
A novel characterization of the complexity class ΘP
k based on

counting and comparison
Thomas Lukasiewicza and Enrico Maliziaa

aDepartment of Computer Science, University of Oxford, United Kingdom
firstname.lastname@cs.ox.ac.uk

Abstract
The complexity class ΘP

2 , which is the class of languages recognizable by deterministic Turing machines
in polynomial time with at most logarithmic many calls to an NP oracle, received extensive attention in the
literature. Its complete problems can be characterized by different specific tasks, such as deciding whether the
optimum solution of an NP problem is unique, or whether it is in some sense “odd” (e.g., whether its size is an
odd number). In this paper, we introduce a new characterization of this class and its generalization ΘP

k to the
k-th level of the polynomial hierarchy. We show that problems in ΘP

k are also those whose solution involves
deciding, for two given sets A and B of instances of two ΣP

k−1-complete (or ΠP
k−1-complete) problems, whether

the number of “yes”-instances in A is greater than those in B. Moreover, based on this new characterization,
we provide a novel sufficient condition for ΘP

k -hardness. We also define the general problem Comp-Validk,
which is proven here ΘP

k+1-complete. Comp-Validk is the problem of deciding, given two sets A and B of
quantified Boolean formulas with at most k alternating quantifiers, whether the number of valid formulas
in A is greater than those in B. Notably, the problem Comp-Sat of deciding whether a set contains more
satisfiable Boolean formulas than another set, which is a particular case of Comp-Valid1, demonstrates itself
as a very intuitive ΘP

2 -complete problem. Nonetheless, to our knowledge, it eluded its formal definition to
date. In fact, given its strict adherence to the count-and-compare semantics here introduced, Comp-Validk

is among the most suitable tools to prove ΘP
k -hardness of problems involving the counting and comparison of

the number of “yes”-instances in two sets. We support this by showing that the ΘP
2 -hardness of the Max

voting scheme over mCP-nets is easily obtained via the new characterization of ΘP
k introduced in this paper.

1 Introduction
In the quest of characterizing the exact computational complexity of problems, many complexity classes have
been defined, and hard problems for them have been, and are currently being, sought. Among these classes, the
polynomial(-time) hierarchy (PH) [34] aims at accurately classifying problems whose complexity lies between
the classes of languages recognizable by deterministic Turing machines in polynomial time and in polynomial
space. To this end, the notion of computation with oracles [1] (introduced initially in [5] with the name of query
machine) is used in [34] to analyze the complexity of problems that can be solved by a Turing machine in P or
in NP with the aid of an oracle to decide, at unit cost, strings of languages belonging to PH. In particular, the
classes ∆P

k , ΣP
k , and ΠP

k , for k ≥ 0, constitute the hierarchy: ∆P
0 = ΣP

0 = ΠP
0 = P, and, for k ≥ 1, ∆P

k+1 = PΣP
k ,

ΣP
k+1 = NPΣP

k , and ΠP
k+1 = co-ΣP

k+1 (more details are given in Section 2). These classes have proven themselves
to be useful tools to classify the complexity of numerous natural problems, which have been shown to be complete
for some classes of PH.1 This highlights the strong relevance that the concept of computation with oracles has in
complexity theory.

After the introduction of PH, research in computational complexity theory individuated some problems
whose complexity could not be precisely captured by the classes of PH. One of them is Odd-Clique [35], which
is the problem of deciding whether the size of the largest cliques of a graph is odd. Clearly, Odd-Clique is
in ∆P

2 , because a P machine can decide Odd-Clique via a binary search aided by an oracle in NP. However,
Odd-Clique is not ∆P

2 -hard. In fact, only logarithmically many queries need to be issued to the oracle, and
this could be a clue for Odd-Clique not being among the hardest problems of ∆P

2 , which, instead, for their
solution require P machines performing polynomially many calls to their NP oracles. Therefore, to precisely

© 2017. This manuscript version is made available under the CC BY-NC-ND 4.0 license. The formal publication of this
manuscript is available via the DOI: 10.1016/j.tcs.2017.06.023.

1A catalogue of problems complete for various levels of PH can be found in [30, 31] and its updated revision [32].

1

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://doi.org/10.1016/j.tcs.2017.06.023

capture this kind of problems, the class of languages that can be recognized by a P machine issuing at most
logarithmic many calls to an NP oracle, also denoted PNP[O(logn)] (where “[O(logn)]” denotes the logarithmic
restriction on the maximum number of allowed oracle calls), was defined [27, 23, 21, 37, 4].

Unlike the nondeterministic levels ΣP
k = NPΣP

k−1 of PH, for which bounding the allowed number of calls to
the oracle do not impose any factual constraint on the computational power of the machine, i.e., NPΣP

k−1[O(1)] =
NPΣP

k−1[O(logn)] = NPΣP
k−1 [37], for the deterministic levels of the hierarchy, this does not seem to be the case.

In fact, clearly, PΣP
k−1[O(1)] ⊆ PΣP

k−1[O(logn)] ⊆ PΣP
k−1 , however, it is currently unknown whether the inclusion

is strict. On the other hand, Odd-Clique was proven to be complete for the class ΘP
2 = PNP[O(logn)] [35].

This supported the widely accepted conjectures that ΘP
2 6= ∆P

2 and that, for all k ≥ 2, ΘP
k 6= ∆P

k [37], where
ΘP
k = PΣP

k−1[O(logn)], which suggested to include the classes ΘP
k as constitutional components of PH [36, 37].

In recent years, many natural problems have been shown to be complete for ΘP
2 (see, e.g., [35, 23, 21, 37, 6,

7, 33] and references therein).2 These ΘP
2 -complete problems are usually characterized by the task of:

(1) deciding whether the optimum value (i.e., maximum or minimum value) of an NP problem belongs to a set
of values (or intervals) given in input [35];

(2) deciding whether the optimum value of an NP problem is odd/even [35, 21, 4, 23, 33];
(3) deciding whether the optimum solution of an NP problem is unique [21];
(4) comparing the optimum solutions of two instances of NP-complete problems [33];

see also [6] for more references. Another characterization of a ΘP
2 -complete (resp., ΘP

k -complete) problem is
based on directed trees whose nodes are parametric queries to an NP (resp., ΣP

k−1) oracle, where the directed
tree encodes the dependence structure among the oracle queries [9]. Furthermore, ΘP

2 is captured by first-order
logic extended by Henkin quantifiers [10].

More recently, also various problems in voting theory and computational social choice were shown to be
complete for ΘP

2 [29, 19, 18, 25]. These complexity results come as no surprise to us, since, as we will show in
this paper, ΘP

2 is also the class of problems involving the task of counting “yes”-instances of NP sets, followed
by a comparison of the counts (which is similar to what would be done in a voting procedure that requires
counting (and comparing) ballots to determine the winner).3 A result suggesting that problems in ΘP

2 can be
characterized in this way appeared only in [33]. However, to our knowledge, in the literature, neither a single
complete problem based on this idea has ever been shown (even in [33] itself there is no problem characterized in
this way), nor this characterization has ever been pushed forward or extended to ΘP

k .
Note that this semantics of counting and comparing the number of “yes”-instances of two NP-complete

problems is very different from (4) above. Indeed, deciding, given two graphs G andH, whether the smallest vertex
covers of G are smaller than the smallest vertex covers in H (which is a problem analyzed in [33]) is very different
from this paper’s deciding, given two sets G = {〈G1, p1〉, . . . , 〈Gn, pn〉} and H = {〈H1, q1〉, . . . , 〈Hm, qm〉} of
pairs 〈graph, integer〉, whether the number of graphs Gi having a vertex cover not bigger than pi is greater than
the number of graphs Hj having a vertex cover not bigger than qj .

Showing this “counting of yes-instances and comparison” characterization of ΘP
k is exactly what we pursue in

this paper. In particular, we will show that problems whose solution requires the comparison of the number
of “yes”-instances of two sets containing instances of ΣP

k−1-complete or ΠP
k−1-complete languages, are ΘP

k -hard.
To our knowledge, this characterization of ΘP

k is new in the literature, and also its specialization to ΘP
2 , as

already mentioned, has not been extensively investigated so far. Moreover, this result allows us to provide a
new sufficient condition for a problem to be ΘP

k -hard. Interestingly, we also show that problems requiring the
comparison of the number of “yes”-instances of a set containing instances of a ΣP

k−1-complete problem and a
set containing instances of a ΠP

k−1-complete problem are computationally easier, since they can be solved in
subclasses of ΘP

k (more specifically, in ΣP
k−1 or ΠP

k−1).
Furthermore, by exploiting the characterization given in this paper, we also define the following general

ΘP
k+1-complete problem Comp-Validk (observe the different subscripts, k + 1 and k, respectively): given a pair
〈A,B〉 of sets of quantified Boolean formulas with at most k alternating quantifiers, decide whether the number
of valid formulas in A is greater than those in B. To our knowledge, this is the first time that such a problem is
proposed and shown to be ΘP

k+1-complete.
In addition, Comp-Sat, which is a particular case of Comp-Valid1, is a very intuitive ΘP

2 -complete problem
whose hardness lies in the difficulty of comparing the number of satisfiable Boolean formulas in two sets. Thus,
it is a very good candidate for reductions to prove ΘP

2 -hardness of problems involving the comparison of the
number of “yes”-instances of two sets containing instances of NP-complete problems. Comp-Sat is the first
ΘP

2 -complete problem of this kind. In fact, it was successfully used to prove the ΘP
2 -hardness of a voting problem

2Note that in the literature, ΘP
2 was proven to be equivalently characterized by different definitions (see, e.g., [6, 37]), and thus

ΘP
2 -complete problems are often shown to be complete for apparently different (but actually identical) classes.

3Interestingly, several problems in computational game theory are complete for various classes of PH and ∆P
2 in particular.

Among them, there are a number of different tasks related to the solution concepts of coalitional games (see, e.g., [13, 14, 15, 16]).

2

in [25], and, given its adherence to the counting-and-comparison semantics, this was fairly simple. In this respect,
we actually believe that Comp-Validk is the ideal problem when a reduction is needed for a ΘP

k+1-hard problem
involving counting and comparison. In this paper, the ΘP

2 -completeness of Comp-Sat comes as an easy corollary
of the ΘP

k+1-completeness of Comp-Validk, and we do not need a tailored reduction as in [25].
The rest of this paper is organized as follows. Section 2 provides some preliminaries on complexity theory. In

Section 3, after an overview of this paper’s results, we analyze the new characterization of ΘP
k , and we also prove

that Comp-Validk is ΘP
k+1-complete. In Section 4, we show how the results presented here can be easily applied

to prove the ΘP
2 -hardness of the Max voting scheme over mCP-nets. Finally, Section 5 is devoted to conclusions.

2 Preliminaries
In this section, we briefly recall some basics from complexity theory on decision problems, the complexity classes
of the polynomial hierarchy (PH), and their prototypical hard problems. For more on this, the reader is referred
to any standard textbook on the topic, such as [26], or the survey [20].

2.1 Decision problems and complexity classes
Decision problems are maps from strings (encoding the input instance over a fixed alphabet, e.g., the binary
alphabet {0, 1}) to the set {“yes”, “no”}. For a decision problem (or, equivalently, a language) L, χL denotes
the characteristic function of L, which is the function that, for a string s, χL(s) = 1, if s is a “yes”-instance of L,
and χL(s) = 0, if s is a “no”-instance of L. Deciding a language (or a problem) L means, for a given instance s,
deciding whether s is a “yes”-instance of L or not. For a language L, L is the language complement to L if and
only if all the “yes”-instances of L are “no”-instances of L, and all the “no”-instances of L are “yes”-instances of
L.

A (deterministic) Turing machine M decides a language L, if M halts in an accepting state on an input string
s if and only if χL(s) = 1. Nondeterministic Turing machines are Turing machines that, at some points of their
computation, may not have just one single next action to perform, but a choice between several possible next
actions. A nondeterministic Turing machine M decides a problem L, if, on any input string s, (i) if χL(s) = 1,
there is at least one sequence of choices leading M to halt in an accepting state (such a sequence is called
accepting computation path); and (ii) if χL(s) = 0, all possible sequences of choices of M lead to a rejecting
state.

A complexity class is a set of languages that can be decided by Turing machines of a specific sort (i.e.,
either deterministic or nondeterministic) within a given bound of computational resources. These computational
resources characterizing complexity classes are essentially computation time, working space, and, as we will
see later, the possibility to access to a computation oracle. For a complexity class C, co-C denotes the class of
languages whose complements are in C. With a slight abuse of terminology, we say that a Turing machine M
belongs to a complexity class C, if M is of the sort and uses the amount of computational resources characterizing
the class C.

The class P is the set of decision problems that can be solved by a deterministic Turing machine in polynomial
time with respect to the input size, i.e., with respect to the length of the string that encodes the input instance.
For a given input string s, its size is usually denoted by ‖s‖.

The class of decision problems that can be solved by nondeterministic Turing machines in polynomial
time is denoted by NP. They enjoy a remarkable property: any “yes”-instance s has a certificate for being a
“yes”-instance, which has polynomial length and can be checked in deterministic polynomial time (in ‖s‖). For
example, deciding whether a Boolean formula φ(X) over the Boolean variables X = {x1, . . . , xn} is satisfiable,
i.e., whether there exists some truth assignment to these variables making φ true, is a well-known problem in
NP; in fact, any satisfying truth assignment for φ is clearly a certificate that φ is a “yes”-instance, i.e., that φ
is satisfiable. On the other hand, the problem of deciding whether a Boolean formula φ is not satisfiable is in
co-NP. Clearly, the class P is contained in both NP and co-NP, i.e., P ⊆ NP ∩ co-NP.

We will also refer to a type of computation called computation with oracles. Intuitively, oracles are subroutines
that are supposed to have unit cost. A Turing machine M? with oracle, is a Turing machine that during its
computation can ask to its oracle to decide a string at unitary cost. The definition of the machine M? is
independent from its oracle, and the symbol “?” indicates that different oracles for different languages can be
“attached” to M [26]. If A is a language, by MA we denote that the oracle attached to M? decides A. If C
is a (deterministic or a nondeterministic) time complexity class, and A is a language, CA denotes the class of
languages that can be decided by Turing machines of the sort and the time bound of C that can moreover query
an oracle for A.4 By extension, for a time complexity class C, and a generic complexity class D, CD denotes

4If C is a space complexity class, it is more difficult to define computation with oracles [26, 17].

3

the class of languages that can be decided by Turing machines of the sort and the time bound of C that can
moreover query an oracle for a language in D. In the following, when we say that a Turing machine M queries
an oracle in D, or a D oracle, we mean that M queries an oracle for a language in D.

The classes ΣP
k , ΠP

k , and ∆P
k , forming the polynomial hierarchy (PH) [34], are defined as follows: ΣP

0 = ΠP
0 =

∆P
0 = P, and, for all k ≥ 1, ΣP

k = NPΣP
k−1 , ∆P

k = PΣP
k−1 , and ΠP

k = co-ΣP
k . Here, ΣP

k (resp., ∆P
k) is the class

of languages recognizable by nondeterministic (resp., deterministic) polynomial-time Turing machines with an
oracle to recognize, at unit cost, a language in ΣP

k−1. Note that ΣP
1 = NPΣP

0 = NPP = NP, ΠP
1 = co-ΣP

0 = co-NP,
and ∆P

1 = PΣP
0 = PP = P. Sometimes, a bound is imposed on the number of the allowed oracle calls,

highlighted in brackets besides the oracle class. For example, PΣP
k−1[O(logn)] denotes the class of languages

recognizable by a deterministic polynomial-time Turing machine that is allowed to query a ΣP
k−1 oracle at most

logarithmic many times (in the size of the input). In particular, classes ΘP
k = PΣP

k−1[O(logn)] were proposed to
be included in the standard definition of the PH as well [36, 37]. To this end, we pose ΘP

0 = P, and observe
that ΘP

1 = P. Note that ΘP
k and ∆P

k are deterministic classes, as the machine calling the oracle is deterministic.
This implies that ΘP

k and ∆P
k are closed under complement, i.e., ΘP

k = co-ΘP
k and ∆P

k = co-∆P
k . Given their

definitions, for all k ≥ 1, the relationships among the mentioned classes are as follows (see, e.g., [36, 37]):
ΣP
k ∪ΠP

k ⊆ ΘP
k+1 ⊆ ∆P

k+1 ⊆ ΣP
k+1 ∩ΠP

k+1.

2.2 Prototypical hard problems
We now recall the notion of reducibility among decision problems. A decision problem L1 is (Karp) reducible to
a decision problem L2, denoted by L1 ≤ L2, if there is a computable function h (called reduction) such that, for
every string s, h(s) is defined, and s is a “yes”-instance of L1 if and only if h(s) is a “yes”-instance of L2, i.e.,
for all strings s, χL1(s) = χL2(h(s)). This type of reduction is called Karp reduction. A decision problem L1
is polynomially (Karp) reducible to a decision problem L2, denoted by L1 ≤p L2, if there is a polynomial-time
(Karp) reduction from L1 to L2. In this paper we will consider only polynomial-time Karp reductions.

A decision problem L is hard for a class C of the PH at any level k ≥ 1, i.e., beyond P, or C-hard, if every
problem in C is polynomially reducible to L; if L is hard for C and belongs to C, then L is complete for C, or
C-complete. Thus, problems that are complete for C are the most difficult problems in C. In particular, they
cannot belong to some lower class in the hierarchy, unless some collapse of the hierarchy’s levels occurs.

An n-ary Boolean function f is a mapping f : {true, false}n 7→ {true, false} from the n-dimensional
Boolean space to a Boolean value. A way to represent n-ary Boolean functions is through Boolean formulas
φ(X) over the set of Boolean variables X = {x1, . . . , xn}. Boolean formulas are inductively constructed from
Boolean variables via the unary Boolean operator ¬ and the binary Boolean operators ∧ and ∨. Boolean
variables x1, . . . , xn and their negations ¬x1, . . . ,¬xn are called literals. A clause and a term are a disjunction
and a conjunction of literals, respectively. A Boolean formula is in conjunctive normal form (or CNF), if it is
a conjunction of clauses, while it is in disjunctive normal form (or DNF), if it is a disjunction of terms. For
example, γ1(x1, x2, x3, x4) = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4) is a CNF formula, while γ2(x1, x2, x3, x4) =
(x1 ∧ ¬x2 ∧ x3) ∨ (x2 ∧ ¬x3 ∧ ¬x4) is a DNF formula.5 A Boolean formula is in 3CNF (resp., 3DNF), if the
number of literals of each clause (resp., term) is exactly three.

Deciding the satisfiability of Boolean formulas is the prototypical NP-complete problem, which remains
NP-hard even if only 3CNF formulas are considered [8, 22]; we denote this problem by Sat. The complementary
problem Unsat of deciding whether a given Boolean formula is not satisfiable is co-NP-complete. It remains
co-NP-hard even if only 3CNF formulas are considered, and it is the equivalent to the problem Taut of deciding
whether a 3DNF formula is a tautology.

We next define the prototypical ΣP
k - and ΠP

k -complete QBFQ1,k problems as follows: given a quantified
Boolean formula (QBF) Φ = (Q1X1)(Q2X2) . . . (QkXk)φ(X1, X2, . . . , Xk), where

• Q1, Q2, . . . , Qk is a sequence of k alternating quantifiers Qi ∈ {∃,∀}, and

• φ(X1, X2, . . . , Xk) is a (non-quantified) Boolean formula over k disjoint sets X1, X2, . . . , Xk of Boolean
variables,

decide whether Φ is valid. The problem QBF∃,k is ΣP
k -complete [34, 38], while QBF∀,k is ΠP

k -complete [34, 38].
These problems remain hard for their respective classes even if φ(X1, X2, . . . , Xk) is in 3CNF, when Qk = ∃,
and if φ(X1, X2, . . . , Xk) is in 3DNF, when Qk = ∀ [34, 38].

5Observe that γ1(x1, x2, x3, x4) and γ2(x1, x2, x3, x4) are not equivalent. Nevertheless, Boolean formulas in CNF and DNF are
actually linked, and they can be transformed from one form to the other. In particular, translating a positive CNF formula into
an equivalent minimal DNF one (or vice versa) involves a process called dualization, which is currently unknown to be feasible in
output-polynomial time (for more on this, see, e.g., [11, 12] and references therein).

4

We denote by QBFCNF
k,∃ (resp., QBFDNF

k,∀)6 the problem of deciding the validity of formulas Φ = (Q1X1)
. . . (QkXk)φ(X1, . . . , Xk), where Qk is ∃ (resp., ∀), and φ(X1, . . . , Xk) is in 3CNF (resp., 3DNF). For odd k,
QBFCNF

k,∃ (resp., QBFDNF
k,∀) is complete for ΣP

k (resp., ΠP
k), while, for even k, QBFCNF

k,∃ (resp., QBFDNF
k,∀) is

complete for ΠP
k (resp., ΣP

k). Observe that QBFCNF
1,∃ (resp., QBFDNF

1,∀) is equivalent to Sat (resp., Taut).

2.3 A previous characterization of ΘP
k

Wagner [35, 37] analyzed extensively the properties of ΘP
2 and underlined that his results can be generalized to

upper levels of the PH. In particular, we report below two key results of Wagner [37] in their generalized form to
ΘP
k .
A first result intuitively states that, for any language B ∈ ΘP

k+1, the task of deciding B can be faithfully
transformed into the task of deciding, for a suitable language C ∈ ΣP

k and a suitable sequence 〈y1, . . . , yn〉 of C’s
instances with χC(y1) ≥ . . . χC(yn), whether the maximum index i for which yi is a “yes”-instance of C is odd.
The formulation of the following lemma results from a combination of the statements of the equivalent lemmas
in [37, 3, 4].

Lemma 2.1 ([37, Corollary 6.4],[3, Lemma 12],[4, consequence of Theorem 8]). Let B be a problem. Then,
B ∈ ΘP

k+1 if and only if there exist a problem C ∈ ΣP
k and a polynomial-time computable function f such that,

for all instances x of B, f(x) = 〈y1, . . . , yp(‖x‖)〉 is a sequence of C’s instances with χC(y1) ≥ · · · ≥ χC(yp(‖x‖)),
and χB(x) = 1⇔ max {i | 1 ≤ i ≤ p(‖x‖), χC(yi) = 1} is odd.

Note that, in the statement of the previous lemma, p(‖x‖) is a polynomial, because the function f is
polynomial-time computable.

A second result gives a sufficient condition for the ΘP
k+1-hardness of a problem B. Intuitively, this result states

that B is ΘP
k+1-hard, if there exists a reduction to B from the problem of deciding, for a given set {x1, . . . , xn}

of instances of a ΣP
k -complete problem A, whether the maximum index i for which xi is a “yes”-instance of A is

odd. Interestingly, the result holds even if it is assumed that χA(x1) ≥ · · · ≥ χA(xn).

Lemma 2.2 ([35, Theorem 5.2],[37, Theorem 7.1]). Let A be a ΣP
k -complete problem, and let B be a problem.

Then, B is ΘP
k+1-hard, if there exists a polynomial-time computable function f such that, for all sets X =

{x1, . . . , xn} of instances of A, |{xi : χA(xi) = 1}| is odd ⇔ χB(f(X)) = 1. The ΘP
k+1-hardness of B remains

proven even if sets X are assumed to be such that χA(x1) ≥ · · · ≥ χA(xn).

3 A new characterization of ΘP
k and its hard problems

In this section, we provide a new characterization of ΘP
k based on the counting-and-comparison semantics. In

particular, we first give an overview of the results obtained, and then we look at the details of the proofs.

3.1 Overview of results
The first results that we obtain are the analogues of those that are reported in this paper as Lemmas 2.1 and 2.2,
and are broad general theoretical results for the complexity classes ΘP

k .
In particular, on the one hand, we show that, for any language B ∈ ΘP

k+1, the task of deciding B can
be faithfully transformed into the task of deciding, for two suitable languages C1, C2 ∈ ΣP

k and two suitable
sequences 〈y1, . . . , yn〉 and 〈z1, . . . , zm〉 of C1’s and C2’s instances, respectively, with χC1(y1) ≥ · · · ≥ χC1(yn)
and χC2(z1) ≥ · · · ≥ χC2(zn), whether the maximum index i for which yi is a “yes”-instance of C1 is bigger than
the maximum index j for which zj is a “yes”-instance of C2.

On the other hand, we show also that, a problem B is ΘP
k+1-hard, if there exists a reduction to B from the

problem of deciding, for a given pair of sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of instances of two (not
necessarily distinct) problems A1 and A2, respectively, being both of them either ΣP

k -complete or ΠP
k -complete,

whether the number of “yes”-instances of A1 in X is greater than the number of “yes”-instances of A2 in Y .
Interestingly, the hardness holds even if sets X and Y are assumed to be such that χA1(x1) ≥ · · · ≥ χA1(xn)
and χA2(y1) ≥ · · · ≥ χA2(ym).

The previous result is shown via an intermediate theorem stating that, if A1 and A2 are two (not necessarily
distinct) ΣP

k -complete (or ΠP
k -complete) problems, for any pair of sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}

of instances of A1 and A2, respectively, deciding whether the number of “yes”-instances of A1 in X is greater
6Note the difference in the subscripts of the notations QBFQ1,k and QBFCNF

k,Qk
(resp., QBFDNF

k,Qk
). In the former notation, Q1 is

the first quantifier of the sequence, and, for notational convenience, we place “Q1” before “k” in the subscript. On the other hand,
in the latter notation, Qk is the last quantifier of the sequence, and, for notational convenience, we place “Qk” after “k” in the
subscript.

5

than the number of “yes”-instances of A2 in Y is ΘP
k+1-hard. Clearly, this problem is also in ΘP

k+1, and hence
ΘP
k+1-complete. Therefore, problems in ΘP

k+1 can actually be exactly characterized also by this semantics of
counting and comparison. We also show that if A1 and A2 are one in ΣP

k and the other in ΠP
k , then comparing

the number of “yes”-instances of the two sets is actually a problem belonging to subclasses of ΘP
k+1. In particular,

if A1 is in ΣP
k , and A2 is in ΠP

k , then the comparison can be done in ΣP
k . Symmetrically, if A1 is in ΠP

k , and A2
is in ΣP

k , then the comparison can be done in ΠP
k .

After these general results, we define the problem Comp-Validk that is based on the idea of counting and
comparison, and we prove it ΘP

k+1-complete. Comp-Validk is defined as follows. Given a pair 〈A,B〉 of sets of
QBFs with at most k alternating quantifiers, decide whether the number of valid formulas in A is greater than
the number of valid formulas in B. We stress here that the formulas in A and B are neither restricted to have
the same outermost quantifier, nor to have the same number of alternating quantifiers. To our knowledge, this is
the first time in the literature that such a problem Comp-Validk is defined and shown to be ΘP

k+1-complete.
Furthermore, we also prove that the hardness of Comp-Validk holds even if |A| = |B|, all formulas in 〈A,B〉 are
instances of QBFCNF

k,∃ (resp., QBFDNF
k,∀), have the same number of clauses (resp., terms), and, for each 1 ≤ d ≤ k,

quantifiers Qd of all formulas in 〈A,B〉 are defined on the very same set of variables. As it will emerge from
the proof, the ΘP

k+1-hardness of Comp-Validk requires that the number of formulas in the sets A and B with
actually k alternating quantifiers is unbounded.

By combining the results of the theorems proven in this section, Figure 1 summarizes the complexity of
Comp-Validk, according to the various types of formulas contained in A and B.

Formulas in B
k is odd QBFCNF

k,∃ QBFDNF
k,∀

Formulas QBFCNF
k,∃ ΘP

k+1 ΣP
k

in A QBFDNF
k,∀ ΠP

k ΘP
k+1

Formulas in B
k is even QBFCNF

k,∀ QBFDNF
k,∃

Formulas QBFCNF
k,∀ ΘP

k+1 ΠP
k

in A QBFDNF
k,∃ ΣP

k ΘP
k+1

Figure 1: Summary of the complexity results for Comp-Validk when specific types of formulas are in sets A
and B. Comp-Validk is actually complete for the respective complexity classes shown in the tables.

The problem Comp-Valid1, when all formulas are furthermore restricted to be instances of QBFCNF
1,∃ (i.e.,

Sat), is equivalent to the problem Comp-Sat introduced in [25], which is: Given a pair 〈A,B〉 of sets of 3CNF
formulas, decide whether the number of satisfiable formulas in A is greater than the number of satisfiable
formulas in B. By the results proven in this paper, Comp-Sat is ΘP

2 -complete, and it is ΘP
2 -hard even if all the

formulas have the same number of clauses and are defined over the same set of variables.

3.2 Derivation of the general results
In this section, we prove the results anticipated above. In fact, besides the concepts of verification of optimum
solutions, “oddity” of optimum solutions, uniqueness of optimum solutions, and comparison of optimum solutions
(see, e.g., [35, 21, 6, 33]), we show that a problem is ΘP

k -hard if, for its solution, it is required to count the
number of “yes”-instances of two sets A and B of instances of ΣP

k -complete, or ΠP
k -complete, languages, and

compare the computed numbers.
The following result is the analogue of Lemma 2.1 for the new characterization of ΘP

k . Intuitively, it states
that, for any language B ∈ ΘP

k+1, the task of deciding B can be faithfully transformed into the task of deciding,
for two suitable languages C1, C2 ∈ ΣP

k and two suitable sequences 〈y1, . . . , yn〉 and 〈z1, . . . , zm〉 of C1’s and C2’s
instances, respectively, with χC1(y1) ≥ · · · ≥ χC1(yn) and χC2(z1) ≥ · · · ≥ χC2(zn), whether the maximum index
i for which yi is a “yes”-instance of C1 is bigger than the maximum index j for which zj is a “yes”-instance of C2.

The idea behind the proof is the following. By Wagner’s Lemma 2.1, since B ∈ ΘP
k+1, there is a language

C ∈ ΣP
k and a polynomial-time computable function f such that, for any instance x of B, f(x) is a sequence

〈w1, . . . , wp〉 of instances of C with χC(w1) ≥ · · · ≥ χC(wp), and x is a “yes”-instance of B if and only if
the maximum index ` for which w` is a “yes”-instance of C is odd. Essentially, what is done in the proof
is “splitting” the sequence 〈w1, . . . , wp〉 into two new sequences 〈y1, . . . , yn〉 and 〈z1, . . . , zm〉 of instances of
C1 and C2, respectively. The first of the new sequences contains strings w` with ` odd, while the second one
contains strings w` with ` even. Now, if the maximum index ` for which w` is a “yes”-instance of C is odd, then
that particular instance is in the first of the new sequences, and hence the maximum index i for which yi is a
“yes”-instance of C1 is bigger than the maximum index j for which zj is a “yes”-instance of C2 (because, in this
case, the maximum j would equal i− 1).
Theorem 3.1. Let B be a problem. Then, B ∈ ΘP

k+1 if and only if there exist two (not necessarily distinct)
problems C1, C2 ∈ ΣP

k and two polynomial-time computable functions f1 and f2 such that, for all instances

6

x of B, f1(x) = 〈y1, . . . , yp1(‖x‖)〉 is a sequence of C1’s instances with χC1(y1) ≥ · · · ≥ χC1(yp1(‖x‖)), f2(x) =
〈z1, . . . , zp2(‖x‖)〉 is a sequence of C2’s instances with χC2(z1) ≥ · · · ≥ χC2(zp2(‖x‖)), and χB(x) = 1⇔ (max {i |
1 ≤ i ≤ p1(‖x‖), χC1(yi) = 1} > max {j | 1 ≤ j ≤ p2(‖x‖), χC2(zj) = 1}).

Proof.

(⇒) Let us assume that B ∈ ΘP
k+1. By Lemma 2.1, there exist a problem C ∈ ΣP

k and a polynomial-time
computable function f such that, for all instances x of B, f(x) = 〈w1, . . . , wp(‖x‖)〉 is a sequence of C’s
instances with χC(w1) ≥ · · · ≥ χC(wp(‖x‖)), and χB(x) = 1 ⇔ max {` | 1 ≤ i ≤ p(‖x‖), χC(w`) = 1} is
odd.
Now, consider languages C1 and C2 such that C1 = C2 = C (i.e., for any string x, χC1(x) = χC2(x) =
χC(x)). Clearly, since C ∈ ΣP

k , C1 and C2 belong to ΣP
k as well. Functions f1 and f2 are defined from

f as follows. Assume that for an instance x of B, f(x) = 〈w1, . . . , wp(‖x‖)〉. On the one hand, function
f1 is such that f1(x) = 〈y1, . . . , yp1(‖x‖)〉, where p1(‖x‖) =

⌈
p(‖x‖)

2

⌉
and yi = w2i−1 for all i. On the

other hand, function f2 is such that f2(x) = 〈z1, . . . , zp2(‖x‖)〉, where p2(‖x‖) =
⌊
p(‖x‖)

2

⌋
and zj = w2j for

all j. Intuitively, f1(x) produces the sequence of strings of f(x) with odd index, while f2(x) produces
the sequence of strings of f(x) with even index. By their definition, f1 and f2 are polynomial-time
computable, because f is polynomial-time computable. Moreover, since χC(w1) ≥ · · · ≥ χC(wp(‖x‖)),
χC1(y1) ≥ · · · ≥ χC1(yp1(‖x‖)) and χC2(z1) ≥ · · · ≥ χC2(zp2(‖x‖)), as well. Now, observe that

χB(x) = 1⇔ max {` | 1 ≤ ` ≤ p(‖x‖), χC(w`) = 1} is odd
⇔ (max {i | 1 ≤ i ≤ p1(‖x‖), χC1(yi) = 1} > max {j | 1 ≤ j ≤ p2(‖x‖), χC2(zj) = 1}).

(⇐) Let us now assume that there exist two problems C1, C2 ∈ ΣP
k and two polynomial-time computable

functions f1 and f2 such that, for any instance x of B, f1(x) = 〈y1, . . . , yp1(‖x‖)〉 is a sequence of C1’s
instances with χC1(y1) ≥ · · · ≥ χC1(yp1(‖x‖)), f2(x) = 〈z1, . . . , zp2(‖x‖)〉 is a sequence of C2’s instances with
χC2(z1) ≥ · · · ≥ χC2(zp2(‖x‖)), and χB(x) = 1⇔ (max {i | 1 ≤ i ≤ p1(‖x‖), χC1(yi) = 1} > max {j | 1 ≤
j ≤ p2(‖x‖), χC2(zj) = 1}). We are going to show that B ∈ ΘP

k+1 by exhibiting a Turing machine in P
that can decide B by querying logarithmic many times an oracle in ΣP

k .
Consider a deterministic polynomial-time Turing machine M that can query an oracle in ΣP

k for C1 and
C2. Observe that it is sufficient to devise a single oracle receiving in input also a variable which tells the
oracle to decide either C1 or C2. Given the existence of those specific problems, C1 and C2, and functions,
f1 and f2, in order for M to decide whether an input string x is a “yes”-instance of B or not, it is sufficient
to compute the max values maxi and maxj of i and j such that χC1(yi) = 1 and χC2(zj) = 1, respectively,
and compare them. M can compute maxi as follows. First, M computes f1(x) = 〈y1, . . . , yp1(‖x‖)〉. M can
do so because f1 is polynomial-time computable. Next, since χC1(y1) ≥ · · · ≥ χC1(yp1(‖x‖)) (i.e., all the
“yes”-instances of C1 are at the beginning of the sequence), maxi can be computed via a binary search. In
fact, by asking to the oracle whether the various yi are “yes”-instances of C1, M can perform such a binary
search in the range [1, p1(‖x‖)] and compute maxi. Observe that M needs to issue only a logarithmic
number of calls to its oracle. Similarly, M can compute maxj . Clearly, the overall procedure is feasible in
PΣP

k [O(logn)] = ΘP
k+1.

Note that, also in this case, in the statement of the previous lemma, p1(‖x‖) and p2(‖x‖) are polynomials,
because functions f1 and f2 are polynomial-time computable.

From the theorem above, the next theorem follows, stating that, for two given sets X = {x1, . . . , xn} and
Y = {y1, . . . , ym} of instances of two (not necessarily distinct) ΣP

k -complete problems A1 and A2, respectively,
deciding whether the number of “yes”-instances of A1 in X is greater than the number of “yes”-instances of A2
in Y is ΘP

k+1-hard. Interestingly, the hardness holds even if it is assumed that χA1(x1) ≥ · · · ≥ χA1(xn) and
χA2(y1) ≥ · · · ≥ χA2(ym), and n = m.

The main idea behind the proof is the following. We know that, to prove the ΘP
k+1-hardness of a problem,

we have to show that there exists a polynomial reduction from any problem D ∈ ΘP
k+1. If D is a problem

belonging to ΘP
k+1, by Theorem 3.1, there exist two problems E1, E2 ∈ ΣP

k and two polynomial-time computable
functions f1, f2 such that, for all instances v of D, f1(v) = 〈w1, . . . , wp1〉 is a sequence of E1’s instances with
χE1(w1) ≥ · · · ≥ χE1(wp1), f2(v) = 〈z1, . . . , zp2〉 is a sequence of E2’s instances with χE2(z1) ≥ · · · ≥ χE2(zp2),
and v is a “yes”-instance of B if and only if maxi, that is the maximum index i for which wi is a “yes”-instance
of E1, is bigger than maxj , that is the maximum index j for which zj is a “yes”-instance of E2. However,
since χE1(w1) ≥ · · · ≥ χE1(wp1) and χE2(z1) ≥ · · · ≥ χE2(zp2), maxi and maxj are actually the number of
“yes”-instances of E1 and E2 in 〈w1, . . . , wp1〉 and 〈z1, . . . , zp2〉, respectively. Furthermore, by A1 and A2 being

7

ΣP
k -complete, there exist polynomial reductions h1 and h2 from E1 to A1 and from E2 to A2, respectively.

Intuitively, the composition of f1 with h1 and of f2 with h2 provides the reduction sought.

Theorem 3.2. Let A1 and A2 be two (not necessarily distinct) ΣP
k -complete problems. Then, for a given

pair of sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of instances of A1 and A2, respectively, deciding whether
|{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}| is ΘP

k+1-hard. The hardness holds even if sets X and Y are assumed
to be such that χA1(x1) ≥ · · · ≥ χA1(xn) and χA2(y1) ≥ · · · ≥ χA2(ym), and n = m.

Proof. Let us denote by CC the task of counting and comparing the number of “yes”-instances in the sets X
and Y . We are going to prove the hardness of CC by showing that any problem D in ΘP

k+1 is polynomially
reducible to CC . Let D be any problem in ΘP

k+1. By Theorem 3.1, there exist two problems E1, E2 ∈ ΣP
k and

two polynomial-time computable function f1 and f2 such that, for all instances v of D, f1(v) = 〈w1, . . . , wp1(‖v‖)〉
is a sequence of E1’s instances with χE1(w1) ≥ · · · ≥ χE1(wp1(‖v‖)), f2(v) = 〈z1, . . . , zp2(‖v‖)〉 is a sequence of
E2’s instances with χE2(z1) ≥ · · · ≥ χE2(zp2(‖v‖)), and χD(v) = 1⇔ (max {i | 1 ≤ i ≤ p1(‖v‖), χE1(wi) = 1} >
max {j | 1 ≤ j ≤ p2(‖v‖), χE2(zj) = 1}).

Furthermore, since E1, E2 ∈ ΣP
k , and A1 and A2 are ΣP

k -complete, there exist polynomial reductions h1 and
h2 such that χE1(w) = 1⇔ χA1(h1(w)) = 1 for all strings w, and χE2(z) = 1⇔ χA2(h2(z)) = 1 for all strings z.

Consider a string v instance of D. From v we derive the sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}
(which constitute the instance of CC) as follows: xi = h1(wi) for all i, and yj = h2(zj) for all j. Observe that,
from χE1(w1) ≥ · · · ≥ χE1(wp1(‖v‖)), it follows that χA1(x1) ≥ · · · ≥ χA1(xp1(‖v‖)), and from χE2(z1) ≥ · · · ≥
χE2(zp2(‖v‖)), it follows that χA2(y1) ≥ · · · ≥ χA2(yp2(‖v‖)). Since f1 and f2 are polynomial-time computable,
sets X and Y are computable in polynomial time from v. Now, observe that

χD(v) = 1⇔ (max {i | 1 ≤ i ≤ p1(‖v‖), χE1(wi) = 1} > max {j | 1 ≤ j ≤ p2(‖v‖), χE2(zj) = 1})
⇔ (max {i | 1 ≤ i ≤ p1(‖v‖), χA1(h1(wi)) = 1} > max {j | 1 ≤ j ≤ p2(‖v‖), χA2(h2(zj)) = 1})
⇔ (max {i | 1 ≤ i ≤ p1(‖v‖), χA1(xi) = 1} > max {j | 1 ≤ j ≤ p2(‖v‖), χA2(yj) = 1})
⇔ (|{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|).

To conclude, we show that the result holds even if n = m. In fact, assume w.l.o.g. that n < m. Then, we
can add to set X (with indices greater than n) “no”-instances of A1 until we have |X| = |Y |. Clearly, this
modification of X preserves the property that χA1(x1) ≥ · · · ≥ χA1(xp1(‖v‖)), and does not alter the number of
“yes”-instances of A1 in X. Hence, again, χD(v) = 1⇔ (|{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|).

Similarly, for two given sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of instances of two (not necessarily
distinct) ΠP

k -complete problems A1 and A2, respectively, deciding whether the number of “yes”-instances of A1
in X is greater than the number of “yes”-instances of A2 in Y is ΘP

k+1-hard. Also in this case, the hardness
holds even if it is assumed that χA1(x1) ≥ · · · ≥ χA1(xn) and χA2(y1) ≥ · · · ≥ χA2(ym), and n = m. The proof
is based on the fact that ΠP

k -complete problems are the complement of ΣP
k -complete ones. Therefore, sets X

and Y can be rearranged so that Theorem 3.2 can be used.

Theorem 3.3. Let A1 and A2 be two (not necessarily distinct) ΠP
k -complete problems. Then, for a given

pair of sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of instances of A1 and A2, respectively, deciding whether
|{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}| is ΘP

k+1-hard. Hardness holds even if the sets X and Y are assumed
to be such that χA1(x1) ≥ · · · ≥ χA1(xn) and χA2(y1) ≥ · · · ≥ χA2(ym), and n = m.

Proof. Let us assume n = m, and remember that A1 and A2 denote the complement problems to A1 and A2,
respectively. Clearly, A1 and A2 are ΣP

k -complete problems. Let us define, A′1 = A2, and A′2 = A1 (note the
inversion of the subscripts). Let X ′ = {x′1, . . . , x′n} and Y ′ = {y′1, . . . , y′n} be two sets of instances of A′1 and
A′2, respectively, such that χA′1(x′1) ≥ · · · ≥ χA′1(x′n) and χA′2(y′1) ≥ · · · ≥ χA′2(y′n). From Theorem 3.2, we know
that deciding whether |{xi : χA′1(x′i) = 1}| > |{yj : χA′2(y′j) = 1}| is ΘP

k+1-hard.
Starting from X ′ and Y ′, we define sets X = {x1, . . . , xn} and Y = {y1, . . . , yn}, where xi = y′n−i+1, and

yj = x′n−j+1. Intuitively, we put in X the elements of Y ′ in inverted order, and we put in Y the elements
of X ′ in inverted order. By their definitions, X and Y are sets of instances of A1 and A2, respectively, and
χA1(x1) ≥ · · · ≥ χA1(xn) and χA2(y1) ≥ · · · ≥ χA2(yn). Observe that

(|{x′i : χA′1(x′i) = 1}| > |{y′j : χA′2(y′j) = 1}|)⇔ (|{x′i : χA′1(x′i) = 0}| < |{y′j : χA′2(y′j) = 0}|)(because n = m)
⇔ (|{x′i : χA2

(x′i) = 0}| < |{y′j : χA1
(y′j) = 0}|)

⇔ (|{yj : χA2
(yj) = 0}| < |{xi : χA1

(xi) = 0}|)
⇔ (|{xi : χA1

(xi) = 0}| > |{yj : χA2
(yj) = 0}|)

⇔ (|{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|).

8

It is interesting to see that, for two given sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of instances of
problems A1 and A2, respectively, if A1 is in ΣP

k , and A2 is in ΠP
k , then deciding whether |{xi : χA1(xi) = 1}| >

|{yj : χA2(yj) = 1}| is actually computationally easier than ΘP
k+1, in particular, it is in ΣP

k .
The intuition behind this simplification of the problem is the following. If there are p “yes”-instances in

X, and q “no”-instances in Y , and p+ q > |Y |, then |{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|. Therefore, if
this is the case, it suffices to guess the p “yes”-instances in X, and the q “no”-instances in Y . Guessing the p
“yes”-instances in X is feasible by an NP machine, and guessing the q “no”-instances in Y is feasible in NP as
well (because A2 is in a “complement” class). Essentially, if A1 ∈ ΣP

k and A2 ∈ ΠP
k , we do not need to actually

count precisely the number of “yes”-instances in X and Y .

Theorem 3.4. Let A1 be a ΣP
k -complete problem and A2 be a ΠP

k -complete problem. Then, for a given pair
of sets {x1, . . . , xn} and {y1, . . . , ym} of instances of A1 and A2, respectively, deciding whether |{xi : χA1(xi) =
1}| > |{yj : χA2(yj) = 1}| is ΣP

k -complete.

Proof. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We first show that |{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|
if and only if there are p “yes”-instances of A1 in X and q “no”-instances of A2 in Y such that p+ q > |Y |.

Assume that |{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|. Observe that |Y | = |{yj : χA2(yj) = 1}| +
|{yj : χA2(yj) = 0}| < |{xi : χA1(xi) = 1}| + |{yj : χA2(yj) = 0}|. By choosing p = |{xi : χA1(xi) = 1}| and
q = |{yj : χA2(yj) = 0}|, it follows that |Y | < p + q. Conversely, assume that there are p “yes”-instances
of A1 in X and q “no”-instances of A2 in Y such that p + q > |Y |. Observe that p ≤ |{xi : χA1(xi) = 1}|
and q ≤ |{yj : χA2(yj) = 0}| = |Y | − |{yj : χA2(yj) = 1}|. By summing up these two inequalities, p + q ≤
|{xi : χA1(xi) = 1}| − |{yj : χA2(yj) = 1}| + |Y |, which, along with |Y | < p + q, implies that |{xi : χA1(xi) =
1}| − |{yj : χA2(yj) = 1}| > 0. Therefore, |{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|.

Thus, as for membership in ΣP
k , to decide whether |{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|, it suffices to

(1) guess a set of p “yes”-instances of A1 from X along with their witnesses, and a set of q “no”-instances of A2
from Y along with their witnesses (feasible in NP); (2) check that all the guessed p instances of A1 are actually
“yes”-instances, and all the guessed q instances of A2 are actually “no”-instances (feasible via polynomially
many (specifically, p+ q) calls to a suitable ΠP

k−1 oracle by passing the guessed witnesses); and (3) verify that
p+ q > |Y | (feasible in P). Hence, this is overall feasible in ΣP

k .
Hardness for ΣP

k is proven as follows. Consider an instance x1 of A1, and observe that, for sets X = {x1} and
Y = {}, deciding whether the number of “yes”-instances of A1 in X is greater than the number of “yes”-instances
of A2 in Y is equivalent to decide whether x1 is a “yes”-instance of A1 (which is ΣP

k -hard, because A1 is
ΣP
k -complete).

On the other hand, for two given sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of instances of problems A1 and
A2, respectively, if A1 is in ΠP

k and A2 is in ΣP
k , then deciding whether |{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|

is in ΠP
k . The reason for the simplification of this task is similar to the previous. If there are p′ “no”-instances

in X, and q′ “yes”-instances in Y , and p′ + q′ ≥ |X|, then |{xi : χA1(xi) = 1}| ≤ |{yj : χA2(yj) = 1}| (note the
inversion of the relationship between the two terms). Therefore, if this is the case, it suffices to guess the p′
“no”-instances in X, and the q′ “yes”-instances in Y . Guessing the p′ “no”-instances in X is feasible by an NP
machine (because A1 is in a “complement” class), and guessing the q′ “yes”-instances in Y is feasible in NP
as well. Essentially, to answer “no”, if A1 ∈ ΠP

k and A2 ∈ ΣP
k , we do not need to actually count precisely the

number of “yes”-instances in X and Y .

Theorem 3.5. Let A1 be a ΠP
k -complete problem, and A2 be a ΣP

k -complete problem. Then, for a given pair
of sets {x1, . . . , xn} and {y1, . . . , ym} of instances of A1 and A2, respectively, deciding whether |{xi : χA1(xi) =
1}| > |{yj : χA2(yj) = 1}| is ΠP

k -complete.

Proof. Membership and hardness can be proven by a similar line of argumentation as in the proof of Theorem 3.4.
We only have to prove, which is left to the reader, that |{xi : χA1(xi) = 1}| ≤ |{yj : χA2(yj) = 1}| (i.e.,
{x1, . . . , xn} and {y1, . . . , ym} are a “no”-instance) if and only if there are p′ “no”-instances of A1 in {x1, . . . , xn}
and q′ “yes”-instances of A2 in {y1, . . . , ym} such that p′ + q′ ≥ |X|. By exploiting this property, it can be
shown that deciding whether |{xi : χA1(xi) = 1}| ≤ |{yj : χA2(yj) = 1}| is feasible in ΣP

k , and hence deciding
|{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}| is feasible in ΠP

k .

To conclude this part, we show the analogue of Lemma 2.2 for the new characterization of ΘP
k , which directly

descends from Theorems 3.2 and 3.3, and provides a new sufficient condition for the ΘP
k+1-hardness of a problem.

Intuitively, it states that, a problem B is ΘP
k+1-hard, if there exists a reduction to B from the problem of deciding,

for a given pair of sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of instances of two (not necessarily distinct)
ΣP
k -complete (or, ΠP

k -complete) problems A1 and A2, respectively, whether the number of “yes”-instances of A1
in X is greater than the number of “yes”-instances of A2 in Y . Similarly to Wagner’s result, this result holds
even if it is assumed that χA1(x1) ≥ · · · ≥ χA1(xn) and χA2(y1) ≥ · · · ≥ χA2(ym) (and n = m).

9

Theorem 3.6. Let A1 and A2 be two ΣP
k -complete (resp., ΠP

k -complete) problems, and let B be a problem.
Then, B is ΘP

k+1-hard, if there exists a polynomial-time computable function f such that, for all pair of sets
X = {x1, . . . , xn} and Y = {y1, . . . , ym} of instances of A1 and A2, respectively, it holds that (|{xi : χA1(xi) =
1}| > |{yj : χA2(yj) = 1}|)⇔ χB(f(X,Y)) = 1. The ΘP

k+1-hardness of B remains proven even if sets X and Y
are assumed to be such that χA1(x1) ≥ · · · ≥ χA1(xn) and χA2(y1) ≥ · · · ≥ χA2(ym), and n = m.

Proof. From Theorems 3.2 and 3.3, deciding whether |{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}| is ΘP
k+1-hard,

both in the case that A1 and A2 are ΣP
k -complete and in the case that A1 and A2 are ΠP

k -complete. Hardness
holds even if χA1(x1) ≥ · · · ≥ χA1(xn) and χA2(y1) ≥ · · · ≥ χA2(ym), and n = m. Therefore, if there is a
reduction (f) from the task of deciding |{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}| to B, then B is ΘP

k+1-hard as
well.

3.3 Complexity of Comp-Validk
We now prove Comp-Validk ΘP

k+1-complete. In the following, for a set S of QBFs, #val(S) denotes the number
of valid formulas in S. To show Comp-Validk’s membership in ΘP

k+1, we use two problems LBound-Validk,∃
and UBound-Validk,∀ defined as follows. A pair 〈S, n〉, where S is a set of QBFs with at most k alternating
quantifiers, whose outermost quantifier is ∃, and 0 ≤ n ≤ |S| is an integer, is a “yes”-instance of LBound-
Validk,∃ whenever #val(S) ≥ n. On the other hand, a pair 〈S, n〉, where S is a set of QBFs with at most k
alternating quantifiers, whose outermost quantifier is ∀, and 0 ≤ n ≤ |S| is an integer, is a “yes”-instance of
UBound-Validk,∀ whenever #val(S) ≤ n. We show that both these problems are feasible in ΣP

k . Intuitively,
this is the case, because, to decide LBound-Validk,∃, it is sufficient to guess n valid formulas in S (feasible
in NP), and then ask to a ΠP

k−1 oracle that the guessed formulas are actually valid. A similar intuition is also
behind the complexity of UBound-Validk,∀. Indeed, to decide UBound-Validk,∀, it is sufficient to guess
|S| − n non-valid formulas in S (feasible in NP), and then ask a ΠP

k−1 oracle that the guessed formulas are
actually non-valid.

Lemma 3.7. LBound-Validk,∃ and UBound-Validk,∀ belong to ΣP
k .

Proof. We first focus on LBound-Validk,∃. Let 〈S, n〉 be an instance of LBound-Validk,∃. Since all the
formulas Φi in S are of the form Φi = (∃Xi

1) . . . (QpXi
p)φi(Xi

1, . . . , X
i
p), with p ≤ k, we can guess the indices

{j1, . . . , jn} of a set of n valid formulas, along with the complete assignments σX`
1
overX`

1, for each ` ∈ {j1, . . . , jn},
witnessing their validity. This guess is polynomial in size, and hence it can be carried out by an NP machine.
Given such a guess, for each ` ∈ {j1, . . . , jn}, we can check the validity of Φ` by checking the validity of
Φ`′ = (∀X`

2)(∃X`
3) . . . (QpX`

p)φ`(X`
1/σX`

1
, X`

2, . . . , X
`
p) through a call to a ΠP

k−1 oracle (because p− 1 ≤ k − 1).
Clearly, the overall procedure is feasible in ΣP

k .
For UBound-Validk,∀ the proof is similar. Let 〈S, n〉 be an instance of UBound-Validk,∀. Since all the

formulas Φi in S are in the form Φi = (∀Xi
1) . . . (QpXi

p)φi(Xi
1, . . . , X

i
p), we can guess the indices {j1, . . . , jm} of a

set ofm = |S|−n non-valid formulas, along with the complete assignments σX`
1
over X`

1, for each ` ∈ {j1, . . . , jm},
witnessing the non-validity of the guessed formulas. Clearly, if there are |S| − n non-valid formulas in S, then
there at most n valid formulas in S. Also this guess is polynomial in size, and hence it can be performed by
an NP machine. Given such a guess, for each ` ∈ {j1, . . . , jm}, we can check that Φ` is non-valid by checking
that ¬Φ`′ = (∀X`

2)(∃X`
3) . . . (QpX`

p)¬φ`(X`
1/σX`

1
, X`

2, . . . , X
`
p) is valid through a call to a ΠP

k−1 oracle (because
p− 1 ≤ k − 1). Also in this case, the overall procedure is feasible in ΣP

k .

We are now ready to show that Comp-Validk is ΘP
k+1-complete. We first prove its membership in ΘP

k+1.
Intuitively, Comp-Validk is in ΘP

k+1 because, for its solution, it is sufficient to count the number of valid
formulas in the sets A and B. This can be done by a binary search exploiting two oracles for LBound-Validk,∃
and UBound-Validk,∀, respectively. The former is needed to count valid quantified formulas whose outermost
quantifier is ∃, while the latter is used to count valid quantified formulas whose outermost quantifier is ∀.

Theorem 3.8. Let A and B be two sets of QBFs with at most k alternating quantifiers. Then, deciding whether
#val(A) > #val(B) is feasible in ΘP

k+1.

Proof. Let 〈A,B〉 be an instance of Comp-Validk. To decide whether #val(A) > #val(B), we count the
number of valid formulas in A and in B, and then compare the numbers. Consider the set A. We can partition A
in two subsets A∃ and A∀, containing the formulas whose outermost quantifier is ∃ and ∀, respectively. Clearly,
|A| = |A∃|+ |A∀|. We can count the number of valid formulas belonging to A∃ and A∀, via a binary search in
the range [0, |A|], by a Turing machine in P querying an oracle for LBound-Validk,∃ and UBound-Validk,∀,
respectively. Observe that it is sufficient to devise a single oracle with a variable in the input to ask the oracle to
decide either LBound-Validk,∃ or UBound-Validk,∀. The number of valid formulas of B can be computed

10

similarly. Notice that the number of queries submitted to the oracle is logarithmic in the size of the input, and
that LBound-Validk,∃ and UBound-Validk,∀ belong to ΣP

k (see Lemma 3.7). Thus, the overall procedure is
feasible in PΣP

k [O(logn)] = ΘP
k+1.

We next prove that Comp-Validk is ΘP
k+1-hard. The reduction to show the ΘP

k+1-hardness of Comp-Validk
is a direct application of Theorems 3.2 and 3.3. In fact, counting and comparing the number of valid QBFs of two
given sets is essentially counting and comparing the number of “yes”-instances in the two sets containing instances
of the problems QBFCNF

k,∃ (or QBFDNF
k,∀). Furthermore, we also prove that the hardness of Comp-Validk holds

even if |A| = |B|, all formulas in 〈A,B〉 are instances of QBFCNF
k,∃ (resp., QBFDNF

k,∀), have the same number
of clauses (resp., terms), and, for each 1 ≤ d ≤ k, quantifiers Qd of all formulas in 〈A,B〉 are defined on the
very same set of variables. To prove that this restriction on the structure of the formulas does not influence
the hardness of the problem, we show that a generic instance of Comp-Validk can always be rewritten in
polynomial time in an instance fulfilling the required constraints. Note that, in the following proof showing the
ΘP
k+1-completeness of Comp-Validk, for the hardness to hold, it is required that the number of formulas in the

sets A and B with actually k alternating quantifiers is unbounded.

Theorem 3.9. Let A and B be two sets of QBFs with at least k alternating quantifiers. Then, deciding whether
#val(A) > #val(B) is ΘP

k+1-hard. Hardness holds even if |A| = |B|, all formulas in 〈A,B〉 are instances of
QBFCNF

k,∃ (resp., QBFDNF
k,∀), have the same number of clauses (resp., terms), and, for each 1 ≤ d ≤ k, quantifiers

Qd of all formulas in 〈A,B〉 are defined on the very same set of variables.

Proof. We first show that hardness of Comp-Validk holds even over the class I of instances 〈A,B〉 such that
|A| = |B|, and all formulas in A and B are instances of QBFCNF

k,∃ (resp., QBFDNF
k,∀). In particular, for the class

I, we neither restrict formulas of the instances in I to have the same number of clauses (resp., terms), nor their
quantifiers to be defined on the same set of variables. We prove hardness by applying Theorems 3.2 and 3.3.

QBFCNF
k,∃ for odd k (resp., QBFDNF

k,∀ for even k) is ΣP
k -complete, and, given any two sets X = {x1, . . . , xn}

and Y = {y1, . . . , ym} of instances of QBFCNF
k,∃ for odd k (resp., QBFDNF

k,∀ for even k), clearly the pair 〈X,Y 〉
itself is a “yes”-instance of Comp-Validk if and only if |{xi : χA1(xi) = 1}| > |{yj : χA2(yj) = 1}|. Hence,
Theorem 3.2 applies (with n = m), and thus Comp-Validk is ΘP

k+1-hard. Furthermore, QBFCNF
k,∃ for even k

(resp., QBFDNF
k,∀ for odd k) is ΠP

k -complete, and the line of argumentation is similar, applying Theorem 3.3,
instead of Theorem 3.2.

Consider now the special case in which formulas of the instances are restricted to have the same number of
clauses (resp., terms), and their quantifiers are restricted to be defined over the same set of variables. We show
that a generic instance of Comp-Validk in I can be reduced in polynomial time to an instance satisfying these
restrictions. The idea is to rewrite formulas considering first each quantifier in turn, from the outermost to the
innermost, in order to have the quantifiers defined on the very same sets of variables. After the formulas are
rewritten so that all quantifiers are defined over the same sets of variables, if necessary, the number of clauses
(resp., terms) among the formulas is made equal. Note that there is no need to perform any “balancing of the
number of quantifiers”, since all formulas of the instances in I are instances of QBFCNF

k,∃ (resp., QBFDNF
k,∀), and

hence all of them have the very same number of nested quantifiers. In the following, we assume that all QBFs
are instances of QBFCNF

k,∃ , i.e., all QBFs are of the form Φ` = (Q1X
`
1) . . . (QkX`

k)φ`(X`
1, . . . , X

`
k) with Qk = ∃

and φ` being in CNF. The case that all QBFs are instances of QBFDNF
k,∀ can be proven in a similar way.

First, let us consider the procedure to have the quantifiers defined over the same sets of variables. Quantifiers
are processed from the outermost to the innermost, and exactly one quantifier is processed at a time. Assume
that Qd is the currently considered quantifier.

If necessary, we balance the number of variables in the sets X`
d among the various formulas Φ`. If there are

two formulas Φi,Φj ∈ A ∪B such that |Xi
d| 6= |X

j
d |, then we compute maxd = maxΦ`∈A∪B{|X`

d|}. Subsequently,
we rewrite all formulas Φ` with |X`

d| < maxd by: (i) extending X`
d to X̃`

d by adding fresh variables, so that
|X̃`

d| = maxd; (ii) adding to φ`, for each variable x ∈ X̃`
d\X`

d, dummy satisfiable clauses of three literals (x∨¬x∨x),
so that the new variables appear in the non-quantified part. Since (∃x)(x ∨ ¬x ∨ x) and (∀x)(x ∨ ¬x ∨ x) are
both always valid, adding clauses like (x ∨ ¬x ∨ x) does not alter the validity of the formulas, irrespective of the
considered quantifier Qd being ∃ or ∀, or k being even or odd. At the end of this procedure, all quantifiers are
defined over the same number of variables. Now, if necessary, we can rename the variables so that those sets
contain the very same elements. We denote by φ̃` the new non-quantified part of the formulas obtained after the
rewriting, while Φ̃` denotes the new quantified formulas after the rewriting.

In a second phase, if necessary, we balance the number of clauses in the various formulas. If there are two
formulas Φ̃i, Φ̃j ∈ A ∪ B such that the number of clauses in φ̃i is different from the number of clauses in φ̃j ,
then we compute maxcl = maxΦ̃`∈A∪B{number of clauses of φ̃`}. After this, we rewrite all formulas Φ̃` whose
formula φ̃` has less clauses than maxcl by adding dummy satisfiable clauses of three literals (x ∨ ¬x ∨ x), where

11

x is any variable of the formula. Again, note that adding clauses like (x ∨ ¬x ∨ x) does not alter the validity of
the formulas, irrespective of the considered quantifier Qd being ∃ or ∀, or k being even or odd.

The just described rewriting of formulas in A and B is feasible in polynomial time.

It is interesting to note that, given the particular statements of Theorems 3.2 and 3.3, Comp-Validk remains
ΘP
k+1-hard even in the case in which the sets X = {Φ1, . . . ,Φn} and Y = {Ψ1, . . . ,Ψm} of the quantified formulas

are assumed to be such that Φ1 ⇐ · · · ⇐ Φn and Ψ1 ⇐ · · · ⇐ Ψm, i.e., all the valid formulas are at the beginning
of the lists (have the smallest indices in the sets).

4 Applications of the new characterization
In this section, we show that the new characterization for ΘP

k (and, more specifically, for ΘP
2) introduced in this

paper provides a powerful tool to prove ΘP
k -hardness of problems whose semantics is tightly linked to the one of

counting and comparison. In particular, we select a problem taken from the area of computational social choice.
The selected problem is the Max voting scheme over mCP-nets, which are a tool to represent preferences in
groups based on CP-nets. CP-nets [2] are a graphical preference model, and they are among the most studied
preference models, as the vast literature on them demonstrates. In CP-nets, graph vertices represent features,
and an edge from vertex A to vertex B models that A’s value influences the choice of B’s value. Intuitively,
this model captures preferences like “given that the rest of the dinner does not change, with a fish dish (A’s
value), I prefer a white wine (B’s value)”. Intuitively, an outcome is a particular configuration of the features in
the domain at hand, i.e., an outcome is an object assigning a value to every feature. For a CP-net N , β �N α
denotes that the outcome β is preferred to the outcome α according to the preferences modeled in N , and
β ./N α denotes that β and α are incomparable in N .

In mCP-nets, a set of CP-nets is used to model the preferences of each agent in a group. Preferences for
groups of agents in mCP-nets are defined through voting schemes. In particular, through their own individual
CP-nets, each agent votes whether an outcome is preferred to another, and different ways of collecting votes (i.e.,
different voting schemes) give rise to different dominance semantics for mCP-nets. Various voting schemes were
proposed for mCP-nets [28, 24], and here we focus on the Max voting scheme [28].

More precisely, an mCP-net M is a collection 〈N1, . . . ,Nm〉 of m CP-nets defined over the same set of
features which, in turn, have the same possible values. The “m” of an mCP-net stands for “multiple” agents and
also indicates that the preferences of m agents are modeled in the net, so a 3CP-net is an mCP-net with m = 3.
Note that, although the features of the individual CP-nets are the same, the graph structure of the individual
nets may be different, i.e., the links between the features in the various individual CP-nets may vary.

LetM = 〈N1, . . . ,Nm〉 be an mCP-net, and let α, β be two outcomes. We define the sets S�M(α, β) = {i |
α �Ni β}, S≺M(α, β) = {i | α ≺Ni β}, and S./M(α, β) = {i | α ./Ni β}, which are the sets of the agents of M
preferring α to β, preferring β to α, and for which α and β are incomparable, respectively. The Max voting
is defined as follows: the outcome β max dominates the outcome α, denoted by β �max

M α, if the group of the
agents ofM preferring β to α is the biggest, i.e., |S�M(β, α)| > max(|S≺M(β, α)|, |S./M(β, α)|).

For any given outcome γ, it is possible to design a CP-net D(γ) for which γ is the optimum outcome [25].
For any 3CNF Boolean formula φ, it is possible to design two different CP-nets, F(φ) and F(φ), such that,
for two specific outcomes α and β, β �F(φ) α (resp., α �F(φ) β) if and only if φ is satisfiable, and β ./F(φ) α

(resp., α ./F(φ) β) if and only if φ is unsatisfiable [25]. Below, we will refer again to the outcomes α and β just
mentioned. With these nets, it is possible to show that deciding Max dominance is ΘP

2 -hard.
Consider a generic instance 〈A,B〉 of Comp-Sat, where A and B are two sets of 3CNF Boolean formulas

defined over the very same set of variables, having the same number of clauses, and such that |A| = a and
|B| = b. From 〈A,B〉, it is possible to build a 3(a+ b)CP-netMmax(〈A,B〉) such that β �max

Mmax(〈A,B〉) α if and
only if 〈A,B〉 is a “yes”-instance of Comp-Sat. In particular, the agents ofMmax(〈A,B〉) are:

• for each formula φi ∈ A, there is an agent whose CP-net is NA,i = F(φi);
• for each formula ϕj ∈ B, there is an agent whose CP-net is NB,j = F(ϕj);
• there are a+ b agents whose preferences are encoded by the CP-net D(α); and
• there are a+ b agents whose preferences are encoded by the CP-net D(β).
Given the above construction it is possible to show the following.

Theorem 4.1 ([25]). LetM be an mCP-net, and let α and β be two outcomes. Deciding whether β �max
M α is

ΘP
2 -hard.

12

5 Conclusion
In this paper, we have introduced a new characterization for the class ΘP

k in general and for ΘP
2 in particular.

We have shown that problems belonging to ΘP
k+1 are also those involving the task of counting and comparing the

number of “yes”-instances of two sets A and B of ΣP
k -complete (or ΠP

k -complete) problem instances. Moreover,
we have also shown that this new characterization is sufficient to entail the ΘP

k+1-hardness of the problem at
hand. In fact, if the problem involves the task of counting and comparing the number of “yes”-instances of two
sets of ΣP

k -complete (or ΠP
k -complete) problems instances, then the problem is ΘP

k+1-hard. On the other hand,
we have proven that this problem becomes computationally easier when the instances of sets A and B are of a
ΣP
k -complete and of a ΠP

k -complete problem, respectively.
We have complemented this work by providing also the ΘP

k+1-complete problem Comp-Validk, which is
deciding, given two sets A and B of quantified Boolean formulas with k alternating quantifiers, whether the
number of valid formulas in A is greater than the number of the valid formulas in B. The results shown here prove
that its specialization Comp-Valid1, when only existentially quantified CNF Boolean formulas are considered,
(= Comp-Sat), which is the very natural and intuitive problem of deciding whether the number of satisfiable
CNF Boolean formulas of a set is bigger than the number of satisfiable CNF Boolean formulas of another set, is
ΘP

2 -complete. Comp-Validk (resp., Comp-Sat) proves to be an ideal candidate when one needs a reduction
to show ΘP

k+1-hardness (resp., ΘP
2 -hardness) of a problem involving the task of counting and comparison. In

fact, the ΘP
2 -hardness of Comp-Sat is an easy corollary of the ΘP

k+1-hardness of Comp-Validk, and it was
successfully used to easily prove the ΘP

2 -hardness of a voting problem in [25].

Acknowledgments. This work was supported by the UK EPSRC grants EP/J008346/1, EP/L012138/1, and
EP/M025268/1, and by The Alan Turing Institute under the EPSRC grant EP/N510129/1. We thank Dominik
Peters and the anonymous reviewers for their helpful comments on a preliminary version of the paper.

References
[1] T. Baker, J. Gill, and R. Solovay. “Relativizations of the P =?NP Question”. In: SIAM J. Comput. 4.4

(1975), pp. 431–442.
[2] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. “CP-nets: A tool for representing

and reasoning with conditional ceteris paribus preference statements”. In: J. Artif. Intell. Res. 21 (2004),
pp. 135–191.

[3] S. R. Buss and L. Hay. “On truth-table reducibility to SAT and the difference hierarchy over NP”. In:
Proc. of CoCo. 1988, pp. 224–233.

[4] S. R. Buss and L. Hay. “On truth-table reducibility to SAT”. In: Inform. Comput. 91.1 (1991), pp. 86–102.
[5] S. A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Proc. of STOC. 1971, pp. 151–158.
[6] T. Eiter and G. Gottlob. “The complexity class Θp

2: Recent results and applications in AI and modal logic”.
In: Proc. of FCT. Vol. 1279. LNCS. Springer, 1997, pp. 1–18.

[7] T. Eiter and T. Lukasiewicz. “Default reasoning from conditional knowledge bases: Complexity and
tractable cases”. In: Artif. Intell. 124.2 (2000), pp. 169–241.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman and Company, 1979.

[9] G. Gottlob. “NP Trees and Carnap’s Modal Logic”. In: J. ACM 42.2 (1995), pp. 421–457.
[10] G. Gottlob. “Relativized Logspace and Generalized Quantifiers over Finite Ordered Structures”. In: J.

Symb. Logic 62.2 (1997), pp. 545–574.
[11] G. Gottlob and E. Malizia. “Achieving New Upper Bounds for the Hypergraph Duality Problem through

Logic”. In: Proc. of CSL-LICS. 2014, 43:1–43:10.
[12] G. Gottlob and E. Malizia. Achieving New Upper Bounds for the Hypergraph Duality Problem through

Logic. Tech. rep. arXiv:1407.2912. Computing Research Repository (CoRR), 2014.
[13] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. “Non-Transferable Utility Coalitional Games via

Mixed-Integer Linear Constraints”. In: J. Artif. Intell. Res. 38 (2010), pp. 633–685.
[14] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. “On the complexity of core, kernel, and bargaining

set”. In: Artif. Intell. 175.12–13 (2011), pp. 1877–1910.

13

[15] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. “On the Complexity of the Core over Coalition
Structures”. In: Proc. of IJCAI. 2011, pp. 216–221.

[16] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. “The Complexity of the Nucleolus in Compact Games”.
In: ACM TOCT 7.1 (2014), 3:1–3:52.

[17] J. Hartmanis. “Structural Complexity Column: Some Observations About Relativization of Space Bounded
Computations”. In: Bull. EATCS 35 (1988), pp. 82–91.

[18] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. “Exact analysis of Dodgson elections: Lewis Carroll’s
1876 voting system is complete for parallel access to NP”. In: J. ACM 44.6 (1997), pp. 806–825.

[19] E. Hemaspaandraa, H. Spakowski, and J. Vogel. “The complexity of Kemeny elections”. In: Theor. Comput.
Sci. 349.3 (2005), pp. 382–391.

[20] D. S. Johnson. “A catalog of complexity classes”. In: Handbook of Theoretical Computer Science (vol. A).
Ed. by J. van Leeuwen. Amsterdam, The Netherlands: Elsevier Science Publishers B.V., 1990, pp. 67–161.

[21] J. Kadin. “PNP[O(logn)] and sparse Turing-complete sets for NP”. In: J. Comput. Syst. Sci. 39.3 (1989),
pp. 282–298.

[22] R. M. Karp. “Reducibility among combinatorial problems”. In: Proc. of Complexity of Computer Compu-
tations. Plenum Press, 1972, pp. 85–103.

[23] M. W. Krentel. “The Complexity of Optimization Problems”. In: J. Comput. Syst. Sci. 36.3 (1988),
pp. 490–509.

[24] M. Li, Q. B. Vo, and R. Kowalczyk. “Aggregating multi-valued CP-nets: a CSP-based approach”. In: J.
Heuristics 21.1 (2015), pp. 107–140.

[25] T. Lukasiewicz and E. Malizia. “On the Complexity of mCP-Nets”. In: Proc. of AAAI. 2016, pp. 558–564.
[26] C. H. Papadimitriou. Computational Complexity. Reading, MA, USA: Addison Wesley, 1994.
[27] C. H. Papadimitriou and S. K. Zachos. “Two remarks on the power of counting”. In: Proc. of Theoretical

Computer Science. Vol. 145. LNCS. Springer, 1982, pp. 269–275.
[28] F. Rossi, K. B. Venable, and T. Walsh. “mCP Nets: representing and reasoning with preferences of multiple

agents”. In: Proc. of AAAI. 2004, pp. 729–734.
[29] J. Rothe, H. Spakowski, and J. Vogel. “Exact Complexity of the Winner Problem for Young Elections”. In:

Theor. Comput. Syst. 36.4 (2003), pp. 375–386.
[30] M. Schaefer and C. Umans. “Completeness in the Polynomial-Time Hierarchy: Part I: A Compendium”.

In: ACM SIGACT News 33.3 (2002). Guest Column in L. A. Hemaspaandra, SIGACT News Complexity
Theory Column 37, pp. 32–49.

[31] M. Schaefer and C. Umans. “Completeness in the Polynomial-Time Hierarchy: Part II: A Compendium”.
In: ACM SIGACT News 33.4 (2002). Guest Column in L. A. Hemaspaandra, SIGACT News Complexity
Theory Column 38, pp. 22–36.

[32] M. Schaefer and C. Umans. Completeness in the Polynomial-Time Hierarchy: A Compendium. Tech. rep.
2008.

[33] H. Spakowski and J. Vogel. “Θp
2-Completeness: A Classical Approach for New Results”. In: Proc. of

FST&TCS. Vol. 1974. LNCS. Springer, 2000, pp. 348–360.
[34] L. J. Stockmeyer. “The polynomial-time hierarchy”. In: Theor. Comput. Sci. 3.1 (1976), pp. 1–22.
[35] K. W. Wagner. “More complicated questions about maxima and minima, and some closures of NP”. In:

Theor. Comput. Sci. 51.1–2 (1987), pp. 53–80.
[36] K. W. Wagner. “Bounded query computations”. In: Proc. of CoCo. 1988, pp. 260–277.
[37] K. W. Wagner. “Bounded Query Classes”. In: SIAM J. Comput. 19.5 (1990), pp. 833–846.
[38] C. Wrathall. “Complete sets and the polynomial-time hierarchy”. In: Theor. Comput. Sci. 3.1 (1976),

pp. 23–33.

14

	Introduction
	Preliminaries
	Decision problems and complexity classes
	Prototypical hard problems
	A previous characterization of \Theta^P_k

	A new characterization of \Theta^P_k and its hard problems
	Overview of results
	Derivation of the general results
	Complexity of Comp-Valid_k

	Applications of the new characterization
	Conclusion

