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Abstract 35 
Adapting pathways consist of negative feedback loops (NFLs) or incoherent feedforward loops (IFFLs), 36 
which we show can be differentiated using oscillatory stimulation: NFLs but not IFFLs generically show 37 
‘refractory period stabilization’ or ‘period skipping’. Using these signatures and genetic rewiring we 38 
identified the circuit dominating cell cycle timing in yeast. In C. elegans AWA neurons we uncovered a 39 
Ca2+-NFL, diffcult to find by other means, especially in wild-type, intact animals. (70 words) 40 
 41 
 42 
 43 

Introduction 44 
A complementary approach to the gene-by-gene approach of molecular biology is to test for response 45 
signatures (i.e., characteristic input-output features) that are associated with specific circuit motifs. A 46 
confirmed signature establishes the outlines of a biological network before the components are known. 47 



The requirements for measuring response signatures are minimal: an experimentally controlled stimulus 48 
and a measurable output; biochemical or genetic manipulations are not inherently necessary. This makes 49 
the approach attractive for many biological systems that are difficult to manipulate or have many 50 
possible genes to pursue. For example, bistability, hysteresis, or irreversibility are signatures of positive 51 
feedback loops and their detection has supported specific mechanisms(1-3). 52 
 53 
Adaptation is a dynamic feature of biological systems, in which the output returns to (near) baseline 54 
after stimulation onset. For circuit motifs capable of adaptation, generic response signatures are 55 
currently unknown, even though adaptation is ubiquitous and serves important biological functions(4). 56 
 57 
Only two basic types of circuits can exhibit adaptation: incoherent feedforward loops (IFFLs) and 58 
negative feedback loops (NFLs)(5-7) (Fig. 1 A-D). In adapting pathways, the stimulus S (e.g., an odor) 59 
causes the temporary build-up of the response element R (e.g., intracellular Ca2+), and the subsequent 60 
decrease in R, which is the hallmark of adaptation, is either independent of R / direct (IFFL) or 61 
dependent on R / indirect (NFL): In IFFLs, S also generates an inhibitor I independently of R, and I 62 
interrupts the build-up of R or depletes R (Fig. 1 A). Alternatively, a factor X, which contributes to the 63 
build-up of R, is depleted independently of R (Fig. 1 B). In an NFL, the generation of the inhibitor I (or 64 
depletion of X) depends on the response R itself, i.e., I (or X) is downstream of R (Fig. 1 C, D). (The 65 
output O of the pathway can be R itself or downstream of R (Fig. 1 A-D).) These 2x2 fundamental 66 
options for adaptation (inhibition by I or depletion of X; dependence on R (NFL) or independence 67 
(IFFL)) are logically exhaustive, which is supported by computational exploration(6) and rigorous 68 
mathematical proofs(7). (Ours and previous definitions(6,7) of IFFLs and NFLs agree.) Thus, all models 69 
describing individual adaptation mechanisms, including integral control(5,8) and state-dependent 70 
inactivation(9,10) models, can be subsumed in these two categories; rewriting the models in 71 
mathematically equivalent forms can help expose their topologies, see Results and Supplementary Notes. 72 
(In real pathways, we expect and find that different circuits with different topologies dominate at 73 
different timescales.) 74 
 75 
Response signatures for IFFLs and NFLs would help elucidate a wide spectrum of poorly understood 76 
biological systems; for example, such measurements ought to resolve contrasting mechanisms which 77 
have been proposed for the same systems, e.g., the gonadotropin-releasing hormone pathway(11,12). 78 
The distinction between IFFLs and NFLs is itself biologically important because each can lead to 79 
different system behavior, e.g., steady state or oscillations.(13) 80 
 81 
Dynamical stimuli have been used to explore biological pathways(14) and to uncover interesting new 82 
biology(15-18). Specifically, step-like and ramp-like inputs were applied to distinguish specific 83 
models(8,19-23). In an attempt to explore the general applicability of these approaches, we simulated 84 
simple adapting models and found various counterexamples, which show that it is at least unclear how 85 
previous discriminants can be used generally (Fig. S1 A-H). Also, varying stimulus strengths, e.g., 86 
ramps, can be problematic: many inducible promoters are all-or-nothing and thus threshold the stimuli; 87 
furthermore, at different concentrations or strengths, stimuli may activate different subnetworks(24), 88 
confounding the analysis. 89 
 90 
 91 
 92 

Results 93 
We found that a single on-off stimulus pulse does not suffice for discriminating adapting circuit types 94 
since IFFL and NFL models fit the same experimental adaptation time course equally well (Fig. S1 I, J). 95 
 96 



Refractory period stabilization 97 
The next more complicated on-off stimulation pattern consists of two or more pulses. Considering two 98 
simple representations of IFFLs and NFLs (Fig. 1 E, F, also see Fig. S1 K, L), we noticed a fundamental 99 
difference in their responses to a second stimulus pulse: In an IFFL, the inhibitor I grows (activator X 100 
decreases) independently of the response (up to saturation) (Fig. 1 A, B), and, therefore, the response to 101 
a second stimulus pulse should be smaller, the longer the first stimulus pulse was (Fig. 1 E). Considering 102 
NFLs (Fig. 1 F), on the other hand, we see that if the first stimulus was long enough for adaptation to 103 
‘kick in,’ the entire circuit can be effectively shut off and the inhibition mechanism (I or X) can begin to 104 
reset; lengthening the first stimulus pulse further matters little for the second response (Fig. 1 F). So, the 105 
recovery time or the “refractory period” should always be increasing with the stimulus duration in IFFLs, 106 
and should be stabilized (robust) in NFLs. 107 
 108 
We needed a general, rigorous definition for the refractory period, and thus considered repeated on-off 109 
stimuli of duration d and period T; we defined the refractory period Tmax(d) as the period at which the 110 
time-averaged output <O(t, d, T)> =: O(d, T) is maximal for fixed d (Fig. 1 G, H). At the refractory 111 
period, the stimuli produce maximal output. This generalizes the common understanding of the 112 
refractory period, where for T below Tmax, stimulus pulses are too fast for the system to recover due to 113 
adaptation (O(d, T) decreases with decreasing T<Tmax), and above Tmax, the responses recover but their 114 
time average decreases (O(d, T)~1/T for T>>Tmax). 115 
 116 
For the IFFL and NFL models in Fig. 1 E, F, we calculated Tmax(d) analytically and found that the slope 117 
of Tmax(d) is >1 everywhere for the IFFL model while the NFL model’s Tmax(d) is flat (slope=0) for 118 
intermediate d (Fig. 1 I, J), which describes refractory period stabilization in Fig. 1 E, F quantitatively. 119 
To check more complicated models numerically, we set 1/2 as a practical threshold for the slope 120 
∂Tmax/∂d, in-between the minimum slopes in Fig. 1 I, J. We consider the refractory period ‘stabilized,’ if 121 
its slope is below 1/2 in an appropriate range of pulse durations d (to be determined by numerical 122 
exploration, see below). 123 
 124 
There are a number of inherent advantages to defining the refractory period by way of periodic stimuli 125 
and the maximum of the time-averaged output (see Supplementary Notes), including for the 126 
mathematical analysis and for the experimental data analysis. Crucially, this paradigm allows us to only 127 
explicitly analyze the refractory periods of small circuits; the same results hold (Tmax(d) is invariant) for 128 
an infinite number of additions to these circuits (Fig. 1 K and Supplementary Notes). 129 
 130 
Period skipping 131 
Another response signature can be deduced by considering that when an NFL adapts to a stimulus, the 132 
entire circuit can be shut off from the stimulus until the inhibition resets and the system recovers (Fig. 1 133 
L). Any stimuli administered while the circuit is insulated ought to have little effect. This would result in 134 
responses ‘skipping’ stimulus pulses (a simple response pattern being 0-1-0-1-0-... (Fig. 1 L), although 135 
more complicated patterns are possible (Fig. S1 M, N)). 136 
 137 
IFFLs cannot exhibit such dynamics because of the following properties (mathematical proofs in 138 
Supplementary Notes): (1) Period skipping cannot occur in purely feedforward systems (such as the 139 
IFFLs modeled in this work including Fig. 1 E, I) because these systems entrain to the stimulus period T. 140 
(2) Adding positive feedback loops (PFLs) to a (purely feedforward) IFFL does not produce period 141 
skipping because a PFL system of two species cannot show period skipping, and (3) general PFL 142 
systems cannot access period skipping solutions with on-off stimuli. These results rule out period 143 
skipping in biologically realistic IFFL circuits, leaving that possibility generically to NFLs. 144 
 145 



Generality and uniqueness of discriminants 146 
To explore how generic or unique these response signatures are (uniqueness of period skipping in NFLs 147 
is guaranteed), we systematically analyzed nonlinear IFFL and NFL models numerically. (Linear 148 
systems entrain and their O(d, T) are monotonic.) 149 
 150 
First, we ruled out that the observed differences between IFFLs and NFLs were particular to the abrupt 151 
nature of the inhibition function or to the output functions in Fig. 1 I, J. So, we replaced the step function 152 
θ(I0-I) by Michaelis-Menten terms with Hill coefficients ≥1 and varied parameters and output functions 153 
(see Table S1). None of the IFFL models showed refractory period stabilization or period skipping, 154 
while 71% of the NFL models, which showed sufficient adaptation (see Methods), did. Thus, the two 155 
NFL signatures were robust to such variations. 156 
 157 
For a more comprehensive exploration of model space, we generated >6*105 implementations of IFFLs 158 
and NFLs with 86 differing wiring diagrams, interaction types, and numbers of nodes. Specifically, we 159 
analyzed systems with i) inhibitors I or activators X (Fig. 1 A-D), ii) inhibitors that block the increase of 160 
a target or degrade the target, iii) nonzero baseline activities, iv) saturation due to Michaelis-Menten 161 
kinetics, v) nonlinearities due to cooperativity, and vi) additional dynamical nodes (Fig. S2). We varied 162 
parameters in an unbiased manner (0.1,1,10 for most parameters). We focused particularly on finding 163 
false positives (IFFL loops showing refractory period buffering) rather than minimizing false negatives 164 
(NFL loops failing to show signatures), which underestimates the generality of period skipping in NFLs 165 
(see Methods). For this reason also, we limited ourselves to 4 subtypes of NFLs with 3+1 nodes (+1 for 166 
output node) but covered all 82 possible IFFLs with 3+1 or 4+1 nodes. As expected, none of the IFFL 167 
circuits exhibited period skipping. A small number of IFFL circuits showed refractory period 168 
stabilization when the stimulus duration d was small, where our previous argument based on 169 
intermediate pulse durations d (Fig. 1 E, F) does not apply. Requiring that refractory period stabilization 170 
occurs when d is large enough (1.5x adaptation time, i.e., time to peak when a step stimulus is turned on), 171 
left few false positives, and the likelihood of assigning an NFL circuit correctly would be 150:1 (Table 172 
1). (See Fig. S3 for examples of Tmax(d) plots.) 173 
 174 
Surprisingly, both signatures occurred with or without cooperativity. Also, refractory period stabilization 175 
was detected about as often as period skipping in our computational searches (0.8:1 in the data 176 
underlying Table 1, see Methods), suggesting that neither is rare. 177 
 178 
Published models 179 
We also analyzed two classes of models from the literature that are thought to describe a wide spectrum 180 
of different biological systems (see Supplementary Notes for details): 1) The state-dependent 181 
inactivation model(9,10) is essentially an IFFL and neither showed period skipping nor refractory period 182 
stabilization, as expected. 2) Fold-change detection models(25) can be either IFFLs or NFLs. Using the 183 
models in ref.(26), we detected period skipping in the NFLs, but neither NFL signature in the IFFLs, as 184 
expected. 185 
 186 
Application to experimental systems 187 
Experimentally, we began with trial runs to establish the pulse widths and periods that were appropriate 188 
for the biological system at hand. We chose the smallest and the largest appropriate pulse durations to 189 
find Tmax at those pulse durations. (By the mean value theorem, it suffices to determine the slope of a 190 
straight line through two data points to infer the slope of any smooth interpolation at a point in-between, 191 
which suffices to show refractory period stabilization.) In that process, we also detected period skipping 192 
around the smallest pulse periods we applied, which an analysis of the simple NFL models in Fig. 1 F, J 193 
suggested (Fig. S4). 194 



 195 
Circuits dominating cell cycle timing in S. cerevisae 196 
The cell cycle control system in budding yeast involves dozens of interacting genes and consists at its 197 
core of at least the CDK-APC/C oscillator(27) (Fig. 2 A, subcircuits in B-F) and a proposed ‘global 198 
transcriptional oscillator’ (GTO)(28-31), a cyclical chain of transcription factors (Fig. 2 G). Given the 199 
many different subsystems, it is unclear which one(s) predominantly set(s) cell cycle dynamics, i.e., 200 
timing and robustness, if any. 201 
 202 
By deleting CLN1-3 cyclins and introducing a MET-CLN2 construct (Start cyclin CLN2 expressed 203 
during methionine withdrawal (-Met)), we eliminated the PFL and the early NFL 1 (Fig. 2 B, D) and 204 
placed cell cycle Start under exogenous control in clnΔ*(=cln1-3Δ MET-CLN2) cells(32) (Fig. 2 H-K). 205 
With a long MET-CLN2 pulse which stops short of initiating a second cell cycle, transcription of cell-206 
cycle periodic genes rises and falls once(32), demonstrating that the system adapts to Cln2, which rules 207 
out the simplest version of the GTO lacking IFFLs or NFLs. We also introduced a CLN2pr-YFP 208 
construct to report Start (SBF) cluster gene activity, which turns on roughly with budding (Fig. 2 H). 209 
 210 
We administered five -Met (Cln2 on) pulses of varying durations d and periods T (Fig. 2 I, J). For long 211 
periods, cells responded to all five pulses (≈60% (n=102) at d=50’, T=65’) (Fig. 2 I). In contrast, with 212 
short periods, cells commonly skipped stimulus pulses (14% (n=126) performed 5 cell cycles with d=50’, 213 
T=55’) (Fig. 2 J). Given our mathematical results, we concluded that the overall dynamic was governed 214 
by NFLs, e.g., the early (2), late, or GTO NFLs (Fig. 2 E-G); the IFFLs (Fig. 2 C, G) played a minor 215 
role, if any. (For skipping in a related context, see ref.(33)) 216 
 217 
In this system, the refractory period describes the time it takes for the cell cycle to reset, potentially 218 
correlated with cell cycle completion. Which subcircuits, if any, make this timing robust is unknown. 219 
We defined the output O(d, T) as the fraction of consistently responding (non-skipping) cells, multiplied 220 
by their CLN2pr-YFP signal (see Methods and Fig. S5). The peak in O(d, T), defining the refractory 221 
period, was due to fast pulses lowering the fraction of cells that responded to MET-CLN2 pulses and 222 
large periods decreasing the time-averaged CLN2pr-YFP signal. Tmax was remarkably stable (73’-74’, 223 
≈cell cycle period for mother cells in SC glucose) as we changed d (=30’,50’) (Fig. 2 L-N, slope Tmax(d) 224 
<1/2 with >99.9% confidence). So, in addition to period skipping, refractory period stabilization also 225 
indicated that cell cycle dynamics was set by NFLs (e.g., early (2), late, or GTO), not the IFFLs. 226 
 227 
We wondered whether refractory period robustness was a consequence of the interlocking NFLs in the 228 
system (Fig. 2 A, K). So, we deleted CLB1-6 cyclins and induced mitotic cyclin CLB2 constitutively in 229 
clnΔ*clbΔ*(=clnΔ*clb1-6Δ GALL-CLB2) cells in galactose, which eliminated the early NFL 2 (Fig. 2 E) 230 
as well as any transcriptional control of mitotic cyclins (Fig. 2 O). Again, the refractory period turned 231 
out to be well-stabilized (128’-135’, ≈cell cycle period in SC galactose) when d (=50’,90’) changed (Fig. 232 
2 P-R, slope Tmax(d) < 1/2 with >98% confidence). Thus, the early NFL 2, in addition to the early NFL 1 233 
and the IFFLs, was unnecessary for normal overall timing and robustness in the cell cycle control 234 
system. 235 
 236 
To investigate whether the late NFL (Fig. 2 F) between B-type cyclins and APC was responsible for 237 
refractory period stabilization, we constructed a clnΔ* GAL1-CLB2kd strain, in which a pulse of 238 
galactose/-Met simultaneously induced cell cycle entry, Start transcription, and a pulse of undegradable 239 
Clb2kd, which blocks mitotic exit (plausibly ultimately overcome by autonomous Cdc14 pulses)(34,35). 240 
This system constituted an artificial IFFL (Fig. 2 S). Now, Tmax(d) changed markedly between 132’ at 241 
d=40’ and >167’ at d=75’ (Fig. 2 T-V, slope Tmax(d)>1/2 with > 99.9% confidence). This was due to 242 
longer Clb2kd induction blocking Start transcription for longer periods, as expected for an IFFL (Fig. 1 243 



E). So, this artificial IFFL revealed the predicted Tmax(d) signature for IFFLs; thus, our procedure was 244 
effective at detecting IFFLs, if they existed. Furthermore, breaking or overriding all three CDK-APC/C 245 
NFLs, including the late Clb1,2-CDK-APC/C loop, finally eliminated refractory period stabilization; the 246 
late Clb1,2-CDK-APC/C NFL dominated the dynamics; the other circuits, including the GTO adaptation 247 
loops, played a minor role in the overall cell cycle dynamics. 248 
 249 
Circuit for adaptation in C. elegans AWA neurons 250 
Response adaptation is a core feature of most neurons and plays a key role in behavior.(4) We turned to 251 
sensory neurons in C. elegans, several of which, e.g., AWA, ADL, and ASH, show a spike and 252 
subsequent adaptation in intracellular Ca2+ upon step-like odor stimulation. Ca2+ adaptation, 253 
specifically, is thought to play a key role in C. elegans behavior(24,36). We focused on the AWA 254 
neuron pair, which is one of two main chemoattractive olfactory sensory neuron pairs in C. elegans(37). 255 
Although many genes involved in C. elegans sensory processing have been discovered, a molecular 256 
circuit-level understanding of adaptation, a key neuronal computation, is currently lacking. 257 
 258 
We analyzed odor-evoked Ca2+ responses in intact, wild-type animals (Fig. 3 A).We stimulated worms 259 
expressing an AWA-specific Ca2+ sensor (GCaMP)(24,38), with periodic on-off pulses of diacetyl, a 260 
known AWA odor(38) (Fig. S6 A-G and Methods for details). We measured total AWA Ca2+ output for 261 
seven different pulse periods T at two pulse durations d (=10’’,20’’) (Fig. 3 B-D, see E for a sample 262 
trace). (We first administered a series of 10 preparatory odor pulses allowing responses to 263 
stabilize(24,38) and for calibration across recordings (Methods).) The output peaked at refractory period 264 
Tmax=37’’-38’’ at both pulse durations (Fig. 3 B-D); thus, the slope of Tmax(d) was close to zero in-265 
between (<1/2 with confidence 0.96) and was therefore stabilized, indicating an NFL. 266 
 267 
Also, with fast odor pulses (T=15’’ or 20’’), many of the worms showed clearly noticeable period 268 
skipping (Fig. 3 F). We devised a statistical test (posc) for detecting low-frequency modulations(32) 269 
(Methods) and observed a significant jump in the number of worms with low-frequency response 270 
modulations in our T=15’’ or T=20’’ recordings compared to other periods (Fig. 3 G). According to our 271 
mathematical analysis, this was another indicator of an NFL. 272 
 273 
We wondered whether Ca2+ forms an NFL onto itself. In the absence of our measurements, we had no 274 
particular reason to pursue this hypothesis given that previous results, if anything, suggested an 275 
IFFL(39,40). We tested for a Ca2+-NFL in AWA by dynamically manipulating Ca2+ levels using 276 
thapsigargin, a widely-used inhibitor of SERCA Ca2+-pumps, which remove Ca2+ from the cytosol(41). 277 
We added thapsigargin to the media for ten odor pulses (Fig. 3 H). The odor-induced Ca2+ responses 278 
surged initially, as expected for thapsigargin; however, the responses adapted again within 5-7 odor 279 
pulses, consistent with Ca2+ boosting its own inhibition mechanism. Removal of thapsigargin caused a 280 
depression of Ca2+ levels (hyper-adaptation) compared to the no-drug control (Fig. 3 I, J), which is 281 
consistent with the inhibition mechanism decaying slowly, reflecting a memory of elevated Ca2+ levels. 282 
(In contrast, elevated Ca2+ would not increase inhibition in an IFFL, and after thapsigargin removal, 283 
odor responses would be at normal levels.) Subsequent recovery showed that over-adaptation was not 284 
due to (permanent) damage. Furthermore, longer thapsigargin treatment excluded Ca2+ depletion or 285 
non-specific cell exhaustion for causing adaptation (Fig. S6 H). Thapsigargin itself did not act 286 
noticeably as an odor itself (Fig. S6 I). Since the changes in Ca2+ were at biologically relevant time 287 
scales and magnitudes, these results provide evidence for a physiological Ca2+-NFL causing adaptation 288 
in AWA neurons in intact C. elegans worms. 289 
 290 
 291 
 292 



Discussion 293 
The refractory period is a natural way of characterizing adapting systems, in part, because it involves 294 
quantities with intuitive units (d, Tmax: time, ∂Tmax/∂d: unitless). It is also germane to biology and not 295 
derived from other fields of science or engineering. 296 
 297 
Our approach has inherent limitations: not all IFFLs and NFLs can be distinguished by dynamical 298 
measurements(42), and the detection of circuit motifs does not, for example, specify biochemical species. 299 
However, our response signatures were reliable and useful in practice, and the same limitations apply to 300 
bistability, hysteresis, and irreversibility, which do not identify all PFLs(43), but have proven their 301 
usefulness nevertheless. 302 
 303 
A stabilized refractory period implies that NFLs have robust timing, which may be an advantageous 304 
feature, e.g., rendering cell cycle timing robust to noise. We speculate that this leads to NFLs 305 
predominating in nature, which may also be why the dependence of the refractory period on stimulus 306 
duration has been overlooked. Skipping in NFLs represents a strong high-frequency filter, which ignores 307 
fast pulses. For the cell cycle, this may be advantageous but for other systems, the failure to track inputs 308 
might represent a trade-off in exchange for other NFL properties, e.g., a stable refractory period. 309 
 310 
 311 
 312 
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Figure Legends 471 
Figure 1: 472 
Discriminating IFFLs and NFLs. A-D: Four fundamental wiring diagrams for adaptation. Here, arrows 473 
can represent multiple intermediate nodes. E, F: Stimuli always turn on at the same times 0 and t1. Red 474 
arrows indicate when the inhibitor I begins to decay. E: An IFFL system (same model as in panel I) 475 
receives two consecutive stimulus pulses of different widths but with the same onset times. F: Same as E 476 
except NFL instead of IFFL (same model as in panel J). G: Periodic stimulus pulses of duration d and 477 
period T produce output O(t)=O(t, d, T). H: The time average of O(t) is denoted by O(d, T). O(d, T) has 478 
a maximum at Tmax(d). Periodic solutions shown for stimuli that are faster, exactly at, or slower than 479 
Tmax (left to right). I, J: θ(x) is the step function which is 0 for x < 0 and 1 otherwise. I: IFFL model as in 480 
panel A (IFFL 1 in Fig. S2 with n→∞). Model parameters: λI0 = 0.01, 0.1, 0.5, 0.75 (dark → light). J: 481 
NFL model as in panel C (NFL 1 in Fig. S2 with n→∞). NFL parameters: (λ, λI0) = (0.1,0.3), (0.1,0.1), 482 
(0.4,0.1), (0.1,0.01) (dark → light). Tmax(d) plot is terminated when the pulse duration d exceeds the 483 
absolute refractory time, above which the circuit would be activated twice for each stimulus pulse. K: 484 
Schematic showing equivalent classes of circuits with the same Tmax(d). The asterisk denotes the specific 485 



nature of the nonlinear transformations analyzed (see Supplementary Notes). L: Period skipping in an 486 
NFL circuit (mathematical model in panels F, J). 487 
 488 
Figure 2: 489 
Signatures identify dynamically important NFLs in yeast cell cycle control mutants and can be abolished 490 
by an artificial IFFL. All cells have the same CLN2pr-YFP construct by crossing. Abbreviations: 491 
clnΔ*=cln1-3Δ MET-CLN2, clbΔ*=clb1-6Δ GALL-CLB2, -Met/+Met = absence/presence of methionine 492 
in the media, Gal = galactose. A: Schematic of the wild-type CDK-APC/C cell cycle control system. B-493 
F: Subcircuits from panel A with blue arrows indicating the intermediate steps which the black arrows 494 
summarize. G: Schematic of global transcriptional oscillator (GTO) model adapted from ref.(30,31). H: 495 
A clnΔ* cell undergoes one cell cycle after MET-CLN2 is induced from 0’ to 30’ in -Met medium. 496 
Nuclei marked by Htb2-mCherry. Scale bar (white): 5 μm. I: Sample time course of CLN2pr-YFP in a 497 
clnΔ* cell subjected to five -Met pulses of duration d=30’ and period T=85’ (black bars) inducing five 498 
complete cell cycles. J: A clnΔ* cell showing period skipping (-Met pulses d=30’, T=65’ (black bars)). 499 
The cell cycle starts (and completes) only in response to pulses 1, 3, 5, as determined by budding, 500 
nuclear division, and cytokinesis. K, O, S: Schematic of CDK-APC/C cell cycle control system in 501 
indicated strains, with stimulus (S), inhibitor (I), and output (O) indicated. Crossed-out, dashed arrows 502 
indicate the circuits and interactions that have been eliminated or crippled. L,M,P,Q,T,U: Output 503 
(fluorescence from fraction of consistently responding (non-skipping) cells) mean +/- SEM vs. stimulus 504 
period T for fixed pulse duration d, shown together with smooth spline fit used for estimating the peaks. 505 
Number of cells (about 100-200) underlying each data point specified in Methods. N,R,V: Best fit 506 
Tmax(d) (diamond), central 90% confidence interval (box), and linear interpolation (dashed line). 507 
 508 
Figure 3: 509 
A Ca2+-NFL leads to adaptation in C. elegans AWA neurons. A: C. elegans worms expressing GCaMP 510 
in the AWA olfactory sensory neurons pulsed with diacetyl. ‘?’ indicates that the detailed molecular 511 
mechanism of Ca2+ adaptation, including circuit type and the adapting node R, were unknown. Scale 512 
bar: 100 μm. B, C: Output mean +/- SEM vs. stimulus period T for fixed pulse duration d, shown 513 
together with smooth spline fit used for estimating the peaks. Number of worms underlying each data 514 
point: 28,15,28,28,35,24,11 (B), 29,49,62,37,31,27,11 (C) (left to right). Experiments repeated to ensure 515 
sufficiently small SEM/mean ratio. D: Mean Tmax(d) (circle), central 90% confidence interval (box), and 516 
linear interpolation (dashed line). For d=10’’: mean=38’’, interval=36’’-40’’; for d=20’’: mean=37’’, 517 
interval=35’’-42’’. E, F: Recordings without (E) or with (F) detectable period skipping at relatively low 518 
or high stimulus frequencies, respectively. The first ten preparatory pulses have the same period and 519 
duration across all trials. G: Fraction of worms +/- SEM showing significant period skipping (posc<0.05) 520 
at d=10’’. (≥*): Differences between fractions are at least significant with respect to p=0.05 threshold -- 521 
or lower. H, I: Pulses under brackets compared in panel J. H: Ca2+ levels before, during, and after 522 
thapsigargin application (magenta bar). The last preparatory pulse is the first pulse shown. Beginning 523 
with the second pulse shown, the pulse duration and period were switched to d=20’’, T=39’’. 524 
Normalization by the average of the last two prep response pulse peak heights. (Normalization by mean 525 
of the last two prep response pulses yields similar results.) Media contain 0.3% DMSO throughout. 526 
Mean over 25 worms. I: Same as H except DMSO-only control. Mean over 13 worms. J: Time-average 527 
of the response pulses after removal of thapsigargin in H (black), compared to control in I (green), 528 
showing continued depression of the responses. Circle: mean, triangles: mean +/- SEM, box: 1st, 2nd, 529 
and 3rd quartiles. (Analyzed pulses indicated by black or green bracket in H and I, respectively.) *: 530 
p<0.05, **: p<0.01, ***: p<0.001. All p value tests one-sided. 531 
 532 
 533 
 534 



Tables 535 
Table 1: 536 
 537 
circuit type total # tested # adapting # skipping + # refrac. period stabilization 
NFL 315549 22188 9712 (44%) 
IFFL 307584 16502 48 (0.29%) 
Ratio: 150:1 
 538 
Period skipping and refractory period stabilization are generic in NFLs but not in IFFLs. These results 539 
are based on a computational analysis of the set of circuit models in Fig. S2. (For details, see Methods.) 540 
 541 
 542 
 543 

Online Methods 544 

1 Computational exploration of model circuits 545 
The following algorithm was implemented in Matlab R2010b (code available upon request): 546 
 547 
1. Ordinary differential equations (ODEs) with parameters and interactions described in Fig. S2 or Table 548 
S1 were generated. 549 
 550 
2. Steady-state levels were calculated for the dynamic variables at S=0 and S=1 (only S=0 for NFLs) by 551 
plugging the model parameters into formulas for the steady-state solutions, which had been derived for 552 
each model by hand. If the steady-state levels were not defined (i.e., =±∞), the model was not analyzed 553 
further. 554 
 555 
3. To quantify how well the model adapted, the ODEs were solved numerically for a step stimulus (S=0 556 
to S=1). Nine output nonlinearities (O=R, O=R2, O=R3, ...) corresponding to the output functions in Fig. 557 
S2 and Table S1 were tested. Only those models and output functions were pursued further, in which 558 
adaptation was sufficiently strong (after a transient peak, the output declined by more than 80%). 559 
 560 
4. The ODEs were then solved with repeated on (S=1) and off (S=0) stimuli of duration d and period T 561 
using Matlab’s ode45 function. We employed various means to speed up the calculations, such as 562 
interpolating initial conditions based on neighboring solutions and extrapolating exponential 563 
convergence. The computations were stopped if the solution vector x(t) converged ||x(ti)-x(ti-564 
T)||/||x(ti)||<10-12, where ti is the time point right after the i’th S=1 stimulus, before 20000/T repetitions. 565 
If the solutions did not converge, a test for period skipping was performed and, if positive, the model 566 
was counted toward the number of adapting models in Tables 1 and S1, but otherwise not analyzed 567 
further. For period skipping, the solutions to the last n={1,…,5} stimulus pulses were simply checked 568 
for convergence to the n prior solutions (fractional error < 10-12). We focused particularly on finding 569 
false positives (IFFL loops showing refractory period buffering) rather than minimizing false negatives 570 
(NFL loops failing to show signatures) by gearing our computer code primarily to calculating Tmax(d) 571 
and detecting period skipping only if it occurs in that process. Since the search algorithm stopped when 572 
period skipping was detected, the number of models with period skipping includes models which may 573 
also stabilize refractory periods, see main text. 574 
 575 
5. Initially, a fixed set of pulse durations d={0.05,0.15,…,0.55,0.75,…,2.15,2.65} and a set of periods T 576 
ranging from d+0.005 to 10 or 30 (depending on d) were studied. If O(d, T) was increasing for the 577 
largest values of T in this set, T was increased incrementally (up to a maximum value of 1000) until O(d, 578 



T) decreased. If O(d, T) had a maximum as a function of T, the intervals around the maximum were 579 
bisected to identify the maximum more accurately. If O(d, T) had multiple maxima as a function of T, 580 
the largest period corresponding to a maximum was taken for Tmax(d). Only those models were pursued 581 
further, in which O(d, T) showed a maximum for T>d, i.e., where Tmax>d, for some d in the initial set. 582 
The number of these models was added to the number of adapting models from step 4., and the sums are 583 
indicated in Tables 1 and S1. (Thus, we counted as the number of adapting models those that adapted 584 
sufficiently to a step function and showed either a nontrivial Tmax refractory period or period skipping.) 585 
 586 
6. If O(d, T) had a maximum for T>d for any of the initial d values (5.), d was increased and Tmax(d) 587 
calculated until the slope of Tmax(d) (∂Tmax(d)/∂d) approached 1 or until Tmax exceeded the maximum 588 
allowed T. Then, Tmax(d) was smoothed everywhere by calculating additional Tmax(d) points on a denser 589 
set of d where the slope of Tmax(d) changed rapidly. 590 
 591 
 592 
 593 

2 Strains 594 
2.1 S. cerevisae strains 595 
Standard methods were used throughout. All strains were W303-congenic. Strains SJR14a4d and 596 
SJR12a5a were used previously(32). The CLB2kd mutation and the GAL1-CLB2kd construct have been 597 
used in ref.(34) and ref.(35), respectively. 598 
 599 
Genotypes: 600 
SJR14a4d: cln1Δ cln2Δ:CLN2pr-Venus:TRP1 cln3Δ:LEU2 trp1Δ:TRP1:MET3-CLN2 HTB2-601 
mCherry:HIS5 602 
 603 
SJR12a5a: SJR14a4d background, clb1Δ-clb6Δ:KanMX clb2Δ:GALL-CLB2:URA3-clb5Δ:KanMX 604 
clb3Δ:TRP1 clb4Δ:his3:KanMX 605 
 606 
SJR82c10b: SJR14a4d background, ura3Δ:GAL1-CLB2kd:URA3 607 
 608 
2.2 C. elegans strains 609 
We used the N2-based CX14887 strain with integrated gpa-6::GCaMP2.2b which has been described in 610 
ref.(24). Animals were raised at 20C on nematode growth medium (NGM) plates, seeded with 611 
Escherichia coli OP50 bacteria as a food source. All experiments were performed with young adults, 612 
age-synchronized by picking L4 stage animals to fresh food plates 12-24 h before the experiment. 613 
 614 
 615 
 616 

3 Experimental set-up 617 
3.1 S. cerevisae experiments 618 
Cells were grown overnight and diluted to OD≈0.02 about 6 hrs before the experiment to ensure return 619 
to log-phase. Fluorescence microscopy was performed on cells trapped in a microfluidic device 620 
(CellASIC) while the media were changed. Initially, cells were synchronized by arresting in off (S=0) 621 
medium for 120’. Then, the media were switched periodically between on (S=1) and off (S=0) pulse 622 
media. 623 
 624 
SJR14a4d: Overnight medium: D-Met; On (S=1) pulse medium: D-Met; Off (S=0) pulse medium: 625 
D+Met 626 



 627 
SJR12a5a: Overnight medium: G-Met; On (S=1) pulse medium: G-Met; Off (S=0) pulse medium: 628 
G+Met 629 
 630 
SJR82c10b: Overnight medium: R-Met; On (S=1) pulse medium: RG-Met; Off (S=0) pulse medium: 631 
R+Met 632 
 633 
Abbreviations: D=Glucose, G=galactose, R=raffinose, -Met=absence of methionine, +Met=presence of 634 
methionine. The sugars complemented synthetic complete medium. 635 
 636 
Images were taken every 5’. 637 
 638 
3.2 C. elegans experiments 639 
The experimental set-up was basically as described in ref.(38) for paralyzed worms. In all pulsing 640 
experiments, we switched between S basal medium with 1 mM (-)-tetrasimole hydrochloride (Sigma-641 
Aldrich) with (odor on) or without (odor off) 1.15 μM diacetyl (Sigma-Aldrich). 642 
 643 
The time interval between images was 0.1’’. In every experiment, 10 preparatory odor pulses were 644 
administered (10’’ duration, 60’’ period) before switching to the main measurement pulses of duration d 645 
and period T. (The 11’th pulse followed 60’’ after the beginning of the 10’th pulse.) 646 
 647 
For the thapsigargin experiments, we dissolved the drug (Santa Cruz Biotech) at 10 mg/ml in DMSO 648 
and then dissolved the solution at 0.3% by volume in S basal. The final concentration of thapsigargin 649 
was about 46 μM. We spun the thapsigargin-S basal solution down in Eppendorf tubes at 13200 rpm for 650 
1 min and saw no precipitation. For the DMSO-only controls, we added DMSO at 0.3% by volume to S 651 
basal. 652 
 653 
 654 
 655 

4 Image and data analysis 656 
4.1 S. cerevisae experiments 657 
Automated image segmentation and fluorescence quantification of yeast grown under time-lapse 658 
conditions were performed as previously described.(3) 659 
 660 
To find Tmax(d) for each yeast mutant, we needed to measure the time-averaged output O(d, T) for fixed 661 
pulse duration d as the pulse period T was varied. In brief (details below), we defined the system output 662 
O(d, T) as the fraction of cells p(d, T) that underwent normal cell cycles at least until some time point t, 663 
multiplied by their time-averaged CLN2pr-YFP fluorescence y(d, T) just before t. We estimated Tmax(d) 664 
by fitting a spline through the means of the O(d, T) data points, and calculated the uncertainty based on 665 
the standard errors in O(d, T). (All times are relative to the onset of the first stimulus pulse at 0’.) 666 
 667 
In all experiments, we applied 5 on-off pulses, which allowed us to follow and quantify about 100-200 668 
cells for each d and T. (More than 5 pulses generally led to overgrowth in the imaging arena since each 669 
stimulus pulse about doubled the number of cells.) The exact number of cells analyzed for each data 670 
point were (left to right): Fig. 2 L: 201, 136, 194, 125; M: 126, 102, 100, 70; P: 130, 150, 123, 174, 67; 671 
Q: 110, 123, 97, 162, 62; T: 69, 273, 287, 129, 61; U: 389, 346, 212, 95. The number of cells was 672 
determined by the noise in each data point: additional cell colonies were analyzed when the SEM was 673 
too large compared to the mean to allow a reasonable comparison with other data points. 674 
 675 



To define and compare the output O(d, T) for different T, we needed a specific, fixed time point t in our 676 
recordings, which was late so that sufficiently many pulses had been administered but which also 677 
occurred in all of the recordings with the same strain. (With the number of pulses fixed, the experiments 678 
with shorter periods are overall shorter.) We chose the onset of the last stimulus pulse t = 4 T2 of the 679 
second-shortest stimulus period T2 for each strain (T2=65’ for clnΔ*, T2=105’ for clnΔ*clbΔ*, T2=120’ 680 
for clnΔ* GAL1-CLB2kd) because it was a late time point, contained in all related recordings, and 681 
allowed the following quantification: We counted the number of cells n(d, T) that replicated in response 682 
to every stimulus pulse prior to t and at least budded in response to the first stimulus pulse starting after t, 683 
if any. (These cells skipped no stimulus pulses at least until t and the following stimulus pulse.) For 684 
example, cells pulsed with period T had to undergo four normal, on-time cell cycles and at least bud a 685 
fifth time to be counted. Cells pulsed with period 2T had to undergo two normal, on-time cell cycles and 686 
at least bud in response to the third stimulus pulse. The ratio of these cells compared to the initial 687 
number of cells N(d, t) defined p(d, T)=n(d, T)/N(d, T), and the standard error was Δp=(P(1-P)/N)1/2, 688 
where P=(n + 2)/(N + 4) takes into account the Agresti-Coull correction. (We suppress the dependence 689 
on d and T, i.e., P=P(d, T), when the notation becomes too cumbersome otherwise.) 690 
 691 
The CLN2pr-YFP fluorescence time courses of these (non-skipping) cells (Fi(t)) were averaged (<Fi(t)>i) 692 
and the height of the first peak in <Fi(t)>i was computed (=Fnorm) to normalize each recording. (Fnorm was 693 
obviously independent of T). The running average of Fi(t)/Fnorm was computed over a time window of 694 
size T (average from t-T/2 to t+T/2 assigned to t). The running average was again averaged from 3T2 to 695 
3.5T2 for the clnΔ* and clnΔ*clbΔ* experiments and from 2T2 to 3T2 for the clnΔ* GAL1-CLB2kd 696 
experiment to yield yi. (Using these running averages ensured that mostly only fluorescence 697 
measurements from before t were taken into consideration, which ensures that these cells are not 698 
skipping and performing on-time and normal cell cycles.) The mean (y) and standard error (Δy) of the 699 
yi’s were computed. 700 
 701 
The mean of the output was defined as O(d, T)=p(d, T)y(d, T) with standard error ΔO(d, T)=[Δp(d, 702 
T)2y(d, T)2 + p(d, T)2Δy(d, T)2]1/2, where we neglected the small Δp(d, T)2Δy(d, t)2 term. We 703 
approximated the distribution of O(d, T)’s by a Gaussian with standard deviation ΔO(d, T) and 704 
generated 104 random configurations of different outputs at each T. Using matlab, we fit smoothing 705 
splines through each one of the configurations. The maximum of the spline was taken as the Tmax for 706 
each sampled configuration. The whole distributions of Tmax(d) generated for the two pulse durations d 707 
for each strain were compared to each other. The confidence values that we report are the fraction of 708 
Tmax slopes smaller than 0.5. (We varied the smoothing parameter for the smoothing spline over a wide 709 
range (0.001, 0.01, 0.1, 0.3) but the confidences for the slope of Tmax(d) hardly changed.) For the plots, 710 
we used smoothing parameters 0.1, 0.01, 0.001 for clnΔ*, clnΔ*clbΔ*, clnΔ* GAL1-CLB2kd, 711 
respectively, reflecting the different distances between data points in T. 712 
 713 
4.2 C. elegans experiments 714 
4.2.1 Tracking AWA neurons 715 
The images were processed basically as described in ref.(38). Occasionally, the worms moved despite 716 
general paralysis due to tetramisole in the media. To determine the coordinates of the AWA neurons in 717 
time, we tracked GCaMP fluorescence in each frame computationally (residual fluorescence, sufficient 718 
to identify AWA, was detectable even when the odor was off); the previously described NeuroTracker 719 
software suite ref.(38) was used (see Fig. S6 A for a sample frame). We tried to track the AWA neurons 720 
of every worm in the arena, for which, in some instances, repeated manual readjustments of the 721 
brightness threshold to identify the AWA neurons were necessary. We gave up tracking individual 722 
worms if the AWA detection could not be stabilized despite repeated manual interventions. This was the 723 



case for about 1 in 15 worms in each experiment, where, usually, another close-by worm interfered with 724 
and diverted the tracker. 725 
 726 
4.2.2 Background and baseline subtraction 727 
For each worm i, the average raw intensity FR,i(t) was read out of a 13x13 pixel square window (4 728 
μm/pixel) centered on the tracked AWA neurons’ coordinates (Fig. S6 A). In order to correct for 729 
background, the median intensity FBG,i(t) in a ring around worm i’s AWA neurons (ring inner radius: 10 730 
pixels, outer radius: 19 pixels) was also read out and subtracted to yield FnoBG,i(t)=FR,i(t)-FBG,i(t) (Fig. S6 731 
B). 732 
 733 
Next, we corrected for baseline fluorescence, which can drift during the course of the recordings; so, we 734 
constructed a time-dependent baseline function (Fig. S6 C). Here and elsewhere, we used a 5’’ time 735 
window from -7.5’’ to -2.5’’ before odor pulses reached the microfluidic chamber to define the baseline 736 
fluorescence preceding each odor pulse and we defined the center of the window (at -5’’) as the 737 
beginning of each output pulse. We calculated the average of FnoBG,i(t) over each such time window 738 
preceding each odor pulse. A piecewise linear function FBL,i(t) was fit through these baseline averages, 739 
which were assigned to the beginning of each odor pulse. Between these points, FBL,i(t) interpolated 740 
linearly. Thus, FBL,i(t) reflected shifts in the baseline fluorescence in time. Using this time-dependent 741 
baseline function, we normalized the signal, Fi(t) = (FnoBG,i(t)-FBL,i(t))/FBL,i(t) (Fig. S6 D). 742 
 743 
4.2.3 Exclusion of poorly responding worms 744 
We tried to record and compute the responses of every worm in our experiments but we excluded 10% 745 
of the worms from further analysis because their responses were obviously problematic. To filter worms 746 
in an objective fashion, we set up quantitative criteria. We applied these tests to FnoBG,i(t), that is, after 747 
background correction but before baseline correction (Fig. S6 B). The first 10 preparatory odor pulses 748 
(of 10’’ duration and 60’’ period), which preceded the main measurement pulses in every experiment, 749 
allowed the worms to be evaluated before and independently of their responses to the main odor pulses 750 
and in a consistent manner across all experiments. The responses to prep pulses 9 and 10 were especially 751 
important because we used them to calibrate the rest of the responses, as explained in section 4.2.4. 752 
 753 
We filtered out worms whose output pulses 9 and 10 varied too much from one another; we eliminated 8 754 
(of 463 total) worms because the baseline FBL,i(t) changed by more than 6% before and after pulse 9 (or 755 
before and after pulse 10) with respect to the average of FBL,i(t) before and after pulse 9 (or 10). 756 
(Exclusion if |FBL,i(tj)-FBL,i(tj+1)|/(FBL,i(tj)/2+FBL,i(tj+1)/2)>0.06 where tj is the start of pulse j, and j is 757 
either 9 or 10.) One such trace is plotted in red in Fig. S6 B. 758 
 759 
Of the remaining, we filtered out 40 worms because the signal-to-noise ratio was too low; we defined 760 
the signal-to-noise ratio as the height of pulse 9 or 10 divided by the standard deviation of the baseline 761 
(FnoBG,i(t) over the preceding 5’’ time window) before or after pulses 9 or 10. (Exclusion if 762 
σ(FnoBG,i(t))t={tj-2.5’’,…,tj+2.5’’}/(FnoBG,i(tk)-FBL,i(tj))>0.11 for at least two of the four possible combinations 763 
where tj is the start of pulse 9, 10, or 11 and tk is the time of the peak of the closest output pulse 9 or 10.) 764 
One such trace is plotted in orange in Fig. S6 B. 765 
 766 
These thresholds are, of course, ultimately arbitrary, however, i) since they were used in a consistent 767 
manner across all experiments, ii) since we applied them to preparatory pulses before and independently 768 
of the responses to the main odor pulses, iii) since we only excluded the ‘worst’ 10% of all of the worms 769 
in our experiments, iv) since we included all of the worms that we could track initially, e.g., despite 770 
weak AWA responses, and v) since all of the response traces that were discarded were visibly 771 
problematic and unusual, we believe that these criteria were reasonable. 772 



 773 
4.2.4 Calculation of average responses 774 
For the worms that passed the two filters, we calculated Fnorm,i, the average of Fi(t) over the responses to 775 
pulses 9 and 10, i.e., over a time window starting at the beginning of odor pulse 9 and extending to the 776 
start of odor pulse 11. Fnorm,i serves to normalize the AWA responses for each worm (Fig. S6 E). (Again, 777 
odor pulses 9 and 10 are the last prep pulses; beginning with pulse 11, we switched to odor pulse 778 
duration d and period T.) Next, we computed the running average of Fi(t) from pulse 11 onward over a 779 
time window of size T (Fig. S6 E). We normalized the running average of each worm by Fnorm,i (Fig. S6 780 
F). We fit a linear least-squares regression through the normalized running average, starting 100’’ after 781 
the start of odor pulse 11 and ending 700’’ thereafter (Fig. S6 F). (For T=39’’ pulses, about three full 782 
odor pulses had been administered (2 x 39’’+10’’ or 2 x 39’’+20’’) before the start of the linear fit. The 783 
span of 700’’ is fairly long (about 18 x 39’’ period pulses, for example) and it allowed us to include all 784 
of our recordings, including some experiments that aborted early.) For each worm, we took as the output 785 
Oi(d, T) the estimated response at 100’’ by calculating the value of the linear fit at 100’’ (Fig. S6 G). 786 
The mean and the SEM over Oi(d, T) are shown in Figs. 3 and S6 G. Taking points later than 100’’ from 787 
the same linear fit as the output Oi(d, T) yielded similar results: The confidence that the slope of Tmax 788 
between d=10’’ and d=20’’ is less than 0.5 is 0.96 at 100’’, 0.96 at 200’’, 0.94 at 300’’, 0.87 at 400’. 789 
The gradual loss of confidence at later times can be due to experimental artifacts, accumulation of 790 
random noise with time, loss of correlation to the prep pulses, or, potentially and more interestingly, the 791 
activation of pathways with slower time scales, etc. (As shown in Fig. S5 A, it is important to compare 792 
the output at a specific time after the onset of stimulation.) Given the high confidence of our results up 793 
to about 300’’ after the onset of the main odor pulses, we did not investigate these issues further. 794 
 795 
4.2.5 Calculation of Tmax, slopes, and confidence intervals 796 
Based on the mean and SEM of the output Oi(d, T) over all worms i for each T for any fixed d, we 797 
approximated the distribution by a Gaussian and generated 104 random configurations of different 798 
outputs at each T. Using matlab, we fit a smoothing spline with smoothing parameter 0.1 through each 799 
one of the configurations. With noticeably smoother (smoothing parameter: 0.01, resulting confidence: 800 
0.94) or more flexible (smoothing parameter 0.3, resulting confidence: 0.96) splines, we arrived at 801 
essentially the same results (confidences in the slope of Tmax). The maximum of the spline was taken as 802 
the Tmax for each configuration. The whole distribution of Tmax thus generated for pulse duration d=10’’ 803 
was compared to the distribution of Tmax for pulse duration d=20’’. The confidence values that we report 804 
are the fraction of Tmax slopes smaller than 0.5. 805 
 806 
4.2.6 Statistical test for period skipping 807 
The test for period skipping used here was developed from a related statistical oscillation test in ref.(32). 808 
The basic idea is to 1) find the best fit of an enveloping sinusoidal function of period T’>T for each 809 
recording, and 2) compare the goodness of the fit to best fits for random reshufflings of the same 810 
recording. The fraction of random reshufflings that produce better fits than the original recording defines 811 
the p value posc. Specifically, for each recording, we calculated Fourier-type coefficients ci(T’)=Σ’t Fi(t) 812 
ei2πt/T’, where the Σ’t only includes time points t beginning with the first odor pulse at least 100’’ after 813 
the beginning of odor pulse 11. (As before (4.2.4), ignoring the first 100’’ of the main odor responses 814 
served as a rough way to allow some of the initial transients to dissipate.) c(T’) was calculated for 815 
skipping periods T’ ranging from 0’’ to 600’’ by 1’’ increments. The largest possible skipping period 816 
600’’ was chosen so as to allow at least two full skipping periods to fit into most of our recordings. As 817 
the best fit, we chose the largest |c(T’)|2 peak after the peak at T’=T. Then, we created 103 reshufflings 818 
of the original recording by cutting up each recording in intervals of length T beginning with the first 819 
odor pulse after 100’’ after the beginning of pulse 11 and permuting them. For each reshuffled recording 820 



we computed the largest |c(T’)|2, as before. We finally ranked the largest |c(T’)|2 for the original 821 
recording against the reshuffled data to obtain posc. 822 
 823 
Note that because there is no noise in the numerical analysis of circuit models and because we were 824 
willing to accept false negatives (missing period skipping in some NFLs) for faster computations, the 825 
periodicity test that we applied in our computational search of model space was much simpler. 826 
 827 
 828 
 829 

5 Data availability 830 
The data that support the findings of this study are available from the corresponding author upon 831 
reasonable request. 832 
 833 
 834 
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