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Statistical modelling predicts almost complete loss
of major periglacial processes in Northern Europe
by 2100

Juha Aalto"?, Stephan Harrison3 & Miska Luoto’

The periglacial realm is a major part of the cryosphere, covering a quarter of Earth's land
surface. Cryogenic land surface processes (LSPs) control landscape development, ecosystem
functioning and climate through biogeochemical feedbacks, but their response to con-
temporary climate change is unclear. Here, by statistically modelling the current and future
distributions of four major LSPs unique to periglacial regions at fine scale, we show funda-
mental changes in the periglacial climate realm are inevitable with future climate change.
Even with the most optimistic CO, emissions scenario (Representative Concentration
Pathway (RCP) 2.6) we predict a 72% reduction in the current periglacial climate realm by
2050 in our climatically sensitive northern Europe study area. These impacts are projected to
be especially severe in high-latitude continental interiors. We further predict that by the end
of the twenty-first century active periglacial LSPs will exist only at high elevations. These
results forecast a future tipping point in the operation of cold-region LSP, and predict fun-
damental landscape-level modifications in ground conditions and related atmospheric
feedbacks.
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controlled land surfaces processes (LSPs) are vital compo-

nents of the cryosphere® 2. With current Arctic amplifica-
tion of climate warming®, substantial alterations in this sensitive
and important area of the Earth’s system are already observed?,
including glacier recession®, shrub expansion to alpine tundra®
and changes in permafrost thermal-hydrological regimes®.
Importantly, these changes in ground conditions modify, among
others, biogeochemical cycles (e.g., terrestrial CO, and CH,) and
reflectance (i.e., albedo) triggering climate feedbacks’~®. Thus,
better understanding of the response of the periglacial climate
realm to climate change is critical for assessing climate change
mitigation, and extensive modellin% studies at various geo-
graphical scales are urgently required’.

The combined spatial extent of active cryogenic LSPs con-
stitutes the periglacial climate realm'. This prevails across high
latitudes and elevations, at present covering ca. 25% of the Earth’s
terrestrial areas. Here, LSPs create surface geomorphological
features which are unique to periglacial regions including pat-
terned ground and hummocky terrain associated with cryo-
turbation, gelifluction terraces and lobes, nivation features
associated with erosion by snow patches and palsa mires which
develop through permafrost mounding'® (Fig. 1). Periglacial LSPs

play a crucial role by controlling denudation processes'!,

P eriglacial environments with frost-induced and permafrost-

vegetation community structure and productivity'? '3, hydrol-
ogy'# and biogeochemical cycles”> !> 16, Currently, the response
of periglacial LSPs to climate warming is highly uncertain.
Although a rapid response is expected’, because the broad-scale
distribution of cryo%enic ground processes is coupled with cli-
matic gradients'” '® and often, but not necessarily, with the
presence of permafrost" %, the details of this and timing are
lacking. This strong LSP-climate response!”> 2 is locally modified
by lithology and edaphic (reﬂectinﬁ, e.g., glaciation heritage)"> !
and topographical characteristics'”> 21> 22, For example, gelifluc-
tion operates on inclined surfaces with frost-susceptible fine-
grained soils, while cryoturbation features are common in flat
valley bottoms and mountain tops" 17. The development of palsa
mires through permafrost mounding is expected to occur on open
low-elevation peat lands where strong winds redistribute snow
allowing for a deep frost penetration'® 18,

Here, we use remotely sensed and field-quantified data of LSPs
at an unprecedented scale focusing on active surface features
related to cryoturbation, gelifluction, nivation and permafrost
peat mounding to investigate the current and future extent of the
periglacial climate realm across a high-latitude Fennoscandia
region of ca. 78,000 km? (Fig. 1). We argue that the absence of
deep permafrost (compared with, e.g., High Arctic Canada and
Siberia)?® 2* means that in general the thermal response of LSPs
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Fig. 1 The location of the study domain and LSP observation sites in northernmost Europe. a, b The study area in relation to the circum-Arctic extent of
permafrost?3 24 indicated as: continuous=90-100% of the area covered by permafrost, discontinuous=50-90%, sporadic=10-50% and isolated=0-10%,
respectively. ¢ The observation locations (n=2,917) and the relief of the study area. Black rectangles in b, ¢ depict the model prediction domain. Photos
show examples of typical surface features of cryogenic land surface processes (scales are only directive): cryoturbation (d; small-scaled polygonal

patterned soil) gelifluction (e; gelifluction lobes), nivation (f, snow accumulation sites) and permafrost mounding (g; palsas), respectively. Photos by J.A.

and M.L.
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Fig. 2 The modelled baseline occurrences of the four LSPs based on majority vote ensemble. The n in the title denotes the number of observed presences
(black dots), while all the observation sites (n=2,917) are presented in Fig. 1c. The modelling performance is measured as the area under the curve of a
receiver operating characteristic plot (AUC) and the true skill statistics (TSS). The evaluation statistics show the mean (+s.d.) over four modelling

techniques and 100 cross-validation runs conducted for each LSP (a cryoturbation, b gelifluction, ¢ nivation and d permafrost mounding) using a random

sampling procedure

to future climate change is likely to be rapid (perennial ground ice
enhances soil-ambient air decoupling®®), and thus the region is
representative of environments that are especially sensitive to
climate change?®. Similar sensitive landscapes are expected to
prevail across broad high-latitude areas of discontinuous and
isolated permafrost, including large parts of Canada and Russia
between 55 and 70° N latitudes. We relate the current occurrence
of LSPs with climatic variables of freezing and thawing degree
days (FDD and TDD, respectively), water and snow precipitation,
local topography (potential radiation, slope angle and topo-
graphic wetness) and soil characteristics (peat and rock cover)!”.
We use an ensemble modelling approach, where methodology-
related uncertainty can be controlled by merging predictions from
multiple statistical algorithms (regression and machine learning)
to a single agreement map?’ (spatial resolution 50 m x 50 m; refer
to Methods for a description of data compilation and statistical
analysis). After investigating the baseline distributions (i.e., the
current climate of 1981-2010) of the LSPs, we develop climate
projections forced by three Representative Concentration Path-
way (RCP) scenarios?® (2.6, 4.5 and 8.5, roughly equal to CO,
concentrations of 490, 650, 1,370 p.p.m. by the end of this
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century, respectively) and two time periods (2040-2069 and
2070-2099), averaged over a large group (n =23) of CMIP5 cli-
mate simulations®”. We show potential for a notable reduction in
the current periglacial climate realm in our study area, and pre-
dict that by the end of the twenty-first century active periglacial
LSPs will exist only at high elevations.

Results

Present distributions of cryogenic LSPs. Our forecasts of the
current LSPs show high agreement with the observations thus
suggesting robust model transferability to similar environments
(Fig. 2). The analysis of the current geriglacial realm closely
corresponds to earlier definitions" 2% 3%, marking mean annual
air temperature (MAAT) of +2°C as a rough upper limit for
cryogenic ground processes (Fig. 3). At present, cryoturbation,
gelifluction and nivation are active across a broad range of climate
conditions, while permafrost mounding is most concentrated
with MAAT of ~ -2 °C and low to moderate annual precipitation
sum (400-600 mm) (Fig. 3). The probability of active LSPs
increases towards cold air temperatures (Fig. 4). Permafrost
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Fig. 3 The dwindling periglacial climate. The density scatterplots represent the modelled occurrence of the LSP (blue shades; combined spatial extent of
individual LSPs in the large plot, @) compared to baseline (climate of 1981-2010) mean annual air temperature and mean annual precipitation in the study
area. The black dots indicate individual modelled LSP occurrences (b cryoturbation, ¢ gelifluction, d nivation and e permafrost mounding) based on empirical
data with total of 2,917 observations. The polygons depict the convex hulls (i.e., the minimum bounding boxes) of the two climate variables in the study
area, and at four time periods and/or climate change scenarios, indicating the shift in climatic conditions in respect to the current periglacial climate realm

of the study area

mounding, nivation and gelifluction are highly sensitive to TDD
(advancing permafrost and snow melt, and soil wetting,
respectively), whereas cryoturbation is more constrained by FDD
which is strongly linked to frost intensity. In turn, gelifluction is
controlled by both FDD and TDD affecting frost penetration and
spring melt, respectively?’. In addition to climatic factors,
the periglacial climate realm is strongly mediated by local
topographical heterogeneity and soil characteristics!” (Fig. 4). For
example, all studied LSPs are strongly linked to slope angle
representing different responses (positive for gelifluction and
nivation and negative for cryoturbation and permafrost
mounding) to factors such as mass movement potential and
drainage, while nivation is linked to low radiation input on
poleward-facing aspects. Our high-resolution modelling suggests
that concurrently nearly half of the study region has a suitable
climate for at least one of the LSP (Fig. 5a), reinforcing their
importance as characterizing the geomorphology of cold-climate
regions.

Future periglacial climate realm. In Fig. 3 we contrast the future
climates in the study area with the current periglacial realm and
show the consistently shrinking area of overlapping envelopes
(e.g., overlap with the baseline ca. 36% 2070-2099 RCP 4.5 and
11% 2070-2099 RCP 8.5). Our results show how even the
operation of an optimistic emission pathway will initiate sub-
stantial alterations in the extent of the periglacial climate realm
(Fig. 5b, c). For example, the suitable area for cryoturbation in
our study area is predicted to shrink 84% (under RCP 2.6 by
2040-2069) compared to baseline. These changes in LSP dis-
tributions are driven by profound near-term changes in both
increasing winter and summer air temperatures and precipitation
in the study area (Supplementary Fig. 1). For example, the
average (+s.d.) TDD in the study area was projected to increase
from 1,117°C (+323°C; baseline) to 1,417°C (+189°C;
2040-2069 RCP 2.6) and to 1,645 °C (+417 °C; 2040-2069 RCP
8.5). Similarly, the amount of water precipitation is predicted to
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increase from 285 mm (+57 mm; baseline) to 350 mm (+35 mm;
2040-2069 RCP 2.6) and further to 387mm (482 mm;
2040-2069 RCP 8.5). Therefore, these predicted changes in
temperature and precipitation regimes will cause the future
periglacial realm to reduce markedly in size and the con-
temporary spatial extent of the periglacial realm will experience a
climate that will be substantially warmer and wetter than present
conditions (Supplementary Fig. 2).

The LSP loss will be enhanced in high-latitude low-relief
continental areas, and in the Northern Hemisphere their
projected future climate space is likely to contract dramatically
as the Arctic Ocean will effectively limit their “range expansion’
northward®!. Our modelling shows that with the highest
greenhouse gas concentration scenario (RCP 8.5) no suitable
climate exists for the development of palsas (permafrost
mounding) by the end of this century, while any periglacial
conditions are predicted to remain ~6% of the study area (Fig. 5¢
and Supplementary Table 1). Although our modelling does not
account for lag times (i.e., the time difference from altered
climate forcing to LSP response), the geographical changes are
likely to be rapid because topmost soil layers are closely coupled
with lower atmosphere conditions!“. Despite a cover of insulating
peat, many of the permanently frozen mires in the region formed
during ]gast cold climates are showing evidences of accelerated
thawing'® 32 33,

Elevational shift. In addition to a rapid decay of LSP, we predict
significant elevational shift in periglacial conditions over the
whole study domain (Fig. 6; p <0.001, t-test). The mean (+s.d.)
elevation of the periglacial climate is projected to increase from
509 m above sea level (a.sl.) (+199; baseline) to 650 m a.s.l.
(+£247; 2070-2099 RCP 2.6), to 686 m a.s.l. (+248; 2070-2099
RCP 4.5) and to 755m a.s.l. (£252; 2070-2099 RCP 8.5). Con-
sequently, our results suggest that the periglacial climate will be
limited to high-elevation areas, after accounting for topographical
and soil constraints. This means that suitable conditions for LSP
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at low elevations are the first to reduce, but potential shifts of
LSPs to the highest mountains may be limited by steep topo-
graphy and rocky or lack of frost-susceptible soil, although
nivation processes may continue. These predicted elevational
changes in the periglacial climate realm are likely to alter frost-
driven denudation processes (e.g., slope processes and cryopla-
nation!) and modify decadal- to millennia-scale landscape
development!!. These climate changes will overwhelm frost as a
geomorphic agent at low elevations, this being replaced by fluvial
and aeolian activity. One consequence is that temperature- and
precipitation-driven changes in perennial ground ice are likely to
increase the risk of rapid slope displacements and thaw sub-
sidence with pronounced societal impact in areas with infra-
structure development?,

The reduction in the periglacial climate realm will trigger
surface-atmosphere feedbacks with global relevance’. In perigla-
cial environments as much as 90% of the total ecosystem carbon
resides in frozen organic and mineral soils, and ground frost
regimes are expected to form a major control on gas exchange
processes (e.g., CO, and CH,) between soil and atmosphere
under climate change® !> 1, Changes in LSPs are likely to modify
ground surface reflective properties by decreasing albedo through
vegetation re-establishment! with potentially significant implica-
tions for regional climate. Thawing permafrost in peat mounds
will change local hydrology and enhance the formation of
thermokarst lakes and ponds further decreasing albedo in a
positive feedback loop'?. Therefore, we stress the need for further
(both spatially and temporally comprehensive) investigations of
LSP-climate interactions.

Our approach for estimating the current and evolution of the
future periglacial climate realm is based on statistical
LSP-environment relationships®®>. While process-based Earth
surface models with dynamical atmospheric components have
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been developed and applied over high-latitude regions, such
process-orientated models require an intense parametrization, are
computationally expensive and only provide coarse-scale projec-
tions. Moreover, process-based models do not provide spatially
explicit prediction of LSP, rather they predict ground thermal
regimes from which the inference of namely seasonal frost
patterns can be challenging. We argue that scale is a critical issue
in defining the periglacial climate realm, since (1) it should
resemble the scale of observed LSP features (typically ranging
from 1 m (a small polygon feature) to over 100 m (a permafrost
peat plateau)) and (2) substantial local variation in LSPs driven by
microclimate, topography and soil characteristics will be missed
by coarse-scale modelling. This means that the extent of the
current and projected future extent of the periglacial realm will be
significantly underestimated. However, computational constraints
means that modelling at such small spatial scales restricts the size
of the region that can be examined, although we argue that our
results (covering an area of 78,000 km?) are widely applicable to
topographically and climatically similar Northern Hemisphere
landscapes.

Our results are significant as they provide the first very
fine-scale assessment of the current periglacial climate realm over
a broad cold-region domain. Moreover, our findings suggest a
near-complete decay of periglacial climate from a climatically
sensitive high-latitude area and a significant elevational shift of
cryogenic ground processes. Finally, these changes are likely to
cause substantial landscape-scale changes in ground surface
conditions, ecosystem functioning and biogeochemical cycles
especially in high-latitude continental interiors. Our analysis,
conducted over a wide range of future emission trajectories,
indicates that regardless of the climate change mitigation policies
the decay of periglacial system is likely to be rapid towards the
end of this century.
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Methods

LSP data. The study area lies between N 68-71° and E 20-26° and covers the
transition from continuous to isolated permafrost, with strong temperature and
precipitation gradients (from wet maritime to relatively dry continental) over tens
of kilometres. According to a recent study?* continuous and discontinuous per-
mafrost are limited to the highest mountains of the study area (ca. 6% and 18% of
the observation sites with at least one LSP present, respectively), and thus the
majority of the region can be classified as underlain by sporadic or isolated (50%
and 25% of the observation sites, respectively) permafrost. This indicates that in
large parts of the area LSPs are associated with seasonal freeze-thaw processes. The
landscape of this climatically sensitive high-latitude region has been affected by
multiple past glaciations. It includes the Scandes Mountains near the Arctic Ocean
and low-relief areas to the south and east. The data comprise 2,917 study sites
(25 x 25 m in size) and includes measurements of the surface features of four active
cryogenic LSPs occurring in the area: cryoturbation, gelifluction, nivation and
permafrost mounding. In brief, cryoturbation (i.e., frost churning) is a general term
for soil movement caused by differential heave, and it creates typical periglacial
surface features such as patterned ground and hummocky terrain'> 3. Gelifluction
is a slow mass wasting process caused by high porewater pressure in unconsoli-
dated surface debris where ‘downward percolation of water is limited by frozen
ground and where melt of segregated ice lenses provides excess water which
reduces internal friction and cohesion in the soil’, creating lobes and terraces!.
Nivation is a collective term used to designate all aspects of weathering and fluvial
processes, which are intensified and indicated by the presence of local snow
accumulation sites’’. Permafrost mounding creates mire complexes having a
permanently frozen peat and mineral core (palsa)'’.

The LSP sampling procedure is fully described in previous geomorphic
studies!”. As a summary, we used high-resolution aerial photography*~*? (spatial
resolution of 0.25m™2) and target field surveys to construct the LSP data set. A
binary variable (1=presence, O=absence) of each LSP was established indicating
only the evident activity (or absence) of the LSPs. In a presence of a LSP, others
were set as absent, although we are aware that some LSPs can overlap (e.g., a
continuation from cryoturbation (mountain top) to gelifluction (slopes)). The data
set does not include individually present periglacial microfeatures having a
diameter of <50 cm (e.g., mud boils, soil cracking due to frost action)®°. The
process was considered active if even a small area of the process had some

6 NATURE COMMUNICATIONS | 8:515

indication of activity (absent vegetation cover, mixing of topmost soil,
microtopography). The sampling covers the whole study domain and main
climatological gradients. A random approach was not feasible because of the large
size of the study area and inaccessible wetlands. To minimize uncertainties related
to model extrapolation in time, the data sampling was extended ca. 100 km south of
the prediction domain to cover the warmer temperature conditions that will
potentially prevail at the prediction domain in the future.

Background data. Monthly average temperatures (1981-2010, our baseline period)
were modelled across the study domain (spatial resolution 50 x 50 m) based on 942
meteorological station (daily data from European Climate Assessment and
Dataset?! (ECA&D)) and generalized additive modelling; as implemented in
R-package mgcv*? version 1.8-7) utilizing variables of geographical location,
topography (elevation, potential radiation, relative elevation) and water cover
In brief, our modelled monthly average air temperatures agreed well with the
observations, with root mean squared error (RMSE) ranging from 0.56 to 1.58 °C.
To obtain gridded precipitation data, a kriging interpolation was used based on the
data from 1,076 rain gauges, topography and proximity to sea (R package gstat*®
version 1.1-0). A random 10-fold cross-validation conducted over the gauge data
indicated good agreement between measured and interpolated precipitation with
RMSE ranging from 9.3 to 21.7 mm (Supplementary Fi%. 3). Four climate variables
with known physical relationship to the LSP activity'® >3 were calculated from the
modelled climate data and used as predictors in LSP modelling: FDD (°C), TDD (°
C), water precipitation and snow precipitation. TDD and FDD are based on the
effective temperature sum of mean daily temperatures above or below 0°C*®,
respectively. Thus, they provide an indication of frost intensity and melt period
temperatures, being the factors most directly linked to cryogenic LSP" 2%, Water
and snow precipitation represent accumulated rainfall (mm) with air temperatures
above and below 0 °C, respectively. The consideration of snow precipitation is
especially important due to its multiple effects on LSP due to insulation properties
(constraining the development of permafrost peat mounds and cryoturbation) and
snow accumulation (nivation)?”> 48,

Three topographic variables were calculated from the digital elevation model
(spatial resolution 50 x 50 m, data obtained from national land survey institutes of
Finland, Sweden and Norway). These included slope angle (representing, e.g., mass

movement potential), potential annual direct solar radiation®® (MJ cm~2a”};

43, 44
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Fig. 6 Shifting elevational distribution of the northern Europe’s periglacial climate realm. The kernel density plots (bandwidth=20) show the elevational
distributions of the modelled LSP (a combined spatial extent, b cryoturbation, ¢ gelifluction, d nivation and e permafrost mounding) under baseline
1981-2010 (dashed black line), 2070-2099 RCP 2.6, 2070-2099 RCP 4.5 and 2070-2099 RCP 8.5 climate conditions. For permafrost mounding (e), the
kernel density estimation under scenario 2070-2099 RCP 8.5 was unfeasible due the low number of modelled occurrences. All distributions differed

significantly (t-test, p <0.001)

surface energy input) and topographic wetness index®® (TWT; a proxy for soil
moisture). Two soil characteristic variables, rock (i.e., bare rock surfaces including,
e.g., boulder fields and course surficial material) and peat cover, were extracted
from a digital land cover classification®!. Their effect on LSP derive from the
thermal-hydrological properties of the soil, as peat has high moisture content and
low thermal conductivity (except when frozen) and rock cover is associated with
low moisture content and high thermal conductivity!. The original spatial
resolution of the classification is 100 x 100 m, but the data were processed to a
matching resolution of 50 x 50 m using nearest neighbour interpolation. Binary soil
variables were transformed to a continuous scale using a spatial mean of 3 x 3
pixels representing the proportion of a soil variable within a modelling cell'’.

Climate model data. Climate projections for the twenty-first century are based on
an ensemble of 23 global climate models (GCMs), derived from the Coupled Model
Intercomparison Project phase 5 archive?®. The data were processed to represent
the predicted averaged changes in mean temperature and precipitation (in respect
to the baseline 1981-2010) over two periods (2040-2069 and 2070-2099) and three
RCP scenarios?® (RCP 2.6, RCP 4.5 and RCP 8.5). The climate model data
depicting the predicted change in mean temperatures and precipitation respect to
baseline climate were bilinearly interpolated to a matching resolution of 50 x 50 m
and the predicted change by the GCMs was added to the spatially detailed baseline
climate data. The four climate variables (TDD, FDD, water and snow precipitation)
were recalculated for each time period and RCP scenario. Our results are consistent
with climate model projections for high Northern latitudes, which tend to show
Arctic amplification of surface and low troposphere temperatures® 3.

Statistical modelling. The occurrences of LSPs were related to the predictors using
four statistical modelling techniques>”: generalized linear modelling>, generalized
additive modelling®, generalized boosting method>® and random forest>”. All
statistical methods are implemented in the Biomod2—platform>® (version 3.3-7)
under R program®. The models were fitted using following specifications:

Occurrence of LSP=TDD+FDD+water precipitation+snow precipitation
+radiation+slope angle+TWI+rock cover+peat cover.

Model performance was assessed with a repeated cross-validation scheme: the
models were fitted 100 times by using a random sample of 70% of the data and
subsequently evaluated against the remaining 30%. At each cross-validation run,
the predicted and observed occurrences of LSPs were compared by calculating the
area under the curve of a receiver operating characteristic plot®® and true skill
statistics® (TSS).

The models were used to forecast the LSP distributions in both baseline and
future climates. The predicted probabilities of LSP occurrence were converted to
binary presence-absence predictions according to TSS values calculated a priori
during model evaluation (i.e., the TSS values were based on cross-validation
statistics®!). We constructed an ensemble of predictions using the majority vote
approach?’) where binary predictions are combined to a single agreement map.
Here, a presence value for a given LSP inside each 50 x 50 m cell was denoted in the
final map if three out of four modelling techniques voted (i.e., predicted) for its
occurrence. Finally, for each time period and emission scenario, individual LSP
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predictions were summed up to show the number of overlapping LSPs at given
cells.

Data availability. Underlying data which support the findings of this study are
available from the corresponding author on request.
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