When is it adaptive to be patient? A general

framework for evaluating delayed rewards

Tim W. Fawcett ${ }^{\text {a }, *}$, John M. McNamara ${ }^{\text {b }}$, Alasdair I. Houston ${ }^{\text {a }}$

${ }^{\text {a }}$ School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK (tim.fawcett@cantab.net, a.i.houston@bris.ac.uk)
${ }^{\mathrm{b}}$ School of Mathematics, University of Bristol, University Walk, Bristol BS8 ITW, UK (john.menamara@bris.ac.uk)
*Corresponding author. Tel.: +44 1179287478 ; fax: +44 1173317985 .
E-mail address: tim.fawcett@cantab.net.

The tendency of animals to seek instant gratification instead of waiting for greater long-term benefits has been described as impatient, impulsive or lacking in self-control. How can we explain the evolution of such seemingly irrational behaviour? Here we analyse optimal behaviour in a variety of simple choice situations involving delayed rewards. We show that preferences for more immediate rewards should depend on a variety of factors, including whether the choice is a one-off or is likely to be repeated, the information the animal has about the continuing availability of the rewards and the opportunity to gain rewards through alternative activities. In contrast to the common assertion that rational animals should devalue delayed rewards exponentially, we find that this pattern of discounting is optimal only under restricted circumstances. We predict preference reversal whenever waiting for delayed rewards entails loss of opportunities elsewhere, but the direction of this reversal depends on whether the animal will face the same choice repeatedly. Finally, we question the ecological relevance of standard laboratory tests for impulsive behaviour, arguing that animals rarely face situations analogous to the self-control paradigm in their natural environment. To understand the evolution of impulsiveness, a more promising strategy would be to identify decision rules that are adaptive in a realistic ecological setting, and examine how these rules determine patterns of behaviour in simultaneous choice tests.

Keywords: delay discounting; ecological rationality; impulsiveness; intertemporal choice; optimal foraging; self-control

1. Introduction

The way in which animals, including humans, value rewards that occur in the future is of interest to a broad range of disciplines including economics (Frederick et al., 2002), psychology (Mazur, 2007a,b), pharmacology (Bickel and Marsch, 2001; Reynolds, 2006), neuroscience (Berns et al., 2007; Kalenscher and Pennartz, 2008; Roesch et al., 2007) and behavioural ecology (Freidin et al., 2009; Kagel et al., 1986; Kacelnik, 1997, 2003; Stephens, 2002; Stephens and Dunlap, 2009, 2011; Stevens and Mühlhoff, in press; Stevens et al., 2005a). Frequently, studies find that animals reject delayed rewards in favour of more immediate gratification, even when they would gain greater long-term benefits by waiting (Ainslie, 1974; Bateson and Kacelnik, 1996; Henly et al., 2008; Mazur, 1987; McDiarmid and Rilling, 1965; Rachlin and Green, 1972; Stephens and Anderson, 2001). Such behaviour has been described as impatient (Kacelnik, 2003), impulsive (Henly et al., 2008), shortsighted (Stephens and Anderson, 2001) or lacking in self-control (Mazur and Logue, 1978). Why is it that animals behave in this way?

Models of behaviour can be categorised as descriptive or normative (Kacelnik, 1997). Descriptive models summarise what animals do whereas normative models specify what they ought to do (Houston et al., 2007; Shapiro et al., 2008). In the context of how animals evaluate delayed rewards, descriptive models focus on the quantitative details of preferences measured in the laboratory and seek a mechanistic explanation for the precise patterns we observe (e.g. Mazur, 2006). Typically, these models do not attempt to explain why particular discounting mechanisms have evolved. Normative models, in contrast, adopt a functional perspective and try to understand the evolutionary basis of decision making, asking how natural selection will shape preferences under natural conditions (e.g. Stephens et al., 2004). In these models the mechanistic underpinnings of the evolved preferences are usually not
considered. The two approaches are clearly closely related, because animals tested in the laboratory are using rules that were shaped in their ancestral environment; but it does not follow that all aspects of laboratory behaviour will be optimal (Houston and McNamara, 1989, 1999; McNamara, 1996; McNamara and Houston, 1980).

Our aim in this article is to present a simple and general framework for understanding how natural selection shapes the evaluation of delayed rewards. Thus, our emphasis is on the functional (normative) approach. We wish to shed light on the following problem: when faced with a choice between options with differing delays, what should an optimal decision maker do? What is the precise pattern of discounting it should use to devalue delayed rewards?

1.1. Costs of being patient

There are two main reasons why it might be costly, in fitness terms, to wait for a delayed reward. First, there is a risk that the anticipated reward may become unavailable before it can be collected (collection risk; Houston et al., 1982). In this context, Stephens (2002) distinguishes between an interruption risk-the chance of losing the next food item, for example because a conspecific competitor eats it first-and a termination risk-the chance that an entire sequence of foraging is cut short, for example because of the sudden appearance of a predator. Second, even if collection is guaranteed, there may be lost opportunities associated with the time spent waiting (opportunity cost; Stephens, 2002): assuming the animal cannot perform other activities while it is waiting, it forgoes the opportunity to gain rewards by other means (McNamara, 1982). As we will see below, both the collection risk and the opportunity cost can strongly influence optimal behaviour.

1.2. Empirical facts to explain

To give a satisfying explanation of preferences for delayed rewards, there are some key empirical results that functional models need to account for: hyperbolic discounting, preference reversal and effects of reward magnitude.

1.2.1. Hyperbolic discounting

If delayed rewards are discounted at a constant rate per unit of time spent waiting, their perceived value decays according to an exponential function. For example, if an immediate reward loses half of its value when it is delayed by 5 minutes, one delayed by 10 minutes should be half as valuable again (i.e. its value should drop to one quarter of its immediate value). It is generally agreed that an exponential pattern of discounting should result when interruptions occur randomly over time (Dasgupta and Maskin, 2005; Green and Myerson, 1996; Stevens, 2010). However, empirical data suggest that discounting is not exponential but hyperbolic, the discounting rate gradually falling with added delay (Ainslie, 1974; Mazur, 1987, 2006). This implies that additional delays do not have much effect on reward valuation if the delays are already long, in contrast to exponential discounting in which the discount rate does not change.

1.2.2. Preference reversal

In the classic 'self-control' paradigm (Mazur and Logue, 1978; Fig. 1a), in which an animal is given a choice between a small reward delivered after a short delay (SS) and a larger reward after a long delay (LL), it typically shows an impulsive preference for the former option (Ainslie, 1974; Bateson and Kacelnik, 1996; Henly et al., 2008; Mazur, 1987; McDiarmid and Rilling, 1965; Rachlin and Green, 1972; Stephens and Anderson, 2001). Increasing both delays by the same amount, however, can sometimes induce a switch to the more delayed option. This preference reversal has been reported in pigeons (Ainslie and

Herrnstein, 1981; Green et al., 1981; Rachlin and Green, 1972), rats (Green and Estle, 2003) and humans, the latter for both hypothetical (Green et al., 1994) and actual (Kirby and Herrnstein, 1995) amounts of money. Exponential discounting does not predict preference reversal, whereas hyperbolic discounting can (Kalenscher and Pennartz, 2008).

There are two possible forms of preference reversal that are regularly discussed in the literature, but often not clearly distinguished. The first form occurs across two different choice situations, involving the same reward magnitudes but with an added delay in one situation; the animal prefers the more immediate option when the delays are short (Fig. 1a) and the more delayed option when they are extended (Fig. 1b). The other occurs within the same choice situation, as time runs forwards: having initially chosen the later reward, the animal may switch its preference to the sooner reward as its collection point approaches (Fig. 1c). These forms are often treated equivalently (e.g. Casari, 2009; Kalenscher and Pennartz, 2008; Kirby and Herrnstein, 1995; Sozou, 1998) but, as we shall see below, whether it is valid to do so depends on what we assume about the information that is available to the animal.

1.2.3. Effect of reward magnitude

Several accounts of choice assume that delayed options have a value given by $R / f(D)$, where R is the reward and $f(D)$ is some positive increasing function of delay D. Such accounts predict that choice will be unaffected when the magnitude of the rewards is changed, provided their ratio $\left(R_{1} / R_{2}\right)$ is kept constant. However, humans discount delayed rewards less strongly when they are choosing between larger amounts of money (Green et al., 1997, 1999; Myerson and Green, 1995). Similarly, capuchin monkeys (Cebus apella) tested in two separate self-control studies (Addessi et al., 2011; Amici et al., 2008) were significantly more tolerant for delay when the rewards were larger (2 vs. 6 food items, as
opposed to 1 vs. 3; for discussion, see Addessi et al., 2011). Rats show a lower rate of discounting for less concentrated sucrose solutions, which they prefer (Farrar et al., 2003), but a higher rate of discounting for larger amounts of food (Wogar et al., 1992). Green et al. (2004) found no effect of reward magnitude in pigeons and rats.

1.3. Seeking an adaptive explanation

There have been several previous attempts to explain impulsiveness and the evolution of hyperbolic discounting. Kagel et al. (1986) proposed that if animals are uncertain of the rate of interruptions ('hazard' rate) and have to estimate this, they should gradually lower their estimate as time passes while they are waiting for a reward. If a long time has elapsed and an interruption has still not occurred, this indicates that the underlying hazard rate is likely to be low and an animal should therefore be more willing to wait even longer for a reward. Sozou (1998) developed this idea into a formal model and showed that estimation of a constant but unknown hazard rate could produce hyperbolic discounting.

Stephens and colleagues (Stephens, 2002; Stephens et al., 2004) put forward an alternative explanation for impulsive choice, based on constraints on discrimination. Assuming that animals can detect a difference between two delays more easily when the delays are short than when they are long (an example of Weber's Law; Gibbon, 1977), decisions might be more accurate when made on the basis of short-term consequences. This increased accuracy might favour a general tendency to evaluate options in terms of short-term gains. An alternative approach argues that a hyperbolic decay function can be explained by assuming that discounting is based on subjective time perception (Takahashi, 2005; Zauberman et al., 2009).

While interesting and potentially important, these ideas rely on additional factorsuncertainty over the interruption rate, or biases in discrimination-to explain impulsiveness,
on top of the basic economic considerations of energy (benefit) and time (cost). Here we take a more fundamental approach. We seek to identify optimal decisions in a variety of simple choice situations in which the available options differ only in the size of the reward and the delay till that reward can be collected. The focal animal knows (i.e. is adapted to) the interruption rate and can discriminate between the options accurately. Under these conditions, it has repeatedly been claimed that a rational animal should discount delayed rewards exponentially (e.g. Bickel and Marsch, 2001; Kalenscher and Pennartz, 2008; Kirby and Herrnstein, 1995). We show that this view is unfounded. Optimal choice between delayed rewards can cover a variety of different patterns of discounting, depending on whether a given choice is likely to be repeated (Kacelnik, 1997, 2003; Stephens, 2002) and what alternative options the animal may have for gaining energy outside the current choice situation. Our aim is not to develop one definitive model of choice that accounts for all the empirical observations mentioned above, but to construct a general framework for investigating these kinds of problems and expose the logic of evaluating delayed rewards.

2. A general model of choice between delayed rewards

We consider an animal facing a choice between different foraging options, each of which offers a reward after some delay. Our overarching assumption is that natural selection acts on the total reward obtained by some final time T (Houston and McNamara 1999; McNamara and Houston, 1986, 1987). For a given option i the net energetic gain from the reward is R_{i}, but this is only collected after a delay D_{i}. Given that it has to wait for the reward, there is a risk that the animal may lose it before it can be collected (e.g. because a competitor consumes it first or a predator interrupts the foraging bout). If we assume a
constant interruption rate α during a delay of duration D_{i}, then the chance that the animal successfully collects the reward is given by the negative exponential function $e^{-\alpha D_{i}}$ and the discounted value of the food reward is therefore $R_{i} e^{-\alpha D_{i}}$. Following this delay D_{i}, we assume that the animal forages at some rate of gain γ for the remaining time $T-D_{i}$. Thus its expected total reward by the final time T is

$$
\begin{equation*}
H_{i}=R_{i} e^{-\alpha D_{i}}+\gamma\left(T-D_{i}\right) \tag{1}
\end{equation*}
$$

If the future gains do not depend on the current options the animal is facing, γT is common to all options and the best option maximises $R_{i} e^{-\alpha D_{i}}-\gamma D_{i}$. When facing a choice between several alternatives differing in the reward amount R_{i} and the delay D_{i}, we can identify the best option graphically by plotting $R_{i} e^{-\alpha D_{i}}$ against D_{i}, as shown in Fig. 2.

The expression $R_{i} e^{-\alpha D_{i}}-\gamma D_{i}$ neatly captures the essential trade-off between the energetic gain from the chosen option and the cost of waiting for it. The term γD_{i} is an opportunity cost (McNamara, 1982): it is the energetic gain that would have been achieved by seeking rewards elsewhere. Thus γ represents the opportunity cost per unit time. There are different possible interpretations of γ, depending on the situation we are modelling. If the animal faces a one-off choice, then γ is simply a 'background' rate of energetic gain that is independent of the options available in the choice situation; it is an externally imposed parameter. If, on the other hand, the animal faces the same choice situation repeatedly, then γ is the long-term rate of gain on the choice cycles and is determined by the rewards and delays of the options available (Kacelnik, 1997, 2003). The importance of this distinction will become clear in the detailed models presented below.

In keeping with most empirical work on time discounting, we focus on choice decisions between two options, as illustrated in Fig. 1. One option (smaller-sooner, SS) offers a
relatively small reward $R_{\text {SS }}$ after a short delay D_{SS}, while the other option (larger-later, LL) offers a larger reward R_{LL} after a longer delay D_{LL}. By definition, $R_{\mathrm{LL}}>R_{\mathrm{SS}}$ and $D_{\mathrm{LL}}>D_{\mathrm{SS}}$.

3. One-off choice

The simplest situation is where the animal faces a one-off choice between SS and LL and then reverts to some background foraging rate γ. There are two basic cases we need to consider.

3.1. Zero opportunity $\operatorname{cost}(\gamma=0)$

If the background foraging rate is zero, the animal cannot gain energy through any other means outside the choice situation; its gains are restricted to the two options SS and LL. In this case there is no opportunity cost of waiting for a delayed reward, so $\gamma=0$. Then the best option maximises $R_{i} e^{-\alpha D_{i}}$, which implies that choice should be based on standard exponential discounting. If collection is guaranteed $(\alpha=0)$ then the animal should simply wait for the option with the bigger reward (LL), whereas a high risk of interruption favours the more immediate option (SS). In general (i.e. for any value of α), the animal should choose the SS option whenever $R_{\mathrm{SS}} e^{-\alpha D_{\mathrm{SS}}}>R_{\mathrm{LL}} e^{-\alpha D_{\mathrm{L}}}$, which after rearranging gives the condition

$$
\begin{equation*}
D_{\mathrm{LL}}-D_{S S}>\frac{1}{\alpha} \ln \left(\frac{R_{\mathrm{LL}}}{R_{\mathrm{SS}}}\right) \tag{2}
\end{equation*}
$$

The difference $D_{\mathrm{LL}}-D_{\mathrm{SS}}$ is unchanged when a constant delay is added to both options, implying that there should be no preference reversal (Fig. 3a). There is also no effect of reward magnitude on choice provided the reward ratio $R_{\mathrm{L}} / R_{\mathrm{SS}}$ does not change.

3.2. Non-zero opportunity $\operatorname{cost}(\gamma>0)$

When there is some background rate of gain $\gamma>0$, this will influence the animal's optimal decision. It should now maximise $R_{i} e^{-\alpha D_{i}}-\gamma D_{i}$, trading off the potential gains from the options available in the choice situation against the opportunity cost of not being able to forage at the background rate while it is waiting for a reward. For short delays, the animal should prefer the LL option if the reward R_{LL} is sufficiently large. If the delays are increased, however, there comes a point at which the expected rate of gain from the current choice situation drops below the background rate of gain. When this happens, the animal should exit the choice situation as soon as possible, which is achieved by choosing the option with the shorter delay. So as a constant delay is added to both options, this model predicts a reversal of preference from the LL to the SS option (Fig. 3b).

We can prove this mathematically. The animal should choose the SS option whenever $R_{\mathrm{SS}} e^{-\alpha D_{\mathrm{SS}}}-\gamma D_{\mathrm{SS}}>R_{\mathrm{LL}} e^{-\alpha D_{\mathrm{L}}}-\gamma D_{\mathrm{LL}}$, which after rearranging gives the condition

$$
\begin{equation*}
D_{\mathrm{LL}}-D_{\mathrm{SS}}>\frac{1}{\gamma}\left(R_{\mathrm{LL}} e^{-\alpha D_{\mathrm{LL}}}-R_{\mathrm{SS}} e^{-\alpha D_{\mathrm{SS}}}\right) . \tag{3}
\end{equation*}
$$

For relatively short delays and a sufficiently large value of R_{LL}, this inequality will not be satisfied and so the animal should choose the LL option. Now consider the effect of adding a constant delay to both options. The difference $D_{\mathrm{LL}}-D_{\text {SS }}$ will not change whereas the righthand side will get smaller, tending to zero as the amount of delay added goes to infinity. As soon as the right-hand side is smaller than $D_{\mathrm{LL}}-D_{\mathrm{SS}}$, the inequality is satisfied and the animal should switch its preference to the SS option.

In this choice situation there is also an effect of reward magnitude: for a given reward ratio $R_{\mathrm{LL}} / R_{\mathrm{SS}}$, larger rewards will be discounted less strongly than smaller rewards.

4. Repeated choice

We now consider cases where the animal faces the same choice repeatedly. Once the delay for its chosen option has elapsed and the animal has collected its reward, the cycle begins anew with the same two options (SS and LL) available. This changes the economics of the situation because instead of a fixed background rate, γ now depends on the rewards and delays of the options chosen on the choice cycles (Kacelnik, 1997, 2003).

To start with, we look at the general case in which the animal adopts behaviour pattern u over the repeated cycles of choice (u can represent any aspect of behaviour, but we avoid being specific about this here). Its rate of gain in this situation is the reward obtained per unit of time spent waiting, or $R(u) / D(u)$. The behaviour u^{*} that maximises this rate is found by differentiating $R(u) / D(u)$ with respect to u and setting it equal to zero, which after some rearrangement gives

$$
\begin{equation*}
R^{\prime}\left(u^{*}\right) \cdot D\left(u^{*}\right)=R\left(u^{*}\right) \cdot D^{\prime}\left(u^{*}\right) \tag{4}
\end{equation*}
$$

(where primes denote the first derivative with respect to u). If we denote the maximum possible rate of gain as $\gamma^{*}=R\left(u^{*}\right) / D\left(u^{*}\right)$ and substitute this into equation (4), we get

$$
\begin{equation*}
R^{\prime}\left(u^{*}\right)-\gamma^{*} D^{\prime}\left(u^{*}\right)=0 \tag{5}
\end{equation*}
$$

Note that this is equivalent to maximising $R\left(u^{*}\right)-\gamma^{*} D\left(u^{*}\right)$, which has exactly the same form as the general model outlined in section 2 (for an alternative derivation, see McNamara, 1982). Thus the optimal behaviour in a situation of repeated choice is just a special case of this general model.

4.1. Infinite number of cycles

If the sequence of cycles continues indefinitely, γ is entirely determined by the options chosen. The long-term rate of gain from repeatedly choosing option i is $\gamma=R_{i} e^{-\alpha D_{i}} / D_{i}$, which when substituted into equation (1) gives an expected pay-off of

$$
\begin{equation*}
H_{i}=\frac{R_{i} e^{-\alpha D_{i}}}{D_{i}} T \tag{6}
\end{equation*}
$$

The animal should choose whichever option maximises this pay-off, i.e. the option that gives the higher rate of gain $R_{i} e^{-\alpha D_{i}} / D_{i}$. Thus when there is an infinite sequence of cycles, the animal should follow a strategy of rate maximisation. This predicts a preference reversal from the SS to the LL option as the delays for both options are increased by a fixed amount (Fig. 4). Choice is unaffected by reward magnitude provided the reward ratio $R_{\mathrm{LJ}} / R_{\mathrm{SS}}$ does not change.

4.2. Uncertain number of cycles

Lastly, we consider what happens if there are repeated cycles of choice, but it is uncertain how long the sequence will continue. We now assume that interruptions, when they occur, terminate the entire sequence of cycles. This could represent the arrival of a predator, for example, or of a dominant competitor who displaces the focal animal from the foraging patch, forcing it to seek gains elsewhere (Houston et al., 1982; Kagel et al., 1986). Such events happen stochastically at an average rate λ and immediately afterwards the animal switches to some background rate of gain γ.

Let the random variable Y denote the time elapsed before the sequence is terminated, and N_{i} denote the number of cycles completed in this period given that the animal repeatedly chooses option i. We can write the expected values of these variables as $\mathrm{E}(Y)$ and $\mathrm{E}\left(N_{i}\right)$, respectively. The animal gains reward amount R_{i} for each completed cycle and then forages
at the background gain rate γ for the remaining time $T-\mathrm{E}(Y)$ after the termination has occurred, so its expected pay-off H_{i} is

$$
\begin{equation*}
H_{i}=R_{i} \cdot \mathrm{E}\left(N_{i}\right)+\gamma(T-\mathrm{E}(Y)) \tag{7}
\end{equation*}
$$

The expected time before the sequence is terminated is simply the reciprocal of the termination rate, that is $\mathrm{E}(Y)=1 / \lambda$. For any given cycle of duration D_{i} the chance that termination does not occur is $e^{-\lambda D_{i}}$, so the chance that the sequence is terminated after n cycles is $\mathrm{P}\left(N_{i}=n\right)=\left(1-e^{-\lambda D_{i}}\right) \cdot e^{-n \lambda D_{i}}$. If T is sufficiently large we can treat the possible values of N_{i} as an infinite sequence, which gives the expected number of completed cycles as

$$
\begin{equation*}
\mathrm{E}\left(N_{i}\right)=\left(1-e^{-\lambda D_{i}}\right) \sum_{n=0}^{\infty} n e^{-n \lambda D_{i}} . \tag{8}
\end{equation*}
$$

Since $e^{-\lambda D_{i}}<1$, the infinite series in this equation converges to $\sum_{n=0}^{\infty} n e^{-n \lambda D_{i}}=e^{-\lambda D_{i}} /\left(1-e^{-\lambda D_{i}}\right)^{2}$, which leaves us with $\mathrm{E}\left(N_{i}\right)=e^{-\lambda D_{i}} /\left(1-e^{-\lambda D_{i}}\right)=\left(e^{\lambda D_{i}}-1\right)^{-1}$. Substituting the expressions for $\mathrm{E}(Y)$ and $\mathrm{E}\left(N_{i}\right)$ back into the pay-off equation (7), we get

$$
\begin{equation*}
H_{i}=\frac{R_{i}}{e^{2 D_{i}}-1}+\gamma\left(T-\frac{1}{\lambda}\right) . \tag{9}
\end{equation*}
$$

Since $\gamma(T-1 / \lambda)$ is common to all options, the animal should choose whichever option maximises $R_{i} /\left(e^{\lambda D_{i}}-1\right)$. So it should choose the SS option whenever

$$
\begin{equation*}
\frac{R_{\mathrm{SS}}}{R_{\mathrm{LL}}}>\frac{e^{\lambda D_{\mathrm{SS}}}-1}{e^{\lambda D_{\mathrm{L}}}-1} \tag{10}
\end{equation*}
$$

This inequality is satisfied when the SS option gives an immediate reward ($D_{\mathrm{SS}}=0$), since the right-hand side is zero. As both delays are increased by the same amount, however, the righthand side increases and eventually converges to a value of $e^{-\lambda k}$, where $k=D_{\mathrm{LL}}-D_{\mathrm{SS}}$. This implies that preference reversal will occur if the rewards and delays of the two options are
such that $R_{\mathrm{SS}} / R_{\mathrm{LL}}<\exp \left[-\lambda\left(D_{\mathrm{LL}}-D_{\mathrm{SS}}\right)\right]$, with preference switching to the LL option as both delays are increased. An example of this is shown in Fig. 5.

Note that in this situation there is no effect of reward magnitude on choice provided the reward ratio $R_{\mathrm{SS}} / R_{\mathrm{LL}}$ does not change.

5. Preference reversals over time

We have seen that an optimality approach can predict preference reversal when the delays associated with two options are increased by the same amount. Experimentally, this scenario corresponds to a comparison between two separate choice situations: in one, the animal is given a choice between two rewards after delays D_{SS} and D_{LL} (Fig. 1a); in the other, it is given a choice between the same two rewards after delays $D_{\mathrm{SS}}+\delta$ and $D_{\mathrm{LL}}+\delta$ (Fig. 1b). Preference reversal between these two situations has been documented by several studies (e.g. Ainslie and Herrnstein, 1981; Green et al., 1981; Green and Estle, 2003; Rachlin and Green, 1972), with animals preferring a smaller, sooner reward in the former case but a larger, later reward when the delays are extended to $D_{\mathrm{SS}}+\delta$ and $D_{\mathrm{LL}}+\delta$.

There is another form of preference reversal that we have not yet considered in detail. After making an initial choice between two options, an animal may have the opportunity to reverse its decision at a later time point, when the delays to both options have decreased (Fig. 1c). Again the comparison is between a choice when the delays are $D_{\mathrm{SS}}+\delta$ and $D_{\mathrm{LL}}+\delta$ (initial choice) and a choice when the delays are D_{SS} and D_{LL} (later choice), but now we are dealing with a preference reversal within the same choice situation, as time runs forwards from t to $t+\delta$. If the animal switches its choice at the later time point $t+\delta$, it is not obvious
why it would not choose this option in the first place. Is it ever adaptive for an animal to reverse its choice in this way?

A number of authors (e.g. Casari, 2009; Kalenscher and Pennartz, 2008; Kirby and Herrnstein, 1995; Sozou, 1998) have treated preference reversal over time as the reverse case of preference reversal when a constant delay is added to both options: instead of both delays being extended by the same amount, both delays are shortened by the same amount. But in fact these two cases are distinct, and the failure to distinguish between them can lead to misunderstandings. For example, Sozou's (1998) model of hyperbolic discounting, in which individuals estimate the underlying hazard rate, predicts greater patience (increased preference for the LL option) when a fixed delay is added to both options, a pattern supported by empirical studies comparing two separate choice situations (e.g. Rachlin and Green, 1972). Dasgupta and Maskin (2005) later used Sozou's logic to predict what would happen when individuals estimate the underlying hazard rate within a single choice situation, and argued that it incorrectly predicts increasing patience as time runs forwards. However, to analyse this type of situation rigorously, an explicit account of the process is needed. Whether we should expect preference reversal over time depends on how the passage of time affects the economics of the choice situation. Specifically, the pattern of choice depends on the information the animal has about the continuing availability of the rewards. Dasgupta and Maskin (2005) alluded to this point, but they focused on a more complicated choice situation in which the delays to the two rewards are uncertain. Here we state the distinction in more general terms. There are two possible scenarios:

Case 1: the passage of time changes the estimated probability of collecting a given reward. When making its initial choice between the SS option and the LL option, both of these options are available to the animal; but assuming a certain risk that its chosen option will be lost during the delay $\left(D_{\mathrm{SS}}+\delta\right.$ or $\left.D_{\mathrm{LL}}+\delta\right)$ it has to wait before it can collect the
reward, the reward value should be discounted accordingly. Now imagine that when time has run forwards to $t+\delta$, both options are still available; neither has been lost during the preceding period. If the animal can update its assessment of the collection risk to take account of this fact, the economics of the choice situation have changed. The preceding period can be ignored and the animal should discount only over the remaining delay, D_{SS} or D_{LL}. This is the inverse of the situations considered earlier (where a constant delay was added to both options), and can therefore support preference reversal over time as the optimal behaviour under some conditions. In Fig. 6 we illustrate this for a one-off choice with a non-zero opportunity cost (Fig. 6a) and for an infinite sequence of repeated choices (Fig. 6b). Preference reversal occurs in opposite directions in these two situations, as was the case when a constant delay was added to both options (sections 3.2 and 4.1). Most empirical data support the pattern shown in Fig. 6b, in which the animal becomes increasingly impatient as time passes.

Case 2: the passage of time has no effect on the estimated probability of collecting a given reward. Alternatively, the animal may not know at the later time point whether either of the options is still available. Although there is less time remaining before it can collect its chosen reward, it should also take into account the chance the reward was lost during the preceding period from t to $t+\delta$. Thus it should still discount the rewards over the original delays $D_{\mathrm{SS}}+\delta$ and $D_{\mathrm{LL}}+\delta$. No preference reversal is expected in this case: the animal faces exactly the same economic situation as before, so it should stick by its original decision.

So, whether we expect an animal to show preference reversal over time depends critically on the information it has about the continuing availability of the options as time passes (Dasgupta and Maskin, 2005). Many previous studies have overlooked this key consideration or have otherwise conflated two distinct types of preference reversal.

6. Summary of predictions

In Table 1 we summarise the main features of optimal behaviour in the various different choice situations we have considered. Starting from some relatively modest assumptions, our general model yields a surprisingly rich array of predictions. Preference reversals may occur whenever there is a non-zero opportunity cost, in other words whenever the animal loses opportunities to forage elsewhere while it is waiting for delayed rewards. However, the expected direction of preference reversal depends on whether the choice situation is a one-off or is repeated. When choice is repeated, optimal behaviour leads to the form of preference reversals documented in the empirical literature, with greater patience for more delayed rewards. However, under these same conditions we predict no effect of the reward ratio $R_{\mathrm{LL}} / R_{\mathrm{SS}}$. Conversely, in a one-off choice with a non-zero opportunity cost we predict lower rates of discounting for larger rewards, but preference reversals in the opposite direction to that typically seen in experiments. Thus, although our model successfully predicts isolated features of intertemporal choice behaviour, no single version of the model can account for all of the empirically observed patterns. To understand how animals evaluate delayed rewards, it seems that we need to take into account additional factors besides the ones we have focused on here, collection risk and opportunity cost. For example, we might incorporate certain constraints on decision making, such as discrimination biases (Stephens, 2002; Stephens et al., 2004) or uncertain interruption rates (Sozou, 1998). At the same time, however, it is important to question whether animals are likely to be adapted to the intertemporal choice situations they encounter in the laboratory. In the next section we critically evaluate the ecological relevance of choice between delayed rewards.

7. Ecological relevance

We have examined a series of simple choice scenarios in which a foraging animal is fully adapted to the rewards $\left(R_{i}\right)$ and delays $\left(D_{i}\right)$ of alternative options, as well as to the frequency (α or λ) with which interruptions occur. This has been a useful exercise for identifying what choices the animal should make to maximise its long-term energy gain in these specific situations. But why would we expect animals to have evolved an ability to choose between rewards with different delays? What kinds of natural situations would entail such a choice, in which the animal has access to a given option but the reward cannot be harvested until a later point in time? Under what circumstances might patience be 'ecologically rational' (Gigerenzer et al., 1999)? Several possibilities have been proposed.

6.1. Fruit ripening (Dasgupta and Maskin, 2005; Stevens and Stephens, 2008)

When a frugivore encounters unripe fruit, it is faced with a choice between eating it immediately or waiting until it has ripened, in which case the energetic reward it gains will be greater. If, as seems likely, the animal is free to forage elsewhere while it is waiting for the fruit to ripen, this situation might reasonably be modelled as a one-off choice with zero opportunity cost. Assuming a constant collection risk (e.g. a risk that competing frugivores consume the fruit in the meantime), this predicts standard exponential discounting. However, since fruit is likely to become increasingly attractive to foragers as it ripens, the collection risk actually rises as time passes and so the assumption of a constant α is invalid. In addition, the timescale of fruit ripening is far greater than the delays used in self-control experiments, which typically last a few seconds or minutes. It is not yet known how animals devalue food items that they cannot eat until days or weeks later.

6.2. Extractive foraging (Stevens and Stephens, 2008)

Some foods (e.g. nuts, shellfish) have to be extracted from hard, inedible cases before they can be consumed. Although the handling time imposes a fixed delay to the reward, it is unclear how well this corresponds to the self-control paradigm studied experimentally. First, it is not obvious what the alternative, more immediate option is, unless the animal has a range of different food types it can exploit in the same habitat. Second, it seems likely that in most cases of extractive foraging the collection risk will be negligible. Finally, from a mechanistic rather than functional perspective, the animal may already gain some psychological reinforcement from handling a food item before it has extracted the food (Shettleworth and Jordan, 1986).

6.3. Caching for the winter (Stevens and Stephens, 2008, 2009; Stevens, 2010)

A variety of birds and mammals cache food for later use, and this has been interpreted as a preference for a delayed reward over immediate consumption. On closer inspection, however, this type of behaviour differs in important ways from the kind of situation studied in impulsiveness tests in the laboratory. When an animal faces a choice between caching a given food item or eating it now, it could be argued that the immediate and delayed options have the same reward magnitude, whereas in the self-control paradigm the delayed reward is bigger (generating a conflict between reward size and time cost). If anything, cached food will provide a smaller net energetic gain when it is eventually consumed, because of decay and the energetic cost of recovering it (e.g. digging it up). The fitness value of the food item may nevertheless be greater when it is recovered and eaten in midwinter than if it was eaten when found earlier in the year, because the background rate of gain from foraging has declined dramatically and the animal may be closer to starvation. But this situation is rather
different from the self-control paradigm, in which rewards are delayed by seconds or minutes and changes in the animal's state can be disregarded. Instead, the decision to cache seems to be driven by other factors that are missing from the self-control set-up. Most probably, the animal has been selected to cache for the winter to guard against the risk of energetic shortfall during a predictable period of poor foraging success. At the same time, caching may allow it to use additional resources when it is already satiated, as suggested by the fact that caching typically occurs at a time when excess food is available (Smith and Reichman, 1984).

6.4. Patch leaving (Stephens and Dunlap, 2009, 2011; Stephens et al., 2004; Stevens and

 Stephens, 2009; Stevens, 2010)Stephens and colleagues have framed the classic patch-leaving problem of behavioural ecology in terms of the self-control paradigm. In this view, the decision to remain in a given foraging patch and keep searching for additional food items represents choice for a more immediate reward, whereas leaving the patch and travelling to a new one represents choice for a delayed, but potentially larger, reward (Stephens et al., 2004). When the distribution of food is highly clustered there is a clear opportunity cost, since while travelling between patches the animal cannot continue to feed. However, as Stephens and Dunlap (2009) point out, the patch-leaving problem differs from the self-control problem in having a nested decision structure: choice of one option ('stay') requires the animal eventually to choose the other option ('leave') before the same choice is repeated. Interestingly, blue jays (Cyanocitta cristata) make better long-term decisions in the self-control situation (Stephens and Dunlap, 2009).
6.5. Sequential mate search (Stevens, 2010)

Discussions of intertemporal choice typically revolve around foraging decisions, but similar issues may apply in other domains. In a mate-choice context, a female's decision to reject a low-quality male in the hope she will later find a superior mate could be viewed as choice for a larger, later reward. This is not exactly equivalent to the standard self-control paradigm, in particular because the delay to the later option and the size of the associated reward (the exact quality of the superior mate) are both uncertain, but there are some intriguing parallels. This kind of situation might also generate some interesting complications, such as changes in the degree of impulsiveness over time; for example, unpaired females are likely to become increasingly impatient as the end of the mating season approaches. An analogous effect has been noted for diving animals, which should become less selective in their foraging as they near the time at which they have to return to the surface for air (Houston and McNamara, 1985).

In summary, despite some superficial similarities, there appear to be few-if any-biological situations that correspond directly to the self-control paradigm used in laboratory tests of impulsive behaviour. On this basis, we question whether it is reasonable to expect that natural selection has furnished animals with the decision rules for behaving rationally (i.e. in a way that maximises their gains) in these particular experimental set-ups (Houston, 2009; Houston et al., 2007; McNamara and Houston, 1980, 2009). Some of the apparently short-sighted behaviours observed in the laboratory may be the product of rules that work well in more naturalistic situations such as patch exploitation (Stephens 2002). Future work on the adaptive basis of impulsiveness should identify what kinds of rules perform well in ecologically relevant scenarios and use these rules to predict behavioural patterns in laboratory experiments like the self-control paradigm. The current trend for post hoc ecological explanations of why certain taxa exhibit higher or lower discounting rates in
laboratory experiments (e.g. Addessi et al., 2011; Cheng et al., 2002; Rosati et al., 2007; Stevens et al., 2005a,b) needs to be paired with a predictive, model-based approach to understanding animal behaviour.

8. Key points

We finish by summarising some key points from our analysis.

1. Depending on the precise situation considered, optimality models of choice between delayed rewards can predict a range of different types of behaviour-including no preference reversal, preference reversal in either direction, lower discounting rates for bigger rewards or no effect of reward magnitude. Exponential discounting is expected only under certain circumstances.
2. To predict how an animal should respond, we need to know more than just the rewards and delays of the available options. We also need to know what information is available to the animal and what it perceives about the current situation. Of critical importance is whether the animal has evolved to expect one-off choices, repeated choices or can adjust its behaviour flexibly depending on the persistence of the current situation.
3. Preference reversals over time are not equivalent to preference reversals across separate choice situations. Whether preferences should reverse over time depends on the information the animal has about the continuing availability of the rewards.
4. The structure of the self-control paradigm used in laboratory experiments does not fit most intertemporal choice situations in the natural environment. Expecting animals to behave rationally in self-control tests might therefore be unrealistic.

Acknowledgements

A.I.H. and J.M.M. came up with the idea for this paper. All three authors developed the idea and T.W.F. wrote the paper. We thank the European Research Council for financial support (Advanced Grant 250209 to A.I.H.), Peter Sozou for discussion and Andy Higginson, Fabio Paglieri, Jeff Stevens, Pete Trimmer, Marco Vasconcelos and an anonymous referee for comments on an earlier version of the manuscript.

References

Addessi, E., Paglieri, F., Focaroli, V., 2011. The ecological rationality of delay tolerance: insights from capuchin monkeys. Cognition 119, 142-147.

Ainslie, G., 1974. Impulse control in pigeons. J. Exp. Anal. Behav. 21, 485-489.
Ainslie, G., Herrnstein, R.J., 1981. Preference reversal and delayed reinforcement. Anim. Learn. Behav. 9, 476-482.

Amici, F., Aureli, F., Call, J., 2008. Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Curr. Biol. 18, 1415-1419.

Bateson, M., Kacelnik, A., 1996. Rate currencies and the foraging starling: the fallacy of the averages revisited. Behav. Ecol. 7, 341-352.

Berns, G.S., Laibson, D., Loewenstein, G., 2007. Intertemporal choice-toward an integrative framework. Trends Cogn. Sci. 11, 482-488.

Bickel, W.K., Marsh, L.A., 2001. Toward a behavioral economic understanding of drug dependence: delay discounting processes. Addiction 96, 73-86.

Casari, M., 2009. Pre-commitment and flexibility in a time decision experiment. J. Risk. Uncertain. 38, 117-141.

Cheng, K., Peña, J., Porter, M.A., Irwin, J.D., 2002. Self-control in honeybees. Psychon. Bull. Rev. 9, 259-263.

Dasgupta, P., Maskin, E., 2005. Uncertainty and hyperbolic discounting. Am. Econ. Rev. 95, 1290-1299.

Farrar, A.M., Kieres, A.K., Hausknecht, K.A., de Wit, H., Richards, J.B., 2003. Effects of reinforcer magnitude on an animal model of impulsive behavior. Behav. Processes 64, 261-271.

Frederick, S., Loewenstein, G., O’Donoghue, T., 2002. Time discounting and time preference: a critical review. J. Econ. Lit. 40, 351-401.

Freidin, E., Aw, J., Kacelnik, A., 2009. Sequential and simultaneous choices: testing the diet selection and sequential choice models. Behav. Processes 80, 218-223.

Gibbon, J., 1977. Scalar expectancy theory and Weber's law in animal timing. Psychol. Rev. 84, 279-325.

Gigerenzer, G., Todd, P.M., ABC Research Group (Eds), 1999. Simple Heuristics that Make Us Smart. Oxford University Press, New York.

Green, L., Estle, S.J., 2003. Preference reversals with food and water reinforcers in rats. J. Exp. Anal. Behav. 79, 233-242.

Green, L., Myerson, J., 1996. Exponential versus hyperbolic discounting of delayed outcomes: risk and waiting time. Am. Zool. 36, 496-505.

Green, L., Fisher, E.B., Perlow, S., Sherman, L., 1981. Preference reversal and self-control: choice as a function of reward amount and delay. Behav. Anal. Lett. 1, 43-51.

Green, L., Fristoe, N., Myerson, J., 1994. Temporal discounting and preference reversals in choice between delayed outcomes. Psychon. Bull. Rev. 1, 383-389.

Green, L., Myerson, J., McFadden, E., 1997. Rate of temporal discounting decreases with amount of reward. Mem. Cognit. 25, 715-723.

Green, L., Myerson, J., Ostaszewski, P., 1999. Amount of reward has opposite effects on the discounting of delayed and probabilistic outcomes. J. Exp. Psychol. Learn. Mem. Cogn. 25, 418-427.

Green, L., Myerson, J., Holt, D.D., Slevin, J.R., Estle, S.J., 2004. Discounting of delayed food rewards in pigeons and rats: is there a magnitude effect? J. Exp. Anal. Behav. 81, 39-50.

Henly, S.E., Ostdiek, A., Blackwell, E., Knutie, S., Dunlap, A.S., Stephens, D.W., 2008. The discounting-by-interruptions hypothesis: model and experiment. Behav. Ecol. 19, 154162.

Houston, A.I., 2009. Flying in the face of nature. Behav. Processes 80, 295-305.
Houston, A.I., McNamara, J.M., 1985. A general theory of central-place foraging for singleprey loaders. Theor. Popul. Biol. 28, 233-262.

Houston, A.I., McNamara, J.M., 1989. The value of food: effects of open and closed economies. Anim. Behav. 37, 546-562.

Houston, A.I., McNamara, J.M., 1999. Models of Adaptive Behaviour. Cambridge University Press, Cambridge.

Houston, A.I., Kacelnik, A., McNamara, J.M., 1982. Some learning rules for acquiring information. In: McFarland, D. (Ed.), Functional Ontogeny. Pitman, London, pp. 140191.

Houston, A.I., McNamara, J.M., Steer, M.D., 2007. Do we expect natural selection to produce rational behaviour? Phil. Trans. R. Soc. B 362, 1531-1543.

Kacelnik, A., 1997. Normative and descriptive models of decision making: time discounting and risk sensitivity. In: Bock, G.R., Cardew, G. (Eds.), Characterizing Human

Psychological Adaptations (Ciba Foundation Symposium, vol. 208). Wiley, Chichester, pp. 51-70.

Kacelnik, A., 2003. The evolution of patience. In: Loewenstein, G., Read, D., Baumeister, R.F. (Eds.), Time and Decision: Economic and Psychological Perspectives on Intertemporal Choice. Russell Sage Foundation, New York, pp. 115-138.

Kagel, J.H., Green, L., Caraco, T., 1986. When foragers discount the future: constraint or adaptation? Anim. Behav. 34, 271-283.

Kalenscher, T., Pennartz, C.M.A., 2008. Is a bird in the hand worth two in the future? The neuroeconomics of intertemporal decision-making. Prog. Neurobiol. 84, 284-315.

Kirby, K.N., Herrnstein, R.J., 1995. Preference reversals due to myopic discounting of delayed reward. Psychol. Sci. 6, 83-89.

Mazur, J.E., 1987. An adjusting procedure for studying delayed reinforcement. In: Rachlin, H. (Ed.), Quantitative Analyses of Behavior: the Effect of Delay and of Intervening Events on Reinforcement Value. Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 5573.

Mazur, J.E., 2006. Mathematical models and the experimental analysis of behavior. J. Exp. Anal. Behav. 85, 275-291.

Mazur, J.E., 2007a. Rats' choices between one and two delayed reinforcers. Learn. Behav. 35, 169-176.

Mazur, J.E., 2007b. Species differences between rats and pigeons in choices with probabilistic and delayed reinforcers. Behav. Processes 75, 220-224.

Mazur, J.E., Logue, A.W., 1978. Choice in a "self-control" paradigm: effects of a fading procedure. J. Exp. Anal. Behav. 30, 11-17.

McDiarmid, C.F., Rilling, M.E., 1965. Reinforcement delay and reinforcement rate as determinants of schedule preference. Psychon. Sci. 2, 195-196.

McNamara, J.M., 1982. Optimal patch use in a stochastic environment. Theor. Popul. Biol. 21, 269-288.

McNamara, J.M., 1996. Risk-prone behaviour under rules which have evolved in a changing environment. Am. Zool. 36, 484-495.

McNamara, J.M., Houston, A.I., 1980. The application of statistical decision theory to animal behaviour. J. Theor. Biol. 85, 673-690.

McNamara, J.M., Houston, A.I., 1986. The common currency for behavioral decisions. Am. Nat. 127, 358-378.

McNamara, J.M., Houston, A.I., 1987. A general framework for understanding the effects of variability and interruptions on foraging behaviour. Acta Biotheor. 36, 3-22.

McNamara, J.M., Houston, A.I., 2009. Integrating function and mechanism. Trends Ecol. Evol. 24, 670-675.

Myerson, J., Green, L., 1995. Discounting of delayed rewards: models of individual choice. J. Exp. Anal. Behav. 64, 263-276.

Rachlin, H., Green, L., 1972. Commitment, choice and self-control. J. Exp. Anal. Behav. 17, 15-22.

Reynolds, B., 2006. A review of delay-discounting research with humans: relations to drug use and gambling. Behav. Pharmacol. 17, 651-667.

Roesch, M.R., Calu, D.J., Schoenbaum, G., 2007. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci. 10, 16151624.

Rosati, A.G., Stevens, J.R., Hare, B., Hauser, M.D., 2007. The evolutionary origins of human patience: temporal preferences in chimpanzees, bonobos, and human adults. Curr. Biol. 17, 1663-1668.

Shapiro, M.S., Siller, S., Kacelnik, A., 2008. Simultaneous and sequential choice as a function of reward delay and magnitude: normative, descriptive and process-based models tested in the European starling (Sturnus vulgaris). J. Exp. Psychol. Anim. Behav. Process. 34, 75-93.

Shettleworth, S.J., Jordan, V., 1986. Rats prefer handling food to waiting for it. Anim. Behav. 34, 925-927.

Smith, C.C., Reichman, O.J., 1984. The evolution of food caching by birds and mammals. Ann. Rev. Ecol. Syst. 15, 329-351.

Sozou, P.D., 1998. On hyperbolic discounting and uncertain hazard rates. Proc. R. Soc. B 265, 2015-2020.

Stephens, D.W., 2002. Discrimination, discounting and impulsivity: a role for an informational constraint. Phil. Trans. R. Soc. B 357, 1527-1537.

Stephens, D.W., Anderson, D., 2001. The adaptive value of preference for immediacy: when shortsighted rules have farsighted consequences. Behav. Ecol. 12, 330-339.

Stephens, D.W., Dunlap, A.S., 2009. Why do animals make better choices in patch-leaving problems? Behav. Processes 80, 252-260.

Stephens, D.W., Dunlap, A.S., 2011. Patch exploitation as choice: symmetric choice in an asymmetric situation? Anim. Behav. 81, 683-689.

Stephens, D.W., Kerr, B., Fernández-Juricic, E., 2004. Impulsiveness without discounting: the ecological rationality hypothesis. Proc. R Soc. B 271, 2459-2465.

Stevens, J.R., 2010. Intertemporal choice. In: Breed, M., Moore, J. (Eds.), Encyclopedia of Animal Behavior. Academic Press, Oxford, pp. 203-208.

Stevens, J.R., Stephens, D.W., 2008. Patience. Curr. Biol. 18, R11-R12.

Stevens, J.R., Stephens, D.W., 2009. The adaptive nature of impulsivity. In: Madden, G.J., Bickel, W.K. (Eds.), Impulsivity: the Behavioral and Neurological Science of Discounting. APA Press, Washington, DC, pp. 361-387.

Stevens, J.R., Mühlhoff, N., in press. Intertemporal choice in lemurs. Behav. Processes (this issue).

Stevens, J.R., Hallinan, E.V., Hauser, M.D., 2005a. The ecology and evolution of patience in two New World monkeys. Biol. Lett. 1, 223-226.

Stevens, J.R., Rosati, A.G., Ross, K.R., Hauser, M.D., 2005b. Will travel for food: spatial discounting in two New World monkeys. Curr. Biol. 15, 1855-1860.

Takahashi, T., 2005. Loss of self-control in intertemporal choice may be attributable to logarithmic time-perception. Med. Hypotheses 65, 691-693.

Wogar, M.A., Bradshaw, C.M., Szabadi, E., 1992. Choice between delayed reinforcers in an adjusting-delay schedule: the effects of absolute reinforcer size and deprivation level. Q. J. Exp. Psychol. B 45, 1-13.

Zauberman, G., Kim, B.K., Malkoc, S., Bettman, J.R., 2009. Discounting time and time discounting: subjective time perception and intertemporal preferences. J. Mark. Res. 46, 543-556.

Table 1. Summary of optimal behaviour in a number of simple situations involving a choice between a smaller, sooner (SS) option offering a relatively small reward (R_{SS}) after a short delay $\left(D_{\mathrm{SS}}\right)$ and a larger, later option (LL) offering a larger reward $\left(R_{\mathrm{LL}}\right)$ after a longer delay $\left(D_{\mathrm{LL}}\right)$. While waiting for a delayed reward there is an opportunity cost γ per unit time, plus a risk either that random interruptions eliminate the chosen reward (average interruption rate α) or that they terminate the entire foraging sequence (average termination rate λ).

Choice situation $(n=$ number of cycles $)$	Quantity maximised	with added delay	over time*	Large rewards discounted less/more/same?
	$R_{i} e^{-\alpha D_{i}}-\gamma D_{i}$	$\mathbf{L L} \rightarrow \mathbf{S S}$	$\mathbf{S S} \rightarrow \mathbf{L L}$	none
Repeated choice, uncertain n	$R_{i} /\left(e^{a D_{i}}-1\right)$	$\mathbf{S S} \rightarrow \mathbf{L L}$	$\mathbf{L L} \rightarrow \mathbf{S S}$	same
Repeated choice, infinite n	$\left(R_{i} e^{-\alpha D_{i}}\right) / D_{i}$	$\mathbf{S S} \rightarrow \mathbf{L L}$	$\mathbf{L L} \rightarrow \mathbf{S S}$	same
715				

* Assuming that the animal always knows that both options are still available. (In the absence of this information, no preference reversal is predicted.)

Fig. 1. A diagrammatic illustration of the self-control paradigm. Time runs from left to right, and the choices of a hypothetical animal are indicated by thick lines. (a) At the point indicated by the question mark, the animal chooses between a relatively small reward (R_{SS}) delivered after a relatively short delay (D_{SS}) and a larger reward (R_{LL}) delivered after a longer delay $\left(D_{\mathrm{LL}}\right)$. The animal is said to choose impulsively if it prefers the more immediate option (SS) even when the more delayed option (LL) offers a higher rate of gain. (b) Preference reversal across separate choice situations: in a similar choice situation in which the delays have been extended to $D_{\mathrm{SS}}+\delta$ and $D_{\mathrm{LL}}+\delta$, the animal may instead prefer the more delayed option (LL). (c) Preference reversal over time: if the animal has the opportunity to alter its initial decision after time δ has elapsed, it may switch to the more immediate option (SS).

Fig. 2. A graphical method for identifying the best option from a discrete set of alternatives (each represented by a circle) differing in their reward amount R_{i} and delay D_{i}, where interruptions to foraging occur at rate α and the opportunity cost per unit time of waiting for delayed rewards is γ. When there is no opportunity $\operatorname{cost}(\gamma=0)$, the best option maximises the expected energetic gain $R_{i} e^{-\alpha D_{i}}$. Lines of constant fitness (dashed line) are horizontal and the best option (labelled A) is the one that reaches the highest point along the vertical axis. When there is a non-zero opportunity $\operatorname{cost}(\gamma>0)$, the total opportunity cost γD_{i} increases with the time spent waiting, so lines of constant fitness (dotted line) slope upwards with increasing delay (since a greater expected energetic gain is needed to compensate for a longer delay). The best option (labelled B) maximises the expected energetic gain minus the total opportunity cost γD_{i}.

Fig. 3. Change in the expected pay-offs from choosing a smaller-sooner (SS) reward (grey) or a larger-later (LL) reward (black) in a one-off choice situation, when an extra delay is
added to both options. The rewards offered are $R_{\mathrm{SS}}=1$ for the SS option and $R_{\mathrm{LL}}=11$ for the LL option, after delays of $D_{\mathrm{SS}}=1$ and $D_{\mathrm{LL}}=10$ plus the added delay. The dashed line indicates that the LL reward is devalued even when there is no added delay, since $D_{\mathrm{LL}}>D_{\mathrm{SS}}$. The rate of interruptions is $\alpha=0.1$ per unit time and the total time available is $T=500$. (a) When there is no opportunity cost of waiting for a reward ($\gamma=0$), preference reversal does not occur. (b) When there is an opportunity cost of waiting for a reward ($\gamma=0.1$ per unit time), preference reversal can occur, with the optimal choice switching from LL to SS as the added delay increases.

Fig. 4. Change in the expected pay-offs from choosing a smaller-sooner (SS) reward (grey) or a larger-later (LL) reward (black) in continually repeated cycles of the same choice situation, when an extra delay is added to both options. The rewards offered are $R_{\mathrm{SS}}=1$ for the SS option and $R_{\mathrm{LL}}=11$ for the LL option, after delays of $D_{\mathrm{SS}}=1$ and $D_{\mathrm{LL}}=10$ plus the added delay. The dashed line indicates that the LL reward is devalued even when there is no added delay, since $D_{\mathrm{LL}}>D_{\mathrm{SS}}$. The rate of interruptions is $\alpha=0.1$ per unit time and the total time available is $T=500$. Preference reversal can occur, with the optimal choice switching from SS to LL as the added delay increases.

Fig. 5. Change in the expected pay-offs from choosing a smaller-sooner (SS) reward (grey) or a larger-later (LL) reward (black) in an uncertain number of cycles of the same choice situation, when an extra delay is added to both options. The rewards offered are $R_{\mathrm{SS}}=1$ for the SS option and $R_{\mathrm{LL}}=11$ for the LL option, after delays of $D_{\mathrm{SS}}=1$ and $D_{\mathrm{LL}}=10$ plus the added delay. The dashed line indicates that the LL reward is devalued even when there is no added delay, since $D_{\mathrm{LL}}>D_{\text {SS }}$. The rate at which random events terminate the entire choice
sequence is $\lambda=0.1$ per unit time and the total time available is $T=500$. Preference reversal can occur, with the optimal choice switching from SS to LL as the added delay increases.

Fig. 6. The expected pay-offs from choosing a smaller-sooner (SS) reward (grey) or a largerlater (LL) reward (black) in a reversible choice situation, in which the animal has the opportunity to switch to a previously rejected option before the associated delay expires and the reward can be collected (indicated by the dashed lines). The rewards offered are $R_{\mathrm{SS}}=1$ for the SS option and $R_{\mathrm{LL}}=11$ for the LL option, after initial delays of $D_{\mathrm{SS}}=36$ and $D_{\mathrm{LL}}=$ 45. The rate of interruptions is $\alpha=0.1$ per unit time and the total time available is $T=500$. As time passes, the remaining delays for both options decrease. This can cause preference reversal if the animal has information that both rewards are still available. (a) In a one-off choice situation with an opportunity cost of waiting for a reward ($\gamma=0.1$ per unit time), the best option changes from SS to LL as time passes. This is the reverse case of Fig. 3b. (b) When the choice situation is continually repeated, the best option changes from LL to SS as time passes. This is the reverse case of Fig. 4. Note that when the time to collection falls to zero, the expected pay-off (dashed lines) is infinite.
(c)

Fig. 1
(a)

(b)

Fig. 2

Fig. 3
(a)

(b)

Fig. 4

Fig. 5

Fig. 6
(a)

