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The tendency of animals to seek instant gratification instead of waiting for greater long-term 14 

benefits has been described as impatient, impulsive or lacking in self-control. How can we 15 

explain the evolution of such seemingly irrational behaviour? Here we analyse optimal 16 

behaviour in a variety of simple choice situations involving delayed rewards. We show that 17 

preferences for more immediate rewards should depend on a variety of factors, including 18 

whether the choice is a one-off or is likely to be repeated, the information the animal has 19 

about the continuing availability of the rewards and the opportunity to gain rewards through 20 

alternative activities. In contrast to the common assertion that rational animals should devalue 21 

delayed rewards exponentially, we find that this pattern of discounting is optimal only under 22 

restricted circumstances. We predict preference reversal whenever waiting for delayed 23 

rewards entails loss of opportunities elsewhere, but the direction of this reversal depends on 24 

whether the animal will face the same choice repeatedly. Finally, we question the ecological 25 

relevance of standard laboratory tests for impulsive behaviour, arguing that animals rarely 26 

face situations analogous to the self-control paradigm in their natural environment. To 27 

understand the evolution of impulsiveness, a more promising strategy would be to identify 28 

decision rules that are adaptive in a realistic ecological setting, and examine how these rules 29 

determine patterns of behaviour in simultaneous choice tests. 30 

 31 

Keywords: delay discounting; ecological rationality; impulsiveness; intertemporal choice; 32 

optimal foraging; self-control 33 

  34 
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1. Introduction 35 

 36 

The way in which animals, including humans, value rewards that occur in the future is 37 

of interest to a broad range of disciplines including economics (Frederick et al., 2002), 38 

psychology (Mazur, 2007a,b), pharmacology (Bickel and Marsch, 2001; Reynolds, 2006), 39 

neuroscience (Berns et al., 2007; Kalenscher and Pennartz, 2008; Roesch et al., 2007) and 40 

behavioural ecology (Freidin et al., 2009; Kagel et al., 1986; Kacelnik, 1997, 2003; Stephens, 41 

2002; Stephens and Dunlap, 2009, 2011; Stevens and Mühlhoff, in press; Stevens et al., 42 

2005a). Frequently, studies find that animals reject delayed rewards in favour of more 43 

immediate gratification, even when they would gain greater long-term benefits by waiting 44 

(Ainslie, 1974; Bateson and Kacelnik, 1996; Henly et al., 2008; Mazur, 1987; McDiarmid 45 

and Rilling, 1965; Rachlin and Green, 1972; Stephens and Anderson, 2001). Such behaviour 46 

has been described as impatient (Kacelnik, 2003), impulsive (Henly et al., 2008), short-47 

sighted (Stephens and Anderson, 2001) or lacking in self-control (Mazur and Logue, 1978). 48 

Why is it that animals behave in this way? 49 

Models of behaviour can be categorised as descriptive or normative (Kacelnik, 1997). 50 

Descriptive models summarise what animals do whereas normative models specify what they 51 

ought to do (Houston et al., 2007; Shapiro et al., 2008). In the context of how animals 52 

evaluate delayed rewards, descriptive models focus on the quantitative details of preferences 53 

measured in the laboratory and seek a mechanistic explanation for the precise patterns we 54 

observe (e.g. Mazur, 2006). Typically, these models do not attempt to explain why particular 55 

discounting mechanisms have evolved. Normative models, in contrast, adopt a functional 56 

perspective and try to understand the evolutionary basis of decision making, asking how 57 

natural selection will shape preferences under natural conditions (e.g. Stephens et al., 2004). 58 

In these models the mechanistic underpinnings of the evolved preferences are usually not 59 
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considered. The two approaches are clearly closely related, because animals tested in the 60 

laboratory are using rules that were shaped in their ancestral environment; but it does not 61 

follow that all aspects of laboratory behaviour will be optimal (Houston and McNamara, 62 

1989, 1999; McNamara, 1996; McNamara and Houston, 1980). 63 

Our aim in this article is to present a simple and general framework for understanding 64 

how natural selection shapes the evaluation of delayed rewards. Thus, our emphasis is on the 65 

functional (normative) approach. We wish to shed light on the following problem: when 66 

faced with a choice between options with differing delays, what should an optimal decision 67 

maker do? What is the precise pattern of discounting it should use to devalue delayed 68 

rewards? 69 

 70 

1.1. Costs of being patient 71 

There are two main reasons why it might be costly, in fitness terms, to wait for a 72 

delayed reward. First, there is a risk that the anticipated reward may become unavailable 73 

before it can be collected (collection risk; Houston et al., 1982). In this context, Stephens 74 

(2002) distinguishes between an interruption risk—the chance of losing the next food item, 75 

for example because a conspecific competitor eats it first—and a termination risk—the 76 

chance that an entire sequence of foraging is cut short, for example because of the sudden 77 

appearance of a predator. Second, even if collection is guaranteed, there may be lost 78 

opportunities associated with the time spent waiting (opportunity cost; Stephens, 2002): 79 

assuming the animal cannot perform other activities while it is waiting, it forgoes the 80 

opportunity to gain rewards by other means (McNamara, 1982). As we will see below, both 81 

the collection risk and the opportunity cost can strongly influence optimal behaviour. 82 

 83 

1.2. Empirical facts to explain 84 
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To give a satisfying explanation of preferences for delayed rewards, there are some key 85 

empirical results that functional models need to account for: hyperbolic discounting, 86 

preference reversal and effects of reward magnitude. 87 

 88 

1.2.1. Hyperbolic discounting 89 

If delayed rewards are discounted at a constant rate per unit of time spent waiting, their 90 

perceived value decays according to an exponential function. For example, if an immediate 91 

reward loses half of its value when it is delayed by 5 minutes, one delayed by 10 minutes 92 

should be half as valuable again (i.e. its value should drop to one quarter of its immediate 93 

value). It is generally agreed that an exponential pattern of discounting should result when 94 

interruptions occur randomly over time (Dasgupta and Maskin, 2005; Green and Myerson, 95 

1996; Stevens, 2010). However, empirical data suggest that discounting is not exponential 96 

but hyperbolic, the discounting rate gradually falling with added delay (Ainslie, 1974; Mazur, 97 

1987, 2006). This implies that additional delays do not have much effect on reward valuation 98 

if the delays are already long, in contrast to exponential discounting in which the discount 99 

rate does not change. 100 

 101 

1.2.2. Preference reversal 102 

In the classic ‘self-control’ paradigm (Mazur and Logue, 1978; Fig. 1a), in which an 103 

animal is given a choice between a small reward delivered after a short delay (SS) and a 104 

larger reward after a long delay (LL), it typically shows an impulsive preference for the 105 

former option (Ainslie, 1974; Bateson and Kacelnik, 1996; Henly et al., 2008; Mazur, 1987; 106 

McDiarmid and Rilling, 1965; Rachlin and Green, 1972; Stephens and Anderson, 2001). 107 

Increasing both delays by the same amount, however, can sometimes induce a switch to the 108 

more delayed option. This preference reversal has been reported in pigeons (Ainslie and 109 
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Herrnstein, 1981; Green et al., 1981; Rachlin and Green, 1972), rats (Green and Estle, 2003) 110 

and humans, the latter for both hypothetical (Green et al., 1994) and actual (Kirby and 111 

Herrnstein, 1995) amounts of money. Exponential discounting does not predict preference 112 

reversal, whereas hyperbolic discounting can (Kalenscher and Pennartz, 2008). 113 

There are two possible forms of preference reversal that are regularly discussed in the 114 

literature, but often not clearly distinguished. The first form occurs across two different 115 

choice situations, involving the same reward magnitudes but with an added delay in one 116 

situation; the animal prefers the more immediate option when the delays are short (Fig. 1a) 117 

and the more delayed option when they are extended (Fig. 1b). The other occurs within the 118 

same choice situation, as time runs forwards: having initially chosen the later reward, the 119 

animal may switch its preference to the sooner reward as its collection point approaches (Fig. 120 

1c). These forms are often treated equivalently (e.g. Casari, 2009; Kalenscher and Pennartz, 121 

2008; Kirby and Herrnstein, 1995; Sozou, 1998) but, as we shall see below, whether it is 122 

valid to do so depends on what we assume about the information that is available to the 123 

animal. 124 

 125 

1.2.3. Effect of reward magnitude 126 

Several accounts of choice assume that delayed options have a value given by R/f(D), 127 

where R is the reward and f(D) is some positive increasing function of delay D. Such 128 

accounts predict that choice will be unaffected when the magnitude of the rewards is 129 

changed, provided their ratio (R1/R2) is kept constant. However, humans discount delayed 130 

rewards less strongly when they are choosing between larger amounts of money (Green et al., 131 

1997, 1999; Myerson and Green, 1995). Similarly, capuchin monkeys (Cebus apella) tested 132 

in two separate self-control studies (Addessi et al., 2011; Amici et al., 2008) were 133 

significantly more tolerant for delay when the rewards were larger (2 vs. 6 food items, as 134 
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opposed to 1 vs. 3; for discussion, see Addessi et al., 2011). Rats show a lower rate of 135 

discounting for less concentrated sucrose solutions, which they prefer (Farrar et al., 2003), 136 

but a higher rate of discounting for larger amounts of food (Wogar et al., 1992). Green et al. 137 

(2004) found no effect of reward magnitude in pigeons and rats. 138 

 139 

1.3. Seeking an adaptive explanation 140 

There have been several previous attempts to explain impulsiveness and the evolution 141 

of hyperbolic discounting. Kagel et al. (1986) proposed that if animals are uncertain of the 142 

rate of interruptions (‘hazard’ rate) and have to estimate this, they should gradually lower 143 

their estimate as time passes while they are waiting for a reward. If a long time has elapsed 144 

and an interruption has still not occurred, this indicates that the underlying hazard rate is 145 

likely to be low and an animal should therefore be more willing to wait even longer for a 146 

reward. Sozou (1998) developed this idea into a formal model and showed that estimation of 147 

a constant but unknown hazard rate could produce hyperbolic discounting.  148 

Stephens and colleagues (Stephens, 2002; Stephens et al., 2004) put forward an 149 

alternative explanation for impulsive choice, based on constraints on discrimination. 150 

Assuming that animals can detect a difference between two delays more easily when the 151 

delays are short than when they are long (an example of Weber’s Law; Gibbon, 1977), 152 

decisions might be more accurate when made on the basis of short-term consequences. This 153 

increased accuracy might favour a general tendency to evaluate options in terms of short-term 154 

gains. An alternative approach argues that a hyperbolic decay function can be explained by 155 

assuming that discounting is based on subjective time perception (Takahashi, 2005; 156 

Zauberman et al., 2009). 157 

While interesting and potentially important, these ideas rely on additional factors—158 

uncertainty over the interruption rate, or biases in discrimination—to explain impulsiveness, 159 
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on top of the basic economic considerations of energy (benefit) and time (cost). Here we take 160 

a more fundamental approach. We seek to identify optimal decisions in a variety of simple 161 

choice situations in which the available options differ only in the size of the reward and the 162 

delay till that reward can be collected. The focal animal knows (i.e. is adapted to) the 163 

interruption rate and can discriminate between the options accurately. Under these conditions, 164 

it has repeatedly been claimed that a rational animal should discount delayed rewards 165 

exponentially (e.g. Bickel and Marsch, 2001; Kalenscher and Pennartz, 2008; Kirby and 166 

Herrnstein, 1995). We show that this view is unfounded. Optimal choice between delayed 167 

rewards can cover a variety of different patterns of discounting, depending on whether a 168 

given choice is likely to be repeated (Kacelnik, 1997, 2003; Stephens, 2002) and what 169 

alternative options the animal may have for gaining energy outside the current choice 170 

situation. Our aim is not to develop one definitive model of choice that accounts for all the 171 

empirical observations mentioned above, but to construct a general framework for 172 

investigating these kinds of problems and expose the logic of evaluating delayed rewards. 173 

 174 

 175 

2. A general model of choice between delayed rewards 176 

 177 

We consider an animal facing a choice between different foraging options, each of 178 

which offers a reward after some delay. Our overarching assumption is that natural selection 179 

acts on the total reward obtained by some final time T (Houston and McNamara 1999; 180 

McNamara and Houston, 1986, 1987). For a given option i the net energetic gain from the 181 

reward is Ri, but this is only collected after a delay Di. Given that it has to wait for the 182 

reward, there is a risk that the animal may lose it before it can be collected (e.g. because a 183 

competitor consumes it first or a predator interrupts the foraging bout). If we assume a 184 
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constant interruption rate α during a delay of duration Di, then the chance that the animal 185 

successfully collects the reward is given by the negative exponential function iD
e

  and the 186 

discounted value of the food reward is therefore iD

ieR


. Following this delay Di, we assume 187 

that the animal forages at some rate of gain γ for the remaining time T − Di. Thus its expected 188 

total reward by the final time T is 189 

  i
D

ii DTeRH i 
 

. (1) 190 

If the future gains do not depend on the current options the animal is facing, γT is common to 191 

all options and the best option maximises i

D

i DeR i 



. When facing a choice between 192 

several alternatives differing in the reward amount Ri and the delay Di, we can identify the 193 

best option graphically by plotting iD

ieR


 against Di, as shown in Fig. 2. 194 

The expression i

D

i DeR i 



 neatly captures the essential trade-off between the 195 

energetic gain from the chosen option and the cost of waiting for it. The term γDi is an 196 

opportunity cost (McNamara, 1982): it is the energetic gain that would have been achieved 197 

by seeking rewards elsewhere. Thus γ represents the opportunity cost per unit time. There are 198 

different possible interpretations of γ, depending on the situation we are modelling. If the 199 

animal faces a one-off choice, then γ is simply a ‘background’ rate of energetic gain that is 200 

independent of the options available in the choice situation; it is an externally imposed 201 

parameter. If, on the other hand, the animal faces the same choice situation repeatedly, then γ 202 

is the long-term rate of gain on the choice cycles and is determined by the rewards and delays 203 

of the options available (Kacelnik, 1997, 2003). The importance of this distinction will 204 

become clear in the detailed models presented below. 205 

In keeping with most empirical work on time discounting, we focus on choice decisions 206 

between two options, as illustrated in Fig. 1. One option (smaller–sooner, SS) offers a 207 
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relatively small reward RSS after a short delay DSS, while the other option (larger–later, LL) 208 

offers a larger reward RLL after a longer delay DLL. By definition, RLL > RSS and DLL > DSS. 209 

 210 

 211 

3. One-off choice 212 

 213 

The simplest situation is where the animal faces a one-off choice between SS and LL 214 

and then reverts to some background foraging rate γ. There are two basic cases we need to 215 

consider. 216 

 217 

3.1. Zero opportunity cost (γ = 0) 218 

If the background foraging rate is zero, the animal cannot gain energy through any 219 

other means outside the choice situation; its gains are restricted to the two options SS and LL. 220 

In this case there is no opportunity cost of waiting for a delayed reward, so γ = 0. Then the 221 

best option maximises iD

ieR


, which implies that choice should be based on standard 222 

exponential discounting. If collection is guaranteed (α = 0) then the animal should simply 223 

wait for the option with the bigger reward (LL), whereas a high risk of interruption favours 224 

the more immediate option (SS). In general (i.e. for any value of α), the animal should choose 225 

the SS option whenever LLSS

LLSS

DD
eReR

 
 , which after rearranging gives the condition 226 

 











SS

LL
LL ln

1

R

R
DD SS


. (2) 227 

The difference DLL − DSS is unchanged when a constant delay is added to both options, 228 

implying that there should be no preference reversal (Fig. 3a). There is also no effect of 229 

reward magnitude on choice provided the reward ratio RLL/RSS does not change. 230 

 231 
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3.2. Non-zero opportunity cost (γ > 0) 232 

When there is some background rate of gain γ > 0, this will influence the animal’s 233 

optimal decision. It should now maximise i

D

i DeR i 



, trading off the potential gains from 234 

the options available in the choice situation against the opportunity cost of not being able to 235 

forage at the background rate while it is waiting for a reward. For short delays, the animal 236 

should prefer the LL option if the reward RLL is sufficiently large. If the delays are increased, 237 

however, there comes a point at which the expected rate of gain from the current choice 238 

situation drops below the background rate of gain. When this happens, the animal should exit 239 

the choice situation as soon as possible, which is achieved by choosing the option with the 240 

shorter delay. So as a constant delay is added to both options, this model predicts a reversal 241 

of preference from the LL to the SS option (Fig. 3b). 242 

We can prove this mathematically. The animal should choose the SS option whenever 243 

LLLLSSSS
LLSS DeRDeR

DD  



, which after rearranging gives the condition 244 

 

 SSLL

SSLLSSLL

1 DD
eReRDD






 . (3) 245 

For relatively short delays and a sufficiently large value of RLL, this inequality will not be 246 

satisfied and so the animal should choose the LL option. Now consider the effect of adding a 247 

constant delay to both options. The difference DLL − DSS will not change whereas the right-248 

hand side will get smaller, tending to zero as the amount of delay added goes to infinity. As 249 

soon as the right-hand side is smaller than DLL − DSS, the inequality is satisfied and the 250 

animal should switch its preference to the SS option. 251 

In this choice situation there is also an effect of reward magnitude: for a given reward 252 

ratio RLL/RSS, larger rewards will be discounted less strongly than smaller rewards. 253 

 254 

 255 
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4. Repeated choice 256 

 257 

We now consider cases where the animal faces the same choice repeatedly. Once the 258 

delay for its chosen option has elapsed and the animal has collected its reward, the cycle 259 

begins anew with the same two options (SS and LL) available. This changes the economics of 260 

the situation because instead of a fixed background rate, γ now depends on the rewards and 261 

delays of the options chosen on the choice cycles (Kacelnik, 1997, 2003). 262 

To start with, we look at the general case in which the animal adopts behaviour pattern 263 

u over the repeated cycles of choice (u can represent any aspect of behaviour, but we avoid 264 

being specific about this here). Its rate of gain in this situation is the reward obtained per unit 265 

of time spent waiting, or R(u)/D(u). The behaviour u* that maximises this rate is found by 266 

differentiating R(u)/D(u) with respect to u and setting it equal to zero, which after some 267 

rearrangement gives 268 

 

       **** uDuRuDuR   (4) 269 

(where primes denote the first derivative with respect to u). If we denote the maximum 270 

possible rate of gain as γ* = R(u*)/D(u*) and substitute this into equation (4), we get 271 

     0***  uDuR  . (5) 272 

Note that this is equivalent to maximising    *** uDuR  , which has exactly the same 273 

form as the general model outlined in section 2 (for an alternative derivation, see McNamara, 274 

1982). Thus the optimal behaviour in a situation of repeated choice is just a special case of 275 

this general model. 276 

 277 

4.1. Infinite number of cycles 278 
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If the sequence of cycles continues indefinitely, γ is entirely determined by the options 279 

chosen. The long-term rate of gain from repeatedly choosing option i is i

D

i DeR i 
 , 280 

which when substituted into equation (1) gives an expected pay-off of 281 

 

T
D

eR
H

i

D

i
i

i

 . (6) 282 

The animal should choose whichever option maximises this pay-off, i.e. the option that gives 283 

the higher rate of gain i

D

i DeR i
. Thus when there is an infinite sequence of cycles, the 284 

animal should follow a strategy of rate maximisation. This predicts a preference reversal from 285 

the SS to the LL option as the delays for both options are increased by a fixed amount (Fig. 286 

4). Choice is unaffected by reward magnitude provided the reward ratio RLL/RSS does not 287 

change. 288 

 289 

4.2. Uncertain number of cycles 290 

Lastly, we consider what happens if there are repeated cycles of choice, but it is 291 

uncertain how long the sequence will continue. We now assume that interruptions, when they 292 

occur, terminate the entire sequence of cycles. This could represent the arrival of a predator, 293 

for example, or of a dominant competitor who displaces the focal animal from the foraging 294 

patch, forcing it to seek gains elsewhere (Houston et al., 1982; Kagel et al., 1986). Such 295 

events happen stochastically at an average rate λ and immediately afterwards the animal 296 

switches to some background rate of gain γ. 297 

Let the random variable Y denote the time elapsed before the sequence is terminated, 298 

and Ni denote the number of cycles completed in this period given that the animal repeatedly 299 

chooses option i. We can write the expected values of these variables as E(Y) and E(Ni), 300 

respectively. The animal gains reward amount Ri for each completed cycle and then forages 301 
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at the background gain rate γ for the remaining time T − E(Y) after the termination has 302 

occurred, so its expected pay-off Hi is 303 

     YTNRH iii EE   . (7) 304 

The expected time before the sequence is terminated is simply the reciprocal of the 305 

termination rate, that is E(Y) = 1/λ. For any given cycle of duration Di the chance that 306 

termination does not occur is iD
e

 , so the chance that the sequence is terminated after n 307 

cycles is     ii DnD

i eenN
 

 1P . If T is sufficiently large we can treat the possible 308 

values of Ni as an infinite sequence, which gives the expected number of completed cycles as 309 

    







0

1E
n

DnD

i
ii neeN


. (8) 310 

Since 1
 iD

e
 , the infinite series in this equation converges to  2

0

1 iii DD

n

Dn
eene

 





 , 311 

which leaves us with       1

11E


 iii DDD

i eeeN
 . Substituting the expressions for 312 

E(Y) and E(Ni) back into the pay-off equation (7), we get 313 

 

















1

1
T

e

R
H

iD

i
i . (9) 314 

Since γ(T − 1/λ) is common to all options, the animal should choose whichever option 315 

maximises  1iD

i eR


. So it should choose the SS option whenever 316 

 
1

1
LL

SS

LL

SS






D

D

e

e

R

R




. (10) 317 

This inequality is satisfied when the SS option gives an immediate reward (DSS = 0), since the 318 

right-hand side is zero. As both delays are increased by the same amount, however, the right-319 

hand side increases and eventually converges to a value of e−λk, where k = DLL − DSS. This 320 

implies that preference reversal will occur if the rewards and delays of the two options are 321 
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such that RSS/RLL < exp[−λ(DLL − DSS)], with preference switching to the LL option as both 322 

delays are increased. An example of this is shown in Fig. 5. 323 

Note that in this situation there is no effect of reward magnitude on choice provided the 324 

reward ratio RSS/RLL does not change. 325 

 326 

 327 

5. Preference reversals over time 328 

 329 

We have seen that an optimality approach can predict preference reversal when the 330 

delays associated with two options are increased by the same amount. Experimentally, this 331 

scenario corresponds to a comparison between two separate choice situations: in one, the 332 

animal is given a choice between two rewards after delays DSS and DLL (Fig. 1a); in the other, 333 

it is given a choice between the same two rewards after delays DSS + δ and DLL + δ (Fig. 1b). 334 

Preference reversal between these two situations has been documented by several studies 335 

(e.g. Ainslie and Herrnstein, 1981; Green et al., 1981; Green and Estle, 2003; Rachlin and 336 

Green, 1972), with animals preferring a smaller, sooner reward in the former case but a 337 

larger, later reward when the delays are extended to DSS + δ and DLL + δ. 338 

There is another form of preference reversal that we have not yet considered in detail. 339 

After making an initial choice between two options, an animal may have the opportunity to 340 

reverse its decision at a later time point, when the delays to both options have decreased (Fig. 341 

1c). Again the comparison is between a choice when the delays are DSS + δ and DLL + δ 342 

(initial choice) and a choice when the delays are DSS and DLL (later choice), but now we are 343 

dealing with a preference reversal within the same choice situation, as time runs forwards 344 

from t to t + δ. If the animal switches its choice at the later time point t + δ, it is not obvious 345 
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why it would not choose this option in the first place. Is it ever adaptive for an animal to 346 

reverse its choice in this way? 347 

A number of authors (e.g. Casari, 2009; Kalenscher and Pennartz, 2008; Kirby and 348 

Herrnstein, 1995; Sozou, 1998) have treated preference reversal over time as the reverse case 349 

of preference reversal when a constant delay is added to both options: instead of both delays 350 

being extended by the same amount, both delays are shortened by the same amount. But in 351 

fact these two cases are distinct, and the failure to distinguish between them can lead to 352 

misunderstandings. For example, Sozou’s (1998) model of hyperbolic discounting, in which 353 

individuals estimate the underlying hazard rate, predicts greater patience (increased 354 

preference for the LL option) when a fixed delay is added to both options, a pattern supported 355 

by empirical studies comparing two separate choice situations (e.g. Rachlin and Green, 356 

1972). Dasgupta and Maskin (2005) later used Sozou’s logic to predict what would happen 357 

when individuals estimate the underlying hazard rate within a single choice situation, and 358 

argued that it incorrectly predicts increasing patience as time runs forwards. However, to 359 

analyse this type of situation rigorously, an explicit account of the process is needed. Whether 360 

we should expect preference reversal over time depends on how the passage of time affects 361 

the economics of the choice situation. Specifically, the pattern of choice depends on the 362 

information the animal has about the continuing availability of the rewards. Dasgupta and 363 

Maskin (2005) alluded to this point, but they focused on a more complicated choice situation 364 

in which the delays to the two rewards are uncertain. Here we state the distinction in more 365 

general terms. There are two possible scenarios: 366 

Case 1: the passage of time changes the estimated probability of collecting a given 367 

reward. When making its initial choice between the SS option and the LL option, both of 368 

these options are available to the animal; but assuming a certain risk that its chosen option 369 

will be lost during the delay (DSS + δ or DLL + δ) it has to wait before it can collect the 370 
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reward, the reward value should be discounted accordingly. Now imagine that when time has 371 

run forwards to t + δ, both options are still available; neither has been lost during the 372 

preceding period. If the animal can update its assessment of the collection risk to take account 373 

of this fact, the economics of the choice situation have changed. The preceding period can be 374 

ignored and the animal should discount only over the remaining delay, DSS or DLL. This is the 375 

inverse of the situations considered earlier (where a constant delay was added to both 376 

options), and can therefore support preference reversal over time as the optimal behaviour 377 

under some conditions. In Fig. 6 we illustrate this for a one-off choice with a non-zero 378 

opportunity cost (Fig. 6a) and for an infinite sequence of repeated choices (Fig. 6b). 379 

Preference reversal occurs in opposite directions in these two situations, as was the case when 380 

a constant delay was added to both options (sections 3.2 and 4.1). Most empirical data 381 

support the pattern shown in Fig. 6b, in which the animal becomes increasingly impatient as 382 

time passes. 383 

Case 2: the passage of time has no effect on the estimated probability of collecting a 384 

given reward. Alternatively, the animal may not know at the later time point whether either 385 

of the options is still available. Although there is less time remaining before it can collect its 386 

chosen reward, it should also take into account the chance the reward was lost during the 387 

preceding period from t to t + δ. Thus it should still discount the rewards over the original 388 

delays DSS + δ and DLL + δ. No preference reversal is expected in this case: the animal faces 389 

exactly the same economic situation as before, so it should stick by its original decision. 390 

So, whether we expect an animal to show preference reversal over time depends 391 

critically on the information it has about the continuing availability of the options as time 392 

passes (Dasgupta and Maskin, 2005). Many previous studies have overlooked this key 393 

consideration or have otherwise conflated two distinct types of preference reversal. 394 

 395 
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 396 

6. Summary of predictions 397 

 398 

In Table 1 we summarise the main features of optimal behaviour in the various 399 

different choice situations we have considered. Starting from some relatively modest 400 

assumptions, our general model yields a surprisingly rich array of predictions. Preference 401 

reversals may occur whenever there is a non-zero opportunity cost, in other words whenever 402 

the animal loses opportunities to forage elsewhere while it is waiting for delayed rewards. 403 

However, the expected direction of preference reversal depends on whether the choice 404 

situation is a one-off or is repeated. When choice is repeated, optimal behaviour leads to the 405 

form of preference reversals documented in the empirical literature, with greater patience for 406 

more delayed rewards. However, under these same conditions we predict no effect of the 407 

reward ratio RLL/RSS. Conversely, in a one-off choice with a non-zero opportunity cost we 408 

predict lower rates of discounting for larger rewards, but preference reversals in the opposite 409 

direction to that typically seen in experiments. Thus, although our model successfully 410 

predicts isolated features of intertemporal choice behaviour, no single version of the model 411 

can account for all of the empirically observed patterns. To understand how animals evaluate 412 

delayed rewards, it seems that we need to take into account additional factors besides the 413 

ones we have focused on here, collection risk and opportunity cost. For example, we might 414 

incorporate certain constraints on decision making, such as discrimination biases (Stephens, 415 

2002; Stephens et al., 2004) or uncertain interruption rates (Sozou, 1998). At the same time, 416 

however, it is important to question whether animals are likely to be adapted to the 417 

intertemporal choice situations they encounter in the laboratory. In the next section we 418 

critically evaluate the ecological relevance of choice between delayed rewards. 419 

 420 
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 421 

7. Ecological relevance 422 

 423 

We have examined a series of simple choice scenarios in which a foraging animal is 424 

fully adapted to the rewards (Ri) and delays (Di) of alternative options, as well as to the 425 

frequency (α or λ) with which interruptions occur. This has been a useful exercise for 426 

identifying what choices the animal should make to maximise its long-term energy gain in 427 

these specific situations. But why would we expect animals to have evolved an ability to 428 

choose between rewards with different delays? What kinds of natural situations would entail 429 

such a choice, in which the animal has access to a given option but the reward cannot be 430 

harvested until a later point in time? Under what circumstances might patience be 431 

‘ecologically rational’ (Gigerenzer et al., 1999)? Several possibilities have been proposed. 432 

 433 

6.1. Fruit ripening (Dasgupta and Maskin, 2005; Stevens and Stephens, 2008) 434 

When a frugivore encounters unripe fruit, it is faced with a choice between eating it 435 

immediately or waiting until it has ripened, in which case the energetic reward it gains will be 436 

greater. If, as seems likely, the animal is free to forage elsewhere while it is waiting for the 437 

fruit to ripen, this situation might reasonably be modelled as a one-off choice with zero 438 

opportunity cost. Assuming a constant collection risk (e.g. a risk that competing frugivores 439 

consume the fruit in the meantime), this predicts standard exponential discounting. However, 440 

since fruit is likely to become increasingly attractive to foragers as it ripens, the collection 441 

risk actually rises as time passes and so the assumption of a constant α is invalid. In addition, 442 

the timescale of fruit ripening is far greater than the delays used in self-control experiments, 443 

which typically last a few seconds or minutes. It is not yet known how animals devalue food 444 

items that they cannot eat until days or weeks later. 445 
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 446 

6.2. Extractive foraging (Stevens and Stephens, 2008) 447 

Some foods (e.g. nuts, shellfish) have to be extracted from hard, inedible cases before 448 

they can be consumed. Although the handling time imposes a fixed delay to the reward, it is 449 

unclear how well this corresponds to the self-control paradigm studied experimentally. First, 450 

it is not obvious what the alternative, more immediate option is, unless the animal has a range 451 

of different food types it can exploit in the same habitat. Second, it seems likely that in most 452 

cases of extractive foraging the collection risk will be negligible. Finally, from a mechanistic 453 

rather than functional perspective, the animal may already gain some psychological 454 

reinforcement from handling a food item before it has extracted the food (Shettleworth and 455 

Jordan, 1986). 456 

 457 

6.3. Caching for the winter (Stevens and Stephens, 2008, 2009; Stevens, 2010) 458 

A variety of birds and mammals cache food for later use, and this has been interpreted 459 

as a preference for a delayed reward over immediate consumption. On closer inspection, 460 

however, this type of behaviour differs in important ways from the kind of situation studied 461 

in impulsiveness tests in the laboratory. When an animal faces a choice between caching a 462 

given food item or eating it now, it could be argued that the immediate and delayed options 463 

have the same reward magnitude, whereas in the self-control paradigm the delayed reward is 464 

bigger (generating a conflict between reward size and time cost). If anything, cached food 465 

will provide a smaller net energetic gain when it is eventually consumed, because of decay 466 

and the energetic cost of recovering it (e.g. digging it up). The fitness value of the food item 467 

may nevertheless be greater when it is recovered and eaten in midwinter than if it was eaten 468 

when found earlier in the year, because the background rate of gain from foraging has 469 

declined dramatically and the animal may be closer to starvation. But this situation is rather 470 
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different from the self-control paradigm, in which rewards are delayed by seconds or minutes 471 

and changes in the animal’s state can be disregarded. Instead, the decision to cache seems to 472 

be driven by other factors that are missing from the self-control set-up. Most probably, the 473 

animal has been selected to cache for the winter to guard against the risk of energetic shortfall 474 

during a predictable period of poor foraging success. At the same time, caching may allow it 475 

to use additional resources when it is already satiated, as suggested by the fact that caching 476 

typically occurs at a time when excess food is available (Smith and Reichman, 1984). 477 

 478 

6.4. Patch leaving (Stephens and Dunlap, 2009, 2011; Stephens et al., 2004; Stevens and 479 

Stephens, 2009; Stevens, 2010) 480 

Stephens and colleagues have framed the classic patch-leaving problem of behavioural 481 

ecology in terms of the self-control paradigm. In this view, the decision to remain in a given 482 

foraging patch and keep searching for additional food items represents choice for a more 483 

immediate reward, whereas leaving the patch and travelling to a new one represents choice 484 

for a delayed, but potentially larger, reward (Stephens et al., 2004). When the distribution of 485 

food is highly clustered there is a clear opportunity cost, since while travelling between 486 

patches the animal cannot continue to feed. However, as Stephens and Dunlap (2009) point 487 

out, the patch-leaving problem differs from the self-control problem in having a nested 488 

decision structure: choice of one option (‘stay’) requires the animal eventually to choose the 489 

other option (‘leave’) before the same choice is repeated. Interestingly, blue jays (Cyanocitta 490 

cristata) make better long-term decisions in the self-control situation (Stephens and Dunlap, 491 

2009). 492 

 493 

6.5. Sequential mate search (Stevens, 2010) 494 
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Discussions of intertemporal choice typically revolve around foraging decisions, but 495 

similar issues may apply in other domains. In a mate-choice context, a female’s decision to 496 

reject a low-quality male in the hope she will later find a superior mate could be viewed as 497 

choice for a larger, later reward. This is not exactly equivalent to the standard self-control 498 

paradigm, in particular because the delay to the later option and the size of the associated 499 

reward (the exact quality of the superior mate) are both uncertain, but there are some 500 

intriguing parallels. This kind of situation might also generate some interesting 501 

complications, such as changes in the degree of impulsiveness over time; for example, 502 

unpaired females are likely to become increasingly impatient as the end of the mating season 503 

approaches. An analogous effect has been noted for diving animals, which should become 504 

less selective in their foraging as they near the time at which they have to return to the surface 505 

for air (Houston and McNamara, 1985). 506 

 507 

In summary, despite some superficial similarities, there appear to be few—if any—biological 508 

situations that correspond directly to the self-control paradigm used in laboratory tests of 509 

impulsive behaviour. On this basis, we question whether it is reasonable to expect that natural 510 

selection has furnished animals with the decision rules for behaving rationally (i.e. in a way 511 

that maximises their gains) in these particular experimental set-ups (Houston, 2009; Houston 512 

et al., 2007; McNamara and Houston, 1980, 2009). Some of the apparently short-sighted 513 

behaviours observed in the laboratory may be the product of rules that work well in more 514 

naturalistic situations such as patch exploitation (Stephens 2002). Future work on the 515 

adaptive basis of impulsiveness should identify what kinds of rules perform well in 516 

ecologically relevant scenarios and use these rules to predict behavioural patterns in 517 

laboratory experiments like the self-control paradigm. The current trend for post hoc 518 

ecological explanations of why certain taxa exhibit higher or lower discounting rates in 519 
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laboratory experiments (e.g. Addessi et al., 2011; Cheng et al., 2002; Rosati et al., 2007; 520 

Stevens et al., 2005a,b) needs to be paired with a predictive, model-based approach to 521 

understanding animal behaviour. 522 

 523 

 524 

8. Key points 525 

 526 

We finish by summarising some key points from our analysis. 527 

1. Depending on the precise situation considered, optimality models of choice between 528 

delayed rewards can predict a range of different types of behaviour—including no 529 

preference reversal, preference reversal in either direction, lower discounting rates for 530 

bigger rewards or no effect of reward magnitude. Exponential discounting is expected only 531 

under certain circumstances. 532 

2. To predict how an animal should respond, we need to know more than just the rewards 533 

and delays of the available options. We also need to know what information is available to 534 

the animal and what it perceives about the current situation. Of critical importance is 535 

whether the animal has evolved to expect one-off choices, repeated choices or can adjust 536 

its behaviour flexibly depending on the persistence of the current situation. 537 

3. Preference reversals over time are not equivalent to preference reversals across separate 538 

choice situations. Whether preferences should reverse over time depends on the 539 

information the animal has about the continuing availability of the rewards. 540 

4. The structure of the self-control paradigm used in laboratory experiments does not fit most 541 

intertemporal choice situations in the natural environment. Expecting animals to behave 542 

rationally in self-control tests might therefore be unrealistic.  543 
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Table 1. Summary of optimal behaviour in a number of simple situations involving a choice 708 

between a smaller, sooner (SS) option offering a relatively small reward (RSS) after a short 709 

delay (DSS) and a larger, later option (LL) offering a larger reward (RLL) after a longer delay 710 

(DLL). While waiting for a delayed reward there is an opportunity cost γ per unit time, plus a 711 

risk either that random interruptions eliminate the chosen reward (average interruption rate α) 712 

or that they terminate the entire foraging sequence (average termination rate λ). 713 

 714 

Choice situation 

(n = number of cycles) 

Quantity 

maximised 

Preference reversal Large rewards 

discounted 

less/more/same? 
with added 

delay 

over time* 

One-off choice (n = 1)     

no opportunity cost iD

ieR


 none none same 

with opportunity cost 
i

D

i DeR i 



 LL → SS SS → LL less 

Repeated choice, uncertain n  1iD

i eR


 SS → LL LL → SS same 

Repeated choice, infinite n   i

D

i DeR i
 SS → LL LL → SS same 

 715 

* Assuming that the animal always knows that both options are still available. (In the absence of this 716 

information, no preference reversal is predicted.) 717 

  718 
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Fig. 1. A diagrammatic illustration of the self-control paradigm. Time runs from left to right, 719 

and the choices of a hypothetical animal are indicated by thick lines. (a) At the point 720 

indicated by the question mark, the animal chooses between a relatively small reward (RSS) 721 

delivered after a relatively short delay (DSS) and a larger reward (RLL) delivered after a longer 722 

delay (DLL). The animal is said to choose impulsively if it prefers the more immediate option 723 

(SS) even when the more delayed option (LL) offers a higher rate of gain. (b) Preference 724 

reversal across separate choice situations: in a similar choice situation in which the delays 725 

have been extended to DSS + δ and DLL + δ, the animal may instead prefer the more delayed 726 

option (LL). (c) Preference reversal over time: if the animal has the opportunity to alter its 727 

initial decision after time δ has elapsed, it may switch to the more immediate option (SS). 728 

 729 

Fig. 2. A graphical method for identifying the best option from a discrete set of alternatives 730 

(each represented by a circle) differing in their reward amount Ri and delay Di, where 731 

interruptions to foraging occur at rate α and the opportunity cost per unit time of waiting for 732 

delayed rewards is γ. When there is no opportunity cost (γ = 0), the best option maximises the 733 

expected energetic gain iD

ieR


. Lines of constant fitness (dashed line) are horizontal and the 734 

best option (labelled A) is the one that reaches the highest point along the vertical axis. When 735 

there is a non-zero opportunity cost (γ > 0), the total opportunity cost iD  increases with the 736 

time spent waiting, so lines of constant fitness (dotted line) slope upwards with increasing 737 

delay (since a greater expected energetic gain is needed to compensate for a longer delay). 738 

The best option (labelled B) maximises the expected energetic gain minus the total 739 

opportunity cost iD . 740 

 741 

Fig. 3. Change in the expected pay-offs from choosing a smaller–sooner (SS) reward (grey) 742 

or a larger–later (LL) reward (black) in a one-off choice situation, when an extra delay is 743 
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added to both options. The rewards offered are RSS = 1 for the SS option and RLL = 11 for the 744 

LL option, after delays of DSS = 1 and DLL = 10 plus the added delay. The dashed line 745 

indicates that the LL reward is devalued even when there is no added delay, since DLL > DSS. 746 

The rate of interruptions is α = 0.1 per unit time and the total time available is T = 500. (a) 747 

When there is no opportunity cost of waiting for a reward (γ = 0), preference reversal does 748 

not occur. (b) When there is an opportunity cost of waiting for a reward (γ = 0.1 per unit 749 

time), preference reversal can occur, with the optimal choice switching from LL to SS as the 750 

added delay increases. 751 

 752 

Fig. 4. Change in the expected pay-offs from choosing a smaller–sooner (SS) reward (grey) 753 

or a larger–later (LL) reward (black) in continually repeated cycles of the same choice 754 

situation, when an extra delay is added to both options. The rewards offered are RSS = 1 for 755 

the SS option and RLL = 11 for the LL option, after delays of DSS = 1 and DLL = 10 plus the 756 

added delay. The dashed line indicates that the LL reward is devalued even when there is no 757 

added delay, since DLL > DSS. The rate of interruptions is α = 0.1 per unit time and the total 758 

time available is T = 500. Preference reversal can occur, with the optimal choice switching 759 

from SS to LL as the added delay increases. 760 

 761 

Fig. 5. Change in the expected pay-offs from choosing a smaller–sooner (SS) reward (grey) 762 

or a larger–later (LL) reward (black) in an uncertain number of cycles of the same choice 763 

situation, when an extra delay is added to both options. The rewards offered are RSS = 1 for 764 

the SS option and RLL = 11 for the LL option, after delays of DSS = 1 and DLL = 10 plus the 765 

added delay. The dashed line indicates that the LL reward is devalued even when there is no 766 

added delay, since DLL > DSS. The rate at which random events terminate the entire choice 767 
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sequence is λ = 0.1 per unit time and the total time available is T = 500. Preference reversal 768 

can occur, with the optimal choice switching from SS to LL as the added delay increases. 769 

 770 

Fig. 6. The expected pay-offs from choosing a smaller–sooner (SS) reward (grey) or a larger–771 

later (LL) reward (black) in a reversible choice situation, in which the animal has the 772 

opportunity to switch to a previously rejected option before the associated delay expires and 773 

the reward can be collected (indicated by the dashed lines). The rewards offered are RSS = 1 774 

for the SS option and RLL = 11 for the LL option, after initial delays of DSS = 36 and DLL = 775 

45. The rate of interruptions is α = 0.1 per unit time and the total time available is T = 500. As 776 

time passes, the remaining delays for both options decrease. This can cause preference 777 

reversal if the animal has information that both rewards are still available. (a) In a one-off 778 

choice situation with an opportunity cost of waiting for a reward (γ = 0.1 per unit time), the 779 

best option changes from SS to LL as time passes. This is the reverse case of Fig. 3b. (b) 780 

When the choice situation is continually repeated, the best option changes from LL to SS as 781 

time passes. This is the reverse case of Fig. 4. Note that when the time to collection falls to 782 

zero, the expected pay-off (dashed lines) is infinite. 783 

  784 
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Fig. 1 785 
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Fig. 2 796 
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Fig. 3 799 
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Fig. 4 807 
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Fig. 5 810 
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Fig. 6 812 
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