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height, wave energy period, and the power take-off damping and stiffness
coefficients to the mean absorbed power and maximum displacement. These
values are computed during a time horizon spanning multiple wave cycles,
with data being collected throughout the lifetime of the device so as to train
the networks off-line every 20 time horizons. Initially, random values are
selected for the controller coefficients to achieve sufficient exploration. After-
wards, a Multistart optimization is employed, which uses the neural networks
within the cost function. The aim of the optimization is to maximise energy
absorption, whilst limiting the displacement to prevent failures. Numerical
simulations of a heaving point absorber are used to analyse the behaviour
of the algorithm in regular and irregular waves. Once training has occurred,
the algorithm presents a similar power absorption to state-of-the-art reactive
control. Furthermore, not only does dispensing with the model of the point-
absorber dynamics remove its associated inaccuracies, but it also enables the
controller to adapt to variations in the machine response caused by ageing.
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1. Introduction14

With a possible resource of up to 2.1 TW of power worldwide [1], wave15

energy can become an important future energy resource, thus decreasing so-16

ciety’s greenhouse gas emissions. At the moment, the wave energy industry17

is not mature yet: numerous wave energy converter (WEC) devices have18

been developed, but none has been established as the best design yet. Ref-19

erence [2] provides a thorough review of some of the most promising recent20

technologies. Point absorbers are an established type of offshore WECs [2].21

They comprise of a floating body, whose dimensions are small relative to the22

characteristic wavelength, excited by ocean waves that drive a power take-off23

(PTO) system, which absorbs energy. WECs are envisioned to be installed24

in groups, i.e. wave farms, so as to reap the benefits of economies of scale25

[3]. However, for simplicity we analyse a single, axisymmetric unit subject26

to motions in heave.27

Over the years, various control schemes have been proposed for the max-28

imization of energy absorption of WECs, with [4] and [5] presenting compre-29

hensive reviews of the initial and recent studies in the field. In theory, optimal30

power generation can be obtained through complex-conjugate control, since31

it regulates the system so as to achieve resonance with the incoming waves32

[4]. Nevertheless, this is impractical in reality due to the associated large mo-33

tions of, and loads on, the machine in extreme seas. Thus, alternative control34

strategies have been implemented, which consider physical constraints on the35

motions, forces and power rating of the WEC [3].36

Latching, model-predictive and simple-but-effective control are real-time37

techniques for the control of WECs. With latching control, first developed by38

[6], there is an alternation over a wave cycle of stages when the device is lin-39

early damped and locked in place by the PTO system. Resonance is achieved40

by regulating the duration of each phase [7]. Model predictive control com-41

putes at each time step the force that maximizes energy absorption during a42

future time horizon [8, 9]. Simple-but-effective control applies a force that is43

calculated by fitting a narrow-banded function to the wave excitation force44

[10]. While the scaling of latching control to wave farms poses serious prob-45

lems, [11] have applied model predictive control to multi-body WECs, and46

[12, 13] to an array of three point absorbers. Although these methods include47

limits on the response and loading of WECs, their behaviour is strongly influ-48

enced by the quality of the forecast wave excitation force and of the model of49

the device dynamics [5]. In addition, model predictive control presents a very50
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high computational cost associated with the real-time optimization. Simple-51

but-effective control results in similar power generation to model predictive52

control, but presents a simpler implementation [5].53

An alternative type of control strategies relies on time-averaged sea states,54

thus assuming stationary wave conditions over a prescribed time [3]. With55

reactive control, simulations are run to calculate the combination of PTO56

damping and stiffness coefficients that maximise the generated energy in57

each sea state. Resistive control represents a specific case, where the stiffness58

term is zero. Force and displacement constraints can be included within the59

numerical model and cost function, respectively. While this technique may be60

associated with lower energy extraction than on-line control strategies [13],61

it is less computationally intensive and presents a simple implementation.62

Furthermore, the control scheme can be easily extended to the treatment of63

wave farms, as considered by [3].64

All aforementioned methods are strongly affected by the accuracy of the65

model of the body dynamics they use. For this reason, modelling errors can66

result in a drop in the generated power. Additionally, the control strategies67

cannot adapt to changes in the response of the WEC caused by its ageing,68

with marine biofouling playing a major role. Therefore, in a previous arti-69

cle the authors have developed an algorithm for resistive control based on70

reinforcement learning that learns the optimal PTO damping coefficient in71

every sea state directly from experience [14]. This work has been extended72

to the reactive control of a point absorber with a reaction plate in [15]. In73

contrast to resistive control, reactive control can lead to much higher efficien-74

cies but requires an extension of the search space to two variables, namely75

the PTO damping and stiffness coefficients. For this reason, learning time76

in each sea state can become very long depending on the refinement of the77

discretization of the PTO coefficients. Furthermore, continuous values of the78

control parameters could result in higher efficiencies. Artificial Neural Net-79

works (ANNs) represent an alternative set of machine learning algorithms80

which are popular in the computer science industry. They can yield smooth,81

non-linear function approximations [16] and therefore provide an elegant so-82

lution to the above two problems with reinforcement learning. ANNs have83

been used to provide real-time system identification for WEC dynamics by84

[17] and [18]. Furthermore, [17] have successfully applied the ANNs model85

to the control of the AWS Archimedes Swing WEC.86

Here, ANNs will be applied for the first time to the reactive control of a87

point absorber. Hence, they are employed to map the sea state conditions88
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averaged over a time interval and the applied PTO coefficients to the mean89

power and maximum displacement that occur over the duration of the time90

interval. The resulting mapping will be used to select optimal PTO damping91

and stiffness coefficient at the start of each time interval, once learning has92

been completed. Numerical simulations are run in both regular and irregular93

waves to test the efficiency and convergence properties of the proposed control94

algorithm.95

2. Reactive Control of a Point Absorber96

2.1. System Description97

A point-absorber with an electromechanical PTO is considered, as for ex-98

ample analysed by [19] or proposed by [20]. Removing the hydraulic stage in99

the power conversion process results in an increase in efficiency [20]. Further-100

more, as opposed to direct-drive PTO, the use of smaller, cheaper rotating101

generators is still possible [20].102
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Figure 1: Scehmatic diagram of the WEC with its electromechanical PTO.

As shown in Figure 1, the movement of the float is converted into ro-103

tational motion through a mechanical stage. This mechanism drives a gen-104

erator, which can be of a permanent magnet design as proposed by [20].105

A variable-frequency converter delivers the generated power to the electri-106

cal grid at the requested frequency. The controller controls the generator107

through the machine-side converter in order to maximise energy absorption.108

The grid-side converter keeps a constant DC-link voltage and controls the109

active and reactive power transmitted to the network [21].110

In order to select optimal control actions, the controller requires the heav-111

ing body displacement, z, and velocity, ż, as well as the wave elevation, ζ.112
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While the former two variables are inferred from on-board accelerometers,113

the latter is usually provided by an separate wave buoy for the whole wave114

farm. Furthermore, the generated power P is obtained from the electric PTO115

system.116

2.2. Hydrodynamics Modelling117

The hydrodynamic model has been obtained as in [14]. With the assump-118

tions of small body motions and linear wave theory, it is possible to express119

the response of the point absorber through the superposition of inertial, hy-120

drostatic, radiation, excitation and control forces [22]. Therefore, modelling121

the radiation force according to Cummins [23], it is possible to obtain the122

following time-domain equation of motion of the WEC [24]:123

(M + A3,3(∞)) z̈(t)+

∫ t

0

K3,3(t−τ)ż(τ)dτ+C3,3z(t) = F3(t)+FPTO(t), (1)

with the index 3 expressing heaving motions. M is the float mass, C3,3124

the hydrostatic stiffness coefficient, A3,3(∞) the added mass at infinite wave125

frequency, and K3,3(t) the radiation impulse response function. The panel-126

code WAMIT has been used for their determination. The right-hand side of127

(1) comprises of the sum of the PTO force, FPTO, and the wave excitation128

force, F3. The derivation of (1), as well as a more thorough explanation can129

be found in [25].130

Equation (1) is shown graphically in Figure 2. The radiation force is131

approximated through a state-space system in order to speed up the simula-132

tions. The state-space matrices have been computed as described in [24].133

2.3. Reactive Control134

As can be seen in Figure 2, with reactive control the sum of a damping135

and a stiffness term yields the PTO force [3]:136

FPTO(t) = BPTOż(t) + CPTOz(t). (2)

In electromechanical PTO units, variations in the generator excitation cur-137

rent or the power converter conduction angle result in changes in the PTO138

damping and stiffness coefficients [5], BPTO and CPTO respectively. As we139

deal with BPTO and CPTO directly in this article for simplicity, the method140

may in fact be applied to hydraulic or direct-drive PTO systems as well.141
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Figure 2: Block diagram employed in the computation of the float dynamics.

The control force is actually clipped at ±FMax owing to the physical lim-142

its of the PTO system. In Figure 2, this is represented through a saturation143

block. The calculation of the generated power with reactive control is stan-144

dard [25], and given by [3]:145

P (t) =

{
ηFPTO(t)ż(t) if FPTO(t)ż(t) > 0

FPTO(t)ż(t)/η if FPTO(t)ż(t) ≤ 0
, (3)

with η being the PTO efficiency.146

Including the effects of force saturation, it is possible to maximize the en-147

ergy extraction through the selection of suitable PTO damping and stiffness148

coefficients, which depend on the wave energy period, Te, and the significant149

wave height, Hs. In regular waves, these correspond to the wave period and150

height respectively. Furthermore, the float displacement is to be bounded to151

|z| < zMax so as to avoid structural damage in highly energetic waves. This152

means that the buoy should be prevented from reaching the end stops of the153

mechanical system, with the limits derived during the design stage. Hence,154

the optimal PTO damping and stiffness coefficients, BPTO,opt and CPTO,opt155

respectively, need to be chosen so that they maximise the generated power,156

while abiding by the displacement constraint.157
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At the moment, the state-of-the-art approach for reactive control is to158

pre-calculate BPTO,opt and CPTO,opt for a set of discrete sea states, generating159

a matrix. The simulations are run using a time-domain model similar to the160

one described here in order to account for the force saturation. Once the161

point absorber is at sea, the controller meets the PTO coefficients associated162

with the encountered sea state through the power electronics. However, this163

technique suffers from modelling errors, and it cannot recognized changes in164

the WEC dynamics caused by its ageing.165

3. ANN-based Reactive Control of WECs166

In order to obtain a model-free control with a continuous search space, the167

authors propose to use ANNs to learn from experience the mapping between168

the mean absorbed power and the maximum PTO displacement, and the169

sea state and the PTO damping and stiffness coefficients. This corresponds170

to system identification. However, rather than being on-line as in [17, 18],171

due to their statistical nature these parameters are computed from the data172

collected over a number of wave cycles based on the observation that the173

energy content of waves changes with wave groups [26]. In particular, the174

length of the time interval or time horizon is selected to be long enough to175

ensure the full decay of transient effects associated with a change in PTO176

coefficients. As a result, the coefficients from previous time intervals do not177

greatly affect the data in the current interval so that simpler feedforward178

ANNs can be used instead of autoregressive and local recurrent ANNs [16].179

Hence, in order to train the ANNs, values of Hs, Te, BPTO, CPTO, the180

mean absorbed power, Pavg, and max z are collected for each time horizon181

throughout the operation of the device, as entries of the training vector.182

The estimates for Pavg and max |z| can be expressed through the functions183

f (Hs, Te, BPTO, CPTO) and g (Hs, Te, BPTO, CPTO) respectively. The trained184

ANNs will then be fed to optimization functions in order to find the optimal185

PTO damping and stiffness coefficients for every new time horizon based on186

the forecast sea state conditions.187

3.1. Application of ANNs to the Reactive Control of WECs188

ANNs are a class of supervised learning algorithms [16]. Taking inspira-189

tion from their biological equivalent, they present a network of interconnected190

nodes, or neurons. Each neuron is a computational unit that maps input to191

output values. By combining multiple neurons in a number of layer, so that192

7



the output of the neurons in one layer becomes the input to the neurons in193

the next layer, ANNs can be used to fit non-linear functions with a large194

number of input values.195

As aforementioned, in this work ANNs are employed in order to map the196

mean generated power and the maximum displacement at the PTO to Hs, Te,197

BPTO and CPTO. This is achieved through a multi-layer, feedforward ANN198

with two output variables: Pavg and max |z|.199

In order to select a suitable size for the ANN, a preliminary study was200

conducted to assess the performance of possible network configurations in es-201

timating the mean absorbed power (hence, ignoring max |z| and reducing the202

number of output variables to one). In particular, a single hidden layer with203

5, 10, and 100 neurons, and two hidden layers with 5, 10 and 25 neurons each204

have been considered. For each configuration, 25 cases have been generated205

as the combination of 5 different random initializations of the weight matri-206

ces [27] and 5 training and test datasets. In fact, a single training dataset207

has been sampled from simulations in irregular waves for the sea states in208

Table 1, which has also been used to pre-initialize the ANN-based control209

in Section 4.3. According to standard practice with ANN training [27], the210

whole set has been subdivided into the five distinct training and test sets211

by randomly reordering it, and each time selecting the first 250 points for212

the test set (about 10%) and the remaining 2239 samples for the training213

set (approximately 90%). For each case, the ANN has been trained using214

the training samples, and then used to estimate Pavg for the test set. The215

mean square error between the prediction and the actual mean generated216

power value has been calculated, as well as the overall computing time re-217

quired for the ANN implementation described below. Afterwards, the mean218

and standard deviation of these values have been computed for each network219

configuration, and plotted in Figure 3.220

From Figure 3, it is clear that the decision on the size of the ANN should221

be based on a compromise between performance and accuracy. On the one222

hand, denser networks result in greater memory requirements and computa-223

tional cost, as shown in Figure 3a. In particular, it is interesting to notice224

that the configuration with two hidden layers with 10 neurons each, which225

contains a total of 100 connections between the two hidden layers, presents a226

much lower computational cost than a single layer with 100 neurons, mainly227

due to implementation reasons. On the other hand, the deeper the network,228

the greater the number of features that can be matched from the original229

function; similarly, the greater the number of neurons, the more complex230
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(a)

(b)

Figure 3: Mean central processing unit (CPU) time (a) and mean square error (MSE) (b)
associated with the prediction of the mean generated power for different ANN configura-
tions in terms of hidden layers and neurons for 5 weight initializations and 5 training and
test sets. The upper bar corresponds to the sum of the mean value and half the stan-
dard deviation, while the lower bar to the minimum value of all cases in order to prevent
negative values.

the fitted function shape [16]. An example is the lower mean square error231

associated with the configurations with 10 neurons as compared with those232

with 5 in Figure 3b. Nevertheless, an excessive number of neurons can result233
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in overfitting the input data [27], i.e. fitting the random noise in addition234

to the underlying relationship, which is highly undesirable since the ANN is235

expected to generalise the shape of the Pavg and max |z| curves. In Figure236

3b, this evidently occurs for a single hidden layer with 100 neurons and two237

hidden layers with 25 neurons each. Although a single hidden layer seems238

to perform best, this preliminary study has been carried out on a relatively239

small dataset, considering only a limited number of sea states. Therefore, it240

has been preferred to use a configuration with two hidden layers each with241

10 neurons in order to represent the possible extra features associated with242

the additional sea states. Additionally, this results in only a minor increase243

in computational time. Similar results are obtained from the mapping of the244

maximum displacement.245

A schematic diagram of the feedforward ANN can be seen in Figure 4.246

The network presents an input layer with 4 neurons (one for each input247

variable), two hidden layers with m = 10 and n = 10 neurons each, and an248

output layer with two output variables. Furthermore, it is possible to see that249

the input and hidden layers have an additional bias term, which is required250

to find the intercept of the fitted functions at each stage in the ANN [27].251

Each layer l presents input and output variables, which are expressed as xl252

and yl respectively in vector notation. The input variables correspond to y1,253

while the output to y4. The signal between each two matrices is multiplied254

by weight matrices Wi, with i = 1, 2, 3. The weight matrices for the bias255

terms are represented as bi.256

Given the input data for one training example, y1, it is possible to obtain257

y4, the ANN estimate for the output by propagating the signal from one layer258

to the next one. Using this technique, known as forward propagation, the259

input and output vectors of each layer l = 2, 3, 4 can be computed for each260

training point in matrix notation, which is convenient from a programming261

perspective, as follows [27]:262

xl = Wl−1yl−1 + bl−1, (4)

yl = el(xl). (5)

In (5), el denotes the activation function of the neurons in each layer. Figure 4263

shows that the two hidden layers use the tanh activation function, while the264

output layer presents a linear activation function. The hyperbolic tangent is265

a standard smooth, non-linear activation function, which is superior to the266

sigmoid function, as its output is zero-centred [16]. As described in [16], for a267
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Figure 4: Schematic diagram of the feedforward ANN for the approximation of the mean
generated power or maximum PTO displacement.

small number of layers, as in this case, tanh is preferred over rectified linear268

units, which are standard in deep learning. The linear activation function is269

employed in the output layer in order to return a real value, not bounded270

within ±1 as would be the case if tanh had been used instead.271

The mapping between input and output is dictated by the weights of the272

ANN [16]. Hence, learning can occur by tuning these parameters based on273

the training data so as to minimize an objective function, which is a measure274

of the error between actual and predicted output. In order to update the275

weight matrices, it is necessary to calculate a gradient matrix that indicates276

the change in the error due to a change in each weight. The gradient matrices277

are computed by propagating the error signal, or sensitivity, sl, from the278

output layer to the input layer in a process known as backpropagation [27]:279

s4 = − (ytr − y4)� ė4(x4)

sl =
(
W T

l sl+1

)
� ėl(xl)

, (6)

where � indicates the Hadamard, or element-wise, product, and ėl the first280

derivative of the activation function of each layer. ytr indicates the exact out-281

put of each training sample, i.e. the variables the ANNs should fit. Therefore,282
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ytr =
[
Pavg max |z|

]T
. The change in the weight matrices is given by [27]:283

∆Wl = sl+1y
T
l , (7)

∆bl = yl. (8)

The equations above are used if the ANNs are trained using one training284

sample at a time, such as when the simple gradient descent scheme is applied285

[27]. Nevertheless, batch-mode training, i.e. employing multiple training286

samples at a time, is much more efficient. For this reason, the highly efficient287

Levenberg-Marquardt backpropagation training algorithm has been adopted288

instead [27]. A detailed explanation of the method, including the necessary289

extra equations, can be found in [28, 27] in matrix notation. The implemen-290

tation within the Mathworks neural networks toolbox has been used in this291

work, with the default settings.292

It is important to notice that the input variables, i.e. Hs, Te, BPTO and293

CPTO, need to be normalized through their mean and standard deviation294

before being fed to the ANNs for training. Furthermore, the mean power295

values have also been normalized with respect to the maximum (for positive296

values) and minimum (for negative values). This has been necessary because297

the points lying on the BPTO = 0 boundary of the search space presented298

excessively high negative power values that seriously affected the quality of299

the function fit.300

3.2. Multistart Optimization301

At the start of every new time horizon, the controller should select the302

PTO damping and stiffness coefficients that will result in maximum energy303

extraction for the predicted sea state during the horizon, in compliance with304

the constraint on the PTO displacement. This is clearly a non-linear opti-305

mization problem, since both Pavg and max |z| are non-linear functions of Hs,306

Te, BPTO and CPTO. In addition, the values of the PTO damping and stiff-307

ness coefficients must be bounded within sensible values, so that the problem308

is constrained as well.309

By removing the dependence on the significant wave height and wave310

energy period from functions f and g due to space limitations for display311

purposes, the cost function can be expressed at the start of each new time312

horizon h as follows:313

c(h) =

{
−f (BPTO, CPTO) if |g (BPTO, CPTO) | ≤ zMax

+1 if |g (BPTO, CPTO) | > zMax

(9)
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subject to:
Bmin ≤ BPTO ≤ BMax, Cmin ≤ CPTO ≤ CMax.

The values of the maximum and minimm allowable PTO damping and stiff-314

ness coefficients can be derived using accurate, non-linear models during the315

design stage in order to prevent damage to the generator in the most energetic316

sea states likely to be encountered, where the buoy velocity and displacement317

are highest.318

Genetic and other nature-inspired algorithms have been extensively used319

recently for the solution of non-linear optimization problems that present320

multiple minima, as in this case [29]. Nevertheless, in this work, a strong321

emphasis is given to performance, since the optimization needs to be repeated322

at the start of each new time interval. For this reason, it has been preferred323

to use the Multistart algorithm [30]. This technique consists in generating324

a number of start points, sampled randomly within the BPTO, CPTO search325

space. Although convergence is not assured, a large number of starting points326

greatly increase the chances. A value of 100 starting points has been selected327

for this reason. From each point, an optimization is run using a non-linear,328

constrained programming solver. In particular, the Mathworks functions329

MultiStart and fmincon have been used respectively. The main advantage of330

this technique over alternative methods, such as global search, is its simple331

parallel implementation, which can result in large savings in computational332

time. For instance, one Multistart optimization using the cost function in (9)333

takes 8.62 s on a quad-core, i7 computer with 16GB RAM, whereas a global334

search takes 29.20 s. A greater number of cores and an implementation335

in a lower-order language, such as C or Fortran, can result in even greater336

computational savings.337

3.3. Algorithm338

Figure 5 shows the algorithm for the ANN-based reactive control of the339

point absorber described in this article. As aforementioned, a time-averaged340

approach is used, where new values of BPTO and CPTO are selected at the341

start of every new time horizon h and applied throughout its duration D(h).342

On the one hand, a longer duration is preferable for the power averaging and343

sea state statistical analysis so as to produce less noisy training data. On the344

other hand, a shorter time span can result in faster training. Furthermore,345

the controller would be able to track changes in the sea state on a smaller346

time scale, thus moving towards real-time control and possibly higher energy347
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extraction. For these reasons, D(h) = 20Te(h) has been chosen in both348

regular and irregular waves.349

Train ANNs using the vector of training 
points and update 
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N(s)>Ni
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Figure 5: Flow chart of the ANN-based reactive control of a point absorber.

As can be seen from Figure 5, the first step in every time horizon is to350

predict the significant wave height and energy wave period during the time351

interval. Different approaches have been proposed for this problem, with352

example methods being Kalman filters, deterministic sea wave prediction353

[31], autoregressive models [32], and even ANNs [33]. Although these studies354

analyse the wave elevation, which is forecast with accuracy only 15 s into355

the future, it is assumed that similar strategies can be found for the forecast356

of the statistical wave conditions for one time horizon. For simplicity, in357

this initial work the actual values for Hs and Te have been used, since the358

wave traces employed in the simulations are known in advance. Hs(h) and359

Te(h) are then used to update the count of the number of observations in360
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the current discrete sea state, s. For this purpose a table, N , is employed,361

with an entry for each discrete sea state with ranges of 1 m and 1 s for each362

dimension respectively.363

During the first Ni visits to each discrete sea state, the values of the364

PTO damping and stiffness coefficients are selected randomly to ensure initial365

exploration. Once N (s) > Ni, the Multistart optimization can be run using366

the cost function in (9) in order to find the optimal coefficients, BPTO,opt and367

CPTO,opt, for the forecast significant wave height and energy wave period.368

However, the ANN estimates f and g can be very inaccurate initially. For369

this reason, BPTO and CPTO are in fact selected randomly within a region370

around the optimum that shrinks with the number of data points collected371

in the sea state:372

BPTO = BPTO,opt + ∆BPTO, (10)

where373

∆BPTO = (r − 0.5) · range(BPTO) · 0.9N(s)−Ni , (11)

with r = [0, 1] a random number. The same applies to CPTO. Upper and374

lower bounds are used to ensure the chosen values lie within the desired375

range. As more data points are collected in the optimal region, the accuracy376

of the ANN fit increases.377

Once BPTO and CPTO are chosen and applied, measurements are em-378

ployed to compute the mean absorbed power, maximum PTO displacement379

and actual Hs(h) and Te(h) during the time interval. These values are in fact380

calculated using the data only after an initial time of 8Te(h) within the cur-381

rent horizon h in order to exclude the initial transient effects. This relatively382

long time also ensures that the time required for the Multistart optimization383

does not become an issue. Once the desired values are obtained, they are384

stored in memory as a data sample so that they can be used for training the385

ANN.386

The ANN is trained every Nh = 20 time horizons, employing 90% of387

training points. The remaining 10% of the samples is used for validation and388

hence to check the quality of the fit. Each sample presents Hs, Te, BPTO,389

CPTO as input, and Pavg and max |z| as output. The larger the number390

of training points, the less the risk of overfitting the data and the more391

accurate the estimates of the ANN. However, this will also cause an increase392

in training time and, more importantly, it may result in an excessive memory393

requirement. Therefore, for a practical application, it is expected that the394

number of training points will be limited to a large number, say 106. Care395
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will be needed in order to ensure that a similar number of data points is kept396

for each discrete sea state when overriding old data with new readings, as397

well as to explore a broad range of BPTO and CPTO values so as to aid the398

training of the ANN.399

4. Simulation Results400

4.1. Simulation System401

The proposed algorithm has been tested using the same point absorber402

as in [22] and [14]: a floating vertical cylinder with 5-m radius and 8-m403

draught. Deep water is assumed in the determination of the hydrodynamic404

coefficients, with the radiation approximation state-space vector presenting405

five entries as in [14]. Similarly, the hydrodynamic model in Fig. 2 has been406

arranged in a state-space system and discretized using a first-order accurate407

Euler scheme, with a sampling time of 0.1 s. The same PTO force saturation408

and float displacement limits of 1 MN and ±5 m respectively have also been409

adopted, as well as a PTO efficiency of 75%.410

Figure 6 shows graphically the the program used for the simulation of the411

WEC. Instead of sensors installed on a wave buoy, in the simulations a wave412

model provides the wave elevation record as in [14], as can be seen in Figure 1.413

For irregular waves, the wave elevation is computed as the superposition of414

multiple individual wave components, whose amplitude is derived from the415

specified wave spectrum [26]. A value of 0.005 rad/s has been selected for416

the circular wave frequency step, since this value is smaller than the Nyquist417

frequency for a 15-minute window so as to prevent a repetition of the wave418

trace [34]. Therefore, each trace of irregular waves is generated as the com-419

bination of 15-minute-long time series, where the random number generator420

is initialized with a different seed for each component. In order to smooth421

the connection between the separate traces, a 20-point filter is employed over422

the last and first of each consecutive time series. The wave elevation time423

series has a dual purpose: on the one hand, it is used to establish Hs and Te424

in each time horizon [26]; on the other hand, the convolution integral of the425

wave elevation and diffraction impulse response function produces the wave426

excitation force [35].427

The search space has been limited to within Bmin = 0 and BMax =428

2 MNs/m, and Cmin = −1 MN/m and CMax = 0 for the PTO damping429

and stiffness coefficients respectively. A wider search space has been selected430

for the PTO damping coefficient in order to prevent damage in large waves,431
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Figure 6: Flow chart of the program used in the simulations of the point absorber.

when greater damping and no stiffness are required. Nevertheless, the larger432

the search space, the longer the learning time; hence, an excessive search433

space needs to be avoided.434

For the first 15 minutes of the simulations, no control force is applied in435

order to let the system dynamics settle. For this reason, all wave traces are436

in fact generated with an extra 15-minute interval at the start.437

4.2. Results in Regular Waves438

In regular waves, a 6-hour-long wave trace with unit amplitude and a439

wave period of 8 s has been analysed. As can be seen in Figure 7a and440

Figure 7b, the ANN-based algorithm learns successfully the optimal PTO441

damping and stiffness coefficients respectively. In particular, the optimal442

values (dotted lines) have been obtained with a Multistart optimization using443

a wave trace lasting 20 minutes and the analysed WEC model. Figure 7c444

shows the difference in the mean power generated with ANN-based control445

and state-of-the-art reactive control, where Pavg,opt = 176.24 kW. A value of446

Ni = 40 has been used.447

4.3. Results in Irregular Waves448

In irregular waves, even within a single sea state, the significant wave449

height and wave energy period do vary, if they are measured within a short450

time interval like 20Te. Since reinforcement learning in [14] and [15] em-451

ploys discrete states, it was possible to show the convergence behaviour of452

the algorithm in one sea state only. Conversely, the accuracy of ANNs is453

greatly improved and the effects of overfitting greatly reduced the wider the454

range of their samples [27] and thus the wider the range of sea conditions.455

For this reason, the proposed ANN-based reactive control algorithm is run456

for the 9 wave traces shown in Table 1. Each wave time series is generated457
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(a)

(b)

(c)

Figure 7: PTO damping (a) and stiffness (b) coefficients obtained from the ANN-based
control as compared with the optimal value in regular waves with Hs = 2 m and Te = 8 s.
(c) shows the difference in the corresponding mean generated power.

with a Bretschneider spectrum (thus, broad-banded) [26] and lasts 3 hours.458

Although these wave traces have been simulated independently due to com-459

putational constraints, they should be treated as a continuous, time series460

where 9 independent sea states are observed in the order provide in Table 1,461

with a value of Ni = 120 being used. In particular, for each wave trace the list462

of samples is initialized with the values observed in the previous runs. The463
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series of a sea states is repeated another time but with a different seed num-464

ber to the random number generator for a total wave trace with an overall465

duration of 54 hours (excluding the 15 minutes required for the initialization466

of each wave trace).467

Table 1: Significant wave height, energy wave period and duration of the wave traces used
for the analysis of the ANN-based control in irregular waves.

[!h] Hs (m) 2 1 1 1 2 2 3 3 3
Te (s) 8 8 9 10 9 10 10 9 8
duration (hr) 3 3 3 3 3 3 3 3 3
no. repetitions 2 2 2 2 2 2 2 2 2

The learning behaviour of the proposed ANN-based reactive control algo-468

rithm in irregular waves is displayed in a compact way in Figure 8. The figure469

shows the controller performance for the first wave trace, i.e. Hs = 2 m and470

Te = 8 s. In particular, the very first run (when the list of samples is empty at471

the start) is shown with dotted lines and labelled as ”initial”, since learning472

has just been initialized. The system is simulated in the same wave condi-473

tions again after the control has been applied for 54 hours in the wave traces474

shown in Table 1. The corresponding performance is shown with continu-475

ous lines in Figure 8 and labelled as ”trained”, since learning has completed476

by then with a large number of samples being available for the training of477

the ANN. Furthermore, in this case the exploration rate has almost fully478

decayed, as the discrete sea state has already been experienced for 6 hours.479

Additionally, the optimal value for the PTO coefficients and the correspond-480

ing absorbed energy is calculated running a MultiStart optimization of the481

WEC model in the same wave trace.482

5. Discussion483

5.1. Regular Waves484

As shown in Figure 7, the ANN-based algorithm learns the optimal PTO485

damping and stiffness coefficients in regular waves within 4 hours after being486

randomly initialized. In the figures, it is possible to recognize three dis-487

tinct regions: an initial region where completely random actions are selected488

(N (s) ≤ Ni), a section where random actions are taken around the expected489
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(a)

(b)

(c)

Figure 8: PTO damping (a) and stiffness (b) coefficients adopted by the ANN-based
control at the start and after 54-hours of training in the wave conditions shown in Table 1
in irregular waves with Hs = 2 m and Te = 8 s. Additionally, (a) and (b) display the
results of state-of-the-art reactive control. The corresponding curves for the absorbed
energy are plotted in (c).

optimum within a shrinking range (until 0.9N(s)−Ni → 0), and a final part490

where convergence has been reached. Within this last region, it is interesting491

to notice three random points (after approximately 5.5 hours). These are492

caused by the Multistart algorithm converging towards the wrong local opti-493

mum in the corresponding time horizons. This is a possibility that needs to494
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be taken into account when designing the control for an actual device, with495

its probability decreasing with the number of starting points. Nevertheless,496

the low computational cost means this optimization method is still preferred497

over global search or genetic algorithms. Oddly, the three random points also498

provide the ANNs with the missing training points for perfect convergence499

to the optimal PTO coefficients.500

It should be noted that the ANN-based algorithm presents faster learning501

than reinforcement learning, which requires approximately 6 hours in regular502

waves with resistive control and 8 hours with reactive control in [14] and [15],503

respectively.504

5.2. Irregular Waves505

The convergence of the algorithm to the optimal PTO coefficients in ir-506

regular waves is shown by the ”trained” lines in Figure 8. Oscillations in507

the values obtained with the ANN-based control are due to changes in wave508

conditions over the smaller time scale of 20Te. The energy absorption is al-509

most identical to state-of-the-art reactive control applied using the optimal510

coefficients for the WEC model in this wave trace.511

In this case, the comparison in learning performance between reinforce-512

ment learning and ANNs is harder to understand. At first sight, 54 hours513

may seem like a very long learning time. However, this corresponds to 6514

hours of learning time per discrete sea state, which is less than the 10 hours515

required by reinforcement learning in a single sea state of irregular waves for516

resistive control in [14]. Once a sufficient number of points is obtained, the517

ANN can generalise the information to unseen sea states, thus further reduc-518

ing the learning time as compared with reinforcement learning with discrete519

states. In addition, the convergence time should be assessed in the context520

of the lifetime of a WEC, which is expected to be 20 to 25 years long [25].521

In this work, discrete sea states have been analysed, each lasting 3 hours522

due to practical issues with the code implementation. In reality, the energy523

content in waves changes uniformly in time (hence, not through discrete sea524

states), with the duration of a typical sea state being 0.5 to 6 hours [26].525

Since Pavg and max |z| can be considered to be purely dependent on the526

values of BPTO, CPTO, Hs and Te in the current time interval, the samples527

of the ANN are independent of past data. Therefore, the algorithm can be528

safely applied to realistic, continuously varying wave conditions. In fact,529

the quality of the mapping provided by the ANN is expected to improve in530

continuously varying sea states, which result in a broader range of samples531
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[27]. Furthermore, under realistic wave conditions, the ANN-based reactive532

control is expected to result in higher energy absorption than state-of-the-533

art reactive control, since the latter uses a look-up table with discrete sea534

states, thus being less responsive to changes in wave energy over a shorter535

time scale. Additionally, the ANN-based method can adapt to changes in536

the device dynamics with time, e.g. due to marine growth.537

5.3. Practical Considerations538

Although ANNs are a supervised learning strategy, they are employed539

here in an approach reminiscent of reinforcement learning, which is unsu-540

pervised, and that entails exploration. This may result in damage to and541

even failure of the device if explorative negative actions are selected at the542

wrong time, e.g. a high PTO stiffness coefficient with low damping in highly543

energetic waves. Strategies that rely on explorations suffer from this prob-544

lem, but the ANN-based control is more affected than reinforcement learning545

because:546

• reinforcement learning [15] makes a step change in the PTO coefficients547

at the start of each interval. Hence, it is difficult to encounter highly548

negative situations, since the algorithm corrects the PTO coefficients549

as soon as it starts receiving negative feedback on the actions it has550

selected in that particular sea state. Conversely, the proposed ANN-551

based method is able to explore the whole search space during the first552

observations of a particular discrete sea state.553

• the quality of the mapping produced by the ANN is improved for a554

wider range of samples. Hence, in order to improve the training process,555

the algorithm is incentivized to explore most combinations of the PTO556

coefficients in each sea state.557

In order to prevent failure or damage to the WEC, two practical possibilities558

should be investigated:559

• initializing the ANN with samples pre-generated using accurate, non-560

linear models of the WEC. In particular, simulations should be run561

using extreme values of the PTO coefficients so that once the algorithm562

is applied on the real-device, the Multi-Start optimization should home563

in onto the optimal conditions rather than risk selecting extreme control564

settings.565
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• an alternative approach consists in initially applying state-of-the-art566

reactive control with the look-up table approach and slowly changing567

the PTO coefficients in each sea state. The collected data will be then568

employed for the training of the ANN, and then the proposed algorithm569

will be applied. This process is designed to remove the exploration stage570

from the presented scheme, focusing only on the supervised nature of571

ANN algorithms.572

At the moment, exact knowledge of the values of Hs and Te during the573

following time horizon is assumed. In practice, errors will be associated with574

the estimation method [31, 32, 33]. Nevertheless, including information on575

the expected future wave excitation is a fundamental tool for the control576

of WECs in order to try to achieve optimal performance [5]. This is a fur-577

ther improvement over the reinforcement learning algorithm proposed in [15],578

since the study assumed the wave height and period to be identical between579

neighbouring horizons.580

As compared with reinforcement learning, the selection of the control ac-581

tion with the proposed method requires greater computational power. Never-582

theless, an on-line implementation is completely feasible with modern hard-583

ware and parallel computing. As described in Section 3.3, the control strategy584

consists in two main stages. On the one hand, the weight of the ANNs are up-585

dated every 20 algorithm steps, using all training points (at most, say, 106).586

This process occurs off-line, with the older weights not being overwritten on587

the memory until the new ones are ready, so that computing time is not an588

issue. On the other hand, at every time step, a new training point is collected589

(minimal computation effort), and a new action is selected through the Mul-590

tistart optimization. This process is speeded up through parallel processing,591

and possibly an implementation in a low-order computational language, e.g.592

C. As described in Section 3.2, one optimization using the current simulation593

in Matlab and a quad-core i7 computer with 16 GB RAM takes less than 9 s.594

This period is less than 10% of the minimal expected time horizon duration,595

namely 100 s for a 5-s wave energy period, which is the smallest encountered596

in typical sea states [26]. Hence, computation efficiency is not critical in this597

case, since the rate of change of the plant is much slower than that of the598

control algorithm.599

Real-time strategies are more efficient than time-averaged methods for the600

control of WECs [5]. Hence, although machine learning schemes are interest-601

ing due to their model-free approach of the WEC control problem, they will602
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need to be applied in real-time in order to compete with model-predictive603

control. The application of real-time system identification with ANNs to604

real-time strategies, such as model predictive control, will be investigated in605

the future.606

6. Conclusion607

In this article, an on-line, model-free strategy has been developed for608

the reactive control of WECs using ANNs. The aim is to maximise energy609

absorption, whilst limiting the PTO displacement to prevent failure in ener-610

getic sea conditions. A simple model of a point absorber has been employed611

to analyse the behaviour of the algorithm. Firstly, regular waves show that612

the strategy learns rapidly the optimal PTO damping and stiffness coeffi-613

cients because of their periodicity. A longer convergence time is necessary in614

irregular waves, since the ANNs require a greater number of training sam-615

ples in order to learn the mapping between the mean absorbed power and616

PTO displacement, and the significant wave height, wave energy period, and617

the PTO damping and stiffness coefficients. Nevertheless, this ensures the618

scheme can recognize variations in the wave conditions on a shorter time619

scale than state-of-the-art reactive control, which uses discrete sea states.620

Furthermore, implementation on a full-scale WEC is simple, as the tech-621

nique is independent of models of the machine dynamics. More importantly,622

this method is able to treat changes in the device response as the structure623

is affected by marine biofouling.624
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