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ABSTRACT	  60	  
Amazon forests are fire-sensitive ecosystems and consequently, fires affect forest structure and composition. For 61	  
instance, the legacy of past fire regimes may persist through some species and traits that are found due to past 62	  
fires. In this study, we tested for relationships between functional traits that are classically presented as the main 63	  
components of plant ecological strategies and environmental filters related to climate and historical fires among 64	  
permanent mature forest plots across the range of local and regional environmental gradients that occur in 65	  
Amazonia. We used percentage surface soil pyrogenic carbon (PyC), a recalcitrant form of carbon that can 66	  
persist for millennia in soils, as a novel indicator of historical fire in old-growth forests. Five out of the nine 67	  
functional traits evaluated across all 378 species were correlated with some environmental variable. Although 68	  
there is more PyC in Amazonian soils than previously reported, the percentage soil PyC indicated no detectable 69	  
legacy effect of past fires on contemporary functional composition. More species with dry diaspores were found 70	  
in drier and hotter environments. We also found higher wood density in trees from higher temperature sites. If 71	  
Amazon forest past burnings were local and without distinguishable attributes of a widespread fire regime, then 72	  
impacts on biodiversity would have been small and heterogeneous. Alternatively, sufficient time may have 73	  
passed since the last fire to allow for species replacement. Regardless, as we failed to detect any impact of past 74	  
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fire on present forest functional composition, if our plots are representative then it suggests that mature Amazon 75	  
forests lack a compositional legacy of past fire.	  76	  
Key-words: fruit type; wood density; fire; soil charcoal; climatological water deficit; temperature, elevation.	  77	  
	  78	  
  79	  
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INTRODUCTION	  80	  

Throughout global tropical forests, fire is now often used to facilitate broad-scale clearing of the rain 81	  

forest frontier. Although there is little understanding about the scale and frequency of past fires, historical fires 82	  

may have been more localized than today, with anthropogenic fires used for opening and maintaining gaps for 83	  

agriculture, hunting and gathering, and perhaps influencing plant succession through management of secondary 84	  

vegetation (Barton et al. 2012, McMichael et al. 2012, Watling et al. 2017) and with natural fires coinciding with 85	  

the driest periods of Amazonian history (Bush et al. 2008). Charcoal records suggest fire return intervals on the 86	  

order of 200-1,000 yrs during the Holocene and occurring as recently as 250-390 yrs before present in some old-87	  

growth moist Amazonian forest (Sanford et al. 1985, Turcq et al. 1998, Urrego et al. 2013). Climate 88	  

reconstructions indicate Amazon-wide drying occurred at frequent multi-year intervals over the last 10,000 years 89	  

(Moy et al. 2002), likely modifying fire-patterns. The presence and importance of fires in natural forests soils of 90	  

the Amazon Basin may be indicated through soil pyrogenic carbon (PyC), produced by the incomplete 91	  

combustion of organic matter, and which can persist in soils for millennia (Bird et al. 2015). Koele et al. (in 92	  

review) estimated PyC for Amazonian forests to be 1.10 Pg (ha-1) over 0-30 cm soil depth, about ten times larger 93	  

than previously estimated by Bird et al. (2015). Fires occurring over the past few decades in the Amazon have 94	  

resulted in substantial effects on forest dynamics and structure (Barlow and Peres 2008). However, there is little 95	  

information about whether fire caused by climate variation and/or past human occupation in Amazon has had 96	  

substantial legacy effects on present-day forest structure, composition and functioning.	  97	  

 Hardesty et al. (2005) classified the Amazon region as a fire-sensitive ecosystem, which is damaged by 98	  

fire that disrupts ecological processes, kills many individuals, or even eliminates species that have not evolved 99	  

under this selective force. Undisturbed moist forest rarely burns (Uhl et al. 1998); however, forests that have 100	  

burned once are more likely to burn again (Cochrane et al. 1999). The widespread historical impact of humans 101	  

and fire on Amazonian forests is widely debated (McMichael et al. 2012) and remain entirely unaccounted in 102	  

many influential studies (McMichael et al. 2017). Thus, even if fires were not a frequent environmental filter in 103	  

these forests, they might have assembled species with a restricted range of functional traits related to fire in 104	  

current forests, as has occurred in savannas (Dantas et al. 2013), making the forests more resilient to recent 105	  

burning or to recent dry periods than previously thought. As a result of this environmental filter (fire), the 106	  

structure, species composition, and functional traits (any attribute that has potentially significant influence on 107	  

plant establishment, survival, and fitness: Reich et al. 2003) of forests of the Amazon Basin may have changed 108	  
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dramatically with time. Thus, studying these traits is fundamental, as they can provide a mechanistic basis for 109	  

understanding how ecosystems function (Cadotte et al. 2015) and, specifically in this study, whether these traits 110	  

can potentially reveal how the Amazon Basin forest community relates to fire and climate. 	  111	  

Determining the causative forces shaping contemporary forest composition faces methodological 112	  

challenges. Determining the date of the last fire in old-growth forests through AMS Radiocarbon methods can be 113	  

cost prohibitive. And, fire can co-vary with climate, which can affect forest structure, composition, and 114	  

dynamics (Esquivel-Muelbert et al. 2016, Feldpausch et al. 2011, Marimon et al. 2014).  Previous studies 115	  

evaluating whether fire is an evolutionary pressure shaping plant traits suggested that it may not always be 116	  

possible to distinguish between traits that are adaptations originating in response to fire or exaptations 117	  

originating in response to other factors (Bradshaw et al. 2011, Keeley et al. 2011). Thus, we must stress here that 118	  

we do not intend to separate fire traits from aridity or soil infertility traits as it is difficult to unambiguously 119	  

isolate fire effects from these other influences.	  120	  

 Dry-vegetation and fire-prone species, which appear to invest more in fire-resistance, have a 121	  

preponderance of dry and small seed species and seasonal fruiting phenology, contrasting with rain forests 122	  

species that have mainly larger, fleshy fruits and aseasonal seed dispersal (Vieira and Scariot 2006). Other 123	  

authors contrasting savanna and forest vegetation have shown that leaf traits (larger leaves in forest species: 124	  

Hoffmann et al. 2012) and tree height (higher in forest species: Hoffmann et al. 2003), as well as wood density, 125	  

are, or could be, fire- or disturbance- related traits (Cianciaruso et al. 2012, Lucena et al. 2015). The few studies 126	  

that have compared species traits across Amazonian sites commonly attribute differences in some traits to 127	  

climatic and soil variations. For example, Malhado et al. (2015) showed Amazonian trees with smaller seeds 128	  

occurring more frequently in transitional or seasonal forests, and genera with larger seeds more associated with 129	  

climatically stable rain forests (low seasonality in temperature and precipitation). Quesada et al. (2012) found 130	  

that basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with 131	  

variations in wood production mostly related to soil phosphorus status.	  132	  

Understanding the disturbance history in tropical forests is vitally important for interpreting their 133	  

present-day structure, composition and dynamics. One of the main drivers of past change in the Amazon biome 134	  

may have been fire (Pinter et al. 2011). Our study introduces a new important potential predictor to determine 135	  

plant traits distributions across the Amazon Basin, soil PyC abundance. An understanding of soil PyC 136	  

distribution may provide a large-scale perspective of fire history (Whitlock and Larsen 2001). Thus, our 137	  
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objective in this study was to assess the relationships between vegetation traits and environmental filters, 138	  

accounting for climate and historical fires (PyC) across representative samples of the Amazon rain forest. We 139	  

hypothesized that, despite the Amazon biome being a fire-sensitive ecosystem, some functional traits persist in 140	  

modern old-growth rain forest vegetation as a legacy of past fire regimes. Specifically, we hypothesized that 141	  

functional traits representative of species growing in fire-prone environments, such as higher wood density and 142	  

shorter trees (Brando et al. 2012), are positively associated with soil PyC abundance and that functional traits 143	  

that respond to dry climate such as high numbers of dry fruit-type species and seasonal fruiting (Sfair et al. 2016) 144	  

are related to drier and hotter climate conditions. 	  145	  

	  146	  

MATERIAL AND METHODS	  147	  

Forest sites	  148	  

 Species richness and individual abundance data from 34 1-ha permanent forest plots across the range of 149	  

local and regional environmental gradients that occur in Amazonia were used in our analysis (Online Resource 1 150	  

and Figure 1). The forest data, including Terra Firme forests on both clay-rich and white-sand substrates, and 151	  

seasonally flooded forest are summarized in Appendix 1. Of these 34 plots, 33 are in the ForestPlots.net 152	  

database, a web repository for long-term tropical forest inventory plots, where trees ≥10 cm diameter within an 153	  

area are individually identified, measured and tracked through time (Lopez-Gonzalez et al. 2009, 2011), and one 154	  

is in the Tropical Ecology Assessment and Monitoring (TEAM) database (MPEG 2014, VEGCAX1). All sites 155	  

examined were old-growth humid forests, excluding Anthropogenic Dark Earth sites (Terra Preta de Índio). 156	  

Based on the vegetation and local information, there was no evidence of recent, major, direct human impact or 157	  

fire. The most abundant species in each plot (more than five individuals per plot) were chosen for analysis.  158	  

	  159	  

Plant traits	  160	  

 We selected six plant functional traits that are classically presented as the main components of plant 161	  

ecological strategies (Pausas and Lavorel 2003). Some traits are strategies for disturbance and regeneration like 162	  

fruit size and leaf length (Kraft et al. 2008), some are useful to understand plant response to fire such as tree 163	  

height and wood density (Brando et al. 2012), and some are linked to climate as seed-type (dry- versus fleshy-164	  

type fruits) and fruiting phenology (duration and timing of each phenophase) (Correa et al. 2015). 	  165	  
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 Seed type was extracted from several studies (mainly Amaral et al. 2009, Muniz 2008, Stefanello et al. 166	  

2009, Yamamoto et al. 2007). If a species could not be found in published studies, fruit type was drawn from 167	  

genus level information; it is well known that reproductive traits show clustering in phylogenetic trees (Chazdon 168	  

et al. 2003). All fruit morphologies of the genera were checked in books, manuscripts and published floras. We 169	  

estimated fruit size and leaf length and we assessed maximum plant height based on botanical registers at Lista 170	  

de Espécies da Flora do Brasil (http://www.floradobrasil.jbrj.gov.br/) and SpeciesLink Network 171	  

(http://splink.cria.org.br/). For these previous parameters, we used at least ten different plants, including rarer 172	  

individuals (smaller and bigger ones). If the differences between individuals were high, we expanded the sample 173	  

collection. Wood density was obtained from Forestplots.net database or, when the species was absent, from the 174	  

Wood Density database (Ketterings et al. 2001; http://www.worldagroforestry.org/output/wood-density-175	  

database).	  176	  

Fruiting phenology was assigned based on the months that the species were collected with fruits on 177	  

botanical registers at Lista de Espécies da Flora do Brasil (for species that were over-collected we selected the 178	  

months with highest numbers of exsiccatae). We could not relate collections to specific plot locations, thus we 179	  

treated plant registers of different sites as originating from the same location. Although the timing of seasonal 180	  

events, such as fruiting, is highly sensitive to climate (Chuine 2010) since collections cover a wide range of 181	  

dates, the data should represent general phenology patterns for most species. Two phenology traits were derived 182	  

from the survey: duration given by i) number of days - number of months that the species was recorded as 183	  

having fruit multiplied by 30 and ii) fruiting timing occurring in the dry and/or wet periods - dry period, if a 184	  

reproductive phenophase was registered between July and November it was said to be in the dry period 185	  

(seasonality defined according to Huete et al. 2006 in a multiple scale study including an extensive 2,000 km 186	  

climate transect through eastern and central Amazonia), wet period, if registered between December and June, or 187	  

both periods, if the phenophase was registered in mixed periods. The 34 studied plots include a wide geographic 188	  

range with different seasonality calendars (Girardin et al. 2016), from Guyana to Ecuador to the south border of 189	  

Amazonia in Mato Grosso state. These different calendars have different dry and wet periods, and it is 190	  

methodologically challenging to determine phenology including such site-specific variations. For this reason, we 191	  

chose only one dry and wet period for the whole Amazon region, defined according to the previously mentioned 192	  

study. Flowering phenology was not evaluated since it was found for less than half of all species. 	  193	  

	  194	  
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Environmental variables	  195	  

 We considered three types of variables: climatic, topographic and fire-history-related. We used three 196	  

climate predictors from WorldClim 1.4 dataset (Hijmans et al. 2005; http://www.worldclim.org/bioclim.htm): 197	  

bio01 (annual mean temperature), bio05 (maximum temperature of the warmest month) and bio12 (annual 198	  

precipitation) and a complementary measure of drought severity, the maximum climatological water deficit 199	  

(MCWD, Aragão et al. 2007). These are some of the parameters considered to be critical to the physiological 200	  

functioning and survival of plants (Woodward 1987). For altitude, we used Ambdata dataset (Amaral et al. 2013; 201	  

http://www.dpi.inpe.br/Ambdata/). We used Pyrogenic Carbon (PyC) abundance as a proxy of past fire events, 202	  

because it is estimated that up to 15% of fire affected biomass is converted into pyrogenic organic carbon (Santín 203	  

et al. 2015). We used PyC analysis rather than more time-intensive physical assessments of charcoal abundance 204	  

based on counting or mass estimates of charcoal. AMS radiocarbon dating is expensive and usually only possible 205	  

for a limited number of sites (we have charcoal dates for three study sites). PyC abundance, as percentage PyC 206	  

of the soil sample, was quantified as stable polycyclic aromatic carbon (SPAC) analyzed via hydrogen pyrolysis 207	  

(HyPy). The HyPy technique has been described elsewhere (Meredith et al. 2012) and the same experimental 208	  

procedure was used in this study. PyC was quantified in the 0-30 cm soil interval (Koele et al. in review).  209	  

	  210	  

Data analyses	  211	  

 The relationships between species traits and environmental variables were tested by RLQ combined 212	  

with fourth corner analysis (Kleyer et al. 2012, Dray et al. 2014). This analysis aims to investigate the 213	  

relationships between two tables, R (environmental characteristics) and Q (species attributes, in our case), using 214	  

a third table, L (species abundance matrix), to establish the linkage and their combined ordination. R represents a 215	  

matrix whose rows are the sites and columns the environmental characteristics for each plot; Q represents a 216	  

matrix whose rows are tree species abundance and columns are the attributes for each species; L represents a 217	  

matrix whose rows are plots and whose columns are tree species. Each matrix was primarily analyzed in 218	  

isolation by means of a Principal Component Analysis (PCA) for environmental data and traits, and according to 219	  

a Correspondence Analysis (CA) for species abundance matrices. The relation among these matrices was 220	  

established by means of a CoInertia analysis to maximize their covariance.	  221	  

We followed the new approach recommended by Dray et al. (2014) in applying the fourth-corner tests 222	  

to the output of the RLQ analysis, which allows for quantification and statistical testing of the relationships 223	  
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between environmental variables and species traits by means of two null models. We used a combination of 224	  

model 2 – which tests for the links between the matrices L and Q, with the null hypothesis assuming that the 225	  

distribution of species with fixed (i.e. species-independent) traits is not influenced by environmental conditions, 226	  

jointly with the model 4 – which tests for the links between L and R, with the null hypothesis considering that 227	  

the species composition with fixed environmental conditions is not influenced by the species traits. According to 228	  

the aforementioned authors, this new approach combining these two permutation models has correct type I error 229	  

rates, but at the same time, as ter Braak et al (2016) stated it does not consider spatial, temporal and phylogenetic 230	  

autocorrelation. Significance of the relationship between species traits and environmental variables was assessed 231	  

based on 999 permutations. All analyses were performed using the ade4 package for R v.3.2.1 (R-Development 232	  

Core Team 2013).	  233	  

	  234	  

RESULTS	  235	  

Our dataset represented 9789 individuals distributed across 378 species and the 34 old-growth forest 236	  

plots. Of this total, 173 species had few individuals (less than 10 individuals in only one or two plots). The ten 237	  

most common species (according to frequency in plots and abundance) were Tetragastris altissima 238	  

(Burseraceae), Iriartea deltoidea (Arecaceae), Euterpe precatoria (Arecaceae), Pseudolmedia laevis (Moraceae), 239	  

Eschweilera coriacea (Lecythidaceae), Amaioua guianensis (Rubiaceae), Cheiloclinium cognatum 240	  

(Celastraceae), Socratea exorrhiza (Arecaceae), Rinorea guianensis (Violaceae) and Miconia pyrifolia 241	  

(Melastomataceae). 	  242	  

Plant traits varied according to the sites (Table 1): fleshy fruit species were dominant in most sites with 243	  

two exceptions, ELD-01 and FMH-01, which were the more easterly sites (Venezuela and Guyana) (Figure 1). 244	  

Fruit lenght ranged from 2.1 to 8.8 (mean 3.9) cm across the sites, tree height from 18 to 28 (23) m, leaf length 245	  

from 10 to 22 (13) cm and wood density from 0.50 to 0.81 (0.65) g.cm-3. Fruiting phenology by site was 246	  

staggered through the year. 	  247	  

The first axis of the RLQ analysis accounted for 80.3% of the total co-inertia (i.e. the link between the 248	  

traits and climatic variables) and the second axis for 14.7% (PyC). This represented 5.3% of the correlation 249	  

expressed for the first axis in the CA of species composition (Table 2: L table), and 48.0% and 27.7% of the total 250	  

variance expressed for the first axis in the PCA of the environmental variables (Table 2: R table) and functional 251	  
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traits (Table 2: Q table), respectively, indicating variability in species trait values across the environmental 252	  

gradient.	  253	  

Among those traits, only the variability in diaspore type and wood density was explained by the 254	  

variability in the environmental gradient (r=0.89, p=0.001 and r=-0.60, p=0.001 respectively; Figure 2). And 255	  

among these environmental parameters, average temperature (r=-0.85, p=0.001), water deficit (MCWD) (r=-256	  

0.89, p=0.001), annual precipitation (r=-076, p=0.001) and altitude (r=0.87, p=0.001) explained the variability in 257	  

the studied functional traits. There was also a significant association between PyC (r=-0.71, p=0.001) and 258	  

maximum temperature of the warmest month (r=0.88, p=0.001) with the second RLQ axis, but with traits 259	  

unrelated to this axis, which may indicate a lack of detectable effect of past fires on contemporary composition 260	  

and functioning of Amazon Basin forests (Figure 2).	  261	  

We also found a significant relationship between species composition and environmental variables 262	  

(model 2, p=0.007) and between species composition and functional traits (model 4, p=0.009). These results 263	  

indicate that species composition is dependent on the environmental conditions (altitude, climate and fire-264	  

history) of the sites and influenced by species’ functional attributes.	  265	  

Species with denser wood were associated with hotter (r=0.28, p=0.002) and lower elevation 266	  

environments (r=-0.20, p=0.037); species with dry diaspores were associated with drier (r=0.23, p=0.007), hotter 267	  

(r=0.18, p=0.014) and lower elevation environments (r=-0,19, p=0.01); the opposite was found for the 268	  

relationships between fleshy fruit species and MCWD (r=-0.23, p=0.008), temperature (r=-0.18, p=0.017) and 269	  

altitude (r=0.19, p=0.01). There were less species fruiting in the dry period (r=-0.16, p=0.042) and the fruiting 270	  

duration was shorter (r=-0.17, p=0.027) in sites where annual precipitation was higher (Figure 3). None of the 271	  

studied traits were significantly associated with PyC (Figure 3); however, the analyses showed a tendency for 272	  

less species fruiting in the dry period in plots with higher percentage soil PyC (r=-0.12, p=0.091; Figure 4).	  273	  

	  274	  

DISCUSSION	  275	  

 Our results show that functional traits and environmental variables jointly predict variation in tree 276	  

species composition in the Amazon Basin. The findings of this study represent some of the main hyper-dominant 277	  

species that occur throughout the Amazon Basin (ter Steege et al. 2013) and dominant species in Cerrado-278	  

Amazon forest transition sites (Ackerly et al. 1989, Marimon et al. 2006, Mews et al. 2011, Morandi et al. 2016). 279	  

The fourth-corner permutation models assessing the trait–environment-species link suggests that the distribution 280	  
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of species with fixed traits is influenced by environmental characteristics and that the species composition of 281	  

sites with given environmental characteristics is influenced by species traits. Kraft et al. (2008), using a 282	  

functional ecology approach, also found evidence for niche-based processes in an Amazonian forest. Other 283	  

recent studies have shown that Amazonian tree species distribution respond strongly to environmental variation 284	  

(Esquivel-Muelbert et al. 2016) and the strength of response is significantly correlated to functional traits 285	  

(Rowland et al. 2014, Silva et al. 2014). 	  286	  

 Differences in community structure and function were primarily driven by temperature and water 287	  

availability (and altitude, variable usually correlated to the other two climate parameters: Benavides et al. 2016). 288	  

Therefore, functional traits representative of fire-prone environment species such as higher wood density and 289	  

shorter trees were not associated with soil PyC abundance. These results of no detectable legacy of fire effect on 290	  

plant traits may be a consequence of several factors: i) historical fires may have been locally and/or temporally 291	  

restricted and not associated with a widespread and/or frequent fire regime; therefore, impacts on biodiversity 292	  

would have been small and/or heterogeneous,; ii) alternatively, sufficient time may have passed since the last fire 293	  

(hundreds of years) to allow the forest to recover; iii) soil pyrogenic carbon storage may not be a suitable 294	  

predictor of past-fires. Despite these factors, the significant relation between PyC and the second RLQ axis and 295	  

marginal significance with one of the studied traits, suggests that more aspects of past fire events need to be 296	  

investigated. Large-scale carbon radiocarbon dating, although cost prohibitive, would provide key information 297	  

about time since last fire.  298	  

 It has been shown that fire strongly mediated the effect of other environmental variables on some traits 299	  

in a longleaf pine savanna in California, indicating that strong environmental gradients cannot be considered 300	  

independently when assessing their effects on functional traits (Ames et al. 2015).  However, savannas are fire 301	  

prone ecosystems, which evolved as a response of fire regimes, i.e. intensity, duration and frequency of burnings 302	  

(Bowman et al. 2009). In tropical rain forests such as our study, though, the data from charcoal radiocarbon 303	  

dating imply a fire return of hundreds or thousands of years (Sanford et al. 1985, Turcq et al. 1998), with distinct 304	  

spatial and temporal patterns (Bush et al. 2007, Bush et al. 2008). Some preliminary charcoal dating results of 305	  

three studied plots may confirm return times and spatial patterns: an eastern Amazonia plot had fire estimates of 306	  

1134 years before present (BP) (charcoal in 10-20 cm) and 1620 yr BP (30-50 cm); a northern Amazonia plot, 307	  

989 yr BP (32 cm); and a south edge plot a range of 96 yr BP (10-20 cm), 806 yr BP (20-30 cm) and 1372 yr BP 308	  

(150-200 cm). Other recent AMS results from the same region show a larger return interval in fire records for 309	  
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some sites, ~6,000 years (from 6876 to 365 yr BP: Goulart et al. 2017). Previous studies of soil charcoal have 310	  

also shown a spatially localized and heterogeneous signature of fire on Amazon forests (McMichael et al. 2012, 311	  

McMichael et al. 2017).  312	  

 Thus, rather than a pristine tropical forest, some areas in the Amazon Basin have been interpreted as 313	  

constructed landscapes, dramatically altered by past indigenous groups (Erickson 2008, Heckenberger et al. 314	  

2007, Roosevelt 2003) indicating propensity for regional forests to burn, especially during periods of drought 315	  

(Bush et al. 2008). Anthropogenic fire has been a factor in shaping plant communities through human prehistory, 316	  

e.g., generally a woody non-fire-prone vegetation type tends to transition to a more herbaceous, flammable and 317	  

shade-intolerant vegetation type with frequent fire (Pinter et al. 2011), changing forest composition (Barlow and 318	  

Peres 2008) and structure (Bennett et al. 2013) and species abundance (Piperno and Becker 1996, depending on 319	  

the regional pool of species: Mittelbach & Schemske 2015). Brando et al. (2014) presented the first evidence of 320	  

substantial fire-induced tree mortality due to altered fire regimes and a widespread invasion by flammable 321	  

grasses in a southern Amazonian forest subjected to experimental repeat burns. Besides fire-induced mortality, 322	  

other demographic patterns also play important roles after a disturbance such as recruitment and growth of 323	  

individuals. For these reasons, forest recovery is very slow (Almeida et al. 2016, Barlow and Peres 2008, Flores 324	  

et al. 2012, Uhl et al. 1998). However, recovery may be fast enough to erase the signal of fire history on the 325	  

functional composition of this vegetation, considering the limited reported charcoal AMS dated fire 326	  

spatiotemporal patterns with long times since last fire in old-growth forests. In fact, it may take only a decade for 327	  

trait changes to be apparent at the individual level as a response to some stress, as van der Sande et al. (2016) 328	  

found for wood density and specific leaf area in Neotropical forests subject to increased drought stress. 	  329	  

There is uncertainty about how PyC forms and persists in soils (Bird et al. 2015). PyC generation is 330	  

governed by complex factors as investigated by Brewer et al. (2013): fuel properties (density, composition, 331	  

arrangement and moisture) and burning conditions (weather, flame height and flame time). As a result, many 332	  

low-intensity fires may not produce a similar amount of PyC in the soil, as few intense fires. Improved 333	  

understanding of how different fire types affect PyC storage and the longevity of PyC in moist tropical forests 334	  

will assist in the development of soil PyC as a proxy providing information about past fires. 335	  

Lowland Amazon tropical rain forests possess an annual climate that is warm with little temperature 336	  

variation; rainfall, however, varies spatially and is highly seasonal in some regions: the south and southeast are 337	  

drier and more seasonal, while the west and northwest are wetter and aseasonal (Sombroek 2001). During the 338	  
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last century the Amazon warmed by 1°C, but rainfall pattern changes are more difficult to identify (IPCC 2013). 339	  

Climate change is viewed as a threat to biodiversity (Bellard et al. 2012). Despite some resilience to moderate 340	  

annual and repeat droughts (Davidson et al. 2012, Feldpausch et al. 2016), plant traits related to drought-induced 341	  

mortality, such as lower wood density, larger tree size, fast growing pioneers and evergreens (Feldpausch et al. 342	  

2016, O’Brien et al. 2017, Phillips et al. 2009) may be not be advantageous in drier sites, thus, highlighting the 343	  

need to identify traits that account for differential tree vulnerability to environmental stress. 344	  

 We found more species with dry diaspores in drier and hotter environments, and which may be an 345	  

advantageous trait in disturbed forests. Moreover, the high number of wind-dispersed species in areas closer to 346	  

Venezuela could be an imprint of ancient forest-savanna transitions (or dry forests). Other reviews have shown 347	  

the importance of wind-adapted (Howe and Smallwood 1982) and dry fruit species in dry environments (van der 348	  

Pijl 1972). Thus, in a future scenario of drier and hotter Amazonia, with fires possibly becoming more frequent 349	  

(Alencar et al. 2015), these forests are likely to be replaced by wind-dispersed plants easily spread independent 350	  

of animal vectors. Also, the light and flat primarily wind-dispersed seeds may also be transported long distances 351	  

by water-mediated dispersal in lower altitude and flood-prone sites (Säumel and Kowarik 2013), which our 352	  

results confirmed by the high number of dry seed species in lower elevations. We found that with higher 353	  

precipitation, fewer tree species produced fruits in the dry period and the duration of fruiting in any period was 354	  

shorter. In areas with higher precipitation, more fleshy fruit species are expected, which will develop and 355	  

disperse their fruits during the wet period (Correa et al. 2015, Howe and Smallwood 1982). Even in a moist 356	  

environment like the studied region, the amount of precipitation caused fruiting to be less spread throughout the 357	  

year and more synchronous with the wet period. 358	  

 Wood density was positively associated with average temperature and negatively with altitude, 359	  

corroborating the findings of Quesada et al. (2012). Thus, our results support the theory that higher temperatures 360	  

and lower altitudes induce a stress-avoidance strategy by reducing hydraulic efficiency and vulnerability to 361	  

xylem cavitation by increasing wood density (Swenson and Enquist 2007). Also, higher wood density species 362	  

would be less susceptible to fire-induced mortality (Brando et al. 2012) in hotter and drier Amazon forests 363	  

(Feldpausch et al. 2016, O’Brien et al. 2017, Phillips et al. 2009). 364	  

 Five out of the seven functional traits evaluated across all 378 species were correlated with some 365	  

environmental variable, indicating that the selected traits and the independent parameters were adequate in that 366	  

they cover the range of traits commonly deemed essential to woody plant strategy (Pausas and Lavorel 2003). 367	  
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Despite this, fruit size, maximum height, average leaf size and fruiting during the wet period did not relate to any 368	  

parameter. Soil fertility (Clarke et al. 2016, Dantas et al. 2013) could have been an important environmental 369	  

factor predicting variation of the studied traits. In fact, Koele et al. (in review) found positive associations 370	  

between PyC and soil nitrogen and phosphorous for the studied plots and we also might expect functional traits 371	  

to be influenced by edaphic factors as shown by Quesada et al. (2012) and Toledo et al. (2016) in the Amazon 372	  

Basin. Additionally, including other fire-related traits such as bark thickness, leaf toughness and height to 373	  

diameter ratio of plant species might have relevance to future studies of Amazon Basin forest dynamics 374	  

(Cianciaruso et al. 2012, Lucena et al. 2015).	  375	  

 In general, the Amazon forests examined in this study had higher proportions of zoochory (dispersal of 376	  

seeds by animals) than other dispersal types and large-sized fruits, confirming the importance of animal-377	  

mediated seed dispersal in the tropics (Correa et al. 2015, Howe and Smallwood 1982). It has been shown that 378	  

tree height and wood density vary significantly across Amazonia (Feldpausch et al. 2011, Nogueira et al. 2008), 379	  

differences also reflected in the most abundant species of our study. The results also indicated that Amazon 380	  

forests are predominantly populated by tree species with leaf sizes in the mesophyll class (Malhado et al. 2009). 381	  

Lastly, fruiting was in different periods throughout the year, reflecting the high variation in the time of fruit 382	  

production and maturation. 	  383	  

 The long-term ecological consequences of fire in Amazon forests are not clear. Fires are rapidly 384	  

becoming a common occurrence in vast areas of both disturbed and undisturbed Amazonian forests and 385	  

pyrogenic carbon analysis indicates fire historically occurred in all our plots, including even the wettest plots of 386	  

northwestern Amazonia, but the time-scale of these burnings seems to be longer than that the needed for forest 387	  

functional composition recovery. In this study, we observed that functional traits and environmental variables 388	  

jointly predicted variations in tree species composition in Amazon Basin forests. We also showed the lack of a 389	  

detectable effect of PyC on specific traits, but the existence of a secondary association with the general traits 390	  

distribution (axis 2) indicates that the consideration of climatic variables alone may not be sufficient to explain 391	  

species distributions and the maintenance of diversity and functioning in Amazonian forests. The future 392	  

trajectory of Amazonian forests that experience drought and fire will depend, in part, upon tree species 393	  

composition and drought- and fire-tolerance traits, both of which still need to be better disentangled and 394	  

understood. 	  395	  
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Table 1. Vegetation trait descriptions of 34 forest plots in Amazonia. (Abbreviations: unk, unknown; Jan, 602	  
January…. Dec, December; d: dry period; w: wet period).	  603	  

Plot	   Species/	  
individuals	  

Leaf 
length 
(cm)	  

Maximum	  
tree height 
(m)	  

Wood 
density 
(g.cm-
3)	  

Fruit 
type	  

Fruit 
size 
(cm)	  

Fruiting timing	  

AGP-01	   15/128	   15	   24	   0.60	   4 dry	  
10 
fleshy	  
1 unk	  

3.2	   Oct,Feb d,w	  

AGP-02	   11/100	   17	   24	   0.56	   4 dry	  
6 
fleshy	  
1 unk	  

3.4	   Feb w	  

ALF-02	   22/430	   13	   24	   0.61	   1 dry	  
21 
fleshy	  

3.6	   Oct d	  

ALP-30	   20/356	   12	   20	   0.62	   7 dry	  
13 
fleshy	  

4.2	   Dec w	  

BDF-03	   22/198	   12	   27	   0.68	   9 dry	  
13 
fleshy	  

3.2	   Nov d	  

BDF-09	   24/196	   11	   26	   0.70	   9 dry	  
15 
fleshy	  

2.7	   Nov d	  

BNT-02	   23/253	   12	   25	   0.72	   8 dry	  
15 
fleshy	  

4.6	   Jan-Feb w	  

BNT-04	   22/274	   13	   28	   0.72	   8 dry	  
14 
fleshy	  

3.5	   Nov d	  

CAX-01	   20/268	   10	   23	   0.74	   7 dry	  
13 
fleshy	  

3.3	   Oct-Dec d,w	  

CAX-06	   13/129	   11	   27	   0.78	   6 dry	  
7 
fleshy	  

3.9	   Nov d	  

CUZ-01	   25/319	   13	   18	   0.53	   2 dry	  
23 
fleshy	  

4.9	   Feb w	  

DOI-01	   18/207	   16	   25	   0.66	   6 dry	  
12 
fleshy	  

3.2	   Sep-Oct d,w	  

DOI-02	   8/73	   17	   24	  
 	  

0.61	   3 dry	  
5 
fleshy	  

8.8	   Oct d	  

ELD-01	   6/82	   11	   22	   0.75	   5 dry	  
1 
fleshy	  

5.1	   Jan,Mar w	  

FLO-01	   27/500	   14	   20	   0.63	   4 dry	  
23 
fleshy	  

3.1	   Oct d	  

FMH-01	   13/394	   10	   28	   0.81	   6 dry	  
6 
fleshy	  

4.2	   Oct d	  

HCC-21	   20/489	   14	   20	  
 	  

0.57	   5 dry	  
15 
fleshy	  

3.6	   Mar w	  

IWO-22	   12/328	   10	   22	   0.81	   5 dry	  
7 
fleshy	  

5.5	   Dec w	  

JAS-02	   22/258	   19	   24	   0.53	   5 dry	  
17 
fleshy	  

3.5	   Oct d	  

JEN-11	   24/229	   12	   26	   0.65	   10 dry	  
16 
fleshy	  

4.1	   Jan w	  

JRI-01	   32/327	   14	   25	   0.69	   7 dry	  
25 

3.2	   Jan w	  
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fleshy	  
LFB-01	   20/460	   14	   21	   0.58	   5 dry	  

15 
fleshy	  

2.7	   Oct d	  

LFB-02	   18/435	   15	  
 	  

21	   0.55	   5 dry	  
13 
fleshy	  

3.2	   Oct d	  

NOU-06	   7/89	   17	   27	   0.64	   1 dry	  
6 
fleshy	  

2.9	   Oct,Jan d,w	  

POR-01	   25/293	   14	   22	   0.62	   5 dry	  
20 
fleshy	  

2.9	   Oct d	  

POR-02	   23/270	   12	   22	   0.64	   4 dry	  
19 
fleshy	  

3.1	   Aug-Oct d	  

RST-01	   12/195	   13	   19	   0.50	   1 dry	  
11 
fleshy	  

7.0	   Jul-Aug d	  

SCR-05	   30/460	   12	   25	   0.71	   7 dry	  
23 
fleshy	  

5.2	   Jan w	  

SUC-02	   19/164	   15	   21	   0.62	   5 dry	  
14 
fleshy	  

4,2	   Oct d	  

TAM-05	   28/317	   13	   23	   0.60	   5 dry	  
23 
fleshy	  

2.8	   Oct d	  

TAN-04	   21/509	   12	   19	   0.63	   3 dry	  
18 
fleshy	  

2.1	   Apr-May w	  

TEC-01*	   19/214	   11	   25	   0.78	   6 dry	  
13 
fleshy	  

2.9	   Nov d	  

VCR-02	   19/560	   11	   19	   0.66	   2 dry	  
17 
fleshy	  

2.9	   Sep d	  

YAN-01	   19/225	   22	   26	   0.56	   7 dry	  
12 
fleshy	  

4.8	   Oct d	  

	   	  604	  
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Table 2. Results of RLQ analysis using environmental variables and species traits. (a) Eigenvalues (and % of 605	  
total co-inertia) for the first two axes. Ordinations of tables R (principal components analysis – PCA), L 606	  
(correspondence analysis – CA) and Q (PCA). (b) Summary of RLQ analysis: eigenvalues and percentage of 607	  
total co-inertia accounted for by the first two RLQ axes, covariance and correlation (and % variance) with the 608	  
correspondence analysis of the L matrix and projected variance (and % variance) with the R and Q matrices.	  609	  

	   Axis 1 (%)	   Axis 2 (%)	  
R table PCA	   2.88 (48.02)	   1.97 (32.89)	  
L table CA	   0.95 (5.29)	   0.93 (5.18)	  
Q table PCA	   2.49 (27.67)	   1.84 (20.48)	  
RLQ axes eigenvalues	   0.54 (80.31)	   0.098 (14.71)	  
Covariance	   0.73	   0.31	  
Correlation: L	   0.30 (30.79)	   0.21 (21.33)	  
Projected Variance: R	   2.78 (96.66)	   4.74 (97.71)	  
Projected Variance: Q	   2.14 (85.87)	   3.32 (76.70)	  

	   	  610	  
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Figure 1. Location of the Amazonian study sites (circles) showing the variation in percentage pyrogenic carbon 611	  
in total soil. The green outline shows Amazonia boundary, blue lines are the rivers and streams. Circles are 612	  
proportional to the percentage pyrogenic carbon in soil samples (0-30cm interval) and are semi-transparent to 613	  
visualize when overlapping.  614	  
Figure 2. RLQ results between the first two RLQ axes for environmental variables (AxR1/AxR2) and traits 615	  
(AxQ1/AxQ2). Significant (p < 0.05) positive associations are represented by red cells; significant negative 616	  
associations by blue cells. Variables with no significant associations are shown in gray. parbio1=annual mean 617	  
temperature; parbio5=maximum temperature of the warmest month; parbio12=annual precipitation; 618	  
paralt=elevation; MCWD= maximum climatological water deficit; %PyC=percentage of pyrogenic carbon in 619	  
total soil (0-30 cm depth). 620	  
Figure 3. Fourth-corner results between environmental variables and traits. Significant (p < 0.05) positive 621	  
associations are represented by red cells; significant negative associations by blue cells. Variables with no 622	  
significant associations are shown in gray. parbio1=annual mean temperature; parbio5=maximum temperature of 623	  
the warmest month; parbio12=annual precipitation; paralt=elevation; MCWD= maximum climatological water 624	  
deficit; %PyC=percentage of pyrogenic carbon in total soil (0-30 cm depth). 625	  
Figure 4. Percentage of species fruiting during dry period plotted against percentage pyrogenic carbon in total 626	  
soil.	  627	  
	   	  628	  
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Figure 1. 	  630	  
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Figure 2. 	   	  634	  
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Figure 3. 	   	  637	  
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	  638	  
Figure 4. Percentage of species fruiting during dry period plotted against percentage pyrogenic carbon in total 639	  
soil.	  640	  
	   	  641	  
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Online Resource 1. Site descriptions of 34 forest plots in the Amazon Basin. 	  642	  
Name	   Plot 

Code	  
Country	   Latitude	   Longitude	   Forest type	   Year of 

census	  
Amacayacu: Agua 
Pudre E	  

AGP-01	   Colombia	   -3.72	   -70.30	   terra firme	   2011	  

Amacayacu: Agua 
Pudre U	  

AGP-02	   Colombia	   -3.72	   -70.30	   terra firme	   2006	  

Parque Cristalino, 
Alta Floresta, MT	  

ALF-02	   Brazil	   -9.58	   -55.92	   terra firme	   2008	  

Allpahuayo C	   ALP-30	   Peru	   -3.95	   -73.43	   white sand 
forest	  

2011	  

BDFFP, 1101 
Gaviao	  

BDF-03	   Brazil	   -2.42	   -59.85	   terra firme	   2009	  

BDFFP, 1109 
Gaviao	  

BDF-08	   Brazil	   -2.40	   -59.90	   terra firme	   2009	  

Bionte 2	   BNT-02	   Brazil	   -2.64	   -60.15	   terra firme	   2010	  
Bionte 4	   BNT-04	   Brazil	   -2.63	   -60.15	   terra firme	   2010	  
Caxiuana 1	   CAX-01	   Brazil	   -1.74	   -51.46	   terra firme	   2009	  
Caxiuana 6	   CAX-06	   Brazil	   -1.72	   -51.46	   terra firme	   2009	  
Cuzco Amazonico, 
CUZAM1E	  

CUZ-01	   Peru	   -12.54	   -69.06	   terra firme, 
floodplain	  

2008	  

RESEX Chico 
Mendes: Seringal 
Dois Irmãos 1	  

DOI-01	   Brazil	   -10.57	   -68.32	   terra firme	   2009	  

RESEX Chico 
Mendes: Seringal 
Dois Irmãos 2	  

DOI-02	   Brazil	   -10.55	   -68.31	   terra firme, 
bamboo	  

2009	  

El Dorado, km93, 
plotG1, ED1	  

ELD-01	   Venezuela	   6.11	   -61.41	   terra firme	   2009	  

Fazenda Floresta, 
Ribeirão Cascalheira, 
MT 	  

FLO-01	   Brazil	   -12.81	   -51.34	   terra firme	   2013	  

Forest reserve 
Mabura hill 01	  

FMH-01	   Guyana	   5.17	   -58.69	   terra firme	   2010	  

Huanchaca Dos, plot 
1	  

HCC-21	   Bolivia	   -14.56	   -60.75	   terra firme	   2009	  

Iwokrama 22	   IWO-22	   Guyana	   4.62	   -58.72	   terra firme	   2010	  
Jatun Sacha 2	   JAS-02	   Ecuador	   -1.07	   -77.62	   terra firme	   2010	  
Jenaro Herrera A 
Terraza Alta	  

JEN-11	   Peru	   -4.88	   -73.63	   terra firme	   2011	  

Jari 1	   JRI-01	   Brazil	   -1.00	   -52.05	   terra firme	   1996	  
Los Fierros Bosque I	   LFB-01	   Bolivia	   -14.58	   -60.83	   terra firme	   2009	  
Los Fierros Bosque 
II	  

LFB-02	   Bolivia	   -14.58	   -60.83	   terra firme	   2009	  

Nourages	   NOU-06	   French 
Guyana	  

4.08	   -52.68	   	   2012	  

RESEX Chico 
Mendes: Seringal 
Porongaba 1	  

POR-01	   Brazil	   -10.82	   -68.77	   terra firme	   2009	  

RESEX Chico 
Mendes: Seringal 
Porongaba 2	  

POR-02	   Brazil	   -10.80	   -68.77	   terra firme	   2009	  

Base da Restauração 
- Reserva 
Extrativista do Alto 
Juruá	  

RST-01	   Brazil	   -9.04	   -72.27	   terra firme	   2009	  

San Carlos de Rio SCR-05	   Venezuela	   1.93	   -67.04	   terra firme	   2012	  



30	  
	  

Negro, MAB site, 
Yevaro, plot B	  
Sucusari B	   SUC-02	   Peru	   -3.25	   -72.90	   terra firme	   2012	  
Tambopata plot 3	   TAM-05	   Peru	   -12.83	   -62.97	   terra firme	   2008	  
Fazenda Tanguro, 
Querência, MT	  

TAN-04	   Brazil	   -12.92	   -52.37	   terra firme	   2008	  

Team Caxiuanã 1 *	   TEC-01	   Brazil	   -1.71	   -51.46	   terra firme	   2014	  
Fazenda Vera Cruz, 
plot 2	  

VCR-02	   Brazil	   -14.83	   -52.17	   terra firme	   2008	  

Yanamono A	   YAN-01	   Peru	   -3.43	   -72.84	   terra firme	   2011	  
*data from the TEAM network plot; all other data from the RAINFOR network.	  643	  
	  644	  


