins such as some fjords, where most of the sulphate reduction actually occurs in underlying sediments rather than the water column. There is good evidence for much more widespread euxinic conditions at intervals in the past [11].

As first pointed out by Alfred Redfield [12], a simple calculation implies a close balance between nutrients and oxygen in the oceans. Table I summarizes Redfield's argument, updated to use more recent values of stoichiometric ratios. We start from the average deep ocean concentration of phosphate (which we take to be the ultimate limiting nutrient [13]) in the global ocean, of 2.2 μ mol kg⁻¹ [14]. P is supplied to the surface ocean by the upwelling of deeper water. By mass conservation, an equivalent volume of water must be subducted from the surface mixed layer into the interior, carrying oxygen dissolved from the atmosphere, such that the supply of O_2 to the interior ocean is set by the solubility of oxygen and the atmospheric concentration [5]. Redfield assumed that all the nutrients at the surface are used in photosynthesis to fix organic carbon, and this then sinks into the deep sea and is respired and remineralized, consuming the dissolved oxygen. He used the known concentrations of PO₄ in deep water and the stoichiometric ratios which now bear his name, to calculate the oxygen demand. We use the "best guess" value given by Anderson [15] of $-O_2/P = 150$. The computed oxygen demand and the oxygen supply are almost equal to one another, suggesting that essentially all the oxygen carried into the interior of the ocean would be used in respiration.

76	
/0	

If the assumptions of this calculation were correct, it would imply that the entire deep ocean today should be hypoxic, but it is not. Oxygen demand is set not only by the concentration of the limiting nutrient phosphate in the deep ocean, but also by the efficiency with which the nutrient is used by the biota when the water is upwelled to the surface. The Redfield calculation of Table I assumes that this efficiency is 100%, but globally averaged, it is now believed that only 30-40% of the phosphate in the deep ocean has arrived there via the biological pump: the remainder is "preformed", meaning that it was present in the water, unused by the biota, when it subducted from the surface [16]. Thus the calculation over-estimates oxygen demand by a factor of two or three, and most of the deep sea is well oxygenated, with hypoxia restricted to regions far from deep water formation sites, and underlying zones of high productivity. Nevertheless, models and simple calculations are in agreement that the ocean biogeochemical system responds such that small changes in oxygenation or net primary production substantially affect the volume of hynoxic water, and the area of sediments overlain by hypoxic waters. In this sense, the ocean could be described as being on the "edge of anoxia" [17]. Is there a deeper reason why the ocean globally, should behave in this way, or is this just chance?

We suspect it is not chance, but is ultimately dictated by the network of feedbacks
which link the phosphorus cycle with the redox state of the ocean and atmosphere.
These feedbacks are important for the regulation of atmospheric oxygen concentration
at levels not too far from the present day, concentrations that have been maintained
for the past several hundred million years [2, 17, 18]. Figure 1 illustrates in symboland-arrow form a number of possible feedbacks that link atmospheric and ocean

1
2
2
3
4
5
6
7
8
a
10
10
11
12
13
14
15
16
17
18
19
20
∠∪ 24
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
25
35
36
37
38
39
40
41
42
- <u>-</u> - ∕2
40
44
45
46
47
48
49
50
51
50
5Z
53
54
55
56
57
58
59
60
υo

101	oxygen concentrations and ocean nutrients. On geological time scales, the source of
102	bio-available phosphorus to the oceans is the weathering of continental rocks, with the
103	products delivered via rivers. This weathering is strongly accelerated by the terrestrial
104	biota, with land plants, animals, fungi and the soil microflora all playing important
105	roles [19]. Trees and forests are particularly important, since vascular plants with
106	extensive root systems promote weathering of rock, soil formation and bio-
107	availability of phosphorus, though even the earliest land plants are thought to have
108	accelerated P weathering [20-23]. Maintaining relatively stable concentrations over
109	million-year timescales requires the source of phosphorus from continental
110	weathering to balance the sink flux out of the oceans, which is burial in marine
111	sediments. Phosphorus is transported to the sediments alongside organic carbon [24],
112	and this burial of organic carbon is the ultimate source of free oxygen in the
113	atmosphere [2, 25]. The rise of land plants therefore forced up atmospheric oxygen by
114	accelerating carbon burial at the same time as it increased phosphorus weathering.
115	Land plants are however, limited by atmospheric O_2 concentrations: in particular, if
116	O ₂ rises too high, there is an increased prevalence of wildfire, which then reduces tree
117	and forest cover, and therefore the extent to which land plants accelerate P
118	weathering. Models of this network of feedbacks [2] suggest that, at steady state,
119	oxygen concentrations are controlled in a "fire window" similar to present levels,
120	while marine phosphate concentrations adjust so that the oceans are not far from
121	Redfield stoichiometric ratio with respect to oxygen.
122	
123	Though the original Redfield calculation overstates the closeness of the balance
124	between biological oxygen demand and O ₂ supply, the size and intensity of the major
125	de-oxygenated zones are still sensitive to quite small changes in ocean physics or

2
2
3
4
5
č
6
7
8
0
9
10
11
12
12
13
14
15
10
10
17
18
10
19
20
21
22
22
23
24
25
20
20
27
28
20
29
30
31
22
32
33
34
35
00
36
37
38
200
39
40
41
12
40
43
44
45
16
40
47
48
40
-3
50
51
52
52
55
54
55
56
50
5/
58
59
60
00

126	geochemistry. Thus many models suggest that if the concentration of phosphate in the
127	deep sea were to increase significantly, (or equivalently, if changes in ocean
128	circulation were to increase the efficiency of the existing biological utilization of
129	PO ₄), a substantially greater volume of ocean water would be depleted in oxygen [6-9,
130	26]. This sensitivity of the low oxygen regions to relatively small changes in
131	circulation or oxygen supply, may in part help to explain observed changes occurring
132	today in the OMZs, under the influence of ongoing climate change [27]. It may also
133	help to explain the frequent occurrence in the geological record of major "oceanic
134	anoxic events" (OAEs) [4], to which we now turn.
135	
136	Ocean Anoxic Events
137	While the deep sea today is well-oxygenated, there is evidence for numerous OAEs in
138	the past [4], especially in the Mesozoic Era. OAEs, first recognized in the 1970s [28],
139	are identified by discrete layers of black shales having high organic carbon content,
140	with co-eval deposits often widely separated in space, indicating global as well as
141	local causes. They are often accompanied by excursions in $\delta^{13}C$ (both positive and
142	negative in sign) that indicate major upheaval in the global carbon cycle, with the
143	ocean anoxia implied being over substantial basins, but not global in extent [4]. Some,
144	but by no means all, of these events accompany well-known environmental crisis
145	points and mass extinctions, for example the Permian-Triassic boundary [29]. OAEs
146	typically last for periods $\sim 10^5 - 10^6$ years.
147	
148	OAEs seem to occur exclusively during past warm "Greenhouse" periods of Earth's
149	climate, and the expansion of anoxia has been considered one of the defining features
150	of extreme "Hothouse" episodes occurring within these warm greenhouse periods [30,

2
3
4
5
6
0
1
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
22
32
33
34
35
36
37
20
30
39
40
41
42
43
44
15
40
46
47
48
49
50
51
50
52
53
54
55
56
57
58
50
59
60

151	31]. Several factors induced by warm climates might contribute to the spread of
152	anoxia. Oxygen solubility decreases with increasing temperature[32], being about
153	30% less at 20°C than at 2°C for example, so that less O_2 will be dissolved in warmer
154	ocean water[33]. Furthermore, warm climates, at least those induced by increased
155	CO ₂ concentrations in the atmosphere such as during the Cretaceous, have smaller
156	equator-to-pole differences in temperature, with the Jurassic and Cretaceous Earth in
157	particular being free of ice caps. To the extent that density differences between
158	warmer and colder waters enhance the meridional overturning circulation, we might
159	expect that such climates would have less vigorous deep water formation, and oceans
160	therefore less well-ventilated, than cold periods [33]. (However, meridional density
161	differences are only one determinant of the overturning circulation [34].)
162	
163	A more compelling reason why OAEs may be associated with warm periods, and
164	especially hothouse episodes within them, is that a global warming event, especially if
165	abruptly triggered, is expected to increase the rate of weathering of continental rocks
166	- both through increased humidity and runoff, and the direct effect of temperature on
167	reaction kinetics. Increasing the supply of nutrients to the ocean thereby increases
168	global marine productivity and oxygen demand in subsurface water. An increase in
169	nutrient supply leading to eutrophication of the oceans is indicated by model studies
170	to be the most likely cause for past OAEs [6, 8, 26, 35] and is also indicated by
171	interpretation of geological evidence [11, 36]. It is more powerful in promoting low
172	oxygen than the direct effects of temperature on solubility or circulation, since the
173	effect of increased temperatures on solubility of oxygen is relatively modest, while
174	and affect of reduction in ventilation is to decrease productivity since it implies a
	one effect of reduction in ventilation is to decrease productivity since it implies a

3		
⊿		
-		
ວ		
6		
7		
8		
9		
1	0	
1	1	
1	ว	
1	2	
1	J ⊿	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
<u>~</u> っ	2	
~	∠ م	
2	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
2	ñ	
ວ ວ	1	
ა ი	1	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
ž	א	
2	a	
ں ۸	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
4	6	
4	7	
۵	א	
т Л	a	
+ E	3	
Э г	4	
5	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
ᇊ	'n	
5 F	0	
С	Э	

1 2

> 175 reduction in overturning, and hence of the upwelling of nutrient-rich water to the 176 surface.

177

178	The massive volcanic and magmatic events that emplace Large Igneous Provinces
179	(LIPs) have now been implicated in the genesis of several OAEs [30, 31, 37, 38].

- 180 LIPs are expected to increase the supply of nutrients to the oceans, not only because
- 181 they might trigger a global warming episode as a result of CO_2 and other greenhouse
- 182 gases released to the atmosphere, but also because the large volumes of rapidly

183 weathering basalt rocks emplaced by the eruption would be an extra source of

- 184 phosphorus and potentially also trace element nutrients.
- 185
- 186 Phosphorus cycling and ocean anoxia

187 As discussed above, we have cause to believe that there is a negative feedback 188

involving atmospheric oxygen and the long-term source of phosphorus to the ocean,

189 which ties these variables together and regulates them over multi-million year time

190 scales. Figure 1 also highlights a positive feedback between ocean anoxia and oceanic

- 191 P concentrations, that may play a role in promoting OAEs on somewhat shorter
- 192 timescales. The sink for marine phosphorus is incorporation in marine sediments,
- 193 transported there mostly in organically-derived detritus, though much of it is

194 subsequently transformed to authigenic minerals [39, 40]. It is well established that

195 sediments in contact with oxygen-depleted water normally have lower concentrations

196 of reactive P relative to organic carbon, with much of the P being regenerated to the

- 197 water column under anoxic conditions [41-43]. The P thus released back into the
- 198 water can act to further boost marine productivity, leading to increased eutrophication
- 199 and more anoxia. This mechanism is well established to occur in the largest modern

2
3
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
20
20
27
28
29
30
31
20
32
33
34
35
36
27
37
38
39
40
41
42
12
40
44
45
46
47
48
10
49
50
51
52
53
54
55
55
30
57
58
59
60

211

215

200	coastal hypoxic zone, the Baltic Sea, where the variation in phosphate content of the
201	low oxygen water indicates that most of it is regenerated from low-oxygen sediments
202	rather than input from the land [44]. It is also believed to be significant in the second
203	largest such zone, in the Gulf of Mexico [45]. It would be expected that this
204	mechanism would also be important for the global ocean in generating and sustaining
205	past OAEs, and models suggest this is the case [6, 8, 26, 35].
206	
207	The time scale for onset of eutrophication-driven global anoxia will be set by the
208	residence time of bio-available P in the global ocean. Even for the modern ocean there
209	is uncertainty about this number, mirroring the complexity of the phosphorus cycle,

but it probably lies in the range $15-35 \times 10^4$ years [24, 46]. Major changes in the total

thousands of years, so we may conclude that a global-scale nutrient-induced OAE is

ocean concentration of P are therefore unlikely to occur on time scales shorter than

phosphorus cycle on these longer time scales. Specifically, we can ask (1) how fast

213 not an immediate global change concern. It is nevertheless of interest to explore in a

semi-quantitative way the consequences for marine oxygen of our changing the

216 might oxygen concentrations decrease as a result of human –caused acceleration of

217 the P cycle, (2) what role might the positive feedback on P concentrations play and (3)

218 whether known phosphatic rock reserves sufficient that, if all were fully utilized,

219 major ocean de-oxygenation would occur? As an aid to this we introduce a simple

220 model which captures some aspects of the positive feedback on ocean anoxia in a

semi-quantitative manner. Our model is not spatially resolved, unlike those of

222 Palastanga et al. [7], or Niemeyer et al. [47] both of whom have recently published

studies using 3-D and intermediate complexity models of the ocean biogeochemistry,

224 focusing on the long-term implications of anthropogenic change on the P cycle.

225	However, P recycling is likely to be very non-linear, dependent in particular on the
226	degree to which low-oxygen waters encroach onto the continental shelves and slopes
227	where the organic and P-rich sediments are laid down. To be accurately represented,
228	this requires high spatial resolution, but to date the spatial resolution of the models
229	employed is quite coarse. Our model represents this non-linearity by an analytical
230	function (described below), which, while obviously an oversimplifcation, is at least
231	transparent in its operation and readily manipulated.
232	
233	Model description:
234	The model we describe here is inspired by earlier published studies [26, 48, 49]. The
235	master variable is the ocean P reservoir, the rate of change of which is given by:
236	
237	$dP/dt = F_{pw} - F_{sed}$
238	
239	where F_{pw} is input of phosphorus from weathering and F_{sed} is the flux that is lost to
240	sediments. The sedimentation term is:
241	
242	$F_{sed} = F_{OrgP} + F_{FeP} + F_{CaP}$
243	
244	where the three terms are the forms of P removal to sediments that are commonly
245	modelled: F_{OrgP} is burial associated with organic matter, F_{FeP} is burial adsorbed to
246	iron oxides, and F_{CaP} is burial associated with authigenic carbonate minerals. For (pre-
247	industrial) present day fluxes (in GmolP yr ⁻¹) we follow Slomp and Van Cappellen

- 248 [49] with $F_{pw} = 92$, $F_{OrgP} = 23$, $F_{FeP} = k_{FeP} = 23$, $F_{CaP} = k_{CaP} = 46$. For a present
- reservoir of $P_0 = 3.1 \times 10^{15}$ mol this gives an oceanic residence time of P of ~34 kyr.

250	We vary the input of phosphorus to the ocean with a weathering control parameter,
251	W:
252	
253	$F_{pw} = 92*W \text{ Gmol P yr}^{-1}$
254	
255	So that $W = 1$ corresponds to the Slomp and Van Cappellen steady state. The supply
256	of phosphorus and organic carbon to the sediments in sinking organic matter is
257	assumed proportional to the P reservoir size (i.e. [PO ₄]), which governs export
258	production (assuming fixed circulation). This phosphorus input to sediments can then
259	be buried in its original form (Org-P), or subject to diagenesis, following which much
260	of it can be incorporated into the sediment as authigenic carbonate minerals (Ca-P)
261	and some by adsorption to iron oxides (Fe-P), or else it may be released back to the
262	water column.
263	
264	Organic phosphorus burial is sensitive to the fraction of the seafloor overlain by
265	anoxic waters, f _{anoxic} , given very different (C/P) _{organic} burial ratios under anoxic
266	(CP _{anoxic}) and oxic (CP _{oxic}) bottom waters:
267	
268	$F_{\text{OrgP}} = k_{\text{OrgC}} * (P/P_0) * ((f_{\text{anoxic}}/CP_{\text{anoxic}}) + ((1 - f_{\text{anoxic}})/CP_{\text{oxic}}))$
269	
270	Here we take CP _{anoxic} =4000 and CP _{oxic} =250 following earlier work [50]. Given a very
271	small f_{anoxic} at present (see below), the overall (C/P) _{organic} burial ratio is ~250 and an
272	organic carbon burial flux of $k_{OrgC} = 5.75$ TmolC yr ⁻¹ corresponds to $F_{OrgP} = 23$
273	GmolP yr ⁻¹ .
274	

3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
20 24
21
22
23
24
25
26
27
20
28
29
30
31
32
33
3/
25
30
30
37
38
39
40
41
42 1
42 40
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
50
50
59
60

275 Phosphorus is desorbed from the surface of iron oxides under anoxic bottom waters

276 hence iron-sorbed phosphorus burial scales with the oxic fraction of seafloor:

277

278 $F_{FeP} = k_{FeP} * (P/P_0) * (1 - f_{anoxic})$

279

280 Calcium-bound phosphorus burial is assumed to simply scale with the P input to

281 sediments from sinking organic matter, although other work considers a redox

282 sensitivity of this flux (Slomp and Van Cappellen 2007):

283

284 $F_{CaP} = k_{CaP} * (P/P_0)$

285

286 The fraction of seafloor overlain by anoxic waters, f_{anoxic} , is assumed to follow a

287 logistic functional form dependent on the balance between normalised oxygen

288 demand $k_U^*(P/P_0)$ and oxygen supply (O_2/O_{20}) :

289

290 $f_{anoxic} = 1/(1 + e^{-kanox*(ku*(P/P0)-(O2/O20))})$

291

292 Here k_U represents the (in)efficiency of nutrient utilisation in upwelling regions. We 293 choose $k_{\rm U} = 0.5$ based on the estimates of pre-formed nutrient efficiency [4] and also 294 agreement across a range of models that a transition from an oxic to an anoxic deep 295 ocean occurs at $O_2/O_{20} \sim 0.5$ for present nutrient levels, or at P/P₀ ~2 for present O₂ 296 levels (Lenton and Daines 2017, [51-53]. $k_{anox} = 12$ is chosen based on observations 297 that $\sim 0.2-0.3\%$ of the seafloor is overlain by anoxic bottom waters at present [54]), 298 and agreement among models that the transition from oxic to anoxic conditions is 299 abrupt, occurring typically as O₂/O₂₀ drops from ~0.6 to ~0.4 (Lenton and Daines

300	2017,[52, 53]). Here we treat atmospheric O_2 as a constant i.e. $O_2/O_{20} = 1$, because it
301	varies on a much longer timescale than ocean P and we wish to focus on the
302	conditions required to trigger ocean anoxia.
303	
304	Such a simple model of the anoxic fraction fails to capture the effects of ocean
305	hypsometry and in particular the disproportionate contribution of shallow shelf seas to
306	phosphorus removal and recycling. When anoxia impinges on the bottom of the shelf
307	seas we may expect a stronger positive feedback from benthic phosphorus recycling,
308	as seen in the results of Ozaki and co-workers. Such a non-linearity is hard to capture
309	in coarse resolution global ocean models, including GENIE and HAMOCC, because
310	they barely resolve shelf seas and their particular dynamics.
311	
312	Results
313	The simple model outlined above encapsulates a strong sensitivity of ocean anoxia
314	(f_{anoxic}) to phosphorus input to the ocean, controlled by the weathering parameter W
315	where W=1 represents the pre-industrial input. Figure 2 shows the behaviour of the
316	steady state solutions as a function of P input. As P input and oxygen consumption
317	increases, expanding anoxia increases P regeneration from sediments until a tipping
318	point is reached, beyond which the ocean abruptly shifts to a largely anoxic state.
319	Decreasing the P input, the steady states eventually shift back to a largely oxic state,
320	but this occurs at a different and lower P input. These dynamics result in a region of
321	bi-stability, where either steady state is possible for a given value of W. For our
322	choice of parameters this bi-stable region is between about $W=1.75$ and $W=1.95$. In
323	this region therefore, a full OAE, once established, is sustained by the additional
324	positive feedback effect on the P cycle. According to the model, the present-day

325	increase of order 2 times in the P input to the ocean due to anthropogenic factors[55],
326	would eventually cause such a shift if it were to be kept up for long enough.
327	
328	In terms of the P content of the ocean, as W is increased and the tipping point is
329	reached, ocean P is roughly doubled. Either side of the region of bi-stability ocean P
330	responds approximately linearly to P input (W), but the constant of proportionality
331	increases from the oxic to the anoxic ocean solution because the (C/P) _{organic} burial
332	ratio switches from 250 to 4000 and the Fe-P burial flux is removed.
333	
334	Figure 3 shows transient runs starting from the preindustrial steady state, with
335	constant increased inputs of P: for W=2.5 the transition to a fully anoxic ocean is
336	established in a period of about 10^5 years. For a value of W=2, close to the tipping
337	point, the transition occurs only after a long -quasi-static intermediate period, while
338	for lower values it does not occur.
339	
340	We can use the model to give semi-quantitative answers to questions about
341	anthropogenic influence on global ocean deoxygenation via the phosphorus cycle:
342	1) Could the mining of phosphate ore materially influence global ocean anoxia?
343	The USGS estimates worldwide known reserves of phosphate rock, which
344	generally has a P content of order 20%, as 69 Pg [56], suggesting a content of
345	about $4.5 \ge 10^{14}$ mol P. This is about 15% of the present ocean inventory.
346	Were we to mine all this phosphorus and in due course it were to be washed to
347	the ocean, this is certainly enough to increase the prevalence of anoxia
348	worldwide, (there is however controversy over the USGS estimate of P

2	2.40	
3 4	349	reserves, with some arguing that it overstates the amount of known and proven
5 6	350	ores [57]).
7 8	351	However, worldwide resources (a broader classification than reserves,
9 10	352	covering known phosphorus-containing deposits that might be exploited in the
11 12	353	future) are estimated by the USGS at > 300 Pg rock, or perhaps 2 x 10^{15} mol
13 14 15	354	P. If humanity were desperate enough for phosphorus in the future, additional
15 16 17	355	resources may be discovered, while poorer quality source rock with lesser P
18 19	356	content might eventually be exploited. Such a quantity of P would, if it were
20 21	357	all to end in the ocean in a bioavailable form, have a very substantial effect on
22 23	358	global ocean anoxia – in our model, releasing $2 \ge 10^{15}$ mol P over 1000 years
24 25 26	359	causes the fraction of ocean sediment overlain by anoxic waters (f_{anoxic}) , to
20 27 28	360	increase more than 10- fold, from 0.25% to peak at 2.7% (Figure 4 a, b, "1 x
29 30	361	mining resource" curve). Releasing twice this quantity causes the anoxic
31 32	362	fraction to increase to $\sim 20\%$. These scenarios represent upper bounda on the
33 34	363	potential future delivery of phosphorus to the ocean. Projections by Filippelli
35 36 37	364	[58] suggest total inputs may eventually be an order of magnitude lower than
38 39	365	the mining input: Phosphorus undergoes complex processes in the
40 41	366	environment, and fertilizer phosphate may be retained for substantial periods
42 43	367	in soils, river and lake sediments. Our upper bound assumes that this
44 45 40	368	accumulated phosphorus will eventually be released to the ocean, such that a
40 47 48	369	steady state is reached wherein terrestrial inputs and outputs balance [59].A
49 50	370	more conservative scenario is also shown in figure 4 (dashed lines) in which
51 52	371	terrestrial P accumulation continues indefinitely and only 10% of the mining
53 54	372	resource enters the ocean, in which case the effect on anoxia is quite minor.,
55 56		
57 58		
59		

373	2) Is it feasible that humans might bring about a full scale ocean anoxic event?
374	From the above discussion, we can conclude that mining of currently known
375	phosphate rock could have a huge impact on ocean anoxia, but would fall
376	short of bringing on a full-scale OAE. However, just as past OAEs are thought
377	to have been caused by increased weathering rates due to global warming
378	events, human-caused warming might have a large additional impact on the
379	oceans by increasing rates of nutrients released by rock and soil weathering.
380	Anthropogenic warming from the spike of fossil fuel-released CO ₂ which we
381	are currently creating, will likely be appreciable for at least 10,000 years and
382	perhaps up to 50,000 years into the future, as a result of the slow timescales on
383	which CO_2 is ultimately removed from the ocean-atmosphere system [60].
384	These periods are sufficiently long that comparatively modest increases in
385	phosphate rock weathering due to the warming would have a substantial effect
386	on the ocean inventory.
387	Figure 4 c,d, show model results for an increase in P from weathering of soils and
388	rocks due to global warming by a factor of 2 lasting 50,000 years, and this
389	weathering source combined with the two mining scenarios. All these possible
390	futures predict orders of magnitude enhancement of the fraction of the global
391	ocean affected by anoxia. The most severe scenario tips the ocean into a full scale
392	OAE within 2000 years, from which it does not recover for nearly 100,000 years.
393	Our results appear broadly consistent with those of Palastanga et al [7] and other
394	models e.g. [6]. Palastanga et al, [7] do not show any model runs where whole-
395	ocean anoxia occurs, but they do not consider the large factor of increase in P
396	fluxes that our "mining" scenarios imply. Such a large increase might cause
397	anoxic waters to impinge on the sediments of shelf seas where most sedimentary P

Submitted to Phil. Trans. R. Soc. A - Issue

398	is contained, and could conceivably therefore trigger a non-linear switch to global
399	ocean anoxia as seen in our model and others [6].
400	
401	Conclusion
402	It is generally believed that, to the extent to which deoxygenation observed to be
403	occurring in the modern ocean is linked with anthropogenic global change, it is
404	probably due to the direct effects of warming in slowing the ventilation of deep waters
405	and decreasing the solubility of O ₂ in surface waters. The long-term effect of these
406	mechanisms has been modelled by Shaffer et al. [61] and found to be considerable.
407	However, for the case of the major ocean anoxic events in the past, which are often
408	associated with warming episodes, the most powerful causal mechanism does not
409	seem to have been these effects, but has been due to the global input of nutrient into
410	the oceans [6, 7, 47]. Our very simple model suggests that under unrestricted
411	mobilization of P, this could be important in the future as a result of human activity.
412	Both the deliberate mobilization of phosphorus for agriculture, and the incidental
413	effects of global warming and anthropogenic increases in erosion rates in accelerating
414	the natural weathering of phosphorus, could be important. Conceivably, if our
415	descendants are heedless of the consequences and generate major increases in the flux
416	of phosphorus to the oceans lasting for hundreds or thousands of years, large-scale
417	and long lasting global anoxia might result.
418	
419	We might assume that the scenarios modelled here are more extreme than will ever be
420	realized, even if our industrial civilization lasts thousands of years, because our
421	increasing understanding of the Earth System will enable us to foresee the
422	consequences: such sustained mobilization of P would be seen to be irresponsible and

http://mc.manuscriptcentral.com/issue-ptrsa

423	dangerous to the health of the whole Earth system, and action would be taken to
424	ensure it did not occur. Let us hope we, and our descendants, are wise enough to take
425	that course.
426	Data accessibility:
427	The code of the model described in the text and used to generate figures 2, 3, and 4 is
428	written in MATLAB, and be obtained from the authors.
429	Competing interests
430	The authors have no competing interests.
431	Authors Contributions
432	This paper was the result of intellectual contributions by all the authors. AJW wrote
433	the initial draft and all authors contributed to its revision, and to the model runs
434	described.
435	Funding:
436	AJW thanks the Royal Society for funding:
437	
438	References
439	
440	[1] Arvidson, R. S., Mackenzie, F. T. & Guidry, M. 2006 MAGic: A Phanerozoic
441	model for the geochemical cycling of major rock-forming components. Am J Sci 306,
442	135-190. (DOI:DOI 10.2475/ajs.306.3.135).
443	[2] Bergman, N. M., Lenton, T. M. & Watson, A. J. 2004 COPSE: A new model of
444	biogeochemical cycling over Phanerozoic time. Am J Sci 304, 397-437. (DOI:DOI

446	[3] Hansen, K. W. & Wallman, K. 2003 Cretaceous and Cenozoic evolution of
447	seawater composition, atmospheric O2 and CO2: a model perspective. Am J Sci 303,
448	94-108. (DOI:10.2475 /ajs.303.2.94.).
449	[4] Jenkyns, H. C. 2010 Geochemistry of oceanic anoxic events. Geochemistry,
450	Geophysics, Geosystems 11. (DOI:10.1029/2009gc002788).
451	[5] Sarmiento, J. L. & Gruber, N. 2006 Ocean Biogeochemical Cycles. Princeton, NJ,
452	Princeton University Press.
453	[6] Ozaki, K., Tajima, S. & Tajika, E. 2011 Conditions required for oceanic
454	anoxia/euxinia: Constraints from a one-dimensional ocean biogeochemical cycle
455	model. Earth and Planetary Science Letters 304, 270-279.
456	(DOI:10.1016/j.epsl.2011.02.011).
457	[7] Palastanga, V., Slomp, C. P. & Heinze, C. 2011 Long-term controls on ocean
458	phosphorus and oxygen in a global biogeochemical model. Global Biogeochem Cy
459	25. (DOI:Artn Gb3024
460	10.1029/2010gb003827).
461	[8] Tsandev, I. & Slomp, C. P. 2009 Modeling phosphorus cycling and carbon burial
462	during Cretaceous Oceanic Anoxic Events. Earth and Planetary Science Letters 286,
463	71-79. (DOI:10.1016/j.epsl.2009.06.016).
464	[9] Van Cappellen, P. & Ingall, E. D. 1996 Redox stabilization of the atmosphere and
465	oceans by phosphorus-limited marine productivity. Science 271, 493-496.
466	[10] Law, C. S. & Owens, N. J. P. 1990 Significant flux of atmospheric nitrous oxide
467	from the northwest Indian Ocean. Nature 346, 826-828.
468	[11] Meyer, K. M. & Kump, L. R. 2008 Oceanic euxinia in Earth history: Causes and
469	consequences. Annu Rev Earth Pl Sc 36, 251-288.
470	(DOI:10.1146/annurev.earth.36.031207.124256).

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
20
20 07
27
28
29
30
31
32
33
31
25
30
30
37
38
39
40
41
42
43
11
44 1E
40
46
47
48
49
50
51
52
52
53
04 55
55
56
57
58
59
60

- 471 [12] Redfield, A. C. 1958 The biological control of chemical factors in the
- 472 environment. Am. Sci. 46, 205-222.
- 473 [13] Holland, H. D. 1978 The chemistry of the atmosphere and oceans, John Wiley
- 474 and sons; 369 p.
- 475 [14] Anderson, L. A. & Sarmiento, J. L. 1995 Global ocean phosphate and oxygen
- 476 simulations. Global Biogeochem Cy 9, 621-636. (DOI:10.1029/95gb01902).
- 477 [15] Anderson, L. A. 1995 On the hydrogen and oxygen content of marine
- 478 phytoplankton. Deep-Sea Research Part I 42, 1675-1680. (DOI:10.1016/0967-
- 479 0637(95)00072-e).
- 480 [16] Ito, T. & Follows, M. J. 2005 Preformed phosphate, soft tissue pump and
- 481 atmospheric CO2. Journal of Marine Research 63, 813-839.
- 482 (DOI:10.1357/0022240054663231).
- 483 [17] Watson, A. J. 2016 Oceans on the edge of anoxia: Environmental crises can tip
- 484 the ocean into O2 depletion. Science 354, 1529-1530. (DOI:10.1126/science.aaj2321).
- 485 [18] Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. 2016 A modeling
- 486 case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic.
- 487 Geology. (DOI:10.1130/G38231.1).
- 488 [19] Lovelock, J. E. & Watson, A. J. 1982 The regulation of carbon dioxide and
- 489 climate: Gaia or geochemistry. Planetary and Space Science 30, 795-802.
- 490 (DOI:10.1016/0032-0633(82)90112-x).
- 491 [20] Berner, R. A. 2001 Modeling atmospheric O2 over Phanerozoic time. Geochim
- 492 Cosmochim Ac 65, 685-694. (DOI:10.1016/s0016-7037(00)00572-x).
- 493 [21] Lenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J. W., Ozaki, K., Saltzman,
- 494 M. R. & Porada, P. 2016 Earliest land plants created modern levels of atmospheric
- 495 oxygen. P Natl Acad Sci USA 113, 9704-9709. (DOI:10.1073/pnas.1604787113).

496	[22] Lenton, T. M. & Watson, A. J. 2004 Biotic enhancement of weathering,
497	atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys Res Lett 31.
498	(DOI:Artn L05202
499	10.1029/2003gl018802).
500	[23] Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. 2012 First plants
501	cooled the Ordovician. Nature Geosci 5, 86-89.
502	[24] Ruttenberg, K. C. 2003 The Global Phosphorus Cycle. Treatise on Geochemistry
503	8, 585-643.
504	[25] Berner, R. A. & Canfield, D. E. 1989 A new model for atmospheric oxygen over
505	Phanerozoic time. Am J Sci 289, 333-361.
506	[26] Handoh, I. C. & Lenton, T. M. 2003 Periodic mid-Cretaceous oceanic anoxic
507	events linked by oscillations of the phosphorus and oxygen biogeochemical cycles.
508	Global Biogeochem Cy 17. (DOI:Artn 1092
509	10.1029/2003gb002039).
510	[27] Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. 2008 Expanding
511	oxygen-minimum zones in the tropical oceans. Science 320, 655-658.
512	(DOI:10.1126/science.1153847).
513	[28] Schlanger, S. O. & Jenkyns, H. C. 1976 CRETACEOUS OCEANIC ANOXIC
514	EVENTS: CAUSES AND CONSEQUENCES. Geologie en Mijnbouw 55, 179-184.
515	[29] Wignall, P. B. & Twitchett, R. J. 1996 Oceanic anoxia and the end permian mass
516	extinction. Science 272, 1155-1158.
517	[30] Kidder, D. L. & Worsley, T. R. 2010 Phanerozoic Large Igneous Provinces
518	(LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass
519	extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 162-191.

- 520 [31] Kidder, D. L. & Worsley, T. R. 2012 A human-induced hothouse climate? GSA
- 521 Today 22, 4-11. (DOI:10.1130/G131A.1).
- 522 [32] Weiss, R. F. 1970 The solubility of nitrogen, oxygen and argon in water and
- 523 seawater. Deep-Sea Research and Oceanographic Abstracts 17, 721-735.
- 524 (DOI:10.1016/0011-7471(70)90037-9).
- 525 [33] Hotinski, R. M., Bice, K. L., Kump, L. R., Najjar, R. G. & Arthur, M. A. 2001
- 526 Ocean stagnation and end-Permian anoxia. Geology 29, 7-10.
- 527 [34] Munk, W. & Wunsch, C. 1998 Abyssal recipes II: Energetics of tidal and wind
- 528 mixing. Deep-Sea Research Part I: Oceanographic Research Papers 45, 1977-2010.
- 529 (DOI:10.1016/s0967-0637(98)00070-3).
- 530 [35] Ruvalcaba Baroni, I., Topper, R. P. M., M. Van Helmond, N. A. G., Brinkhuis,
- 531 H. & Slomp, C. P. 2014 Biogeochemistry of the North Atlantic during oceanic anoxic
- 532 event 2: Role of changes in ocean circulation and phosphorus input. Biogeosciences
- 533 11, 977-993. (DOI:10.5194/bg-11-977-2014).
- 534 [36] Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A. & Sinninghe Damsté, J. S.
- 535 2002 Enhanced productivity led to increased organic carbon burial in the euxinic
- 536 North Atlantic basin during the late Cenomanian oceanic anoxic event.
- 537 Paleoceanography 17, 3-1.
- 538 [37] Sell, B., Ovtcharova, M., Guex, J., Bartolini, A., Jourdan, F., Spangenberg, J. E.,
- 539 Vicente, J. C. & Schaltegger, U. 2014 Evaluating the temporal link between the Karoo
- 540 LIP and climatic-biologic events of the Toarcian Stage with high-precision U-Pb
- 541 geochronology. Earth and Planetary Science Letters 408, 48-56.
- 542 (DOI:10.1016/j.epsl.2014.10.008).

543	[38] Turgeon, S. C. & Creaser, R. A. 2008 Cretaceous oceanic anoxic event 2
544	triggered by a massive magmatic episode. Nature 454, 323-326.
545	(DOI:10.1038/nature07076).
546	[39] Ruttenberg, K. C. & Berner, R. A. 1993 Authigenic apatite formation and burial
547	in sediments from non-upwelling, continental margin environments. Geochim
548	Cosmochim Ac 57, 991-1007. (DOI:10.1016/0016-7037(93)90035-u).
549	[40] Anderson, L. D., Delaney, M. L. & Faul, K. L. 2001 Carbon to phosphorus ratios
550	in sediments: Implications for nutrient cycling. Global Biogeochem Cy 15, 65-79.
551	(DOI:10.1029/2000gb001270).
552	[41] Ingall, E. & Jahnke, R. 1994 Evidence for enhanced phosphorus regeneration
553	from marine sediments overlain by oxygen depleted waters. Geochim Cosmochim Ac
554	58, 2571-2575. (DOI:10.1016/0016-7037(94)90033-7).
555	[42] Ingall, E. & Jahnke, R. 1997 Influence of water-column anoxia on the elemental
556	fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology
557	139, 219-229. (DOI:10.1016/s0025-3227(96)00112-0).
558	[43] Ingall, E. D., Bustin, R. M. & Van Cappellen, P. 1993 Influence of water column
559	anoxia on the burial and preservation of carbon and phosphorus in marine shales.
560	Geochim Cosmochim Ac 57, 303-316. (DOI:10.1016/0016-7037(93)90433-w).
561	[44] Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P. & Wulff, F. 2002 Hypoxia
562	in the baltic sea and basin-scale changes in phosphorus biogeochemistry.
563	Environmental Science and Technology 36, 5315-5320. (DOI:10.1021/es025763w).
564	[45] Adhikari, P. L., White, J. R., Maiti, K. & Nguyen, N. 2015 Phosphorus
565	speciation and sedimentary phosphorus release from the Gulf of Mexico sediments:
566	Implication for hypoxia. Estuarine, Coastal and Shelf Science 164, 77-85.
567	(DOI:10.1016/j.ecss.2015.07.016).

	Submitted to Phil. Trans. R. Soc. A - Issue
568	[46] Filippelli, G. M. 2002 The global phosphorus cycle. In Reviews in Mineralogy
569	and Geochemistry (
570	[47] Niemeyer, D., Kemena, T. P., Meissner, K. J. & Oschlies, A. 2017 A model
571	study of warming-induced phosphorus-oxygen feedbacks in open-ocean oxygen
572	minimum zones on millennial timescales. Earth System Dynamics 8, 357-367.
573	(DOI:10.5194/esd-8-357-2017).
574	[48] Lenton, T. M. & Watson, A. J. 2000 Redfield revisited 2. What regulates the
575	oxygen content of the atmosphere? Global Biogeochem Cy 14, 249-268. (DOI:Doi
576	10.1029/1999gb900076).
577	[49] Slomp, C. P. & Van Cappellen, P. 2007 The global marine phosphorus cycle:
578	Sensitivity to oceanic circulation. Biogeosciences 4, 155-171.
579	[50] Van Cappellen, P. & Ingall, E. D. 1994 Benthic phosphorus regeneration, net
580	primary production, and ocean anoxia: A model of the coupled marine
581	biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677-692.
582	(DOI:10.1029/94pa01455).
583	[51] Canfield, D. E. 1998 A new model for Proterozoic ocean chemistry. Nature 396,
584	450-453. (DOI:10.1038/24839).
585	[52] Monteiro, F. M., Pancost, R. D., Ridgwell, A. & Donnadieu, Y. 2012 Nutrients
586	as the dominant control on the spread of anoxia and euxinia across the Cenomanian-
587	Turonian oceanic anoxic event (OAE2): Model-data comparison. Paleoceanography
588	27. (DOI:10.1029/2012pa002351).
589	[53] Ozaki, K. & Tajika, E. 2013 Biogeochemical effects of atmospheric oxygen
590	concentration, phosphorus weathering, and sea-level stand on oceanic redox
591	chemistry: Implications for greenhouse climates. Earth and Planetary Science Letters
592	373, 129-139. (DOI:10.1016/j.epsl.2013.04.029).
	http://mc.manuscriptcentral.com/issue-ptrsa

593	[54] Helly, J. J. & Levin, L. A. 2004 Global distribution of naturally occurring marine
594	hypoxia on continental margins. Deep-Sea Research Part I: Oceanographic Research
595	Papers 51, 1159-1168. (DOI:10.1016/j.dsr.2004.03.009).
596	[55] Mackenzie, F. T., Ver, L. M. & Lerman, A. 2002 Century-scale nitrogen and
597	phosphorus controls of the carbon cycle. Chemical Geology 190, 13-32.
598	(DOI:10.1016/s0009-2541(02)00108-0).
599	[56] Survey, U. S. G. 2016 U.S. Geological Survey mineral Commodity Summaries.
600	(pp. 124-125.
601	[57] Edixhoven, J. D., Gupta, J. & Savenije, H. H. G. 2014 Recent revisions of
602	phosphate rock reserves and resources: A critique. Earth System Dynamics 5, 491-
603	507. (DOI:10.5194/esd-5-491-2014).
604	[58] Filippelli, G. M. 2008 The global phosphorus cycle: Past, present, and future.
605	Elements 4, 89-95. (DOI:10.2113/gselements.4.2.89).
606	[59] Powers, S. M., Bruulsema, T. W., Burt, T. P., Chan, N. I., Elser, J. J., Haygarth,
607	P. M., Howden, N. J. K., Jarvie, H. P., Lyu, Y., Peterson, H. M., et al. 2016 Long-
608	term accumulation and transport of anthropogenic phosphorus in three river basins.
609	Nat Geosci 9, 353-356. (DOI:10.1038/ngeo2693).
610	[60] Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U.,
611	Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A., et al. 2009
612	Atmospheric lifetime of fossil fuel carbon dioxide. In Annu Rev Earth Pl Sc (pp. 117-
613	134.
614	[61] Shaffer, G., Olsen, S. M. & Pedersen, J. O. P. 2009 Long-term ocean oxygen
615	depletion in response to carbon dioxide emissions from fossil fuels. Nat Geosci 2,
616	105-109. (DOI:10.1038/ngeo420).
617	

- 619 Table I: representative calculation of the approximate oxygen demand per litre of
- 620 upwelled water, and oxygen supply per litre of subducted water. Concentratiosn are in
- μ mol kg⁻¹.

PO ₄ concentration	carbon	O ₂ demand	Saturated [O ₂] in
in deep water	fixed (=	(150 x	equilibrium with atmosphere
	106 x PO ₄)	PO ₄ [15])	at 5°C and S=35
2.2	106 x 2.2	2.2 * 150= 330	320
	=233		

623 Figure Legends

624	Figure 1: Symbol and arrow representation of some Earth system interactions linking
625	atmospheric oxygen and ocean nutrients. Direct relations are shown by solid lines
626	with a plus sign, and inverse relations shown by dashed lines and a minus sign – so
627	for example an increase in C and P burial causes an increase in atmospheric O ₂ , but an
628	increase in atmospheric O_2 causes a decrease in land vegetation. Where arrows
629	describe a closed circuit, this indicates a feedback loop, which is negative, i.e.
630	stabilizing, where there is one dashed arrow in the loop, and positive if there are none.
631	Thick grey lines highlight two feedback loops. Upper loop: a negative feedback
632	stabilizes atmospheric O_2 and ocean P concentrations via the influence of the
633	atmosphere on land vegetation (principally by wildfire), land vegetation influence on
634	marine P via continental weathering, and marine P influence on atmospheric O2 by
635	stimulating marine production and carbon burial. Lower loop: positive feedback that
636	may be important in sustaining OAEs. ocean anoxia releases P from sediments thus
637	increasing P concentrations, enhancing marine production which further increases
638	anoxia.
639	
640	Figure 2: Steady-state solutions for oceanic P inventory and "anoxic fraction"
641	(fraction of ocean sediment overlain by anoxic water), for the simple model described
642	in the text, as a function of the flux of P to the ocean. Arrows show the directions in
643	which two stable solutions are found.
644	
645	Figure 3: Evolution of modelled oceanic P inventory and anoxic fraction with time,
646	for constant inputs of P to the oceans of 1.5, 2 and 2.5 x the pre-industrial steady
647	state.

648	
649	Figure 4: Evolution of modelled P inventory (a, c) and anoxic fraction (b, d) for future
650	scenarios of enhanced P release into the oceans. The model runs are,
651	a,b: release at a uniform rate over 1 kyr of of multiples of the minimum phosphate-
652	bearing rock resource (the known amount that might be extracted in the future , $\sim 2 x$
653	10^{15} mol P) as estimated by USGS[56]. Blue: 1 x the resource, brown: 2x the
654	resource; solid lines show 100% delivered to the ocean, dashed lines show 10%
655	delivered to the ocean.
656	c, d; the four scenarios in a,b are combined with increased flux of P from 2 x
657	enhanced weathering of continental rocks extending over 5 x 10^4 years.
658	

