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2D	Material	Liquid	Crystals	for	Optoelectronics	and	Photonics	
B.	Hogan,a,b	E.	Kovalska,c	M.	F.	Craciunb	and	A.	Baldychevab,†	

The	merging	of	the	materials	science	paradigms	of	liquid	crystals	and	2D	materials	promises	superb	new	opportunities	for	

the	 advancement	 of	 the	 fields	 of	 optoelectronics	 and	 photonics.	 In	 this	 review,	we	 summarise	 the	 development	 of	 2D	

material	liquid	crystals	by	two	different	methods;	dispersion	of	2D	materials	in	a	liquid	crystalline	host	and	the	liquid	crystal	

phase	arising	from	dispersions	of	2D	material	flakes	in	organic	solvents.	The	properties	of	liquid	crystal	phases	that	make	

them	so	attractive	for	optoelectronics	and	photonics	applications	are	discussed.	The	processing	of	2D	materials	to	allow	for	

the	development	of	2D	material	liquid	crystals	is	also	considered.	An	emphasis	is	placed	on	the	applications	of	such	materials;	

from	the	development	of	films,	fibers	and	membranes	to	display	applications,	optoelectronic	devices	and	quality	control	of	

synthetic	processes.

Introduction	
Two-dimensional	 (2D)	 nanocomposite	 materials	 with	
dynamically	tunable	 liquid	crystalline	properties	have	recently	
emerged	 as	 a	 highly-promising	 class	 of	 novel	 functional	
materials,	opening	new	routes	within	a	wide	variety	of	potential	
applications	 from	 the	deposition	of	highly	uniform	 layers	 and	
heterostructures,	 to	 novel	 display	 technologies.	Here,	we	will	
introduce	 the	 underlying	 concepts	 that	 underpin	 this	 recent	
technological	 advance;	 provide	 an	 overview	 of	 the	 synthetic	
routes	towards	such	2D	nanocomposite	materials;	and	review	
recent	 advances	 in	 the	 application	 and	 applicability	 of	 these	
materials	within	the	fields	of	optoelectronics	and	photonics.	
Since	 the	 advent	 of	 graphene	 in	 20041,	 there	 has	 been	 an	
explosion	in	the	investigation	of	a	wide	range	of	atomically	thin	
(two-dimensional)	 materials.	 In	 addition	 to	 graphene	
(exfoliated	 from	 graphite),	 materials	 that	 can	 be	 reduced	 to	
monolayer	 size	 have	 been	 shown	 to	 include:	 graphene	 oxide	
(from	 graphite	 oxide);	 transition	 metal	 dichalcogenides	
(TMDCs)-	for	example	MoS2,	WSe2	and	MoTe2-;	and	hexagonal	
boron	nitride	(h-BN)	amongst	countless	others.	The	possibilities	
for	applications	of	these	materials	are	almost	limitless,	owing	to	
the	diverse	properties	that	they	exhibit.	However,	adoption	of	
these	 materials	 in	 novel	 optoelectronics	 and	 photonics	
applications	 is	 often	 limited	 by	 challenges	 surrounding	 the	
scalability,	 cost	 of	 production	 processes	 or	 limited	 device	
tunability.	 Recently,	 two	 paradigms	 of	 significant	 interest	 for	
the	development	of	novel	functional	materials	where	dynamic	
reconfigurability	is	delivered	through	the	exploitation	of	liquid	
crystalline	properties	 and	2D	materials	have	emerged.	 Firstly,	
2D	material	particles	can	be	dispersed	in	a	conventional	liquid	
crystal	host2,3.	Alternatively,	2D	materials	dispersed	in	specific	
solvents	have	been	shown	to	display	lyotropic	liquid	crystalline	
phases	within	certain	ranges	of	2D	material	concentration4,5.	
Liquid	crystals	

The	liquid	crystal	phase	is	a	phase	of	matter	that	exists	for	a	variety	

of	 molecules	 and	 materials,	 depending	 on	 their	 geometric	 and	

chemical	properties,	with	characteristics	intermediate	to	those	of	a	

conventional	crystalline	solid	and	a	liquid6,7.	Liquid	crystals	(LCs)	have	

found	use	in	a	variety	of	applications	through	the	years	(Fig.	1).	The	

liquid	 crystal	 phase	 was	 initially	 described	 by	 Austrian	 botanist	

Friedrich	 Reinitzer	 in	 1888	 when	 looking	 at	 the	 properties	 of	

cholesterol	 derivatives8,9,	 although	 some	 credit	 goes	 also	 to	 Julius	

Planer,	 who	 reported	 similar	 observations	 27	 years	 prior10,11.	 This	

new	and	distinct	state	of	matter	was	then	 identified	as	 the	"liquid	

crystal	 phase"	 by	 Otto	 Lehmann	 in	 1890	 and	 in	 1904	 the	 first	

commercially	available	LCs	were	produced	by	Merck-AG12.	Over	the	

following	 18	 years,	 scientists	 established	 the	 existence	 of	 three	

distinct	liquid	crystalline	phases	(nematic,	smectic	and	cholesteric)12	

but,	with	no	applications	of	note	forthcoming,	the	study	of	LCs	was	

halted.	For	 the	next	30	years,	 the	 scientific	 community	 ignored	LC	

materials,	 considering	 them	 as	 an	 interesting	 curiosity.	 However,	

following	 a	 renaissance	 in	 liquid	 crystal	 science	 in	 the	 1950s,	 the	

previously	 scientific	 curiosity	 has	become	a	ubiquitous	part	 of	 the	

modern	technology	landscape.	

During	the	1950s,	the	invention	of	the	first	cholesteric	LC	

temperature	indicators,	as	well	as	advances	in	analytical	metrology,	

cancer	 diagnostics	 and	 non-destructive	 material	 testing	 methods	

drove	a	new	era	in	liquid	crystal	science.	By	1962,	liquid	crystals	were	

already	 finding	 applications	 for	 in	 state-of-the-art	 laser	 devices,	

despite	 the	 relative	 youth	 of	 laser	 science.	 However,	 the	 most	

important	 technological	 innovation	 came	 in	 1965	 with	 the	

development	 of	 the	 first	 LC	 displays	 (LCDs)13–15.	 Subsequently,	

twisted	nematic	LCDs	(1969	-	1971)	advanced	the	field	further13–15.	

Significant	 breakthroughs	 in	 the	 evolution	 of	 liquid	 crystal	

technologies	 occurred	 in	 the	 1980-1990s	 and	 continue	 to	 have	 a	

profound	 impact	 on	 day-to-day	 life:	 the	miniaturisation	 of	 display	

technologies	 facilitated	 the	 development	 of	 portable	 PCs,	 mobile	

telephones	and	countless	other	 innovations13–15.	 Since	 the	 start	of	

the	 new	millennium,	 LCs	 and	 recently	 discovered	 2D	material	 LCs	

have	 come	 into	 demand	 as	 optoelectronic	 and	 photonic	

materials3,16–19.		

The	 possibility	 of	 the	 existence	 of	 a	 liquid	 crystal	 phase	

stems	principally	 from	the	geometric	structure	of	the	molecules	 in	

the	material	as	well	as	the	functional	groups	present	in	the	molecule.		

In	lyotropic	liquid	crystals,	mesogens	are	dispersed	in	a	host	solvent	

(typically	water	but	other	organic	solvents	can	be	used	depending	on	

the	molecule)6,7,20.	 Lyotropic	 liquid	 crystals	 exhibit	 a	 liquid	 crystal	

phase	 within	 a	 certain	 range	 of	 temperatures	 but	 also	 require	 a	

concentration	 of	 the	 active	 mesogens	 that	 falls	 within	 a	 certain	

range.	In	the	lyotropic	phase,	the	fluidity	of	the	material	is	induced	

by	the	solvent	molecules	rather	than	being	intrinsic	to	the	mesogens	

themselves.	 The	 mesogens	 contain	 immiscible	 solvophilic	 and	
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solvophobic	 parts	 separated	 at	 opposing	 ‘ends’	 or	 facets	 of	 the	

molecule,	making	them	amphiphilic.	As	one	end	has	a	preferential	

interaction	 with	 the	 host	 solvent,	 ordering	 of	 the	 amphiphilic	

molecules	occurs	to	maximise	the	solvophilic	‘head’	interaction	with	

the	host	solvent	while	minimising	that	for	the	solvophobic	‘tail’.	The	

structures	 formed	by	the	mesogens	are	dependent	on	the	relative	

volumes	of	the	‘head’	and	‘tail’	as	well	as	the	concentration	of	the	

molecules	within	the	solvent.	

At	very	low	concentrations,	there	will	be	no	ordering	of	the	

amphiphilic	 molecules	 dispersed	 in	 the	 solvent6,7,20.	 As	 the	

concentration	 is	 increased,	 there	will	be	a	critical	concentration	at	

which	micelles	are	spontaneously	formed-		however,	the	micelles	do	

not	order	themselves	so	this	still	does	not	represent	a	liquid	crystal	

phase.	At	higher	concentrations,	the	micelles	must	order	themselves	

as	 the	 inter-micelle	 interactions	 become	 energetically	 important	

above	a	critical	micellular	concentration	within	the	solvent.	Typically,	

a	hexagonal	columnar	phase	is	formed	where	long	cylindrical	rods	of	

amphiphilic	mesogens	arrange	 themselves	 into	a	hexagonal	 lattice	

structure	 but	 other	 structures	 are	 possible	 depending	 on	 the	

mesogen.	As	 the	concentration	 increases	 further,	a	 lamellar	phase	

will	 form,	with	 layers	of	 the	mesogens	 separated	by	 thin	 layers	of	

solvent.	 In	 lyotropic	 liquid	 crystals,	 it	 is	 objects	 formed	 by	 the	

aggregations	of	amphiphiles	that	can	then	be	ordered	 in	the	same	

ways	 as	 observed	 for	 thermotropic	 liquid	 crystals.	 Lyotropic	 liquid	

crystals	possess	significant	tunability	as	the	structural	properties	are	

highly	sensitive	to	changes	in	concentration.	For	example,	within	in	

the	hexagonal	columnar	phase,	the	lattice	parameters	can	be	varied	

by	varying	the	solvent	volume	in	the	mixture.	

Liquid	 crystals	 are	 of	 particular	 interest	 due	 to	 their	

inherent	ordering	while	 in	 the	 liquid	phase	and	 for	 their	 ability	 to	

align	 the	 director	 along	 an	 external	 field21,22.	 Permanent	 electric	

dipoles	can	exist	in	the	individual	liquid	crystal	molecules	when	one	

part	 of	 the	 mesogen	 has	 a	 positive	 charge	 while	 another	 has	 a	

negative	charge.	When	an	external	electric	field	is	then	applied	to	the	

liquid	crystal,	the	dipoles	orient	along	the	direction	of	the	field	as	the	

electric	 field	 exerts	 a	 force	 on	 the	 dipoles.	 Some	 liquid	 crystal	

molecules,	however,	do	not	form	a	permanent	dipole	but	can	still	be	

influenced	by	an	electric	field.	The	shape	anisotropy	of	many	liquid	

crystal	mesogens	means	that	they	are	highly	polarisable	and	as	such	

an	applied	electric	field	can	induce	a	dipole	by	relocating	the	electron	

density	 within	 the	 molecule.	 While	 not	 as	 strong	 as	 permanent	

dipoles,	orientation	of	the	induced	dipoles	with	the	external	field	still	

occurs.	The	effects	of	magnetic	fields	on	liquid	crystal	molecules	are	

analogous	 to	 electric	 fields	 with	 the	 molecules	 aligning	 with	 or	

against	the	magnetic	field.		

	

2D	materials	

Whereas,	in	the	past,	2D	materials	have	typically	been	produced	by	

either	a	mechanical	cleavage	method1	or	by	vapour	deposition23–26,	

recently	liquid	phase	exfoliation	has	attracted	significant	interest	due	

to	 the	 inherent	 scalability	 of	 the	 process.	 Liquid	 phase	 exfoliation	

(Fig.	2)	 is	a	method	where	a	bulk	material	 is	dispersed	in	a	solvent	

and	then	layers	are	broken	apart27–31.	In	most	cases,	the	layers	are	

broken	 apart	 using	 ultrasonication	 where	 high	 frequency	 sound	

waves	 are	 transmitted	 through	 the	 solution27–30,32–35.	 The	 sound	

waves	induce	the	formation	of	bubbles	and	cavities	between	layers	

which	 break	 the	 layers	 apart	 as	 they	 expand.	 However,	 they	 also	

cause	strains	in	the	material	which	cause	intralayer	cleavage	of	the	

particles,	reducing	the	size	of	the	particles	obtained	after	exfoliation.	

Other	than	ultrasonication,	other	methods	have	been	developed	for	

liquid	 phase	 exfoliation,	 including	 strong	 acid	 induced	 oxidation	

reactions	 causing	 cleavage36	 and	 freezing	 of	 water	 intercalated	

layered	 structures	 where	 expansion	 of	 water	 as	 it	 freezes	 causes	

interlayer	cleavage37.	Following	exfoliation,	particles	of	specific	sizes	

can	 be	 isolated	 by	 centrifugation	 of	 the	 dispersion38,39,	 solvent	

induced	 selective	 sedimentation40	 or	 by	 pH-assisted	 selective	

sedimentation41	 amongst	 others.	 Materials	 of	 interest	 for	

optoelectronics	and	photonics	that	can	be	reduced	to	few-layer	or	

monolayer	by	means	of	liquid	phase	exfoliation	encompass	a	broad	

range;	 from	 graphene	 and	 its	 derivatives	 to	 transition	 metal	

dichalcogenides	(TMDCs),	metal	oxides	and	hexagonal	boron	nitride	

(h-BN)	amongst	many	others.	Liquid	phase	exfoliated	2D	materials	

are	 of	 significant	 interest	 for	 the	 production	 of	 2D	material	 liquid	

crystal	composites	as	the	exfoliating	solvent	can	be	used	as	the	fluid	

host	for	spontaneous	liquid	crystal	phase	self-assembly4,27,42–53,	or	to	

allow	combination	with	conventional	liquid	crystals3.	

Amongst	materials	discussed	further	here,	graphene	can	

be	exfoliated	from	bulk	graphite	owing	to	the	weak	van	der	Waals	

interactions	between	layers	in	graphite54.	Graphene	is	an	allotrope	

of	carbon	consisting	of	a	two-dimensional	hexagonal	lattice	with	a	

single	carbon	atom	at	each	vertex.	The	carbon	atoms	in	graphene	

are	sp2	hybridised	in-plane	with	these	sp2	electrons	forming	three	

carbon-	carbon	bonds.	The	final	p	orbital	is	unhybridised	and	

directed	out	of	the	plane.	For	a	graphene	sheet	these	out	of	plane	p	

orbitals	hybridise	to	form	the	delocalised	π	and	π*	bands	which	are	

responsible	for	graphene’s	exceptional	electronic	properties;	these	

exceptional	properties	make	graphene	of	significant	interest	as	a	

material	for	forming	electrical	contacts,	films	and	fibers.	

	 Graphene	oxide	is	the	2D	material	produced	by	the	exfoliation	of	

graphite	oxide55.	Maximum	oxidation	of	graphite	results	in	a	carbon	

to	 oxygen	 ratio	 between	 2.1	 and	 2.9.	 Graphite	 oxide	 retains	 the	

layered	structure	of	graphite	but	the	interlayer	spacing	is	increased	

and	 no	 longer	 regular	 for	 bulk	 graphite	 oxide.	 The	 oxidation	 of	

graphite	 introduces	 three	 types	 of	 oxygen	 containing	 functional	

groups	to	the	structure:	epoxy	bridges	(oxygen	bridging	between	two	

carbons	 on	 the	 surface	 of	 a	 graphitic	 sheet),	 hydroxyl	 groups	 (on	

either	the	surface	or	the	edges)	and	carboxyl	groups	(on	the	edges	of	

the	graphitic	sheets)56.	Graphene	oxide	can	be	exfoliated	from	bulk	

graphite	oxide	analogously	to	graphene	from	graphite54,55.	However,	

the	 intercalation	 of	 the	 graphitic	 carbon	 sheets	 by	 oxygenated	

functional	 groups	 results	 in	 graphene	 oxide	 being	 more	 readily	

exfoliatable.	This	means	that	graphene	oxide	can	be	exfoliated	to	few	

layers	 and	 even	monolayer	 in	 large	 quantities	 without	 the	 use	 of	
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additional	 surfactant	 molecules33,35.	 Graphene	 oxide	 possesses	

nonlinear	optical	properties	of	significant	interest	for	applications	in	

ultrafast	 photonics	 and	 optoelectronics.	 The	 saturable	 absorption	

can	be	used	for	pulse	compression,	mode	locking	and	Q	switching	of	

laser	 systems57.	 The	 large	 observed	 Kerr	 effect	 introduces	

possibilities	 in	 all-optical	 switching	 and	 signal	 regeneration	 and	

hence	 optical	 communications	 devices58.	 The	 nonlinear	 optical	

properties	of	graphene	oxide	can	be	tuned	by	controlling	the	carbon	

to	oxygen	ratio	of	the	material59,	this	tuning	has	been	achieved	using	

laser	irradiance	to	reduce	the	material.	

Transition	 metal	 dichalcogenides	 (TMDCs)	 are	 a	 class	 of	

material	 where	 transition	metal	 atoms	 are	 connected	 by	 bridging	

group	14	elements	with	a	stoichiometry	of	1:2	to	 form	 layers.	The	

layers	 are	 held	 together	 by	 weak	 van	 der	Waals	 interactions	 and	

therefore	present	an	 ideal	 candidate	 for	 reduction	 to	 few-layer	or	

monolayer	 materials.	 Cleavage	 to	 monolayer	 is	 typically	 achieved	

using	mechanical	exfoliation	methods	but	few-layer	material	can	be	

readily	 attained	 using	 liquid-phase	 exfoliation	 methods.	 Many	

different	 TMDCs	 have	 been	 synthesised.	 A	 common	 example,	

molybdenum	 disulfide	 (MoS2),	 consists	 of	 layers	 of	 molybdenum	

atoms	bound	to	six	sulfide	ligands	in	a	trigonal	prismatic	coordination	

sphere60,61.	MoS2	is	an	indirect	bandgap	semiconductor	with	a	band	

gap	of	1.23	eV	in	its	bulk	form62	but	the	monolayer	form	has	a	direct	

bandgap	of	 1.8	eV	 63	 so	 can	be	used	 in	 switchable	 transistors	 and	
photodetection	devices60.	MoS2	can	emit	light	opening	applications	

in	in-situ	light	generation	devices60.	

2D	material	liquid	crystals	
It	has	been	shown	that	by	dispersing	nanoparticles	or	molecules	in	a	

liquid	crystal	host	 that	 the	ordering	of	 the	 liquid	crystal	mesogens	

can	impart	ordering	to	the	dispersed	particles64–66.	The	nanoparticles	

have	 been	 shown	 theoretically67	 and	 experimentally3,68–72	 to	 align	

with	 the	 disclinations	 of	 the	 liquid	 crystal	 due	 to	 the	 energetic	

favourability	of	such	an	alignment.	More	recently,	the	impartment	of	

ordering	 from	 a	 liquid	 crystal	 host	 has	 also	 been	 shown	 with	

dispersed	 2D	 material	 particles3,73.	 Additionally,	 dispersions	 of	

graphene	oxide	in	water	have	been	shown	to	have	a	lyotropic	liquid	

crystal	phase	within	a	specific	range	of	concentrations	of	dispersed	

graphene	 oxide	 particles	 (Fig.	 3),	 where	 the	 dispersed	 discotic	

graphene	oxide	particles	are	either	stacked	in	the	columnar	manner	

typical	of	discotic	 liquid	crystals	or	exhibit	ordering	analogous	to	a	

nematic	phase45,47,48.	The	liquid	crystal	phase	of	the	graphene	oxide	

dispersions	 arises	due	 to	 the	 competition	between	 the	 long-range	

electrostatic	 repulsion	 between	 particles,	 originating	 from	 ionised	

functional	 groups	 at	 the	 edges	 of	 the	 particles,	 and	 the	 weak	

attractive	 interactions	 originating	 from	 the	 unoxidised	 graphitic	

domains	 on	 the	 surface74,75.	 The	 liquid	 crystallinity	 is	 therefore	

dependent	 on	 the	 particle	 size;	more	 precisely	 to	 the	 ratio	 of	 the	

surface	 area	 to	 the	 circumference	 (and	 number	 of	 layers)	 as	 this	

determines	the	balance	of	the	attractive	and	repulsive	forces75.	Most	

dispersions	of	liquid	phase	exfoliated	graphene	oxide	will	consist	of	

particles	 of	 differing	 sizes	 and	 therefore	 the	 polydispersity	 of	 the	

particles	becomes	an	important	factor51.	Additionally,	this	balance	is	

affected	by	the	degree	of	oxidation-	the	carbon	to	oxygen	ratio	of	the	

material75.	 The	 stability	 of	 the	 liquid	 crystal	 phase	 can	 also	 be	

strongly	 affected	 by	 the	 ionic	 content	 of	 the	 solvent	 as	 this	

determines	 the	 degree	 of	 ionisation	 of	 the	 oxygen	 containing	

functional	groups	on	graphene	oxide43,75.	The	pH	of	the	solvent	also	

affects	 the	 critical	 concentration	 for	 the	 onset	 of	 liquid	 crystalline	

behaviour76.	By	 tuning	 these	separate	parameters,	 it	 is	possible	 to	

observe	either	a	nematic	phase	or	a	columnar	phase	of	the	graphene	

oxide	dispersion	(Fig.	4).	The	different	 liquid	crystalline	phases	can	

be	observed	using	photoluminescence	measurements	as	there	 is	a	

strong	 polarisation	 dependence	 of	 the	 photoluminescence	 for	

ordered	mesophases	in	graphene	oxide	dispersions77.		

Similarly,	this	 liquid	crystal	phase	has	been	observed	in	a	

range	 of	 other	 organic	 solvents	 including	 acetone,	

dimethylformamide,	 ethanol,	 cyclohexylpyrrolidone	 and	

tetrahydrofuran33,78	(Fig.	5).	The	concentration	of	particles	required	

to	give	rise	to	the	liquid	crystal	phase	is	different	for	each	solvent,	

but	 there	 is	 also	 some	 discrepancy	 between	 the	 threshold	

concentrations	observed	 for	 the	same	solvent	due	to	 the	effect	of	

the	size,	shape	and	polydispersity	of	the	graphene	oxide	particles	in	

the	 solution.	 A	 liquid	 crystal	 phase	 has	 also	 been	 observed	 for	

graphene	exfoliated	and	dispersed	in	chlorosulfuric	acid27.	A	similar	

phase	has	been	observed	in	other	solvents	for	graphene	and	small	

graphitic	 particles	 although	 only	 with	 the	 addition	 of	 either	

stabilising	 surfactant4,5,79	 or	 polymer	 coatings80.	 Dispersions	 of	

graphene	in	water	have	been	reported	to	show	an	extrinsic	chirality	

associated	with	a	cholesteric	 liquid	crystal	phase4.	More	recently	a	

liquid	 crystal	 phase	 has	 been	 observed	 for	 dispersions	 of	

molybdenum	disulfide	 at	 high	 concentration	 in	water50	 suggesting	

the	possibility	of	 liquid	 crystalline	phases	existing	 for	a	 far	greater	

range	of	dispersions	of	2D	materials79.		

Applications	and	prospects	
Films,	fibers,	membranes	and	inks	

The	self-assembling	nature	of	liquid	crystalline	materials	has	led	to	

the	 use	 of	 graphene	 oxide	 dispersions	 for	 the	 formation	 of	 well-

ordered	 layers	 and	 stacks	 of	 2D	 materials.	 Behabtu	 et	 al27,	
demonstrated	 that	 graphite	 spontaneously	 exfoliates	 into	 single-

layer	 graphene	 in	 chlorosulfonic	 acid,	 and	 spontaneously	 forms	

liquid-crystalline	 phases	 at	 high	 concentrations.	 Transparent,	

conducting	 films	 were	 produced	 from	 the	 liquid	 crystalline	

dispersions.	 	 Jalili	 et	 al78	 showed	 that	 self-assembly	 of	 graphene	

oxide	 sheets	 is	 possible	 in	 a	 wide	 range	 of	 organic	 solvents.	 The	

prepared	 dispersions	 were	 employed	 to	 achieve	 self-assembled	

layer-by-layer	 multifunctional	 3D	 hybrid	 architectures	 comprising	

SWNTs	and	GO	with	promising	mechanical	properties	(Fig.	6).	More	

recently,	the	same	group	has	showed	that	similar	self-assembly	can	

be	 achieved	 using	 liquid	 crystalline	 dispersions	 of	 molybdenum	

disulfide50.	Layers	of	these	materials	have	been	combined	with	other	

materials	for	a	variety	of	diverse	applications	such	as	photovoltaics81	

and	improving	the	mechanical	properties	of	composite	materials82,	
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the	more	homogeneous	layers	produced	from	the	liquid	crystalline	

dispersions	 are	 of	 significant	 interest	 to	 applications	 of	 these	

natures.	The	use	of	liquid	crystalline	dispersions	of	graphene	oxide	

to	produce	uniform	layers	has	been	used	as	a	precursor	to	forming	

similarly	 uniform	 structures	 of	 graphene	 through	 the	 reduction	 of	

the	 graphene	 oxide4,49.	 Akbari	 et	 al	demonstrate	 that	 the	 discotic	

nematic	phase	of	GO	can	be	shear	aligned	to	form	highly	ordered,	

continuous	 films	 of	multi-layered	 GO	 on	 a	 supporting	membrane.	

The	highly	ordered	graphene	sheets	in	the	plane	of	the	membrane	

make	 organized	 channels	 and	 give	 greater	 permeability.	 The	

nanoporous	membranes	may	find	application	in	a	variety	of	filtering	

applications83.	Fu	et	al	demonstrate	the	use	of	graphene	oxide	liquid	

crystals	 can	 be	 applied	 as	 composite	 inks	 for	 the	 formation	 of	

electrodes	 in	 3D	 printing	 applications84	 due	 to	 the	 intrinsic	 self-

assembly	 that	means	 they	 retain	 ordering	 of	 the	 GO	 platelets	 on	

drying	of	the	solvent.		

The	development	of	fibers	formed	from	graphene,	GO	or	

reduced	GO	is	a	widely	reviewed	maturing	area	for	investigation85–

88,	 with	 many	 proposed	 applications	 such	 as	 in	 conducting	 wires,	

energy	 storage	 and	 conversion	 devices,	 actuators,	 field	 emitters,	

catalysis	and	optoelectronic	and	photonic	devices.	One	of	the	most	

promising	developments	in	this	field,	and	of	particular	interest	here,	

has	 been	 the	 use	 of	 the	 liquid	 crystal	 phase	 to	 improve	 the	

homogeneity	 and	 ordering	 of	 the	 fibers	 produced;	 numerous	

examples	 exist	 where	 fibers	 comprised	 of	 2D	materials	 have	 also	

been	 produced	 by	 the	 wet-spinning	 of	 liquid	 crystalline	

solutions4,47,49,50,89,90.	 Xu	 and	 Gao4	 developed	 a	 method	 by	 which	

aqueous	graphene	oxide	liquid	crystals	were	continuously	spun	into	

metres	of	macroscopic	graphene	oxide	fibres;	subsequent	chemical	

reduction	gave	the	first	macroscopic	neat	graphene	fibres	with	high	

conductivity	 and	 good	mechanical	 performance	 (Fig.	 7).	 Jalili	et	 al	
demonstrate	 a	 method	 for	 one-step	 continuous	 spinning	 of	

graphene	 fibers	 where	 the	 need	 for	 post-treatment	 processes	 is	

eliminated	by	the	use	of	basic	coagulation	baths	for	reduction	of	GO	

during	 the	 spinning	 process49,	 as	 well	 as	 the	 applicability	 of	 wet-

spinning	to	the	formation	of	fibers	of	other	2D	materials50.		

Optoelectronics	

Liquid	 crystalline	 nanocomposites	 incorporating	 2D	 material	

particles	show	great	promise	for	optoelectronic	applications	due	to	

their	 field	 induced	tunability	and	enhanced	functionality	stemming	

from	the	plethora	of	properties	displayed	by	the	range	of	exfoliatable	

materials.	 For	 example,	 dispersions	 of	 liquid	 crystalline	 graphene	

oxide	 have	 been	 shown	 to	 undergo	 electro-optical	 switching	with	

low	 threshold	voltage	 requirements91.	Kim	et	al	show	that	GO	LCs	
possess	an	extremely	large	Kerr	coefficient,	making	them	attractive	

for	low	power	consumption	optoelectronic	devices.	By	stabilising	a	

suspension	 of	 reduced	 GO	 using	 surfactants,	 they	 demonstrated	

increased	 time	 stability	 and	 drastically	 improved	 electro-optic	

properties	with	an	induced	birefringence	twice	as	large	at	the	same	

field	strength	as	that	with	an	unreduced	GO	suspension.	

Zhu	et	al92	have	shown	that	the	preparation	of	poly(N-
isopropylacrylamide)	/GO	nanocomposite	hydrogels	with	

macroscopically	oriented	LC	structures,	after	polymerisation,	can	be	

readily	achieved	under	assistance	from	a	flow-field-	induced	by	

vacuum	degassing.	Nanocomposites	prepared	with	a	GO	

concentration	of	5.0	mg.mL−1	exhibit	macroscopically	aligned	LC	

structures,	which	endow	the	gels	with	anisotropic	optical	

properties.	Furthermore,	they	show	that	the	oriented	LC	structures	

are	not	damaged	during	switching	of	the	hydrogels,	and	hence	their	

behaviour	undergoes	reversible	changes.	Additionally,	they	show	

that	the	oriented	LC	structures	in	the	hydrogels	can	be	permanently	

maintained	after	drying	the	nanocomposite	samples.	The	liquid	

crystalline	properties	of	such	nanocomposites	facilitate	their	

applicability	to	switching	in	optoelectronic	devices.	

Kim	et	al93	have	demonstrated	significant	improvement	of	the	

electro-optic	performance	of	a	polymer-stabilized	liquid	crystalline	

blue	phase	using	a	reduced	graphene	oxide	(RGO)	enriched	polymer	

network.	The	conductivity	of	the	nanocomposite	system	is	

increased	by	the	inclusion	of	the	RGO.	Furthermore,	reductions	in	

the	operational	voltage	(~32%),	response	time	(~51%)	and	

hysteresis	(~53%)	compared	to	that	of	a	conventional	polymer-

stabilized	BPLC	signify	great	potential	for	the	use	of	2D	materials	in	

enhancing	novel	electro-optic	device	applications	of	conventional	

LC	systems.	

Recently,	Hogan	et	al	proposed	 that	by	 tuning	 the	 liquid	
crystal	director	by	means	of	an	applied	field,	one	could	 induce	the	

formation	 of	metastructures	 formed	 of	 the	 dispersed	 2D	material	

particles	 as	 they	 are	 repositioned.	 In	 particular,	 they	 show	 that	

nanocomposites	 of	 nematic	 phase	 liquid	 crystals	 with	 dispersed	

graphene	 oxide	 particles	 can	 be	 integrated	 with	 CMOS	 photonics	

devices	as	a	back-end	process	as	part	of	microfluidic	systems	and	that	

the	 integrated	nanocomposites	can	be	readily	controlled	by	use	of	

either	an	electric	field	or	laser	light	to	reposition	and	rearrange	the	

dispersed	 particles3	 (Fig.	 8).	 They	 present	 a	 novel	 characterisation	

method	based	on	Raman	spectroscopy	to	allow	determination	of	the	

spatial	positioning	of	the	 integrated	2D	material	particles,	allowing	

precise	monitoring	of	metastructure	formation.		

Displays	

2D	material	liquid	crystals	can	be	used	in	back-illuminated	liquid	

crystal	 display	 applications	 as	 they	 exhibit	 electro-optic	 switching.	

The	large	Kerr	coefficient	of	graphene	oxide	liquid	crystals	observed	

by	Shen	et	al53,	for	example,	facilitates	this	application.	However,	the	

slow	 switching	 times	 reported	 by	 Kim	 &	 Kim	 (>1	 s)94	 must	 be	

considered,	although	Ahmad	et	al95	report	that	this	can	be	improved	

by	approximately	an	order	of	magnitude	by	careful	selection	of	the	

size	of	graphene	oxide	mesogens.	

More	 promisingly,	 2D	 material	 liquid	 crystals	 have	 also	 been	

proposed	for	application	in	liquid	crystal	displays-	particularly	in	so-

called	‘e-ink’	displays-without	requiring	the	polarising	optics	typically	

necessary	 for	 these	 applications52,76.	 He	 et	 al52	 	 demonstrate	 a	

process	 by	 which	 graphene	 oxide	 liquid	 crystals	 can	 be	 used	 for	
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reflective	displays	without	the	need	for	polarizing	optics(Fig.	9).	By	

using	flow-induced	mechanical	alignment,	they	prepared	graphene	

oxide	 in	 different	 orientational	 orders	 and	 demonstrated	 that	 the	

ordered	graphene	oxide	 liquid	crystals	can	be	used	as	a	rewritable	

display	medium.	The	surface	of	the	graphene	oxide	liquid	crystal	can	

be	 switched	 from	 a	 bright,	 reflective	 state	 to	 a	 dark,	 transmissive	

state	using,	 for	example,	a	wire	 to	manually	draw	patterns	on	 the	

surface.	They	explain	that	the	contrast	between	the	two	states	arises	

due	to	the	anisotropic	response	of	the	flakes	due	to	the	inherent	high	

aspect	ratio	of	the	2D	material.	

Quality	control	

Inducing	 the	 onset	 of	 a	 liquid	 crystal	 phase	 in	 a	 dispersion	 of	

graphene	 oxide	 has	 been	 used	 for	 size	 selection	 of	 the	 graphene	

oxide	particles96.	Lee	et	al	introduce	a	method	for	facile	size	selection	

of	 large-size	 graphene	 oxide	 particles	 by	 exploiting	 liquid	

crystallinity.	They	show	that	in	a	biphasic	graphene	oxide	dispersion	

where	both	isotropic	and	liquid	crystalline	phases	are	in	equilibrium,	

large-size	GO	flakes	(>20	μm)	are	spontaneously	concentrated	within	

the	liquid	crystalline	phase.	Selectivity	of	large	flake	sizes	without	the	

need	 of	 filtering	 presents	 several	 advantages	 for	 photonics	 and	

optoelectronics	applications;	primarily	larger	flakes	allow	for	greater	

uniformity	of	device	characteristics	over	wider	areas	and	can	help	to	

increase	the	uniformity	of	depositions.	

Outlook	

2D	 materials	 encompass	 a	 fascinating	 range	 of	 diverse	

properties	with	a	myriad	of	possible	applications	in	optoelectronics	

and	photonics.	The	development	of	liquid	crystalline	nanocomposite	

materials	 incorporating	 2D	 materials	 represents	 a	 significant	

advance	in	the	opportunities	for	integration	and	exploitation	of	2D	

materials	within	these	fields.	However,	there	remain	a	large	number	

of	questions	 that	demand	further	 investigation	before	2D	material	

liquid	 crystals	 can	 find	 wider	 application.	 Primarily,	 there	 remain	

many	 candidate	 2D	 materials	 for	 which	 a	 liquid	 crystal	 phase	 is	

theoretically	possible	but	not	yet	shown;	the	discovery	of	further	2D	

material	 liquid	 crystals	 would	 broaden	 the	 range	 of	 utilisable	

properties	available.	Similarly	to	that	observed	for	graphene	oxide,	

observation	of	this	liquid	crystallinity	should	require	a	combination	

of	careful	solvent	selection,	tuning	of	the	2D	material	particle	sizes	

and	control	of	 the	concentration	of	 the	particles.	Additionally,	 the	

use	of	surfactant	molecules	may	be	necessary	to	stabilise	the	liquid	

crystalline	phase	of	the	dispersions	by	maximising	the	aligning	forces	

acting	on	the	dispersed	particles.	However,	this	raises	the	additional	

question	of	 the	exploration-	both	 theoretical	and	experimental-	of	

the	conditions	required	for	the	existence	of	the	liquid	crystal	phase,	

an	area	 in	which	 little	work	has	 far	been	explored	 for	 the	 specific	

systems	of	interest	here.	A	significant	part	of	such	work	remains	to	

be	done	in	the	comparison	of	the	different	synthetic	routes	towards	

the	 LC	 phase,	 and	 how	 the	 synthesis	 can	 affect	 the	 observed	

properties.	

Additionally,	 dispersion	 of	 2D	 materials	 in	 conventional	

liquid	 crystal	 host	 fluids	 presents	 superb	 new	 possibilities	 in	

optofluidic	 systems;	 from	 light	 generation	 to	 dynamic	 sensing	

applications.	This	is	owing	to	the	dramatic	improvements	that	can	be	

observed	 in	 the	 operational	 parameters	 of	 the	 nanocomposite	

systems	in	comparison	to	the	conventional	LC	systems	currently	used	

in	optoelectronics	and	photonics.	Such	nanocomposites,	can	not	only	

improve	properties	such	as	switching	times	and	threshold	voltages,	

but	 can	 also	 add	 further	 functionality,	 for	 example	 by	

metastructuring	 of	 nanoparticle	 dispersions.	 For	 these	

nanocomposite	systems,	the	most	 important	advances	to	be	made	

are	in	the	fundamental	understanding	of	the	basis	for	improvements	

in	 their	 intrinsic	 properties;	 and	 in	 the	 exploration	 of	 predicting	

metastructuring	as	well	as	experimental	observation.	

Overall,	 the	existence	of	 liquid	 crystal	phase	2D	material	

dispersions	 presents	 fantastic	 opportunities	 in	 the	 exploration	 of	

novel	 optoelectronic	 and	 photonic	 systems,	 allowing	 new	 highly-

scalable	 production	 processes	 for	 thin	 film	 integration	 and	 novel	

fiber	systems	amongst	numerous	other	applications.		
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Figure	2:		Liquid	phase	exfoliation	of	2D	materials.	(a)	Starting	material	(e.g.,	graphite),	(b)	chemical	wet	dispersion,	(c)	

ultrasonication	and	(d)	final	dispersion	after	the	ultracentrifugation	process.	Reproduced	with	permission	from	Bonaccorso	&	Sun,	

Opt.	Mater.	Exp.,	201431	(©2014,	The	Optical	Society).	

Figure	1:		Timeline	of	the	history	of	liquid	crystal	phase	applications,	from	their	discovery	to	the	present	day.	1888:	The	LC	phase	
was	first	reported	by	Friedrich	Reinitzer	(Image	reproduced	with	permission	from	Mitov,	ChemPhysChem,	201497,	(©	2014	
Wiley-VCH)).	1950-1959:	the	development	of	the	first	cholesteric	phase	and	LC	thermometers.	1962:	the	first	switchable	
orientation	of	LC	molecules	was	utilised	in	laser	devices.	1965:	The	first	prototype	LCD	was	developed	by	George	H.	Heilmeier	
before	finding	limited	applications.	1969-1971:	The	first	twisted	nematic	cell	displays	were	developed	from	the	initial	work	of	
Martin	Schadt	and	incorporated	in	devices.	1980-1990s:	LCDs	found	widespread	application	in	small	mobile	devices	as	the	
display	of	choice.	From	the	1990s	onwards,	much	larger	LCDs	have	appeared	while	advances	in	the	technology	have	allowed	the	
production	of	high	resolution	small-scale	displays.	Beginning	in	the	new	millennium,	LCs	have	emerged	as	desirable	
optoelectronic	materials.	They	have	as	such	been	studied	from	natural	sources	such	as	can	be	found	in	beetles,	as	well	as	in	
polarised	light-selective	waveguiding	and	in	holography.	The	discovery	of	graphene	in	2004	opened	up	new	avenues	for	LC	
science	and,	since	2010,	the	emergence	of	LCs	combined	with	2D	materials	has	opened	applications	in	developing	2D	material	
fibers	(reproduced	with	permission	from	Xu	&	Gao,		Nature	Communications,		20114.	(©2011	Nature	Publishing	Group)),	
reflective	displays	(reproduced	from	He	et	al,	Nanoscale,	201452	with	permission	from	The	Royal	Society	of	Chemistry	©2014),	
deposition	of	uniform	layered	structures	(reproduced	with	permission	from	Jalili	et	al,		ACS	Nano,		201378.	(©2013	American	
Chemical	Society))	and	as	a	platform	for	novel	optofluidic	devices	(reproduced	with	permission	from	Hogan	et	al,		Sci.	Rep.,		
20173.	(©2017	Nature	Publishing	Group)).	The	future	of	the	field	promises	to	revolutionise	fields	from	CMOS	photonics,	to	
metastructures	and	metadevices	and	wearable	technologies.	All	images	utilised	under	a	free-to-use	creative	commons	license	
except	where	otherwise	credited. 
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Figure	3:	(a)	Polarized	light	microscopic	images	between	crossed	polarizers	of	GO	aqueous	dispersions	in	planar	cells	with	
increasing	maximum	mass	fractions	from	1	to	6.	Green	arrows	indicate	disclinations	of	the	liquid	crystal	phase,	and	the	scale	
bars	represent	distances	of	200	μm.	(b)	Macroscopic	images	between	crossed	polarizers	of	GO	aqueous	dispersions	in	test	
tubes	with	increasing	maximum	mass	fractions	from	1	to	7.	Reproduced	with	permission	from	Xu	&	Gao,	ACS	Nano,	201147.	
(©2011,	American	Chemical	Society). 

Figure	4:		Phase	diagram	of	graphene	oxide	aqueous	
dispersions	in	terms	of	osmotic	pressure,	volume	fraction	of	
GO	and	salt	concentration	in	the	solution.	Reproduced	with	
permission	from	Konkena	&	Vasudevan,	J.	Phys.	Chem.	C,	
201475.	(©2014,	American	Chemical	Society). 
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Figure	5:		Schlieren	textures	observed	in	dispersions	of	graphene	oxide	in	a	range	of	organic	solvents	under	microscopy	using	
crossed	polarisers.	Reproduced	with	permission	from	Jalili	et	al,		ACS	Nano,		2013	78.	(©2013	American	Chemical	Society). 

Figure	6:	(a)	Photograph	of	a	flexible	free-standing	paper	of	LC	GO	made	by	a	cast	drying	method.	(b)	SEM	image	of	the	cross	
section	of	as-cast	dried	LC	GO	paper.	(c)	SEM	image	of	the	surface	of	the	layer-by-layer	composite,	marked	as	region	(i)	in	(b).	(d–
f)	Cross	section	of	composite	paper	at	different.	Reproduced	with	permission	from	Jalili	et	al,		ACS	Nano,		201378.	(©2013	
American	Chemical	Society). 
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Figure	7:	(a)	Four-metre-long	wound	GO	fibre.	SEM	images	of	the	fibre	(b),	and	a	typical	tighten	knot	(c).	(d)	The	morphology	of	
the	GO	fibre	after	tensile	tests.	All	scale	bars	50	μm.	Reproduced	with	permission	from	Xu	&	Gao,		Nature	Communications,		
20114.	(©2011	Nature	Publishing	Group). 



Journal	Name	 	ARTICLE	

	

Please	do	not	adjust	margins	

Please	do	not	adjust	margins	

	

	
	
	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	
	
	
	

b) c) d) a) 

Figure	8:	(a)	Control	of	liquid	crystal	dispersed	2D	material	particle	using	laser	light.	(b-c)	SEM	images	of	GO	flakes	integrated	
in	microfluidic	channels	with	a	nematic	liquid	crystal	host.	(d)	SEM	image	of	GO	flakes	integrated	into	a	microfluidic	
waveguide	after	removal	of	host	fluid.	(e)	A	CMOS	photonic	circuit	coupled	to	a	microfluidic	layer	integrating	dynamically	
reconfigurable	2D	material	metastructures	by	exploiting	liquid	crystal	technology.	Adapted	with	permission	from	Hogan	et	al,		
Sci.	Rep.,		20173.	(©2017	Nature	Publishing	Group). 
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Figure	9:	Images	of	a	defined	structure	in	a	liquid	crystalline	e-ink	of	graphene	oxide	dispersed	in	water	in	(a,d)	reflection	
with	 unpolarised	 light,	 (b,e)	 transmission	with	unpolarised	 light	 and	 (c,f)	 transmission	 between	 crossed	 polarisers.	
Reproduced	from	He	et	al,	Nanoscale,	201452	with	permission	from	The	Royal	Society	of	Chemistry	©2014. 


