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ABSTRACT  

Aims: Deoxyribose-1-phosphate (dRP) is a pro-angiogenic paracrine stimulus released by cancer 

cells, platelets and macrophages and acting on endothelial cells. The objective of this study was 

to clarify how dRP stimulates angiogenic responses in human endothelial cells.  

Results: Live cell imaging, electron paramagnetic resonance (EPR), pull-down of dRP-

interacting proteins followed by immunoblotting, gene silencing of different NOXs and their 

regulatory co-subunits by siRNA transfection, and experiments with inhibitors of the sugar 

transporter GLUT1 were utilized to demonstrate that dRP acts intracellularly by directly 

activating the endothelial NADPH oxidase 2 (NOX2) complex, but not NOX4. Increased 

reactive oxygen species (ROS) generation in response to NOX2 activity leads to redox-

dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, 

induces VEGF receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, 

gene silencing by siRNA and antibody-based receptor inhibition, we demonstrate that the 

activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The 

upregulation of VEGFR2 and the NOX2-dependent stimulation of angiogenesis by dRP was 

confirmed in excisional wound and matrigel plug vascularisation assays in vivo using NOX2-/- 

mice. 

Innovation: For the first time, we demonstrate that dRP acts intracellularly and stimulates 

superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex. 
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Conclusions: This study describes a novel molecular mechanism underlying the pro-angiogenic 

activity of dRP, which involves the sequential activation of NOX2 and NF-κB and the 

upregulation of VEGFR2. 

 

 

INTRODUCTION 

Angiogenesis is critical for tissue revascularization and repair after injury. ROS have been shown 

to drive tissue repair by triggering angiogenesis (32). The most important of such factors is 

VEGF, which is upregulated as a consequence of hypoxia-induced factor-1 (HIF-1) activation 

(1,28). The increase in ROS triggered by hypoxia and other tissue injuries is associated with 

oxidation of biological molecules such as lipids and proteins, which has profound effects on 

cellular physiology (23). Amongst the sources of ROS associated with the stimulation of 

angiogenesis, NADPH oxidases (or NOXs) have been studied extensively (65,69). The precise 

links between NOX activation and angiogenesis remain unclear, but several molecular 

mechanisms have been implicated, including activation of nitric oxide synthase (13) and VEGF 

upregulation (32,69). Endothelial cells express NOX1, NOX2, NOX4 and NOX5 (18). Amongst 

NOXs, NOX4 has been shown to lead to stabilization of HIF-1, which in turn stimulates 

increased transcription of VEGF and drives angiogenesis (69). Other factors, including insulin 

and TGF-β1, also stimulate angiogenesis in a NOX4-dpendent manner (41,46). Similarly to 

NOX4, NOX2 is abundantly expressed in endothelial cells and mediates angiogenesis in 

response to lipopolysaccharide (LPS) and VEGF (19,40). In keeping with their roles as positive 

regulators of angiogenesis both NOX2 and NOX4 can drive endothelial cell migration and 

capillary-like tube formation in hyperoxic conditions (45). In addition to their effects on the 
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HIF/VEGF signaling axis, NOXs have been shown to stimulate angiogenesis through diverse 

signaling pathways. For example, activation of NF-κB downstream of NOX2 (39) or nuclear 

factor erythroid 2–related factor 2 (Nrf-2) downstream of NOX4 (57) have been shown to be 

involved in stimulating the angiogenic responses of endothelial cells.    

Deoxyribose-1-phosphate (dRP) has previously been described as an endogenous molecule 

capable of stimulating angiogenesis in a ROS-dependent manner both in vitro and in vivo 

(7,24,42,49,50,58). The generation of dRP in eukaryotic cells is catalyzed by phosphorylases 

with specificity for different nucleosides. Three main enzymes have been characterized: 

thymidine phosphorylase (TP), uridine phosphorylased (UP)_and purine nucleoside 

phosphorylase (PNP) (48). Nucleoside phosphoryalses play a key role in nucleoside and pentose 

metabolism by degrading nucleosides into free nitrogen base and dRP, with dRP converted to 

deoxyribose-5-phosphate by phosphopentomutase (64). Several studies have suggested that 

nucleoside phosphorylases stimulate cancer angiogenesis in solid tumors and participate in the 

progression of the disease (27,31,62). Although the regulation of nucleoside phosphorylases is 

largely unknown and their consistutive activity has been described (5), we previously presented 

data on the release of dRP by human platelets in response to cellular stimulation (67). In this 

study, we have evaluated the pro-angiogenic activity of dRP on human umbilical vein 

endothelial cells (HUVECs) in vitro using a variety of molecular techniques and have identified 

a NOX2-NF-κB signaling axis that is engaged by dRP, resulting in the upregulation of VEGFR2 

expression and stimulation of angiogenic responses. This study is the most comprehensive and 

exhaustive characterization of dRP as a pro-angiogenic stimulus to date. Understanding the 

molecular mechanisms underlying the actions of dRP as a pro-angiogenic stimulus will have 

important applications in cancer, vascular and regenerative medicine.  
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RESULTS 

dRP stimulates increased levels of ROS generation in a NADPH oxidase-dependent manner 

We have previously described the release of dRP by human platelets (67). Using a quantitative 

LC-MS method, we quantified dRP released by human platelets and mouse macrophages. In 

platelet suspensions at physiological density (i.e. 3x108/ml) and in culture medium from 

confluent murine macrophages, dRP reached concentrations above 10µM (Fig. 1A). The ability 

of dRP to induce the formation of capillary-like structures by endothelial cells in vitro (i.e. 

endothelial ‘tubes’) was confirmed for concentrations as low as 2µM using low serum and 

growth factor-reduced Matrigel® (Fig. 1B and Fig. S1A), while other pentoses were not effective 

(Fig. S2). We also confirmed that dRP concentrations as low as 8µM stimulate  a significant 

increase in endothelial cell ROS formation (while 2µM dRP produced a trend towards increased 

ROS formation without reaching statistical significance), as measured using dihydroethidium 

(DHE) after 1 hour of treatment (Fig. 1C). Complete time courses of ROS generation  at low 

micromolar dRP concentrations are shown in supplementary Fig. S1B. The dRP-dependent 

increase in ROS generation rates was abolished in the presence of 1mM N-acetyl-L-cysteine 

(NAC), 10µM MnTBAP or 10µM Tempol (Fig. 1D). The link between oxidative stress and 

angiogenic activity of HUVECs and the role of ROS generation in the angiogenic response 

induced by dRP were then tested using the ROS scavenger NAC (71) and the SOD mimetics 

Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) (21) and 4-hydroxy-2,2,6,6-

Page 5 of 82



                                                                          6                                                             Vara et al. 
 

tetramethylpiperidin-1-oxyl (Tempol) (33). All three significantly impaired the tubulogenic 

activity of dRP, but not VEGF-A (Fig. 1E). Other angiogenic responses induced by dRP (i.e. 

endothelial cell proliferation and monolayer scratch healing) were also inhibited by NAC, 

MnTBAP and Tempol (Fig. S3). Interestingly, the stimulatory effect of VEGF on endothelial 

tube formation (Fig. S4) and monolayer scratch healing (Fig. S5) was abolished by NOX 

inhibitors (e.g. pan-NOX inhibitor VAS2870 and the NOX2-specific inhibitor peptide Nox2ds-

tat) but not ROS scavengers (e.g. NAC) and SOD mimetics (e.g. MnTBAP).  

 

Next, we tested the effect of dRP on redox homeostasis in HUVECs by electron paramagnetic 

resonance (EPR) using the superoxide-specific spin probe 3-methoxycarbonyl-2,2,5,5-

tetramethylpyrrolidine (CMH) (Fig. 2). In these experiments we detected a significant increase in 

superoxide anion generation rate in response to dRP from 9.7 ± 2.9 to 41.3 ± 4.6 pmol per 

minute per mg of cell protein (mean ± SEM; shown in Fig. 2A with calibration curve shown in 

Fig. 2C). Superoxide anion generation detected by EPR was inhibited by the SOD mimetic 

MnTBAP and by the pan-NOX inhibitor VAS2870 (Fig. 2B). The involvement of NOXs was 

also confirmed by co-immunoprecipitation of p47phox with NOX2 in the presence of dRP, but 

not in its absence (Fig. 2D).   

dRP directly stimulates NOX2 

EPR analysis remains laborious and time consuming, which limits its application for large 

numbers of samples. Therefore, we also performed ROS generation analysis using live cell 

imaging with DHE, which confirmed dRP-induced ROS production in HUVECs. We then 

explored the source(s) of ROS generated in response to dRP. Treatment with the pan-NOX 

inhibitor VAS2870 (1µM) suppressed the dRP-induced increase in ROS generation (Fig. 3A).  
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The specific inhibitory peptide Nox2ds-tat (54) was used to show that NOX2 is responsible for 

the stimulation of ROS generation by dRP. Treatment with Nox2ds-tat completely abolished the 

dRP-dependent increase in ROS generation in endothelial cells (Fig. 3B). Genetic silencing of 

NOX2 (i.e.gp91phox subunit) also totally inhibited the dRP-dependent increase in ROS 

generation rate (Fig. 3C) and endothelial tube formation (Fig. 3D). In contrast, genetic silencing 

of NOX4 did not significantly impair dRP-dependent ROS generation (Fig. 3E) or endothelial 

tube formation (Fig. 3F).  

In order to test whether dRP acts intracellularly, we treated HUVECs for 30 minutes with  

200µM dRP. Following cell disruption by ultracentrifugation, the cytoplasmic fractions were 

analysed using LC-MS for the presence of dRP. Interestingly, dRP appeared in the cytoplasm of 

HUVECs after treatment (Fig 4A). As dRP is administered as a salt, the counter ion 

cyclohexylammonium was utilised as a control and was found only in the culture media, never in 

the cytoplasmic fractions (data not shown). This suggested the existence of a specific transporter 

for dRP. Previous studies indicated that the transporter, GLUT1, is the endothelial transporter for 

several monosaccharides besides hexoses, including riboses (60). To test the hypothesis that 

GLUT1 is responsible for the internalisation of dRP, we utilised two specific inhibitors of this 

transporter: fasentin and STF-31 (10µM). These inhibitors abolished the ability of dRP to 

stimulate endothelial tube formation on Matrigel® , without affecting VEGF-stimulated tube 

formation (Fig. 4B). GLUT1 was then silenced by siRNA which resulted in a significant 

inhibition of dRP-dependent ROS generation (Fig. 4C) and tube formation (Fig. 4D). These data 

suggest that GLUT1 plays a significant role in the internalisation and pro-angiogenic activity of 

dRP. VEGF-dependent tube formation was not affected by depletion of  GLUT1  (Fig. 4D).  
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Direct binding of dRP to the NOX2 complex (but not to NOX4 or NOX1) was then 

demonstrated by pull-down experiments using biotinylated dRP and streptavidin beads. In these 

experiments, dRP was conjugated with biotin in a reaction leading to a mixture of 3 different 

adducts (C3-O-linked, C5-O-linked and C1-OP-linked; Fig 5A). NOX2 (but not NOX4 or 

NOX1) was selectively pulled down in the presence of biotinylated dRP, but not in the presence 

of non-biotinylated dRP. The ability of dRP to activate NOXs directly without the mediation of 

intracellular signaling pathways was then investigated using a cell-free superoxide anion 

generation assay (9). Following cell fractionation, HUVEC cytosolic and membrane fractions 

were characterized for the expression of NOX1, NOX2 and NOX4. All three NOXs are 

expressed in the membrane fraction but not in the cytoplasmic fraction (Fig. 5B). Caveolin-1 and 

actin were used as membrane and cytoplasmic markers, respectively. Upon treatment with dRP, 

HUVEC membrane fractions induced a significant increase in ferrous cytochrome c compared to 

membrane fractions treated with vehicle alone. The formation of ferrous cytochrome c was 

inhibited in the presence of SOD and by the non-specific flavoenzyme inhibitor DPI. The dRP-

dependent response registered in this assay was also inhibited by the highly specific peptide 

inhibitor Nox2ds-tat (54), which has been used for membrane-based cell-free assays previously 

(14) Taken together, these data suggest that dRP is able to directly activate  NOX2 without the 

mediation of other signaling events.  

In order to confirm the oxidative status induced by dRP, biotinyl-iodoacetamide (BIAM) and 

HRP-streptavidin were utilized to stain free thiols in HUVEC proteins. These experiments 

demonstrated that a 4 hour exposure to 200µM dRP induces cysteine oxidation (i.e. formation of 

sulfenic acid and/or disulfide bonds), which appears as a loss BIAM staining (Fig. 6A). Several 

bands disappear or become significantly fainter upon treatment with dRP (green arrows in Fig. 
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6A), which suggests that this molecule induces pro-oxidative cell conditions, leading to 

oxidation of cysteines in several proteins (as expected from the activation of a highly expressed 

pro-oxidative enzyme such as NOX2). Protein thiol oxidation (Fig. 6B) without induction of cell 

apoptosis (Fig. 6C), was confirmed by free thiol staining and annexin V binding, respectively.  

dRP induces activation of NF-κB in a NOX-dependent manner  

Several redox-dependent transcription factors, including HIF-1 (51), Nrf2 (30,34) and NF-κB 

(11,56), play an important role in endothelial cell responses. To probe the involvement of HIF-1, 

Nrf2 and NF-κB as mediators of the pro-angiogenic activities of dRP, we tested the DNA 

binding activity of these transcription factors in HUVECs treated with dRP (53). These 

experiments revealed that NF-κB is strongly activated in the presence of dRP (Fig. 7A), whereas 

HIF-1 and Nrf-2 did not show any significant activation (Fig. S36B). In agreement with these 

results, dRP increased p65-NF-κB levels in the nuclear fraction of HUVECs (as a result of 

nuclear translocation; Fig. 7B) and promoted NF-κB phosphorylation on Ser468 (but not Ser536; 

Fig. 7C and Fig. S36A). Translocation of NF-κB to the nucleus upon dRP treatment was 

confirmed by immunolabelling and confocal imaging (Fig. 7D). Treatment with the non-specific 

flavoenzyme inhibitor DPI or direct inhibition of NF-κB with the potent inhibitor N4-[2-(4-

phenoxyphenyl)ethyl]-4,6-quinazolinediamine (QNZ) (61) abolished nuclear translocation of 

NF-κB. In common with DPI, NOX2 inhibition by the peptide Nox2ds-tat and genetic silencing 

of p22phox or NOX2 abolished translocation of NF-κB to the nucleus in dRP-stimulated 

HUVECs (Fig. 8A). Collectively, these data suggest that dRP-dependent activation of NOX2 is 

responsible for NF-κB activation. The functional role of NF-κB in the pro-angiogenic activity of 

dRP was tested by siRNA-dependent genetic silencing of this transcription factor (Fig. 8B), 

which resulted in complete inhibition of endothelial tube formation in response to dRP.  
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dRP-dependent activation of NF-κB upregulates VEGFR2 and induces endothelial tube 

formation 

An initial analysis of the expression of angiogenic factors in HUVECs by ELISA (Fig. S74A) 

and immunoblotting (Fig. S476B) did not detect any significant change in response to dRP, 

suggesting that the effects of dRP do not depend upon autocrine production of these factors. 

Further studies, however, showed that VEGFR2 is robustly upregulated at the mRNA and 

protein levels in HUVECs following exposure to dRP (Fig. 9A-D). The NF-κB inhibitor QNZ 

ablated the expression of VEGFR2 in HUVECs and inhibited the upregulation of this receptor by 

dRP, suggesting a critical role for NF-κB in the expression of VEGFR2 (Fig. 9C). The NOX2 

inhibitor Nox2ds-tat (54) significantly reduced upregulation of VEGFR2 by dRP (Fig 9D). The 

functional relevance of VEGFR2 upregulation for the pro-angiogenic activity of dRP was 

confirmed in experiments using the VEGFR2 inhibitor Pazopanib and the VEGFR2-specific 

inhibitory antibody MAB3572, both of which abolished tubulogenesis stimulated by dRP (Fig. 

9E). Experiments with the NF-κB inhibitor QNZ suggested that this transcription factor is 

necessary for dRP-dependent tube formation (Fig. 9F), which correlates with the strong effect of 

NF-κB inhibition on VEGFR2 expression shown in Fig. 9B, and the involvement of VEGFR2 in 

dRP-dependent angiogenesis shown in Fig. 9E. 

dRP stimulates VEGFR2 upregulation and NOX2-dependent angiogenesis in vivo 

The pro-angiogenic activity of dRP has been described previously (35,38,49,50). In order to 

confirm that the mechanism of action of dRP that we characterized in vitro also occurs in vivo, 

we applied dRP to excisional wounds in mice and assessed the levels of tissue vascularisation by 

hematoxylin staining (Figure 10A) and VEGFR2 expressedion at the wound site 7 days after 

application (Figure 10B). These experiments showed a significant increase in both wound 
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vascularity and  the expression of VEGFR2 in wounds treated with dRP (Fig. 10A). The 

dependence of dRP pro-angiogenic activity on NOX2 was then tested in NOX2-/- mice. Using a 

Matrigel™ plug vascularisation assay, we demonstrated that the presence of dRP stimulated a 

significantly higher vascularisation of the plug in wild type animals compared to NOX2-/- mice. 

This was (as demonstrated by hematoxylin (Figure 10C) and endothelial-specific CD31 staining 

(Figure 10D)., while in NOX2-/- mice the dRP-dependent vascularisation was absent (Fig. 10B).     

 

DISCUSSION 

The pro-angiogenic activity of dRP has been described previously, although the mechanism of 

action has remained elusive. The dRP-generating enzyme thymidine phosphorylase (TP) was 

initially cloned as platelet-derived endothelial cell growth factor (PD-ECGF) and characterized 

for its proangiogenic properties (27). Local injection of TP or TP-expressing cells has been 

shown to induce tissue neovascularization in vivo, which depends on the enzymatic activity of 

TP and the generation of dRP (35). TP and other dRP-generating enzymes such as purine 

nucleoside phosphorylase (PNP) and uridine phosphorylase (UP), are overexpressed in cancers 

and associated with cancer vascularisation and metastasis (31). In our studies, we identified 

platelets and macrophages as key generators of micromolar concentrations of dRP (49), whereas 

endothelial cells do not synthesise detectable levels of dRP and recognise this molecule (or its 

dephosphorylation product 2-deoxy-D-ribose) as a paracrine signal that triggers angiogenesis (6). 

 

Here, we demonstrate for the first time that the oxidative response induced by dRP in endothelial 

cells is mediated by NOX2, and that dRP can directly bind and activate this enzyme. 

Importantly, we showed that dRP binds and pulls down NOX2 but not NOX1 or NOX4 from 
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endothelial cell lysates. As NOX1 and NOX2 complexes share several regulatory subunits (i.e. 

p22phox, p47phox and Rac1), the specific pull-down of NOX2 and not NOX1 by biotinylated 

dRP supports the hypothesis that dRP directly interacts with the NOX2 enzymatic subunit (also 

known as gp91phox). Direct binding and activation of a NOX complex is a remarkable and 

rarely reported mode of action for a signalling molecule, which has been described in only a few 

recent studies. Arachidonic acid has been shown to activate NOX2 by promoting its interaction 

with the p67phox/Rac1 complex (37). In this case, the authors proposed that arachidonic acid 

interacts directly with p67phox. The involvement of p47phox, p67phox or other subunits in the 

dRP-dependent activation of NOX2 demonstrated in our study cannot be excluded at present, but 

the initial binding appears to be to NOX2.  

 

A correlation between NOX-dependent ROS generation and angiogenesis has been described 

previously. NOX4 and NOX2 both play prominent roles in the stimulation of angiogenic 

responses of endothelial cells (15,39,40,63,69), whereas NOX1 and NOX5 have received less 

attention (3,4). In particular, a link between NOX2 and NOX4 activity and increased endothelial 

cell motility has been reported (26,45). In our study, NOX2 activation by dRP leads to NF-κB 

activation (as shown by several approaches including p65-NFkB translocation and 

phosphorylation), which appears critical in the pro-angiogenic signaling cascade triggered by 

dRP. The role of of NF-kB in the signaling cascade stimulated by dRP was demonstrated using 

both the QNZ inhibitor (which has low nanomolar potency on NF-kB but can also inhibit store-

operated calcium channels at hich nanomolar concentrations (68)) and genetic silencing of p65-

NF-κB. This is in agreement with recent studies showing activation of NF-κB downstream of 

NOX2 in angiogenic responses of endothelial cells (40). However, in contrast to this latter study, 
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we did not detect any significant changes in the expression of VEGF-A or angiopoietin-2 in 

response to dRP treatment. One possible explanation for these contrasting findings is the source 

of the endothelial cells used in the two studies (i.e. human umbilical vein versus human 

pulmonary microvasculature). Instead, we identified VEGFR2 as a key component of the NF-

κB-mediated angiogenic response stimulated by dRP. This is in keeping with previous studies 

showing that the promoter of VEGFR2 contains NF-kB-binding motives (55) and recent studies 

showing regulation of VEGFR2 expression by NF-κB (17). Importantly, we confirmed VEGFR2 

upregulation by dRP in vivo using a mouse excisional wound assay. 

 

Several previous studies have highlighted associations between endothelial cell oxidative status 

and the angiogenic response. For example, the link between ROS formation in hypoxic 

conditions and the activity of HIF-1 has been described (22). Although additional routes have 

also been proposed (2), ROS have been shown to promote HIF-1-dependent transcription via 

inactivation of prolyl hydroxylase and reduction of HIF proteasome-dependent degradation (47). 

The activation of NOX4 and NOX3, but not NOX2, has previously been associated with HIF-1 

activation (8,69), whereas NOX2 has been shown to stimulate NF-κB activation in endothelial 

cells (40). Since we have identified NOX2 as a key target of dRP biological activity, our data 

support the existing literature showing that NF-κB, as opposed to HIF-1, is activated by this 

member of the NOX family. We confirmed that NOX2 is also necessary for the pro-angiogenic 

effect of dRP in vivo. This is in line with two recent studies showing a role for this member of 

the NADPH oxidase family in the stimulation of angiogenesis in vivo, although it should be 

emphasized that these reports, in contrast to the present study, did not provide clarity on the 

underlying molecular mechanisms (10,70).  
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Interestingly, we observed direct cysteine oxidation in endothelial cells treated with dRP (as 

demonstrated by the loss of free thiols). The product of cysteine oxidation by ROS in 

mammalian cells is cysteine sulfenic acid, which can undergo further oxidation to generate 

cysteine sulfinic acid and cysteine sulfonic acid, or can form intramolecular or intermolecular 

disulfide bridges (16). The oxidation of cysteine by ROS has important functional consequences 

for protein phosphatases and protein kinases (52). For example, and relevant to our study, ROS-

induced serine and/or tyrosine phosphorylation, ubiquitination and consequent proteolytic 

degradation of the inhibitor subunit IκB are responsible for nuclear transportation and activation 

of NF-κB (43). These observations support our data showing ROS-dependent activation of NF-

κB in response to dRP. 

 

Overall, this study has comprehensively elucidated the mechanism of action of dRP, a small 

molecule with pro-angiogenic effects in vitro and in vivo (49). We showed that, similarly to other 

sugars (either hexoses or pentoses) (29,44), dRP is readily internalised by endothelial cells and 

that the transporter GLUT1 is the most likely transporter responsible fo this. This is in agreement 

with previous studies suggesting that TP stimulates endothelial cells in a “non-receptor-

mediated” manner (6). Once internalized, dRP has the remarkable ability to directly bind and 

activate NOX2, but not NOX4 or NOX1. Activation of NOX2 and the resulting generation of 

ROS trigger NF-κB activation and promote angiogenic responses in endothelial cells, which 

depend on the activity of VEGFR2. This study, therefore, represents a milestone in the 

understanding of the pro-angiogenic activity of the dRP-generating enzyme thymidine 
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phosphorylase, which was cloned as platelet-derived endothelial growth factor and characterized 

as a potent stimulator of angiogenesis in the late 1980s (27).  

 

 

 

 

 

INNOVATION 

A novel paracrine signaling pathway is described in this study, whereby the angiogenic stimulus 

2-deoxyribose-1-phosphate (dRP) released by platelets, macrophages and cancer cells is 

internalised by endothelial cells and acts intracellularly by directly activating NADPH oxidase 2 

(NOX2). In turn, this leads to nuclear factor kappa B (NF-κB)-dependent upregulation of VEGF 

receptor 2 (VEGFR2) and VEGF-dependent angiogenesis. Our elucidation of the mechanism of 

action of dRP is critical for understanding the full potential of this pro-angiogenic paracrine 

signal, which may find important applications in regenerative, vascular and cancer medicine.   
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MATERIALS AND METHODS 

LC-MS detection and quantification of dRP. Macrophages were differentiated from whole 

bone marrow cultures from B57BL6 mice in Dulbecco’s modified Eagle’s medium (DMEM) + 

10% L929 cell conditioned medium, 10% fetal bovine serum and 1X penicillin/streptomycin. 

Activation of macrophages was performed with 100 ng/mL lipopolysaccharide (LPS) and 100 

ng/mL interferon gamma (IFNγ) or 20 ng/mL interleukin 4 (IL4) and 50 ng/mL IFNγ. Platelets 

were isolated via two-step centrifugation, as previously described (66). Activation was obtained 

with 0.1 unit/ml thrombin or 10 µg/ml collagen for 10 minutes in an aggregometer at 700 rpm. 

Endothelial cells with or without dRP incubation (200µM), where washed with PBS three times 

and lysed by ultrasonication. For all samples (i.e. cell extracts obtained by ultrasonication or 

culture supernatants), proteins were eliminated by acetonitrile precipitation. QTOF-UHPLC 

analysis was conducted using a MaXis HD quadrupole electrospray time-of-flight (ESI-QTOF) 

mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany), which was coupled to an 

Ultimate 3000 UHPLC (Thermo Fisher Scientific, California, USA). Liquid chromatography 

was performed using a Dionex Acclaim RSLC PolarAdvantage II (PA2), 2.2 µM, 120Å, 2.1 x 50 

mm reverse phase column (Thermo Fisher Scientific, California, USA) with a flow rate of 0.4 
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mL/min, and an injection volume of 10 µL. Mobile phases A and B consisted of 1mM 

ammonium fluoride in water, and methanol, respectively. Deoxyribose-1-phosphate was detected 

as [M-H]- ion with a mass-to-charge (m/z) ratio of 314.0120 ± 0.005 Da. 

 

Endothelial cell culture  

HUVECs were isolated from umbilical veins as described previously (25). HUVECs were 

cultured and passaged in medium M199 supplemented with 20% FBS, 4 mM glutamine, 100 

units/mL penicillin, 100 units/mL streptomycin and 20 mM NaHCO3 and cultured in flasks pre-

coated with 1% gelatin (w/v).  

 

In vitro capillary-like tube formation assay  

Growth factor reduced (GFR) Matrigel® was utilized to provide extracellular matrix for cell 

culture. 104,000 cells/well in 100µl of M199 (no FBS) were added to 96-well microplates 

containing 65µl GFR Matrigel® per well. Phase contrast images were captured 4 hours after 

treatment using an EVOS FL microscope with a 4x /0.1 Plan-Achromat objective. Total number 

of tubes was measured using the Angiogenesis Analyzer plugin of ImageJ. 

 

Intracellular live-cell ROS generation assay 

HUVECs were plated into 96-well black, optically clear bottom tissue culture sterile plates and 

were cultured for 24 h to reach ~70% confluence. Cells were washed once with PBS, pre-treated 

with inhibitors for 30 minutes (as indicated in the figure legends) and then treated with 5µM  

DHE and dRP at the desired concentrations. Fluorescence was monitored using a CLARIOstar® 

Formatted: Superscript
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plate reader at 37°C with atmospheric control at 5% CO2/20% O2. Fluorescence was measured at 

Ex/Em: 510/610nm over 2 hours.  

 

Superoxide detection using EPR  

HUVECs cultured in 6-well plates were washed twice with EPR-Krebs HEPES buffer (EPR-

KHB) adjusted to pH 7.4 and then incubated for 1 hour in deoxygenated EPR-KHB (+1 g/l 

glucose) in the presence of treatments. Cell-permeable superoxide-specific spin probe 3-

methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) at a final concentration of 200µM (from 

10mM CMH stock solution in the presence of 25uM deferoxamine and 5uM DETC) was then 

added for 45 minutes.  The supernatant was then analysed using a Bruker e-scan with the 

following settings: center field 1.99g, microwave power 20mW, modulation amplitude 2G, 

sweep time 10s, number of scans 10 and field sweep 60G. Calibration curve was calculated using 

kwnon concentrations of CM• (CM-radical, purchased from Noxygen #NOX-18.2), as shown in 

Fig. 2C. Data are presented as pmols of superoxide anion divided by incubation time in minutes 

and amount of protein per well in mg, calculated using the bicinchoninic assay method.  

 

Determination of NADPH oxidase activity in endothelial membranes 

The membrane fraction of HUVECs was separated by ultrasonication and ultracentrifugation 

(100,000 g for 60 minutes). NADPH oxidase activity in the membrane fraction was measured as 

previously described (9). Superoxide production was measured in PBS (140 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) containing 100µg of the membrane fraction, 

10mM diethyldithiocarbamate, 100µM NADPH, 80µM acetylated cytochrome C, 1000 U/mL 
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catalase, and 100µM EDTA. 10µM diphenylene iodonium (DPI) and 1000 U/mL SOD were used 

to inhibit and scavenge ROS, respectively.  

 

ELISA-based assay for transcription factor activation 

DNA-binding capacity of NF-κB was determined in whole extracts of HUVECs treated as 

indicated using the TransAM® method according to the suppliers’ instructions.  

 

Immunofluorescence of NF-κB translocation 

HUVECs were grown on coverslips to 60–70% confluence and treated with stimuli/inhibitors. 

Following fixation in 4% w/v paraformaldehyde, cells were stained with anti-p65-NF-κB (1:50), 

Alexa Fluor® 488 Rabbit Anti-Mouse (1:200) and 4′,6-diamidino-2-phenylindole (DAPI, 1:100). 

Slides were examined using the 60× 1.40 NA oil objective on a LSM 510 META confocal 

microscope (Carl Zeiss AG, Jena, Germany). 

 

Real-Time Quantitative PCR (qPCR)  

qPCR was performed on a ViiA7 Real-Time PCR System using Power SYBR Green PCR and 

300 nM gene-specific primers (VEGFR2: 5′CCAGTGTCATTTCCGATCACT TT and 5′-

GGCCCAATAATCAGAGTGGCA and GAPDH: 5′-AGCCGCATCTTCTTT TGCGT and 5′-

TGACGAACATGGGGGCATCA). The amplification of a single PCR product was confirmed 

by melting curve analysis. Gene-specific mRNA levels were estimated by the 2−∆∆Ct analysis and 

normalized against GAPDH levels to obtain relative changes in gene expression.  

 

Immunoprecipitation and immunoblotting  
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For immunoprecipitation, HUVECs cultured in 6 well-microplates were lysed in 500 µL of ice-

cold lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 0.1% Triton X-100 containing 

protease and phosphatase inhibitors). The suspension was ultrasonicated using a 150VT 

Ultrasonic Homogenizer (BioLogics, Manassas, VA, USA). Primary antibody and protein A/G 

Plus-Agarose were used for immunoprecipitation. Immunoprecipitates were subjected to 

SDS−polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene 

difluoride (PVDF) for immunoblotting. For immunoblotting cells were lysed in RIPA buffer (1% 

v/v Triton X-100, 1% w/v sodium deoxycholate, 0.1% w/v SDS, 150 mM NaCl, 5 mM EDTA, 

50 mM Tris pH 7.4). 

 

siRNA-mediated gene silencing 

HUVECs were transfected with NOX2 (sc-35503), NOX4 (sc-41586), p65 NF-κB (sc-29410), 

p22phox (sc-36149) or scrambled control (sc-37007) siRNAs (Santa Cruz Biotechnology). The 

siRNAs were diluted to 100nM in transfection medium (sc-36868; Santa Cruz Biotechnology) 

containing transfection reagent (sc-29528; Santa Cruz Biotechnology), incubated for 45 min at 

room temperature and then further diluted to 20nM in transfection medium. The cells were 

covered with this solution and incubated for 3 h at 37 °C. The solution was then replaced with 

fresh culture medium and cells used for experiments 72 hours after transfection.  

 

Preparation of a biotinylated dRP bait and streptavidin pull-down assay 

0.6mg/ml dRP was resuspended in anhydrous DMSO and 1,1′-carbonyldiimidazole. The 

resulting solution was stirred for 24 h. In a separate vessel, N-(+)-biotinyl-3-

aminopropylammonium trifluoroacetate was taken up in anhydrous dimethylformamide and 
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N,N-diisopropylethylamine added. After 30 minutes, the solvents were evaporated to dryness 

and the DMSO solution of activated dRP was added. The resulting solution was stirred for 72 h 

before being divided into 10 equal portions and the solvents removed under vacuum. HUVECs 

were scraped on ice into 10mM Tris plus 0.3M sucrose buffer (pH 7.1). The suspension was 

sonicated on ice and centrifuged at 1,000g for 5 minutes. The lysate were treated with 

biotinylated-dRP or biotin as control for 1 hour under rotation at 4 °C. Streptavidin beads were 

added to samples, which were further rotated for 2 hours at 4 °C. Samples were boiled, loaded on 

to SDS-PAGE gels and resulting blots probed for NOX 1, 2 and 4, and for β-actin as loading 

control.  

 

Intracellular free-thiol monitoring by cysteine labeling  

Biotinyl-iodoacetamide (BIAM) was used to label free thiols in cell lysates as previously 

described (12). Cell lysates were obtained by sonication in anoxic conditions (cell lysis buffer: 

150 mM NaCl, 0.5% v/v Triton-X, 50 mM Tris-HCl, pH 6.5, Complete™ protease inhibitors). 

Cell lysates were labeled for 2 hours with 20µM BIAM in anoxic conditions. BIAM was then 

quenched with 10 mM β-mercaptoethanol. Cell proteins were separated by SDS-PAGE, stained 

with Streptavidin-HRP and visualized by enhanced chemiluminescence.  

Alternatively, VitaBright-43™ was used to label free thiol groups on proteins (59). This reagent 

is cell permeable and gives thioester-coupled fluorescent products in a quantitative manner, 

which allows an estimate of cell oxidative state. 5x106 cells/ml treated as described were labeled 

with VitaBright-43™ and propidium iodide as suggested by suppliers. NucleoCounter3000 

(Chemometec A/S) was utilized to analyse cell fluorescence levels associated to the two dyes. 

 

Flow cytometry analysis of apoptosis 
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Staining with annexin V-FITC to detect cell surface exposure of phosphatidylserine was 

performed to examine apoptosis in cultured HUVEC treated with or without dRP for 24 hours 

(50). During apoptosis, an early and ubiquitous event is the exposure of phosphatidylserine at the 

cell surface, which is detected with annexin V-FITC. Cells treated with 5mM diethyl maleate for 

24 hours served as a pro-apoptopic control. After incubation, cells were harvested with the gentle 

dissociating buffer TrypLE®, pelleted by centrifugation, washed with PBS, and resuspended in 

PBS. Cell suspensions were stained with Annexin V/FITC according to the manufacturer’s 

instructions. Briefly, PBS-washed cells were suspended in 100 µl FITC binding buffer at a 

minimum concentration of 1 × 106 combined with 5 µl Annexin V/FITC. After 15 minutes of 

incubation in the dark on ice, cells were centrifuged at 2000 rpm for 10 minutes, resuspended in 

PBS, and analysed using a FACSCanto II (BD Biosciences). Cells that were annexin V-negative 

were considered viable cells. Cells positive for annexin V were considered apoptotic. All 

samples were prepared in triplicate. 

  

Mouse wound healing  

Mouse maintainance and experimental procedures were performed according to local ethic 

approval and a dedicated UK Home Office Project licence. Wounding was performed as 

described by Mahdipour and Mace (2012) (36). dRP pellets were produced by diluting dRP into 

PBS:methyl cellulose (1%) (1:1). 50 µl of this solution was then spotted and dried to form a 

pellet containing 10.3µg (25nmol) of dRP. Control pellets were generated in the same way by 

adding vehicle solution (PBS) instead of dRP. Pellets were administered immediately following 

wounding and rehydrated directly into the wound. Pellets were subsequently administered every 

other day on days 2, 4 and 6. Wounds were harvested at day 7, as appropriate, from sacrificed 
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animals with a 2mm border, fixed in formalin and embedded in paraffin. Tissues were sectioned 

using a Leica CM3050 S to produce serial sections of 10µm thickness. Following de-waxing in 

xylene/EtOH/MetOH, sections were stained with anti-VEGFR2/KDR/Flk-1 antibodies (1:100, 

R&D Systems #AF644) and FITC-labelled anti-goat IgG secondary antibodies (1:200, Life 

Technologies). Images were captured using a EVOS FL microscope with a 4x /0.1 Plan-

Achromat objective (red fluorescence channel and phase contrast). Alternatively, tissue sections 

were cut at 5µm thickness and stained with hematoxylin/eosin using the Mayer’s method (20). 

Sections were evaluated for vascularity by imaging using a Olympus CKX41 microscope with 

UPlanFl 4x/0.13 objective.  

 

Matrigel plug vascularization assay 

Mouse maintainance and experimental procedures were performed according to local ethic 

approval and a dedicated UK Home Office Project licence. Wild type (C57BL6/J) and NOX2-/- 

(Jackson Laboratories B6.129S-Cybbtm1Din/J) mice were injected with 200µl of Growth 

Factor-Redice Matrigel™ (Corning) containing 41.2µg (100nmol) of dRP or an equivalent 

volume of vehicle solution (PBS). 7 days after injection, the animals were euthanised and the 

matrigel plug was explanted, fixed in 10% formalin and embedded in paraffin. Tissues were 

sectioned using a Leica CM3050 S to produce serial sections of 50µm thickness. Following de-

waxing in xylene/EtOH/MetOH, sections were either stained with hematoxylin or anti-CD31 

antibodies (1:100, Cell Signaling Technologies #3528), TRITC-labelled anti-mouse IgG 

secondary antibodies (1:200, Life Technologies) and 0.25µg/ml DAPI (4′,6-diamidino-2-

phenylindole). Images were captured using a EVOS FL microscope with a 4x /0.1 Plan-

Achromat objective (red and blue fluorescence channels and phase contrast). Alternatively, 
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tissue sections were cut at 5µm thickness and stained with hematoxylin using the Mayer’s 

method (20). Sections were evaluated for vascularity by imaging using a Olympus CKX41 

microscope with UPlanFl 4x/0.13 objective. 
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Biotinyl-iodoacetamide (BIAM) 
3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) 
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Deoxyribose-1-phosphate (dRP) 
Diphenylene iodonium (DPI) 
Electron paramagnetic resonance (EPR) 
2,7-dichlorodihydrofluorescein diacetate (H2-DCFDA) 
Fluorescein Isothiocyanate (FITC) 
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Horseradish peroxidase (HRP) 
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Hypoxia-induced factor 1 (HIF1) 
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Nuclear factor kappa B (NF-κB) 
Nuclear factor erythroid 2–related factor 2 (Nrf-2) 
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Reactive oxygen species (ROS) 
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Superoxide dismutase (SOD) 
Thymidine phosphorylase (TP)  
Vascular endothelial growth factor (VEGF) 
VEGF receptor 2 (VEGFR2) 
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Figure 1. dRP stimulates angiogenesis and oxidative stress of endothelial cells in vitro. (A) The concentration 
of dRP released by human platelets and mouse macrophages in vitro was quantified by LC-MS. Presented 

data are from 6 and 3 independent samples, respectively. Statistical significance was assessed by one-way 

ANOVA with Bonferroni post-hoc test (* = p<0.01 compared to non-stimulated platelets). (B-) HUVECs were 
seeded at a density of 3 x 102 cells/mm2 on growth factor-reduced Matrigel® and cultured in basal medium 

(no FBS). Different concentrations of dRP between 2µM and 1mM and (after 4 hours of culture, 
quantification of tube number per optical field was performed using the Angiogenesis Analyzer plugin of 

ImageJ. (C) ROS generation was analysed with DHE staining for 1 hour in response to concentrations of dRP 
ranging from 2µM to 1mM and expressed as fold-increase over basal. (D) Time course of ROS generation in 
response to 200µM dRP in the presence of ROS scavengers 1mM NAC, 10µM MnTBAP or 10µM Tempol) or 

vehicle. ROS production was assessed after 5, 30, 60 and 120 minutes and expressed as fold-increase over 
basal. (E) HUVECs were seeded at a density of 3 x 102 cells/mm2 on growth factor-reduced Matrigel® and 

cultured in basal medium (no FBS). 200µM dRP was incubated in the presence or absence of 1mM NAC, 
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10µM Tempol or 10µM MnTBAP. After 4 hours of culture, quantification of tube number per optical field was 
performed using the Angiogenesis Analyzer plugin of ImageJ. Representative pictures are shown in (i) and 
quantification is shown in (ii). Throughout the figure, data are expressed as mean ± SEM and analyzed by 
one-way ANOVA (B and C, n=6; E, n=8) or two-way ANOVA (D, n=6). In either case, Bonferroni post-hoc 
test was used to identify statistically significant difference between conditions; * = p<0.05 compared to 

vehicle, ** = p<0.05 compared to dRP).  (E) Bars = 300µm.  

 
190x254mm (96 x 96 DPI)  
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Figure 2. dRP stimulates increased levels of ROS generation in HUVECs in a NOX-dependent manner. 
Quantitative measurements of superoxide anion production in HUVECs was performed using the cell-

permeable superoxide-specific spin probe CMH and EPR. (A) Cells were treated for 45 minutes with 200µM 

dRP, vehicle (Tyrode’s HEPES buffer) or 50ng/ml TNF-α in the presence of CMH (200µM) before EPR 
analysis. (B) Inhibition of superoxide anion production induced by 200µM dRP was also detected by EPR by 
10µM MnTBAP, 10µM Tempol or 1µM VAS2870. For A and B, representative EPR traces are shown in (i). The 

bar charts in (ii) show superoxide anion production rates (pmol mg−1 min−1) (mean ± SEM, one-way 
ANOVA with Bonferroni post-hoc test, * = p<0.05, n=4).  (C) Calibration curve obtained using known 

concentrations of the oxidized spin probe (i.e. CM*).  (D) Activation of NOX2 confirmed by co-
immunoprecipitation with p47phox. HUVECs were treated with a vehicle or 200µM dRP for 1 hour. NOX2 

immunoprecipitates were subjected to immunoblotting for p47phox and NOX2. Blots are representative of 4 
independent experiments.  
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Figure 3. dRP stimulates increased levels of ROS generation and tube formation in a NOX-dependent 
manner. (A) ROS generation in response to 200µM dRP or vehicle was measured as described above in the 
presence of 1µM VAS2870. (B) dRP-induced ROS production resulted suppressed by inhibition of NOX2 with 

10µM Nox2ds-tat. Immunoblot analysis of NOX2-specific knock down by siRNA (and scrambled siRNA 
control). (C) ROS generation in response to 200µM dRP was measured in control (scrambled siRNA) and 
NOX2 knockdown cells. (D) Representative images of tube formation by cells transfected with scrambled 

siRNA and NOX2 siRNA in the presence of 200µM dRP are shown. Total number of tubes was measured with 
the Angiogenesis Analyzer plugin of ImageJ. Representative images (top) and data analysis are shown 

(bottom). (E-F) Genetic silencing of NOX4 in HUVECs does not affect dRP-induced ROS generation increase. 
Tube formation in response to 200µM dRP by scrambled and NOX4 knockdown cells was measured. Time 

courses in A, B , C and E were analysed by two-way ANOVA (n=4) with Bonferroni post-hoc test (* = 
p<0.05, compared to vehicle in A and B or vehicle/scrambled siRNA in C and E; ** = p<0.05 compared to 
dRP in A and B or dRP/scrambled siRNA in C and E). Bar graphs in D and F represent quantification of tube 
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number per optical field compared by one-way ANOVA with Bonferroni post-test (* = p<0.05 compared to 
vehicle, n = 5). Bar: (D and F) 300µm.  

 
190x254mm (96 x 96 DPI)  
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Figure 4. dRP acts intracellularly following its internaliszation by the transporter GLUT1. (A) LC-MS detection 
of intracellular dRP. HUVECs were treated with 200µM dRP, before 3 washes in PBS and ultrasonication. 

Example chromatogram (upper panel) and data quantification (lower panel) are shown. Statistical 

significance was tested by t-test (* = p<0.05, compared to vehicle, n=4). (B) STF-31 and fasentin (10µM) 
inhibited dRP- but not VEGF-dependent tube formation. Example pictures (upper panel) and data 

quantification (lower panel) are shown. Bar graphs represent quantification of tube number per optical field 
compared by one-way ANOVA with Bonferroni post-hoc test (* = p<0.05 compared to vehicle, n = 5). Bar: 

300µm. (C) siRNA-dependent silencing of GLUT1 inhibits dRP-induced ROS generation. Following GLUT1 
silencing displayed in top panels, ROS was measured as described over a period of two hours. Time courses 

were analysed by two-way ANOVA (n=4) with Bonferroni post-hoc test (* = p<0.05, compared to 
vehicle/scrambled siRNA; ** = p<0.05 compared to dRP/scrambled siRNA). (D) siRNA-dependent silencing 
of GLUT1 inhibits dRP-induced tube formation. Example pictures for dRP response by HUVECs treated with 

scrambled siRNA or GLUT1 siRNA are shown in top panels. Bar graphs represent quantification of tube 
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number per optical field compared by one-way ANOVA with Bonferroni post-hoc test (* = p<0.05 compared 
to scrambled siRNA/vehicle, ** = p<0.05 compared to scrambled siRNA/dRP, ns = non significant, n = 4). 

Bar: 300µm.  
 

190x254mm (96 x 96 DPI)  
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Figure 5. dRP directly activates NOX2. (A) Binding of NOX2 was assessed by pull-down using a  mixture of 
three dRP-biotin conjugates (i). NOX 1, 2, 4, and actin were detected by immunoblotting (ii) (4 independent 
experiments). (B) Membrane fractions treated with dRP display NOX activation. NOX-1, 2, 4, Caveolin-1 and 

β-actin were tested by immunoblotting (i). The membrane fractions were treated with 200µM dRP using 
cytochrome c reduction assay. Cytochrome c reduction was measured as absorbance at wavelength 550nm. 
1000 U/mL SOD was utilized to determine the superoxide anion-dependent component, while DPI (100µM) 

was used to determine the role of NOXs and other flavoenzymes (ii). 10µM Nox2ds-tat (or scrambled 
peptide as a negative control) was utilised to assess the role of NOX2 in the oxidative response measured by 

this membrane assay (iii). Data in B  were analysed by one-way ANOVA with Bonferroni post-test (* = 
p<0.05, compared to vehicle (ii) or scrambled siRNA/vehicle (iii), ** = p<0.05 compared to dRP (ii) or 

scrambled siRNA/dRP (iii),  n=6).  
 

190x254mm (96 x 96 DPI)  
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Figure 6. dRP induces oxidative stress without significantly increasing apoptosis. (A) HUVECs treated with or 
without 200µM dRP for 4 hours were labelled for 2 h with 20µM BIAM in anoxic conditions. Thiol oxidation 
status was determined by protein separation using SDS-PAGE and staining with HRP-streptavidin. Green 

arrows indicate thiol oxidation, whilst red arrows represent thiol reduction. β-actin immunoblotting was used 
to confirm equal loading. Blots are representative of 4 independent experiments. (B) VitaBright-43® 

staining was also utilized to measure the level of intracellular reduced thiols. HUVECs were treated with 
vehicle solution (Tyrode’s HEPES buffer) or stimuli with/without NOX inhibitor (200µM dRP, 10µM DPI) for 30 

min. Cells were co-stained with VitaBright-43®  and propidium iodide and analysed by image cytometry 
using the NucleoCounter NC-3000® system. Plots show VitaBright-43® (VB) intensity versus propidium 
iodide intensity are shown (i). Intracellular thiol oxidation was quantified by counting the % of cells with 
VitaBright-43® staining below 10,000 rfu (ii). Statistical analysis was performed by one-way ANOVA with 

Bonferroni post-test (* = p<0.05, compared to vehicle, n=6). (B Cell apoptosis was measured by flow 
cytometry for PE-annexin V staining. HUVECs were treated with vehicle (Tyrode’s HEPES buffer), 200µM dRP 
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or 5mM diethyl maleate (positive control) for 12 h. Forward scattering (FSC)/side scattering (SSC) and 
annexin V staining histograms from 4 independent experiments are presented  (i). Data analysis is also 
shown (ii). Data are mean ± SEM analyzed by one-way ANOVA with Bonferroni post-test (* = p<0.05, 

compared to vehicle, n=6).  
 

190x254mm (96 x 96 DPI)  
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Figure 7. NF-κB is activated in response to dRP. (A) DNA-binding capacity of NF-κB (p65 subunit) was 
determined using TransAM® for NF-κB (Active Motif, cat. no. #43296). HUVECs were treated with or 

without 200µM dRP for 30 minutes. Whole cell extract from Jurkat cells stimulated with 12-O-

tetradecanoylphorbol-13-acetate and calcium was used as positive control. One-way ANOVA with Bonferroni 
post-test was used to test statistical significance (mean ± SEM, n=6, * = p<0.05). (B) The translocation of 
p65-NF-κB to the nucleus was tested by subcellular fractionation using the NE-PER kit (Pierce). Cytoplasmic 
and nuclear fractions were immunoblotted for p65-NF-κB, nucleoporing-p62 (a nuclear marker) and β-actin 
(a cytoplasmic marker). Data are representative of 4 independent experiments. (C) NF-κB activation was 

also investigated by phospho-specific immunoblotting. Total cell lysate immunoblotted with phospho-specific 
NF-κB antibodies (Ser468 or Ser536) and total NF-κB antibody (as loading control). Immunoblots represent 

4 independent experiments. (D) Immunolocalisation of p65-NF-κB (green) in dRP-stimulated HUVECs 
(200µM, 1 hour) was also tested. Where indicated, 100nM QNZ, an inhibitor of NF-κB activation, was added. 
100µM DPI was used as a NOX inhibitor, whereas 50 ng/ml TNF-α was utilized as a positive control. Images 
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are representative of 5 independent experiments. Bar: (D) 100µm.  
 

190x254mm (96 x 96 DPI)  
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Figure 8. dRP induces NF-κB activation in a NOX-dependent manner and NF-κB activity is critical for 
endothelial tube formation in response to dRP. (A) Representative immunofluorescence images of HUVECs 
stained for NF-κB (green) and DAPI (blue). Where indicated, HUVECs were pre-treated with 10µM Nox2ds-

tat peptide for 1 hour or subjected to NOX2 and p22phox siRNA-mediated genetic silencing for 72 h prior to 
treatment with 200µM dRP for 30 minutes. Images are representative of 4 independent experiments. (B) 
Tube formation was assessed by seeding scrambled and NF-κB siRNA-treated cells onto growth factor-

reduced Matrigel® with or without 200µM dRP. Representative images show tube formation after 4 hours 
(left) and p65-NF-κB downregulation (right). Bar graphs (bottom right) represent quantification of tube 

number per optical field using ImageJ software with Angiogenesis Analyzer plugin (* = p<0.05, one-way 
ANOVA with Bonferroni post-test, n = 5). Bar: (A) 100µm; (B) 300µm.  

 
190x254mm (96 x 96 DPI)  
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Figure 9. VEGFR2 is upregulated in response to dRP in a NF-κB-dependent manner and its activity is 
necessary for dRP-dependent angiogenesis. (A) qPCR analysis of VEGFR2 expression on HUVECs treated 
with or without 200µM dRP for 4 hours. The 2-∆∆Ct analysis method was used to analyse the data with 

GAPDH used as normalizer. Statistical significance of the difference was tested using non-parametric Mann-
Whitney test (mean ± SEM, n=4, * = p<0.05).  (B) HUVECs were treated with increasing concentration of 

dRP (2µM to 1mM) for 6 hours. Alternatively, HUVEC were incubated with (C) 100nM QNZ or (D) 10µM 
Nox2ds-tat for 1 hour and then stimulated with 200µM dRP for 6 hours. Cell lysates were immunoblotted for 
VEGFR2 and β-actin. Data are representative of 4 independent experiments. (E) Effects of VEGFR2 inhibitors 
Pazopanib and mAB3572 on dRP-induced tube formation. HUVECs with or without 200µM dRP were tested in 

the presence of 10 µg/ml Pazopanib and 50 ng/mL mAB3572 antibody. Representative pictures in (i) and 
quantification in (ii). (F) Effects of the NF-κB inhibitor QNZ (100nM) on dRP-induced tube formation. 

Representative pictures in (i) and quantification in (ii). Bar graphs represent quantification of tube number 
per optical field performed using ImageJ software with Angiogenesis Analyzer plugin and compared by one-
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way ANOVA with Bonferroni post-test (* = p<0.05, n=6). Bar: (E and F) 300µm.  
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Figure 10. dRP stimulates VEGFR2 upregulation and NOX2-deoendent angiogenesis in vivo. (A) 
Representative examples (i) and quantification (ii) of the hematoxylin/eosin staining of wound tissue treated 
with dRP or vehicle control (PBS). Data represent counts of vascular structures (surrounded by continuous 

intimal monolayer) per optic field. Statistical significance of the difference was assessed by non-parametric 
Mann-Whitney test (* = p<0.05 compared to vehicle, n = 10). Vascular structures are highlighted by white 
arrows in the picture. (B) Representative examples (i) and quantification (ii) of the VEGFR2-specific staining 

of wound tissue treated with dRP or vehicle control (PBS). Data represent counts of high fluorescence 
intensity areas per mm2, as estimated using ImageJ. Statistical significance of the difference was assessed 

by non-parametric Mann-Whitney test (* = p<0.05 compared to vehicle, n = 8). (C) Representative 
examples (i) and quantification (ii) of the hematoxylin staining of Matrigel™ plugs containing dRP 

(41.2µg/plug) or vehicle control (PBS) after 7 days of implantation in wild type (C57BL6/J) or NOX2-/- 
(Jackson Laboratories B6.129S-Cybbtm1Din/J) mice. Data represent counts of capillary structures per mm2, 
as estimated using ImageJ. Statistical significance of the difference was assessed by one-way ANOVA with 
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Bonferroni post-hoc test (* = p<0.05 compared to vehicle, ** = p<0.05 compared to dRP, n=6). (D) 
Representative examples (i) and quantification (ii) of the DAPI/CD31-specific staining of Matrigel™ plugs 

containing dRP (41.2µg/plug) or vehicle control (PBS) after 7 days of implantation in wild type (C57BL6/J) or 
NOX2-/- (Jackson Laboratories B6.129S-Cybbtm1Din/J) mice. Data represent counts of capillary structures 

per mm2, as estimated using ImageJ. Statistical significance of the difference was assessed by one-way 
ANOVA with Bonferroni post-hoc test (* = p<0.05 compared to vehicle, ** = p<0.05 compared to dRP, 

n=6).Bars: 300µm (throughout).  
 
 

190x338mm (96 x 96 DPI)  
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FIGURE LEGENDS 

Figure 1. dRP stimulates angiogenesis and oxidative stress of endothelial cells in vitro. 

(A) The concentration of dRP released by human platelets and mouse macrophages in vitro 

was quantified by LC-MS. Presented data are from 6 and 3 independent samples, 

respectively. Statistical significance was assessed by one-way ANOVA with Bonferroni post-

hoc test (* = p<0.01 compared to non-stimulated platelets). (B-) HUVECs were seeded at a 

density of 3 x 10
2
 cells/mm

2
 on growth factor-reduced Matrigel® and cultured in basal 

medium (no FBS). Different concentrations of dRP between 2µM and 1mM and (after 4 

hours of culture, quantification of tube number per optical field was performed using the 

Angiogenesis Analyzer plugin of ImageJ. (C) ROS generation was analysed with DHE 

staining for 1 hour in response to concentrations of dRP ranging from 2µM to 1mM and 

expressed as fold-increase over basal. (D) Time course of ROS generation in response to 

200µM dRP in the presence of ROS scavengers 1mM NAC, 10µM MnTBAP or 10µM 

Tempol) or vehicle. ROS production was assessed after 5, 30, 60 and 120 minutes and 

expressed as fold-increase over basal. (E) HUVECs were seeded at a density of 3 x 10
2
 

cells/mm
2
 on growth factor-reduced Matrigel® and cultured in basal medium (no FBS). 

200µM dRP was incubated in the presence or absence of 1mM NAC, 10µM Tempol or 10µM 

MnTBAP. After 4 hours of culture, quantification of tube number per optical field was 

performed using the Angiogenesis Analyzer plugin of ImageJ. Representative pictures are 

shown in (i) and quantification is shown in (ii). Throughout the figure, data are expressed as 

mean ± SEM and analyzed by one-way ANOVA (B and C, n=6; E, n=8) or two-way 

ANOVA (D, n=6). In either case, Bonferroni post-hoc test was used to identify statistically 

significant difference between conditions; * = p<0.05 compared to vehicle, ** = p<0.05 

compared to dRP).  (E) Bars = 300µm. 
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Figure 2. dRP stimulates increased levels of ROS generation in HUVECs in a NOX-

dependent manner. Quantitative measurements of superoxide anion production in HUVECs 

was performed using the cell-permeable superoxide-specific spin probe CMH and EPR. (A) 

Cells were treated for 45 minutes with 200µM dRP, vehicle (Tyrode’s HEPES buffer) or 

50ng/ml TNF-α in the presence of CMH (200µM) before EPR analysis. (B) Inhibition of 

superoxide anion production induced by 200µM dRP was also detected by EPR by 10µM 

MnTBAP, 10µM Tempol or 1µM VAS2870. For A and B, representative EPR traces are 

shown in (i). The bar charts in (ii) show superoxide anion production rates (pmol mg
−1

 min
−1

) 

(mean ± SEM, one-way ANOVA with Bonferroni post-hoc test, * = p<0.05, n=4).  (C) 

Calibration curve obtained using known concentrations of the oxidized spin probe (i.e. CM*).  

(D) Activation of NOX2 confirmed by co-immunoprecipitation with p47phox. HUVECs 

were treated with a vehicle or 200µM dRP for 1 hour. NOX2 immunoprecipitates were 

subjected to immunoblotting for p47phox and NOX2. Blots are representative of 4 

independent experiments. 

Figure 3. dRP stimulates increased levels of ROS generation and tube formation in a 

NOX-dependent manner. (A) ROS generation in response to 200µM dRP or vehicle was 

measured as described above in the presence of 1µM VAS2870. (B) dRP-induced ROS 

production resulted suppressed by inhibition of NOX2 with 10µM Nox2ds-tat. Immunoblot 

analysis of NOX2-specific knock down by siRNA (and scrambled siRNA control). (C) ROS 

generation in response to 200µM dRP was measured in control (scrambled siRNA) and 

NOX2 knockdown cells. (D) Representative images of tube formation by cells transfected 

with scrambled siRNA and NOX2 siRNA in the presence of 200µM dRP are shown. Total 

number of tubes was measured with the Angiogenesis Analyzer plugin of ImageJ. 

Representative images (top) and data analysis are shown (bottom). (E-F) Genetic silencing of 

NOX4 in HUVECs does not affect dRP-induced ROS generation increase. Tube formation in 
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response to 200µM dRP by scrambled and NOX4 knockdown cells was measured. Time 

courses in A, B , C and E were analysed by two-way ANOVA (n=4) with Bonferroni post-

hoc test (* = p<0.05, compared to vehicle in A and B or vehicle/scrambled siRNA in C and 

E; ** = p<0.05 compared to dRP in A and B or dRP/scrambled siRNA in C and E). Bar 

graphs in D and F represent quantification of tube number per optical field compared by one-

way ANOVA with Bonferroni post-test (* = p<0.05 compared to vehicle, n = 5). Bar: (D and 

F) 300µm.  

Figure 4. dRP acts intracellularly following its internaliszation by the transporter 

GLUT1. (A) LC-MS detection of intracellular dRP. HUVECs were treated with 200µM dRP, 

before 3 washes in PBS and ultrasonication. Example chromatogram (upper panel) and data 

quantification (lower panel) are shown. Statistical significance was tested by t-test (* = 

p<0.05, compared to vehicle, n=4). (B) STF-31 and fasentin (10µM) inhibited dRP- but not 

VEGF-dependent tube formation. Example pictures (upper panel) and data quantification 

(lower panel) are shown. Bar graphs represent quantification of tube number per optical field 

compared by one-way ANOVA with Bonferroni post-hoc test (* = p<0.05 compared to 

vehicle, n = 5). Bar: 300µm. (C) siRNA-dependent silencing of GLUT1 inhibits dRP-induced 

ROS generation. Following GLUT1 silencing displayed in top panels, ROS was measured as 

described over a period of two hours. Time courses were analysed by two-way ANOVA 

(n=4) with Bonferroni post-hoc test (* = p<0.05, compared to vehicle/scrambled siRNA; ** = 

p<0.05 compared to dRP/scrambled siRNA). (D) siRNA-dependent silencing of GLUT1 

inhibits dRP-induced tube formation. Example pictures for dRP response by HUVECs treated 

with scrambled siRNA or GLUT1 siRNA are shown in top panels. Bar graphs represent 

quantification of tube number per optical field compared by one-way ANOVA with 

Bonferroni post-hoc test (* = p<0.05 compared to scrambled siRNA/vehicle, ** = p<0.05 

compared to scrambled siRNA/dRP, ns = non significant, n = 4). Bar: 300µm. 
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Figure 5. dRP directly activates NOX2. (A) Binding of NOX2 was assessed by pull-down 

using a  mixture of three dRP-biotin conjugates (i). NOX 1, 2, 4, and actin were detected by 

immunoblotting (ii) (4 independent experiments). (B) Membrane fractions treated with dRP 

display NOX activation. NOX-1, 2, 4, Caveolin-1 and β-actin were tested by immunoblotting 

(i). The membrane fractions were treated with 200µM dRP using cytochrome c reduction 

assay. Cytochrome c reduction was measured as absorbance at wavelength 550nm. 1000 

U/mL SOD was utilized to determine the superoxide anion-dependent component, while DPI 

(100µM) was used to determine the role of NOXs and other flavoenzymes (ii). 10µM 

Nox2ds-tat (or scrambled peptide as a negative control) was utilised to assess the role of 

NOX2 in the oxidative response measured by this membrane assay (iii). Data in B  were 

analysed by one-way ANOVA with Bonferroni post-test (* = p<0.05, compared to vehicle 

(ii) or scrambled siRNA/vehicle (iii), ** = p<0.05 compared to dRP (ii) or scrambled 

siRNA/dRP (iii),  n=6).  

Figure 6. dRP induces oxidative stress without significantly increasing apoptosis. (A) 

HUVECs treated with or without 200µM dRP for 4 hours were labelled for 2 h with 20µM 

BIAM in anoxic conditions. Thiol oxidation status was determined by protein separation 

using SDS-PAGE and staining with HRP-streptavidin. Green arrows indicate thiol oxidation, 

whilst red arrows represent thiol reduction. β-actin immunoblotting was used to confirm 

equal loading. Blots are representative of 4 independent experiments. (B) VitaBright-43® 

staining was also utilized to measure the level of intracellular reduced thiols. HUVECs were 

treated with vehicle solution (Tyrode’s HEPES buffer) or stimuli with/without NOX inhibitor 

(200µM dRP, 10µM DPI) for 30 min. Cells were co-stained with VitaBright-43®  and 

propidium iodide and analysed by image cytometry using the NucleoCounter NC-3000® 

system. Plots show VitaBright-43® (VB) intensity versus propidium iodide intensity are 

shown (i). Intracellular thiol oxidation was quantified by counting the % of cells with 
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VitaBright-43® staining below 10,000 rfu (ii). Statistical analysis was performed by one-way 

ANOVA with Bonferroni post-test (* = p<0.05, compared to vehicle, n=6). (B Cell apoptosis 

was measured by flow cytometry for PE-annexin V staining. HUVECs were treated with 

vehicle (Tyrode’s HEPES buffer), 200µM dRP or 5mM diethyl maleate (positive control) for 

12 h. Forward scattering (FSC)/side scattering (SSC) and annexin V staining histograms from 

4 independent experiments are presented  (i). Data analysis is also shown (ii). Data are mean 

± SEM analyzed by one-way ANOVA with Bonferroni post-test (* = p<0.05, compared to 

vehicle, n=6). 

Figure 7. NF-κB is activated in response to dRP. (A) DNA-binding capacity of NF-κB 

(p65 subunit) was determined using TransAM
®

 for NF-κB (Active Motif, cat. no. #43296). 

HUVECs were treated with or without 200µM dRP for 30 minutes. Whole cell extract from 

Jurkat cells stimulated with 12-O-tetradecanoylphorbol-13-acetate and calcium was used as 

positive control. One-way ANOVA with Bonferroni post-test was used to test statistical 

significance (mean ± SEM, n=6, * = p<0.05). (B) The translocation of p65-NF-κB to the 

nucleus was tested by subcellular fractionation using the NE-PER kit (Pierce). Cytoplasmic 

and nuclear fractions were immunoblotted for p65-NF-κB, nucleoporing-p62 (a nuclear 

marker) and β-actin (a cytoplasmic marker). Data are representative of 4 independent 

experiments. (C) NF-κB activation was also investigated by phospho-specific 

immunoblotting. Total cell lysate immunoblotted with phospho-specific NF-κB antibodies 

(Ser468 or Ser536) and total NF-κB antibody (as loading control). Immunoblots represent 4 

independent experiments. (D) Immunolocalisation of p65-NF-κB (green) in dRP-stimulated 

HUVECs (200µM, 1 hour) was also tested. Where indicated, 100nM QNZ, an inhibitor of 

NF-κB activation, was added. 100µM DPI was used as a NOX inhibitor, whereas 50 ng/ml 

TNF-α was utilized as a positive control. Images are representative of 5 independent 

experiments. Bar: (D) 100µm.  
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Figure 8. dRP induces NF-κB activation in a NOX-dependent manner and NF-κB 

activity is critical for endothelial tube formation in response to dRP. (A) Representative 

immunofluorescence images of HUVECs stained for NF-κB (green) and DAPI (blue). Where 

indicated, HUVECs were pre-treated with 10µM Nox2ds-tat peptide for 1 hour or subjected 

to NOX2 and p22phox siRNA-mediated genetic silencing for 72 h prior to treatment with 

200µM dRP for 30 minutes. Images are representative of 4 independent experiments. (B) 

Tube formation was assessed by seeding scrambled and NF-κB siRNA-treated cells onto 

growth factor-reduced Matrigel® with or without 200µM dRP. Representative images show 

tube formation after 4 hours (left) and p65-NF-κB downregulation (right). Bar graphs 

(bottom right) represent quantification of tube number per optical field using ImageJ software 

with Angiogenesis Analyzer plugin (* = p<0.05, one-way ANOVA with Bonferroni post-test, 

n = 5). Bar: (A) 100µm; (B) 300µm. 

Figure 9. VEGFR2 is upregulated in response to dRP in a NF-κB-dependent manner 

and its activity is necessary for dRP-dependent angiogenesis. (A) qPCR analysis of 

VEGFR2 expression on HUVECs treated with or without 200µM dRP for 4 hours. The 2
-∆∆Ct

 

analysis method was used to analyse the data with GAPDH used as normalizer. Statistical 

significance of the difference was tested using non-parametric Mann-Whitney test (mean ± 

SEM, n=4, * = p<0.05).  (B) HUVECs were treated with increasing concentration of dRP 

(2µM to 1mM) for 6 hours. Alternatively, HUVEC were incubated with (C) 100nM QNZ or 

(D) 10µM Nox2ds-tat for 1 hour and then stimulated with 200µM dRP for 6 hours. Cell 

lysates were immunoblotted for VEGFR2 and β-actin. Data are representative of 4 

independent experiments. (E) Effects of VEGFR2 inhibitors Pazopanib and mAB3572 on 

dRP-induced tube formation. HUVECs with or without 200µM dRP were tested in the 

presence of 10 µg/ml Pazopanib and 50 ng/mL mAB3572 antibody. Representative pictures 

in (i) and quantification in (ii). (F) Effects of the NF-κB inhibitor QNZ (100nM) on dRP-
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induced tube formation. Representative pictures in (i) and quantification in (ii). Bar graphs 

represent quantification of tube number per optical field performed using ImageJ software 

with Angiogenesis Analyzer plugin and compared by one-way ANOVA with Bonferroni 

post-test (* = p<0.05, n=6). Bar: (E and F) 300µm. 

Figure 10. dRP stimulates VEGFR2 upregulation and NOX2-deoendent angiogenesis in 

vivo. (A) Representative examples (i) and quantification (ii) of the hematoxylin/eosin staining 

of wound tissue treated with dRP or vehicle control (PBS). Data represent counts of vascular 

structures (surrounded by continuous intimal monolayer) per optic field. Statistical 

significance of the difference was assessed by non-parametric Mann-Whitney test (* = 

p<0.05 compared to vehicle, n = 10). Vascular structures are highlighted by white arrows in 

the picture. (B) Representative examples (i) and quantification (ii) of the VEGFR2-specific 

staining of wound tissue treated with dRP or vehicle control (PBS). Data represent counts of 

high fluorescence intensity areas per mm
2
, as estimated using ImageJ. Statistical significance 

of the difference was assessed by non-parametric Mann-Whitney test (* = p<0.05 compared 

to vehicle, n = 8). (C) Representative examples (i) and quantification (ii) of the hematoxylin 

staining of Matrigel™ plugs containing dRP (41.2µg/plug) or vehicle control (PBS) after 7 

days of implantation in wild type (C57BL6/J) or NOX2
-/- 

(Jackson Laboratories B6.129S-

Cybbtm1Din/J) mice. Data represent counts of capillary structures per mm
2
, as estimated 

using ImageJ. Statistical significance of the difference was assessed by one-way ANOVA 

with Bonferroni post-hoc test (* = p<0.05 compared to vehicle, ** = p<0.05 compared to 

dRP, n=6). (D) Representative examples (i) and quantification (ii) of the DAPI/CD31-

specific staining of Matrigel™ plugs containing dRP (41.2µg/plug) or vehicle control (PBS) 

after 7 days of implantation in wild type (C57BL6/J) or NOX2
-/- 

(Jackson Laboratories 

B6.129S-Cybbtm1Din/J) mice. Data represent counts of capillary structures per mm
2
, as 

estimated using ImageJ. Statistical significance of the difference was assessed by one-way 
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ANOVA with Bonferroni post-hoc test (* = p<0.05 compared to vehicle, ** = p<0.05 

compared to dRP, n=6).Bars: 300µm (throughout). 
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